forked from OSchip/llvm-project
1692 lines
63 KiB
C++
1692 lines
63 KiB
C++
//===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This Pass handles loop interchange transform.
|
|
// This pass interchanges loops to provide a more cache-friendly memory access
|
|
// patterns.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/LoopInterchange.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Analysis/DependenceAnalysis.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
#include <cassert>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "loop-interchange"
|
|
|
|
STATISTIC(LoopsInterchanged, "Number of loops interchanged");
|
|
|
|
static cl::opt<int> LoopInterchangeCostThreshold(
|
|
"loop-interchange-threshold", cl::init(0), cl::Hidden,
|
|
cl::desc("Interchange if you gain more than this number"));
|
|
|
|
namespace {
|
|
|
|
using LoopVector = SmallVector<Loop *, 8>;
|
|
|
|
// TODO: Check if we can use a sparse matrix here.
|
|
using CharMatrix = std::vector<std::vector<char>>;
|
|
|
|
} // end anonymous namespace
|
|
|
|
// Maximum number of dependencies that can be handled in the dependency matrix.
|
|
static const unsigned MaxMemInstrCount = 100;
|
|
|
|
// Maximum loop depth supported.
|
|
static const unsigned MaxLoopNestDepth = 10;
|
|
|
|
#ifdef DUMP_DEP_MATRICIES
|
|
static void printDepMatrix(CharMatrix &DepMatrix) {
|
|
for (auto &Row : DepMatrix) {
|
|
for (auto D : Row)
|
|
LLVM_DEBUG(dbgs() << D << " ");
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
|
|
Loop *L, DependenceInfo *DI) {
|
|
using ValueVector = SmallVector<Value *, 16>;
|
|
|
|
ValueVector MemInstr;
|
|
|
|
// For each block.
|
|
for (BasicBlock *BB : L->blocks()) {
|
|
// Scan the BB and collect legal loads and stores.
|
|
for (Instruction &I : *BB) {
|
|
if (!isa<Instruction>(I))
|
|
return false;
|
|
if (auto *Ld = dyn_cast<LoadInst>(&I)) {
|
|
if (!Ld->isSimple())
|
|
return false;
|
|
MemInstr.push_back(&I);
|
|
} else if (auto *St = dyn_cast<StoreInst>(&I)) {
|
|
if (!St->isSimple())
|
|
return false;
|
|
MemInstr.push_back(&I);
|
|
}
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Found " << MemInstr.size()
|
|
<< " Loads and Stores to analyze\n");
|
|
|
|
ValueVector::iterator I, IE, J, JE;
|
|
|
|
for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
|
|
for (J = I, JE = MemInstr.end(); J != JE; ++J) {
|
|
std::vector<char> Dep;
|
|
Instruction *Src = cast<Instruction>(*I);
|
|
Instruction *Dst = cast<Instruction>(*J);
|
|
if (Src == Dst)
|
|
continue;
|
|
// Ignore Input dependencies.
|
|
if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
|
|
continue;
|
|
// Track Output, Flow, and Anti dependencies.
|
|
if (auto D = DI->depends(Src, Dst, true)) {
|
|
assert(D->isOrdered() && "Expected an output, flow or anti dep.");
|
|
LLVM_DEBUG(StringRef DepType =
|
|
D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
|
|
dbgs() << "Found " << DepType
|
|
<< " dependency between Src and Dst\n"
|
|
<< " Src:" << *Src << "\n Dst:" << *Dst << '\n');
|
|
unsigned Levels = D->getLevels();
|
|
char Direction;
|
|
for (unsigned II = 1; II <= Levels; ++II) {
|
|
const SCEV *Distance = D->getDistance(II);
|
|
const SCEVConstant *SCEVConst =
|
|
dyn_cast_or_null<SCEVConstant>(Distance);
|
|
if (SCEVConst) {
|
|
const ConstantInt *CI = SCEVConst->getValue();
|
|
if (CI->isNegative())
|
|
Direction = '<';
|
|
else if (CI->isZero())
|
|
Direction = '=';
|
|
else
|
|
Direction = '>';
|
|
Dep.push_back(Direction);
|
|
} else if (D->isScalar(II)) {
|
|
Direction = 'S';
|
|
Dep.push_back(Direction);
|
|
} else {
|
|
unsigned Dir = D->getDirection(II);
|
|
if (Dir == Dependence::DVEntry::LT ||
|
|
Dir == Dependence::DVEntry::LE)
|
|
Direction = '<';
|
|
else if (Dir == Dependence::DVEntry::GT ||
|
|
Dir == Dependence::DVEntry::GE)
|
|
Direction = '>';
|
|
else if (Dir == Dependence::DVEntry::EQ)
|
|
Direction = '=';
|
|
else
|
|
Direction = '*';
|
|
Dep.push_back(Direction);
|
|
}
|
|
}
|
|
while (Dep.size() != Level) {
|
|
Dep.push_back('I');
|
|
}
|
|
|
|
DepMatrix.push_back(Dep);
|
|
if (DepMatrix.size() > MaxMemInstrCount) {
|
|
LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
|
|
<< " dependencies inside loop\n");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// A loop is moved from index 'from' to an index 'to'. Update the Dependence
|
|
// matrix by exchanging the two columns.
|
|
static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
|
|
unsigned ToIndx) {
|
|
unsigned numRows = DepMatrix.size();
|
|
for (unsigned i = 0; i < numRows; ++i) {
|
|
char TmpVal = DepMatrix[i][ToIndx];
|
|
DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx];
|
|
DepMatrix[i][FromIndx] = TmpVal;
|
|
}
|
|
}
|
|
|
|
// Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
|
|
// '>'
|
|
static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
|
|
unsigned Column) {
|
|
for (unsigned i = 0; i <= Column; ++i) {
|
|
if (DepMatrix[Row][i] == '<')
|
|
return false;
|
|
if (DepMatrix[Row][i] == '>')
|
|
return true;
|
|
}
|
|
// All dependencies were '=','S' or 'I'
|
|
return false;
|
|
}
|
|
|
|
// Checks if no dependence exist in the dependency matrix in Row before Column.
|
|
static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
|
|
unsigned Column) {
|
|
for (unsigned i = 0; i < Column; ++i) {
|
|
if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' &&
|
|
DepMatrix[Row][i] != 'I')
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
|
|
unsigned OuterLoopId, char InnerDep,
|
|
char OuterDep) {
|
|
if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
|
|
return false;
|
|
|
|
if (InnerDep == OuterDep)
|
|
return true;
|
|
|
|
// It is legal to interchange if and only if after interchange no row has a
|
|
// '>' direction as the leftmost non-'='.
|
|
|
|
if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
|
|
return true;
|
|
|
|
if (InnerDep == '<')
|
|
return true;
|
|
|
|
if (InnerDep == '>') {
|
|
// If OuterLoopId represents outermost loop then interchanging will make the
|
|
// 1st dependency as '>'
|
|
if (OuterLoopId == 0)
|
|
return false;
|
|
|
|
// If all dependencies before OuterloopId are '=','S'or 'I'. Then
|
|
// interchanging will result in this row having an outermost non '='
|
|
// dependency of '>'
|
|
if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Checks if it is legal to interchange 2 loops.
|
|
// [Theorem] A permutation of the loops in a perfect nest is legal if and only
|
|
// if the direction matrix, after the same permutation is applied to its
|
|
// columns, has no ">" direction as the leftmost non-"=" direction in any row.
|
|
static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
|
|
unsigned InnerLoopId,
|
|
unsigned OuterLoopId) {
|
|
unsigned NumRows = DepMatrix.size();
|
|
// For each row check if it is valid to interchange.
|
|
for (unsigned Row = 0; Row < NumRows; ++Row) {
|
|
char InnerDep = DepMatrix[Row][InnerLoopId];
|
|
char OuterDep = DepMatrix[Row][OuterLoopId];
|
|
if (InnerDep == '*' || OuterDep == '*')
|
|
return false;
|
|
if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static LoopVector populateWorklist(Loop &L) {
|
|
LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
|
|
<< L.getHeader()->getParent()->getName() << " Loop: %"
|
|
<< L.getHeader()->getName() << '\n');
|
|
LoopVector LoopList;
|
|
Loop *CurrentLoop = &L;
|
|
const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
|
|
while (!Vec->empty()) {
|
|
// The current loop has multiple subloops in it hence it is not tightly
|
|
// nested.
|
|
// Discard all loops above it added into Worklist.
|
|
if (Vec->size() != 1)
|
|
return {};
|
|
|
|
LoopList.push_back(CurrentLoop);
|
|
CurrentLoop = Vec->front();
|
|
Vec = &CurrentLoop->getSubLoops();
|
|
}
|
|
LoopList.push_back(CurrentLoop);
|
|
return LoopList;
|
|
}
|
|
|
|
static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
|
|
PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
|
|
if (InnerIndexVar)
|
|
return InnerIndexVar;
|
|
if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
|
|
return nullptr;
|
|
for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
|
|
PHINode *PhiVar = cast<PHINode>(I);
|
|
Type *PhiTy = PhiVar->getType();
|
|
if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
|
|
!PhiTy->isPointerTy())
|
|
return nullptr;
|
|
const SCEVAddRecExpr *AddRec =
|
|
dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
|
|
if (!AddRec || !AddRec->isAffine())
|
|
continue;
|
|
const SCEV *Step = AddRec->getStepRecurrence(*SE);
|
|
if (!isa<SCEVConstant>(Step))
|
|
continue;
|
|
// Found the induction variable.
|
|
// FIXME: Handle loops with more than one induction variable. Note that,
|
|
// currently, legality makes sure we have only one induction variable.
|
|
return PhiVar;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// LoopInterchangeLegality checks if it is legal to interchange the loop.
|
|
class LoopInterchangeLegality {
|
|
public:
|
|
LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
|
|
OptimizationRemarkEmitter *ORE)
|
|
: OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
|
|
|
|
/// Check if the loops can be interchanged.
|
|
bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
|
|
CharMatrix &DepMatrix);
|
|
|
|
/// Check if the loop structure is understood. We do not handle triangular
|
|
/// loops for now.
|
|
bool isLoopStructureUnderstood(PHINode *InnerInductionVar);
|
|
|
|
bool currentLimitations();
|
|
|
|
const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const {
|
|
return OuterInnerReductions;
|
|
}
|
|
|
|
private:
|
|
bool tightlyNested(Loop *Outer, Loop *Inner);
|
|
bool containsUnsafeInstructions(BasicBlock *BB);
|
|
|
|
/// Discover induction and reduction PHIs in the header of \p L. Induction
|
|
/// PHIs are added to \p Inductions, reductions are added to
|
|
/// OuterInnerReductions. When the outer loop is passed, the inner loop needs
|
|
/// to be passed as \p InnerLoop.
|
|
bool findInductionAndReductions(Loop *L,
|
|
SmallVector<PHINode *, 8> &Inductions,
|
|
Loop *InnerLoop);
|
|
|
|
Loop *OuterLoop;
|
|
Loop *InnerLoop;
|
|
|
|
ScalarEvolution *SE;
|
|
|
|
/// Interface to emit optimization remarks.
|
|
OptimizationRemarkEmitter *ORE;
|
|
|
|
/// Set of reduction PHIs taking part of a reduction across the inner and
|
|
/// outer loop.
|
|
SmallPtrSet<PHINode *, 4> OuterInnerReductions;
|
|
};
|
|
|
|
/// LoopInterchangeProfitability checks if it is profitable to interchange the
|
|
/// loop.
|
|
class LoopInterchangeProfitability {
|
|
public:
|
|
LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
|
|
OptimizationRemarkEmitter *ORE)
|
|
: OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
|
|
|
|
/// Check if the loop interchange is profitable.
|
|
bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
|
|
CharMatrix &DepMatrix);
|
|
|
|
private:
|
|
int getInstrOrderCost();
|
|
|
|
Loop *OuterLoop;
|
|
Loop *InnerLoop;
|
|
|
|
/// Scev analysis.
|
|
ScalarEvolution *SE;
|
|
|
|
/// Interface to emit optimization remarks.
|
|
OptimizationRemarkEmitter *ORE;
|
|
};
|
|
|
|
/// LoopInterchangeTransform interchanges the loop.
|
|
class LoopInterchangeTransform {
|
|
public:
|
|
LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
|
|
LoopInfo *LI, DominatorTree *DT,
|
|
BasicBlock *LoopNestExit,
|
|
const LoopInterchangeLegality &LIL)
|
|
: OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
|
|
LoopExit(LoopNestExit), LIL(LIL) {}
|
|
|
|
/// Interchange OuterLoop and InnerLoop.
|
|
bool transform();
|
|
void restructureLoops(Loop *NewInner, Loop *NewOuter,
|
|
BasicBlock *OrigInnerPreHeader,
|
|
BasicBlock *OrigOuterPreHeader);
|
|
void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
|
|
|
|
private:
|
|
bool adjustLoopLinks();
|
|
bool adjustLoopBranches();
|
|
|
|
Loop *OuterLoop;
|
|
Loop *InnerLoop;
|
|
|
|
/// Scev analysis.
|
|
ScalarEvolution *SE;
|
|
|
|
LoopInfo *LI;
|
|
DominatorTree *DT;
|
|
BasicBlock *LoopExit;
|
|
|
|
const LoopInterchangeLegality &LIL;
|
|
};
|
|
|
|
struct LoopInterchange {
|
|
ScalarEvolution *SE = nullptr;
|
|
LoopInfo *LI = nullptr;
|
|
DependenceInfo *DI = nullptr;
|
|
DominatorTree *DT = nullptr;
|
|
|
|
/// Interface to emit optimization remarks.
|
|
OptimizationRemarkEmitter *ORE;
|
|
|
|
LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI,
|
|
DominatorTree *DT, OptimizationRemarkEmitter *ORE)
|
|
: SE(SE), LI(LI), DI(DI), DT(DT), ORE(ORE) {}
|
|
|
|
bool run(Loop *L) {
|
|
if (L->getParentLoop())
|
|
return false;
|
|
|
|
return processLoopList(populateWorklist(*L));
|
|
}
|
|
|
|
bool isComputableLoopNest(LoopVector LoopList) {
|
|
for (Loop *L : LoopList) {
|
|
const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
|
|
if (ExitCountOuter == SE->getCouldNotCompute()) {
|
|
LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
|
|
return false;
|
|
}
|
|
if (L->getNumBackEdges() != 1) {
|
|
LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
|
|
return false;
|
|
}
|
|
if (!L->getExitingBlock()) {
|
|
LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
unsigned selectLoopForInterchange(const LoopVector &LoopList) {
|
|
// TODO: Add a better heuristic to select the loop to be interchanged based
|
|
// on the dependence matrix. Currently we select the innermost loop.
|
|
return LoopList.size() - 1;
|
|
}
|
|
|
|
bool processLoopList(LoopVector LoopList) {
|
|
bool Changed = false;
|
|
unsigned LoopNestDepth = LoopList.size();
|
|
if (LoopNestDepth < 2) {
|
|
LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
|
|
return false;
|
|
}
|
|
if (LoopNestDepth > MaxLoopNestDepth) {
|
|
LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than "
|
|
<< MaxLoopNestDepth << "\n");
|
|
return false;
|
|
}
|
|
if (!isComputableLoopNest(LoopList)) {
|
|
LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
|
|
return false;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
|
|
<< "\n");
|
|
|
|
CharMatrix DependencyMatrix;
|
|
Loop *OuterMostLoop = *(LoopList.begin());
|
|
if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
|
|
OuterMostLoop, DI)) {
|
|
LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
|
|
return false;
|
|
}
|
|
#ifdef DUMP_DEP_MATRICIES
|
|
LLVM_DEBUG(dbgs() << "Dependence before interchange\n");
|
|
printDepMatrix(DependencyMatrix);
|
|
#endif
|
|
|
|
// Get the Outermost loop exit.
|
|
BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock();
|
|
if (!LoopNestExit) {
|
|
LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
|
|
return false;
|
|
}
|
|
|
|
unsigned SelecLoopId = selectLoopForInterchange(LoopList);
|
|
// Move the selected loop outwards to the best possible position.
|
|
for (unsigned i = SelecLoopId; i > 0; i--) {
|
|
bool Interchanged =
|
|
processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix);
|
|
if (!Interchanged)
|
|
return Changed;
|
|
// Loops interchanged reflect the same in LoopList
|
|
std::swap(LoopList[i - 1], LoopList[i]);
|
|
|
|
// Update the DependencyMatrix
|
|
interChangeDependencies(DependencyMatrix, i, i - 1);
|
|
#ifdef DUMP_DEP_MATRICIES
|
|
LLVM_DEBUG(dbgs() << "Dependence after interchange\n");
|
|
printDepMatrix(DependencyMatrix);
|
|
#endif
|
|
Changed |= Interchanged;
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
bool processLoop(LoopVector LoopList, unsigned InnerLoopId,
|
|
unsigned OuterLoopId, BasicBlock *LoopNestExit,
|
|
std::vector<std::vector<char>> &DependencyMatrix) {
|
|
LLVM_DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId
|
|
<< " and OuterLoopId = " << OuterLoopId << "\n");
|
|
Loop *InnerLoop = LoopList[InnerLoopId];
|
|
Loop *OuterLoop = LoopList[OuterLoopId];
|
|
|
|
LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE);
|
|
if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
|
|
LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
|
|
return false;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
|
|
LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
|
|
if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
|
|
LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
|
|
return false;
|
|
}
|
|
|
|
ORE->emit([&]() {
|
|
return OptimizationRemark(DEBUG_TYPE, "Interchanged",
|
|
InnerLoop->getStartLoc(),
|
|
InnerLoop->getHeader())
|
|
<< "Loop interchanged with enclosing loop.";
|
|
});
|
|
|
|
LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LoopNestExit,
|
|
LIL);
|
|
LIT.transform();
|
|
LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
|
|
LoopsInterchanged++;
|
|
|
|
assert(InnerLoop->isLCSSAForm(*DT) &&
|
|
"Inner loop not left in LCSSA form after loop interchange!");
|
|
assert(OuterLoop->isLCSSAForm(*DT) &&
|
|
"Outer loop not left in LCSSA form after loop interchange!");
|
|
|
|
return true;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) {
|
|
return any_of(*BB, [](const Instruction &I) {
|
|
return I.mayHaveSideEffects() || I.mayReadFromMemory();
|
|
});
|
|
}
|
|
|
|
bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
|
|
BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
|
|
BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
|
|
BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
|
|
|
|
LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");
|
|
|
|
// A perfectly nested loop will not have any branch in between the outer and
|
|
// inner block i.e. outer header will branch to either inner preheader and
|
|
// outerloop latch.
|
|
BranchInst *OuterLoopHeaderBI =
|
|
dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
|
|
if (!OuterLoopHeaderBI)
|
|
return false;
|
|
|
|
for (BasicBlock *Succ : successors(OuterLoopHeaderBI))
|
|
if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() &&
|
|
Succ != OuterLoopLatch)
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
|
|
// We do not have any basic block in between now make sure the outer header
|
|
// and outer loop latch doesn't contain any unsafe instructions.
|
|
if (containsUnsafeInstructions(OuterLoopHeader) ||
|
|
containsUnsafeInstructions(OuterLoopLatch))
|
|
return false;
|
|
|
|
// Also make sure the inner loop preheader does not contain any unsafe
|
|
// instructions. Note that all instructions in the preheader will be moved to
|
|
// the outer loop header when interchanging.
|
|
if (InnerLoopPreHeader != OuterLoopHeader &&
|
|
containsUnsafeInstructions(InnerLoopPreHeader))
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
|
|
// We have a perfect loop nest.
|
|
return true;
|
|
}
|
|
|
|
bool LoopInterchangeLegality::isLoopStructureUnderstood(
|
|
PHINode *InnerInduction) {
|
|
unsigned Num = InnerInduction->getNumOperands();
|
|
BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
|
|
for (unsigned i = 0; i < Num; ++i) {
|
|
Value *Val = InnerInduction->getOperand(i);
|
|
if (isa<Constant>(Val))
|
|
continue;
|
|
Instruction *I = dyn_cast<Instruction>(Val);
|
|
if (!I)
|
|
return false;
|
|
// TODO: Handle triangular loops.
|
|
// e.g. for(int i=0;i<N;i++)
|
|
// for(int j=i;j<N;j++)
|
|
unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
|
|
if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
|
|
InnerLoopPreheader &&
|
|
!OuterLoop->isLoopInvariant(I)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// If SV is a LCSSA PHI node with a single incoming value, return the incoming
|
|
// value.
|
|
static Value *followLCSSA(Value *SV) {
|
|
PHINode *PHI = dyn_cast<PHINode>(SV);
|
|
if (!PHI)
|
|
return SV;
|
|
|
|
if (PHI->getNumIncomingValues() != 1)
|
|
return SV;
|
|
return followLCSSA(PHI->getIncomingValue(0));
|
|
}
|
|
|
|
// Check V's users to see if it is involved in a reduction in L.
|
|
static PHINode *findInnerReductionPhi(Loop *L, Value *V) {
|
|
for (Value *User : V->users()) {
|
|
if (PHINode *PHI = dyn_cast<PHINode>(User)) {
|
|
if (PHI->getNumIncomingValues() == 1)
|
|
continue;
|
|
RecurrenceDescriptor RD;
|
|
if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD))
|
|
return PHI;
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
bool LoopInterchangeLegality::findInductionAndReductions(
|
|
Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) {
|
|
if (!L->getLoopLatch() || !L->getLoopPredecessor())
|
|
return false;
|
|
for (PHINode &PHI : L->getHeader()->phis()) {
|
|
RecurrenceDescriptor RD;
|
|
InductionDescriptor ID;
|
|
if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
|
|
Inductions.push_back(&PHI);
|
|
else {
|
|
// PHIs in inner loops need to be part of a reduction in the outer loop,
|
|
// discovered when checking the PHIs of the outer loop earlier.
|
|
if (!InnerLoop) {
|
|
if (!OuterInnerReductions.count(&PHI)) {
|
|
LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions "
|
|
"across the outer loop.\n");
|
|
return false;
|
|
}
|
|
} else {
|
|
assert(PHI.getNumIncomingValues() == 2 &&
|
|
"Phis in loop header should have exactly 2 incoming values");
|
|
// Check if we have a PHI node in the outer loop that has a reduction
|
|
// result from the inner loop as an incoming value.
|
|
Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch()));
|
|
PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V);
|
|
if (!InnerRedPhi ||
|
|
!llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) {
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< "Failed to recognize PHI as an induction or reduction.\n");
|
|
return false;
|
|
}
|
|
OuterInnerReductions.insert(&PHI);
|
|
OuterInnerReductions.insert(InnerRedPhi);
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// This function indicates the current limitations in the transform as a result
|
|
// of which we do not proceed.
|
|
bool LoopInterchangeLegality::currentLimitations() {
|
|
BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
|
|
BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
|
|
|
|
// transform currently expects the loop latches to also be the exiting
|
|
// blocks.
|
|
if (InnerLoop->getExitingBlock() != InnerLoopLatch ||
|
|
OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() ||
|
|
!isa<BranchInst>(InnerLoopLatch->getTerminator()) ||
|
|
!isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "Loops where the latch is not the exiting block are not"
|
|
<< " supported currently.\n");
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch",
|
|
OuterLoop->getStartLoc(),
|
|
OuterLoop->getHeader())
|
|
<< "Loops where the latch is not the exiting block cannot be"
|
|
" interchange currently.";
|
|
});
|
|
return true;
|
|
}
|
|
|
|
PHINode *InnerInductionVar;
|
|
SmallVector<PHINode *, 8> Inductions;
|
|
if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "Only outer loops with induction or reduction PHI nodes "
|
|
<< "are supported currently.\n");
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
|
|
OuterLoop->getStartLoc(),
|
|
OuterLoop->getHeader())
|
|
<< "Only outer loops with induction or reduction PHI nodes can be"
|
|
" interchanged currently.";
|
|
});
|
|
return true;
|
|
}
|
|
|
|
// TODO: Currently we handle only loops with 1 induction variable.
|
|
if (Inductions.size() != 1) {
|
|
LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not "
|
|
<< "supported currently.\n");
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter",
|
|
OuterLoop->getStartLoc(),
|
|
OuterLoop->getHeader())
|
|
<< "Only outer loops with 1 induction variable can be "
|
|
"interchanged currently.";
|
|
});
|
|
return true;
|
|
}
|
|
|
|
Inductions.clear();
|
|
if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "Only inner loops with induction or reduction PHI nodes "
|
|
<< "are supported currently.\n");
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
|
|
InnerLoop->getStartLoc(),
|
|
InnerLoop->getHeader())
|
|
<< "Only inner loops with induction or reduction PHI nodes can be"
|
|
" interchange currently.";
|
|
});
|
|
return true;
|
|
}
|
|
|
|
// TODO: Currently we handle only loops with 1 induction variable.
|
|
if (Inductions.size() != 1) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "We currently only support loops with 1 induction variable."
|
|
<< "Failed to interchange due to current limitation\n");
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner",
|
|
InnerLoop->getStartLoc(),
|
|
InnerLoop->getHeader())
|
|
<< "Only inner loops with 1 induction variable can be "
|
|
"interchanged currently.";
|
|
});
|
|
return true;
|
|
}
|
|
InnerInductionVar = Inductions.pop_back_val();
|
|
|
|
// TODO: Triangular loops are not handled for now.
|
|
if (!isLoopStructureUnderstood(InnerInductionVar)) {
|
|
LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
|
|
InnerLoop->getStartLoc(),
|
|
InnerLoop->getHeader())
|
|
<< "Inner loop structure not understood currently.";
|
|
});
|
|
return true;
|
|
}
|
|
|
|
// TODO: Current limitation: Since we split the inner loop latch at the point
|
|
// were induction variable is incremented (induction.next); We cannot have
|
|
// more than 1 user of induction.next since it would result in broken code
|
|
// after split.
|
|
// e.g.
|
|
// for(i=0;i<N;i++) {
|
|
// for(j = 0;j<M;j++) {
|
|
// A[j+1][i+2] = A[j][i]+k;
|
|
// }
|
|
// }
|
|
Instruction *InnerIndexVarInc = nullptr;
|
|
if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader)
|
|
InnerIndexVarInc =
|
|
dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1));
|
|
else
|
|
InnerIndexVarInc =
|
|
dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0));
|
|
|
|
if (!InnerIndexVarInc) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "Did not find an instruction to increment the induction "
|
|
<< "variable.\n");
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner",
|
|
InnerLoop->getStartLoc(),
|
|
InnerLoop->getHeader())
|
|
<< "The inner loop does not increment the induction variable.";
|
|
});
|
|
return true;
|
|
}
|
|
|
|
// Since we split the inner loop latch on this induction variable. Make sure
|
|
// we do not have any instruction between the induction variable and branch
|
|
// instruction.
|
|
|
|
bool FoundInduction = false;
|
|
for (const Instruction &I :
|
|
llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) {
|
|
if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) ||
|
|
isa<ZExtInst>(I))
|
|
continue;
|
|
|
|
// We found an instruction. If this is not induction variable then it is not
|
|
// safe to split this loop latch.
|
|
if (!I.isIdenticalTo(InnerIndexVarInc)) {
|
|
LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction "
|
|
<< "variable increment and branch.\n");
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkMissed(
|
|
DEBUG_TYPE, "UnsupportedInsBetweenInduction",
|
|
InnerLoop->getStartLoc(), InnerLoop->getHeader())
|
|
<< "Found unsupported instruction between induction variable "
|
|
"increment and branch.";
|
|
});
|
|
return true;
|
|
}
|
|
|
|
FoundInduction = true;
|
|
break;
|
|
}
|
|
// The loop latch ended and we didn't find the induction variable return as
|
|
// current limitation.
|
|
if (!FoundInduction) {
|
|
LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n");
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable",
|
|
InnerLoop->getStartLoc(),
|
|
InnerLoop->getHeader())
|
|
<< "Did not find the induction variable.";
|
|
});
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// We currently only support LCSSA PHI nodes in the inner loop exit, if their
|
|
// users are either reduction PHIs or PHIs outside the outer loop (which means
|
|
// the we are only interested in the final value after the loop).
|
|
static bool
|
|
areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL,
|
|
SmallPtrSetImpl<PHINode *> &Reductions) {
|
|
BasicBlock *InnerExit = OuterL->getUniqueExitBlock();
|
|
for (PHINode &PHI : InnerExit->phis()) {
|
|
// Reduction lcssa phi will have only 1 incoming block that from loop latch.
|
|
if (PHI.getNumIncomingValues() > 1)
|
|
return false;
|
|
if (any_of(PHI.users(), [&Reductions, OuterL](User *U) {
|
|
PHINode *PN = dyn_cast<PHINode>(U);
|
|
return !PN ||
|
|
(!Reductions.count(PN) && OuterL->contains(PN->getParent()));
|
|
})) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// We currently support LCSSA PHI nodes in the outer loop exit, if their
|
|
// incoming values do not come from the outer loop latch or if the
|
|
// outer loop latch has a single predecessor. In that case, the value will
|
|
// be available if both the inner and outer loop conditions are true, which
|
|
// will still be true after interchanging. If we have multiple predecessor,
|
|
// that may not be the case, e.g. because the outer loop latch may be executed
|
|
// if the inner loop is not executed.
|
|
static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
|
|
BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock();
|
|
for (PHINode &PHI : LoopNestExit->phis()) {
|
|
// FIXME: We currently are not able to detect floating point reductions
|
|
// and have to use floating point PHIs as a proxy to prevent
|
|
// interchanging in the presence of floating point reductions.
|
|
if (PHI.getType()->isFloatingPointTy())
|
|
return false;
|
|
for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
|
|
Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i));
|
|
if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch())
|
|
continue;
|
|
|
|
// The incoming value is defined in the outer loop latch. Currently we
|
|
// only support that in case the outer loop latch has a single predecessor.
|
|
// This guarantees that the outer loop latch is executed if and only if
|
|
// the inner loop is executed (because tightlyNested() guarantees that the
|
|
// outer loop header only branches to the inner loop or the outer loop
|
|
// latch).
|
|
// FIXME: We could weaken this logic and allow multiple predecessors,
|
|
// if the values are produced outside the loop latch. We would need
|
|
// additional logic to update the PHI nodes in the exit block as
|
|
// well.
|
|
if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr)
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
|
|
unsigned OuterLoopId,
|
|
CharMatrix &DepMatrix) {
|
|
if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
|
|
LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
|
|
<< " and OuterLoopId = " << OuterLoopId
|
|
<< " due to dependence\n");
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
|
|
InnerLoop->getStartLoc(),
|
|
InnerLoop->getHeader())
|
|
<< "Cannot interchange loops due to dependences.";
|
|
});
|
|
return false;
|
|
}
|
|
// Check if outer and inner loop contain legal instructions only.
|
|
for (auto *BB : OuterLoop->blocks())
|
|
for (Instruction &I : BB->instructionsWithoutDebug())
|
|
if (CallInst *CI = dyn_cast<CallInst>(&I)) {
|
|
// readnone functions do not prevent interchanging.
|
|
if (CI->doesNotReadMemory())
|
|
continue;
|
|
LLVM_DEBUG(
|
|
dbgs() << "Loops with call instructions cannot be interchanged "
|
|
<< "safely.");
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
|
|
CI->getDebugLoc(),
|
|
CI->getParent())
|
|
<< "Cannot interchange loops due to call instruction.";
|
|
});
|
|
|
|
return false;
|
|
}
|
|
|
|
// TODO: The loops could not be interchanged due to current limitations in the
|
|
// transform module.
|
|
if (currentLimitations()) {
|
|
LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
|
|
return false;
|
|
}
|
|
|
|
// Check if the loops are tightly nested.
|
|
if (!tightlyNested(OuterLoop, InnerLoop)) {
|
|
LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
|
|
InnerLoop->getStartLoc(),
|
|
InnerLoop->getHeader())
|
|
<< "Cannot interchange loops because they are not tightly "
|
|
"nested.";
|
|
});
|
|
return false;
|
|
}
|
|
|
|
if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop,
|
|
OuterInnerReductions)) {
|
|
LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n");
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
|
|
InnerLoop->getStartLoc(),
|
|
InnerLoop->getHeader())
|
|
<< "Found unsupported PHI node in loop exit.";
|
|
});
|
|
return false;
|
|
}
|
|
|
|
if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) {
|
|
LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
|
|
OuterLoop->getStartLoc(),
|
|
OuterLoop->getHeader())
|
|
<< "Found unsupported PHI node in loop exit.";
|
|
});
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
int LoopInterchangeProfitability::getInstrOrderCost() {
|
|
unsigned GoodOrder, BadOrder;
|
|
BadOrder = GoodOrder = 0;
|
|
for (BasicBlock *BB : InnerLoop->blocks()) {
|
|
for (Instruction &Ins : *BB) {
|
|
if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
|
|
unsigned NumOp = GEP->getNumOperands();
|
|
bool FoundInnerInduction = false;
|
|
bool FoundOuterInduction = false;
|
|
for (unsigned i = 0; i < NumOp; ++i) {
|
|
// Skip operands that are not SCEV-able.
|
|
if (!SE->isSCEVable(GEP->getOperand(i)->getType()))
|
|
continue;
|
|
|
|
const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
|
|
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
|
|
if (!AR)
|
|
continue;
|
|
|
|
// If we find the inner induction after an outer induction e.g.
|
|
// for(int i=0;i<N;i++)
|
|
// for(int j=0;j<N;j++)
|
|
// A[i][j] = A[i-1][j-1]+k;
|
|
// then it is a good order.
|
|
if (AR->getLoop() == InnerLoop) {
|
|
// We found an InnerLoop induction after OuterLoop induction. It is
|
|
// a good order.
|
|
FoundInnerInduction = true;
|
|
if (FoundOuterInduction) {
|
|
GoodOrder++;
|
|
break;
|
|
}
|
|
}
|
|
// If we find the outer induction after an inner induction e.g.
|
|
// for(int i=0;i<N;i++)
|
|
// for(int j=0;j<N;j++)
|
|
// A[j][i] = A[j-1][i-1]+k;
|
|
// then it is a bad order.
|
|
if (AR->getLoop() == OuterLoop) {
|
|
// We found an OuterLoop induction after InnerLoop induction. It is
|
|
// a bad order.
|
|
FoundOuterInduction = true;
|
|
if (FoundInnerInduction) {
|
|
BadOrder++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return GoodOrder - BadOrder;
|
|
}
|
|
|
|
static bool isProfitableForVectorization(unsigned InnerLoopId,
|
|
unsigned OuterLoopId,
|
|
CharMatrix &DepMatrix) {
|
|
// TODO: Improve this heuristic to catch more cases.
|
|
// If the inner loop is loop independent or doesn't carry any dependency it is
|
|
// profitable to move this to outer position.
|
|
for (auto &Row : DepMatrix) {
|
|
if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I')
|
|
return false;
|
|
// TODO: We need to improve this heuristic.
|
|
if (Row[OuterLoopId] != '=')
|
|
return false;
|
|
}
|
|
// If outer loop has dependence and inner loop is loop independent then it is
|
|
// profitable to interchange to enable parallelism.
|
|
// If there are no dependences, interchanging will not improve anything.
|
|
return !DepMatrix.empty();
|
|
}
|
|
|
|
bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
|
|
unsigned OuterLoopId,
|
|
CharMatrix &DepMatrix) {
|
|
// TODO: Add better profitability checks.
|
|
// e.g
|
|
// 1) Construct dependency matrix and move the one with no loop carried dep
|
|
// inside to enable vectorization.
|
|
|
|
// This is rough cost estimation algorithm. It counts the good and bad order
|
|
// of induction variables in the instruction and allows reordering if number
|
|
// of bad orders is more than good.
|
|
int Cost = getInstrOrderCost();
|
|
LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n");
|
|
if (Cost < -LoopInterchangeCostThreshold)
|
|
return true;
|
|
|
|
// It is not profitable as per current cache profitability model. But check if
|
|
// we can move this loop outside to improve parallelism.
|
|
if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix))
|
|
return true;
|
|
|
|
ORE->emit([&]() {
|
|
return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
|
|
InnerLoop->getStartLoc(),
|
|
InnerLoop->getHeader())
|
|
<< "Interchanging loops is too costly (cost="
|
|
<< ore::NV("Cost", Cost) << ", threshold="
|
|
<< ore::NV("Threshold", LoopInterchangeCostThreshold)
|
|
<< ") and it does not improve parallelism.";
|
|
});
|
|
return false;
|
|
}
|
|
|
|
void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
|
|
Loop *InnerLoop) {
|
|
for (Loop *L : *OuterLoop)
|
|
if (L == InnerLoop) {
|
|
OuterLoop->removeChildLoop(L);
|
|
return;
|
|
}
|
|
llvm_unreachable("Couldn't find loop");
|
|
}
|
|
|
|
/// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
|
|
/// new inner and outer loop after interchanging: NewInner is the original
|
|
/// outer loop and NewOuter is the original inner loop.
|
|
///
|
|
/// Before interchanging, we have the following structure
|
|
/// Outer preheader
|
|
// Outer header
|
|
// Inner preheader
|
|
// Inner header
|
|
// Inner body
|
|
// Inner latch
|
|
// outer bbs
|
|
// Outer latch
|
|
//
|
|
// After interchanging:
|
|
// Inner preheader
|
|
// Inner header
|
|
// Outer preheader
|
|
// Outer header
|
|
// Inner body
|
|
// outer bbs
|
|
// Outer latch
|
|
// Inner latch
|
|
void LoopInterchangeTransform::restructureLoops(
|
|
Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
|
|
BasicBlock *OrigOuterPreHeader) {
|
|
Loop *OuterLoopParent = OuterLoop->getParentLoop();
|
|
// The original inner loop preheader moves from the new inner loop to
|
|
// the parent loop, if there is one.
|
|
NewInner->removeBlockFromLoop(OrigInnerPreHeader);
|
|
LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);
|
|
|
|
// Switch the loop levels.
|
|
if (OuterLoopParent) {
|
|
// Remove the loop from its parent loop.
|
|
removeChildLoop(OuterLoopParent, NewInner);
|
|
removeChildLoop(NewInner, NewOuter);
|
|
OuterLoopParent->addChildLoop(NewOuter);
|
|
} else {
|
|
removeChildLoop(NewInner, NewOuter);
|
|
LI->changeTopLevelLoop(NewInner, NewOuter);
|
|
}
|
|
while (!NewOuter->isInnermost())
|
|
NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
|
|
NewOuter->addChildLoop(NewInner);
|
|
|
|
// BBs from the original inner loop.
|
|
SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());
|
|
|
|
// Add BBs from the original outer loop to the original inner loop (excluding
|
|
// BBs already in inner loop)
|
|
for (BasicBlock *BB : NewInner->blocks())
|
|
if (LI->getLoopFor(BB) == NewInner)
|
|
NewOuter->addBlockEntry(BB);
|
|
|
|
// Now remove inner loop header and latch from the new inner loop and move
|
|
// other BBs (the loop body) to the new inner loop.
|
|
BasicBlock *OuterHeader = NewOuter->getHeader();
|
|
BasicBlock *OuterLatch = NewOuter->getLoopLatch();
|
|
for (BasicBlock *BB : OrigInnerBBs) {
|
|
// Nothing will change for BBs in child loops.
|
|
if (LI->getLoopFor(BB) != NewOuter)
|
|
continue;
|
|
// Remove the new outer loop header and latch from the new inner loop.
|
|
if (BB == OuterHeader || BB == OuterLatch)
|
|
NewInner->removeBlockFromLoop(BB);
|
|
else
|
|
LI->changeLoopFor(BB, NewInner);
|
|
}
|
|
|
|
// The preheader of the original outer loop becomes part of the new
|
|
// outer loop.
|
|
NewOuter->addBlockEntry(OrigOuterPreHeader);
|
|
LI->changeLoopFor(OrigOuterPreHeader, NewOuter);
|
|
|
|
// Tell SE that we move the loops around.
|
|
SE->forgetLoop(NewOuter);
|
|
SE->forgetLoop(NewInner);
|
|
}
|
|
|
|
bool LoopInterchangeTransform::transform() {
|
|
bool Transformed = false;
|
|
Instruction *InnerIndexVar;
|
|
|
|
if (InnerLoop->getSubLoops().empty()) {
|
|
BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
|
|
LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n");
|
|
PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
|
|
if (!InductionPHI) {
|
|
LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
|
|
return false;
|
|
}
|
|
|
|
if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
|
|
InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
|
|
else
|
|
InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));
|
|
|
|
// Ensure that InductionPHI is the first Phi node.
|
|
if (&InductionPHI->getParent()->front() != InductionPHI)
|
|
InductionPHI->moveBefore(&InductionPHI->getParent()->front());
|
|
|
|
// Create a new latch block for the inner loop. We split at the
|
|
// current latch's terminator and then move the condition and all
|
|
// operands that are not either loop-invariant or the induction PHI into the
|
|
// new latch block.
|
|
BasicBlock *NewLatch =
|
|
SplitBlock(InnerLoop->getLoopLatch(),
|
|
InnerLoop->getLoopLatch()->getTerminator(), DT, LI);
|
|
|
|
SmallSetVector<Instruction *, 4> WorkList;
|
|
unsigned i = 0;
|
|
auto MoveInstructions = [&i, &WorkList, this, InductionPHI, NewLatch]() {
|
|
for (; i < WorkList.size(); i++) {
|
|
// Duplicate instruction and move it the new latch. Update uses that
|
|
// have been moved.
|
|
Instruction *NewI = WorkList[i]->clone();
|
|
NewI->insertBefore(NewLatch->getFirstNonPHI());
|
|
assert(!NewI->mayHaveSideEffects() &&
|
|
"Moving instructions with side-effects may change behavior of "
|
|
"the loop nest!");
|
|
for (auto UI = WorkList[i]->use_begin(), UE = WorkList[i]->use_end();
|
|
UI != UE;) {
|
|
Use &U = *UI++;
|
|
Instruction *UserI = cast<Instruction>(U.getUser());
|
|
if (!InnerLoop->contains(UserI->getParent()) ||
|
|
UserI->getParent() == NewLatch || UserI == InductionPHI)
|
|
U.set(NewI);
|
|
}
|
|
// Add operands of moved instruction to the worklist, except if they are
|
|
// outside the inner loop or are the induction PHI.
|
|
for (Value *Op : WorkList[i]->operands()) {
|
|
Instruction *OpI = dyn_cast<Instruction>(Op);
|
|
if (!OpI ||
|
|
this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop ||
|
|
OpI == InductionPHI)
|
|
continue;
|
|
WorkList.insert(OpI);
|
|
}
|
|
}
|
|
};
|
|
|
|
// FIXME: Should we interchange when we have a constant condition?
|
|
Instruction *CondI = dyn_cast<Instruction>(
|
|
cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator())
|
|
->getCondition());
|
|
if (CondI)
|
|
WorkList.insert(CondI);
|
|
MoveInstructions();
|
|
WorkList.insert(cast<Instruction>(InnerIndexVar));
|
|
MoveInstructions();
|
|
|
|
// Splits the inner loops phi nodes out into a separate basic block.
|
|
BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
|
|
SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
|
|
LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
|
|
}
|
|
|
|
// Instructions in the original inner loop preheader may depend on values
|
|
// defined in the outer loop header. Move them there, because the original
|
|
// inner loop preheader will become the entry into the interchanged loop nest.
|
|
// Currently we move all instructions and rely on LICM to move invariant
|
|
// instructions outside the loop nest.
|
|
BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
|
|
BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
|
|
if (InnerLoopPreHeader != OuterLoopHeader) {
|
|
SmallPtrSet<Instruction *, 4> NeedsMoving;
|
|
for (Instruction &I :
|
|
make_early_inc_range(make_range(InnerLoopPreHeader->begin(),
|
|
std::prev(InnerLoopPreHeader->end()))))
|
|
I.moveBefore(OuterLoopHeader->getTerminator());
|
|
}
|
|
|
|
Transformed |= adjustLoopLinks();
|
|
if (!Transformed) {
|
|
LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \brief Move all instructions except the terminator from FromBB right before
|
|
/// InsertBefore
|
|
static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
|
|
auto &ToList = InsertBefore->getParent()->getInstList();
|
|
auto &FromList = FromBB->getInstList();
|
|
|
|
ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
|
|
FromBB->getTerminator()->getIterator());
|
|
}
|
|
|
|
/// Swap instructions between \p BB1 and \p BB2 but keep terminators intact.
|
|
static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) {
|
|
// Save all non-terminator instructions of BB1 into TempInstrs and unlink them
|
|
// from BB1 afterwards.
|
|
auto Iter = map_range(*BB1, [](Instruction &I) { return &I; });
|
|
SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end()));
|
|
for (Instruction *I : TempInstrs)
|
|
I->removeFromParent();
|
|
|
|
// Move instructions from BB2 to BB1.
|
|
moveBBContents(BB2, BB1->getTerminator());
|
|
|
|
// Move instructions from TempInstrs to BB2.
|
|
for (Instruction *I : TempInstrs)
|
|
I->insertBefore(BB2->getTerminator());
|
|
}
|
|
|
|
// Update BI to jump to NewBB instead of OldBB. Records updates to the
|
|
// dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that
|
|
// \p OldBB is exactly once in BI's successor list.
|
|
static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
|
|
BasicBlock *NewBB,
|
|
std::vector<DominatorTree::UpdateType> &DTUpdates,
|
|
bool MustUpdateOnce = true) {
|
|
assert((!MustUpdateOnce ||
|
|
llvm::count_if(successors(BI),
|
|
[OldBB](BasicBlock *BB) {
|
|
return BB == OldBB;
|
|
}) == 1) && "BI must jump to OldBB exactly once.");
|
|
bool Changed = false;
|
|
for (Use &Op : BI->operands())
|
|
if (Op == OldBB) {
|
|
Op.set(NewBB);
|
|
Changed = true;
|
|
}
|
|
|
|
if (Changed) {
|
|
DTUpdates.push_back(
|
|
{DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
|
|
DTUpdates.push_back(
|
|
{DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
|
|
}
|
|
assert(Changed && "Expected a successor to be updated");
|
|
}
|
|
|
|
// Move Lcssa PHIs to the right place.
|
|
static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader,
|
|
BasicBlock *InnerLatch, BasicBlock *OuterHeader,
|
|
BasicBlock *OuterLatch, BasicBlock *OuterExit,
|
|
Loop *InnerLoop, LoopInfo *LI) {
|
|
|
|
// Deal with LCSSA PHI nodes in the exit block of the inner loop, that are
|
|
// defined either in the header or latch. Those blocks will become header and
|
|
// latch of the new outer loop, and the only possible users can PHI nodes
|
|
// in the exit block of the loop nest or the outer loop header (reduction
|
|
// PHIs, in that case, the incoming value must be defined in the inner loop
|
|
// header). We can just substitute the user with the incoming value and remove
|
|
// the PHI.
|
|
for (PHINode &P : make_early_inc_range(InnerExit->phis())) {
|
|
assert(P.getNumIncomingValues() == 1 &&
|
|
"Only loops with a single exit are supported!");
|
|
|
|
// Incoming values are guaranteed be instructions currently.
|
|
auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch));
|
|
// Skip phis with incoming values from the inner loop body, excluding the
|
|
// header and latch.
|
|
if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader)
|
|
continue;
|
|
|
|
assert(all_of(P.users(),
|
|
[OuterHeader, OuterExit, IncI, InnerHeader](User *U) {
|
|
return (cast<PHINode>(U)->getParent() == OuterHeader &&
|
|
IncI->getParent() == InnerHeader) ||
|
|
cast<PHINode>(U)->getParent() == OuterExit;
|
|
}) &&
|
|
"Can only replace phis iff the uses are in the loop nest exit or "
|
|
"the incoming value is defined in the inner header (it will "
|
|
"dominate all loop blocks after interchanging)");
|
|
P.replaceAllUsesWith(IncI);
|
|
P.eraseFromParent();
|
|
}
|
|
|
|
SmallVector<PHINode *, 8> LcssaInnerExit;
|
|
for (PHINode &P : InnerExit->phis())
|
|
LcssaInnerExit.push_back(&P);
|
|
|
|
SmallVector<PHINode *, 8> LcssaInnerLatch;
|
|
for (PHINode &P : InnerLatch->phis())
|
|
LcssaInnerLatch.push_back(&P);
|
|
|
|
// Lcssa PHIs for values used outside the inner loop are in InnerExit.
|
|
// If a PHI node has users outside of InnerExit, it has a use outside the
|
|
// interchanged loop and we have to preserve it. We move these to
|
|
// InnerLatch, which will become the new exit block for the innermost
|
|
// loop after interchanging.
|
|
for (PHINode *P : LcssaInnerExit)
|
|
P->moveBefore(InnerLatch->getFirstNonPHI());
|
|
|
|
// If the inner loop latch contains LCSSA PHIs, those come from a child loop
|
|
// and we have to move them to the new inner latch.
|
|
for (PHINode *P : LcssaInnerLatch)
|
|
P->moveBefore(InnerExit->getFirstNonPHI());
|
|
|
|
// Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have
|
|
// incoming values defined in the outer loop, we have to add a new PHI
|
|
// in the inner loop latch, which became the exit block of the outer loop,
|
|
// after interchanging.
|
|
if (OuterExit) {
|
|
for (PHINode &P : OuterExit->phis()) {
|
|
if (P.getNumIncomingValues() != 1)
|
|
continue;
|
|
// Skip Phis with incoming values defined in the inner loop. Those should
|
|
// already have been updated.
|
|
auto I = dyn_cast<Instruction>(P.getIncomingValue(0));
|
|
if (!I || LI->getLoopFor(I->getParent()) == InnerLoop)
|
|
continue;
|
|
|
|
PHINode *NewPhi = dyn_cast<PHINode>(P.clone());
|
|
NewPhi->setIncomingValue(0, P.getIncomingValue(0));
|
|
NewPhi->setIncomingBlock(0, OuterLatch);
|
|
NewPhi->insertBefore(InnerLatch->getFirstNonPHI());
|
|
P.setIncomingValue(0, NewPhi);
|
|
}
|
|
}
|
|
|
|
// Now adjust the incoming blocks for the LCSSA PHIs.
|
|
// For PHIs moved from Inner's exit block, we need to replace Inner's latch
|
|
// with the new latch.
|
|
InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch);
|
|
}
|
|
|
|
bool LoopInterchangeTransform::adjustLoopBranches() {
|
|
LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
|
|
std::vector<DominatorTree::UpdateType> DTUpdates;
|
|
|
|
BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
|
|
BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
|
|
|
|
assert(OuterLoopPreHeader != OuterLoop->getHeader() &&
|
|
InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader &&
|
|
InnerLoopPreHeader && "Guaranteed by loop-simplify form");
|
|
// Ensure that both preheaders do not contain PHI nodes and have single
|
|
// predecessors. This allows us to move them easily. We use
|
|
// InsertPreHeaderForLoop to create an 'extra' preheader, if the existing
|
|
// preheaders do not satisfy those conditions.
|
|
if (isa<PHINode>(OuterLoopPreHeader->begin()) ||
|
|
!OuterLoopPreHeader->getUniquePredecessor())
|
|
OuterLoopPreHeader =
|
|
InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true);
|
|
if (InnerLoopPreHeader == OuterLoop->getHeader())
|
|
InnerLoopPreHeader =
|
|
InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true);
|
|
|
|
// Adjust the loop preheader
|
|
BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
|
|
BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
|
|
BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
|
|
BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
|
|
BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
|
|
BasicBlock *InnerLoopLatchPredecessor =
|
|
InnerLoopLatch->getUniquePredecessor();
|
|
BasicBlock *InnerLoopLatchSuccessor;
|
|
BasicBlock *OuterLoopLatchSuccessor;
|
|
|
|
BranchInst *OuterLoopLatchBI =
|
|
dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
|
|
BranchInst *InnerLoopLatchBI =
|
|
dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
|
|
BranchInst *OuterLoopHeaderBI =
|
|
dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
|
|
BranchInst *InnerLoopHeaderBI =
|
|
dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
|
|
|
|
if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
|
|
!OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
|
|
!InnerLoopHeaderBI)
|
|
return false;
|
|
|
|
BranchInst *InnerLoopLatchPredecessorBI =
|
|
dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
|
|
BranchInst *OuterLoopPredecessorBI =
|
|
dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
|
|
|
|
if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
|
|
return false;
|
|
BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
|
|
if (!InnerLoopHeaderSuccessor)
|
|
return false;
|
|
|
|
// Adjust Loop Preheader and headers.
|
|
// The branches in the outer loop predecessor and the outer loop header can
|
|
// be unconditional branches or conditional branches with duplicates. Consider
|
|
// this when updating the successors.
|
|
updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
|
|
InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false);
|
|
// The outer loop header might or might not branch to the outer latch.
|
|
// We are guaranteed to branch to the inner loop preheader.
|
|
if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch))
|
|
updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, LoopExit, DTUpdates,
|
|
/*MustUpdateOnce=*/false);
|
|
updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
|
|
InnerLoopHeaderSuccessor, DTUpdates,
|
|
/*MustUpdateOnce=*/false);
|
|
|
|
// Adjust reduction PHI's now that the incoming block has changed.
|
|
InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader,
|
|
OuterLoopHeader);
|
|
|
|
updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
|
|
OuterLoopPreHeader, DTUpdates);
|
|
|
|
// -------------Adjust loop latches-----------
|
|
if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
|
|
InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
|
|
else
|
|
InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
|
|
|
|
updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
|
|
InnerLoopLatchSuccessor, DTUpdates);
|
|
|
|
|
|
if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
|
|
OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
|
|
else
|
|
OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
|
|
|
|
updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
|
|
OuterLoopLatchSuccessor, DTUpdates);
|
|
updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
|
|
DTUpdates);
|
|
|
|
DT->applyUpdates(DTUpdates);
|
|
restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
|
|
OuterLoopPreHeader);
|
|
|
|
moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch,
|
|
OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(),
|
|
InnerLoop, LI);
|
|
// For PHIs in the exit block of the outer loop, outer's latch has been
|
|
// replaced by Inners'.
|
|
OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
|
|
|
|
// Now update the reduction PHIs in the inner and outer loop headers.
|
|
SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs;
|
|
for (PHINode &PHI : drop_begin(InnerLoopHeader->phis(), 1))
|
|
InnerLoopPHIs.push_back(cast<PHINode>(&PHI));
|
|
for (PHINode &PHI : drop_begin(OuterLoopHeader->phis(), 1))
|
|
OuterLoopPHIs.push_back(cast<PHINode>(&PHI));
|
|
|
|
auto &OuterInnerReductions = LIL.getOuterInnerReductions();
|
|
(void)OuterInnerReductions;
|
|
|
|
// Now move the remaining reduction PHIs from outer to inner loop header and
|
|
// vice versa. The PHI nodes must be part of a reduction across the inner and
|
|
// outer loop and all the remains to do is and updating the incoming blocks.
|
|
for (PHINode *PHI : OuterLoopPHIs) {
|
|
PHI->moveBefore(InnerLoopHeader->getFirstNonPHI());
|
|
assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
|
|
}
|
|
for (PHINode *PHI : InnerLoopPHIs) {
|
|
PHI->moveBefore(OuterLoopHeader->getFirstNonPHI());
|
|
assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
|
|
}
|
|
|
|
// Update the incoming blocks for moved PHI nodes.
|
|
OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader);
|
|
OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch);
|
|
InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader);
|
|
InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
|
|
|
|
// Values defined in the outer loop header could be used in the inner loop
|
|
// latch. In that case, we need to create LCSSA phis for them, because after
|
|
// interchanging they will be defined in the new inner loop and used in the
|
|
// new outer loop.
|
|
IRBuilder<> Builder(OuterLoopHeader->getContext());
|
|
SmallVector<Instruction *, 4> MayNeedLCSSAPhis;
|
|
for (Instruction &I :
|
|
make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end())))
|
|
MayNeedLCSSAPhis.push_back(&I);
|
|
formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE, Builder);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool LoopInterchangeTransform::adjustLoopLinks() {
|
|
// Adjust all branches in the inner and outer loop.
|
|
bool Changed = adjustLoopBranches();
|
|
if (Changed) {
|
|
// We have interchanged the preheaders so we need to interchange the data in
|
|
// the preheaders as well. This is because the content of the inner
|
|
// preheader was previously executed inside the outer loop.
|
|
BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
|
|
BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
|
|
swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader);
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
/// Main LoopInterchange Pass.
|
|
struct LoopInterchangeLegacyPass : public LoopPass {
|
|
static char ID;
|
|
|
|
LoopInterchangeLegacyPass() : LoopPass(ID) {
|
|
initializeLoopInterchangeLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<DependenceAnalysisWrapperPass>();
|
|
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
|
|
|
|
getLoopAnalysisUsage(AU);
|
|
}
|
|
|
|
bool runOnLoop(Loop *L, LPPassManager &LPM) override {
|
|
if (skipLoop(L))
|
|
return false;
|
|
|
|
auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
auto *DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
|
|
auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
|
|
|
|
return LoopInterchange(SE, LI, DI, DT, ORE).run(L);
|
|
}
|
|
};
|
|
|
|
char LoopInterchangeLegacyPass::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(LoopInterchangeLegacyPass, "loop-interchange",
|
|
"Interchanges loops for cache reuse", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopPass)
|
|
INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
|
|
|
|
INITIALIZE_PASS_END(LoopInterchangeLegacyPass, "loop-interchange",
|
|
"Interchanges loops for cache reuse", false, false)
|
|
|
|
Pass *llvm::createLoopInterchangePass() {
|
|
return new LoopInterchangeLegacyPass();
|
|
}
|
|
|
|
PreservedAnalyses LoopInterchangePass::run(Loop &L, LoopAnalysisManager &AM,
|
|
LoopStandardAnalysisResults &AR,
|
|
LPMUpdater &U) {
|
|
Function &F = *L.getHeader()->getParent();
|
|
|
|
DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI);
|
|
OptimizationRemarkEmitter ORE(&F);
|
|
if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, &ORE).run(&L))
|
|
return PreservedAnalyses::all();
|
|
return getLoopPassPreservedAnalyses();
|
|
}
|