forked from OSchip/llvm-project
1682 lines
69 KiB
C++
1682 lines
69 KiB
C++
//===- Schedule.cpp - Calculate an optimized schedule ---------------------===//
|
||
//
|
||
// The LLVM Compiler Infrastructure
|
||
//
|
||
// This file is distributed under the University of Illinois Open Source
|
||
// License. See LICENSE.TXT for details.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
//
|
||
// This pass generates an entirely new schedule tree from the data dependences
|
||
// and iteration domains. The new schedule tree is computed in two steps:
|
||
//
|
||
// 1) The isl scheduling optimizer is run
|
||
//
|
||
// The isl scheduling optimizer creates a new schedule tree that maximizes
|
||
// parallelism and tileability and minimizes data-dependence distances. The
|
||
// algorithm used is a modified version of the ``Pluto'' algorithm:
|
||
//
|
||
// U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan.
|
||
// A Practical Automatic Polyhedral Parallelizer and Locality Optimizer.
|
||
// In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language
|
||
// Design and Implementation, PLDI ’08, pages 101–113. ACM, 2008.
|
||
//
|
||
// 2) A set of post-scheduling transformations is applied on the schedule tree.
|
||
//
|
||
// These optimizations include:
|
||
//
|
||
// - Tiling of the innermost tilable bands
|
||
// - Prevectorization - The choice of a possible outer loop that is strip-mined
|
||
// to the innermost level to enable inner-loop
|
||
// vectorization.
|
||
// - Some optimizations for spatial locality are also planned.
|
||
//
|
||
// For a detailed description of the schedule tree itself please see section 6
|
||
// of:
|
||
//
|
||
// Polyhedral AST generation is more than scanning polyhedra
|
||
// Tobias Grosser, Sven Verdoolaege, Albert Cohen
|
||
// ACM Transactions on Programming Languages and Systems (TOPLAS),
|
||
// 37(4), July 2015
|
||
// http://www.grosser.es/#pub-polyhedral-AST-generation
|
||
//
|
||
// This publication also contains a detailed discussion of the different options
|
||
// for polyhedral loop unrolling, full/partial tile separation and other uses
|
||
// of the schedule tree.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "polly/ScheduleOptimizer.h"
|
||
#include "polly/CodeGen/CodeGeneration.h"
|
||
#include "polly/DependenceInfo.h"
|
||
#include "polly/LinkAllPasses.h"
|
||
#include "polly/Options.h"
|
||
#include "polly/ScopInfo.h"
|
||
#include "polly/ScopPass.h"
|
||
#include "polly/Simplify.h"
|
||
#include "polly/Support/GICHelper.h"
|
||
#include "polly/Support/ISLOStream.h"
|
||
#include "llvm/ADT/Statistic.h"
|
||
#include "llvm/Analysis/TargetTransformInfo.h"
|
||
#include "llvm/IR/Function.h"
|
||
#include "llvm/Pass.h"
|
||
#include "llvm/Support/CommandLine.h"
|
||
#include "llvm/Support/Debug.h"
|
||
#include "llvm/Support/raw_ostream.h"
|
||
#include "isl/constraint.h"
|
||
#include "isl/ctx.h"
|
||
#include "isl/map.h"
|
||
#include "isl/options.h"
|
||
#include "isl/printer.h"
|
||
#include "isl/schedule.h"
|
||
#include "isl/schedule_node.h"
|
||
#include "isl/space.h"
|
||
#include "isl/union_map.h"
|
||
#include "isl/union_set.h"
|
||
#include <algorithm>
|
||
#include <cassert>
|
||
#include <cmath>
|
||
#include <cstdint>
|
||
#include <cstdlib>
|
||
#include <string>
|
||
#include <vector>
|
||
|
||
using namespace llvm;
|
||
using namespace polly;
|
||
|
||
#define DEBUG_TYPE "polly-opt-isl"
|
||
|
||
static cl::opt<std::string>
|
||
OptimizeDeps("polly-opt-optimize-only",
|
||
cl::desc("Only a certain kind of dependences (all/raw)"),
|
||
cl::Hidden, cl::init("all"), cl::ZeroOrMore,
|
||
cl::cat(PollyCategory));
|
||
|
||
static cl::opt<std::string>
|
||
SimplifyDeps("polly-opt-simplify-deps",
|
||
cl::desc("Dependences should be simplified (yes/no)"),
|
||
cl::Hidden, cl::init("yes"), cl::ZeroOrMore,
|
||
cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> MaxConstantTerm(
|
||
"polly-opt-max-constant-term",
|
||
cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden,
|
||
cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> MaxCoefficient(
|
||
"polly-opt-max-coefficient",
|
||
cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden,
|
||
cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<std::string> FusionStrategy(
|
||
"polly-opt-fusion", cl::desc("The fusion strategy to choose (min/max)"),
|
||
cl::Hidden, cl::init("min"), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<std::string>
|
||
MaximizeBandDepth("polly-opt-maximize-bands",
|
||
cl::desc("Maximize the band depth (yes/no)"), cl::Hidden,
|
||
cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<std::string> OuterCoincidence(
|
||
"polly-opt-outer-coincidence",
|
||
cl::desc("Try to construct schedules where the outer member of each band "
|
||
"satisfies the coincidence constraints (yes/no)"),
|
||
cl::Hidden, cl::init("no"), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> PrevectorWidth(
|
||
"polly-prevect-width",
|
||
cl::desc(
|
||
"The number of loop iterations to strip-mine for pre-vectorization"),
|
||
cl::Hidden, cl::init(4), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<bool> FirstLevelTiling("polly-tiling",
|
||
cl::desc("Enable loop tiling"),
|
||
cl::init(true), cl::ZeroOrMore,
|
||
cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> LatencyVectorFma(
|
||
"polly-target-latency-vector-fma",
|
||
cl::desc("The minimal number of cycles between issuing two "
|
||
"dependent consecutive vector fused multiply-add "
|
||
"instructions."),
|
||
cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> ThroughputVectorFma(
|
||
"polly-target-throughput-vector-fma",
|
||
cl::desc("A throughput of the processor floating-point arithmetic units "
|
||
"expressed in the number of vector fused multiply-add "
|
||
"instructions per clock cycle."),
|
||
cl::Hidden, cl::init(1), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
// This option, along with --polly-target-2nd-cache-level-associativity,
|
||
// --polly-target-1st-cache-level-size, and --polly-target-2st-cache-level-size
|
||
// represent the parameters of the target cache, which do not have typical
|
||
// values that can be used by default. However, to apply the pattern matching
|
||
// optimizations, we use the values of the parameters of Intel Core i7-3820
|
||
// SandyBridge in case the parameters are not specified or not provided by the
|
||
// TargetTransformInfo.
|
||
static cl::opt<int> FirstCacheLevelAssociativity(
|
||
"polly-target-1st-cache-level-associativity",
|
||
cl::desc("The associativity of the first cache level."), cl::Hidden,
|
||
cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> FirstCacheLevelDefaultAssociativity(
|
||
"polly-target-1st-cache-level-default-associativity",
|
||
cl::desc("The default associativity of the first cache level"
|
||
" (if not enough were provided by the TargetTransformInfo)."),
|
||
cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> SecondCacheLevelAssociativity(
|
||
"polly-target-2nd-cache-level-associativity",
|
||
cl::desc("The associativity of the second cache level."), cl::Hidden,
|
||
cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> SecondCacheLevelDefaultAssociativity(
|
||
"polly-target-2nd-cache-level-default-associativity",
|
||
cl::desc("The default associativity of the second cache level"
|
||
" (if not enough were provided by the TargetTransformInfo)."),
|
||
cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> FirstCacheLevelSize(
|
||
"polly-target-1st-cache-level-size",
|
||
cl::desc("The size of the first cache level specified in bytes."),
|
||
cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> FirstCacheLevelDefaultSize(
|
||
"polly-target-1st-cache-level-default-size",
|
||
cl::desc("The default size of the first cache level specified in bytes"
|
||
" (if not enough were provided by the TargetTransformInfo)."),
|
||
cl::Hidden, cl::init(32768), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> SecondCacheLevelSize(
|
||
"polly-target-2nd-cache-level-size",
|
||
cl::desc("The size of the second level specified in bytes."), cl::Hidden,
|
||
cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> SecondCacheLevelDefaultSize(
|
||
"polly-target-2nd-cache-level-default-size",
|
||
cl::desc("The default size of the second cache level specified in bytes"
|
||
" (if not enough were provided by the TargetTransformInfo)."),
|
||
cl::Hidden, cl::init(262144), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> VectorRegisterBitwidth(
|
||
"polly-target-vector-register-bitwidth",
|
||
cl::desc("The size in bits of a vector register (if not set, this "
|
||
"information is taken from LLVM's target information."),
|
||
cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> FirstLevelDefaultTileSize(
|
||
"polly-default-tile-size",
|
||
cl::desc("The default tile size (if not enough were provided by"
|
||
" --polly-tile-sizes)"),
|
||
cl::Hidden, cl::init(32), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::list<int>
|
||
FirstLevelTileSizes("polly-tile-sizes",
|
||
cl::desc("A tile size for each loop dimension, filled "
|
||
"with --polly-default-tile-size"),
|
||
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
|
||
cl::cat(PollyCategory));
|
||
|
||
static cl::opt<bool>
|
||
SecondLevelTiling("polly-2nd-level-tiling",
|
||
cl::desc("Enable a 2nd level loop of loop tiling"),
|
||
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> SecondLevelDefaultTileSize(
|
||
"polly-2nd-level-default-tile-size",
|
||
cl::desc("The default 2nd-level tile size (if not enough were provided by"
|
||
" --polly-2nd-level-tile-sizes)"),
|
||
cl::Hidden, cl::init(16), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::list<int>
|
||
SecondLevelTileSizes("polly-2nd-level-tile-sizes",
|
||
cl::desc("A tile size for each loop dimension, filled "
|
||
"with --polly-default-tile-size"),
|
||
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
|
||
cl::cat(PollyCategory));
|
||
|
||
static cl::opt<bool> RegisterTiling("polly-register-tiling",
|
||
cl::desc("Enable register tiling"),
|
||
cl::init(false), cl::ZeroOrMore,
|
||
cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> RegisterDefaultTileSize(
|
||
"polly-register-tiling-default-tile-size",
|
||
cl::desc("The default register tile size (if not enough were provided by"
|
||
" --polly-register-tile-sizes)"),
|
||
cl::Hidden, cl::init(2), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> PollyPatternMatchingNcQuotient(
|
||
"polly-pattern-matching-nc-quotient",
|
||
cl::desc("Quotient that is obtained by dividing Nc, the parameter of the"
|
||
"macro-kernel, by Nr, the parameter of the micro-kernel"),
|
||
cl::Hidden, cl::init(256), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::list<int>
|
||
RegisterTileSizes("polly-register-tile-sizes",
|
||
cl::desc("A tile size for each loop dimension, filled "
|
||
"with --polly-register-tile-size"),
|
||
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
|
||
cl::cat(PollyCategory));
|
||
|
||
static cl::opt<bool>
|
||
PMBasedOpts("polly-pattern-matching-based-opts",
|
||
cl::desc("Perform optimizations based on pattern matching"),
|
||
cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<bool> OptimizedScops(
|
||
"polly-optimized-scops",
|
||
cl::desc("Polly - Dump polyhedral description of Scops optimized with "
|
||
"the isl scheduling optimizer and the set of post-scheduling "
|
||
"transformations is applied on the schedule tree"),
|
||
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
STATISTIC(ScopsProcessed, "Number of scops processed");
|
||
STATISTIC(ScopsRescheduled, "Number of scops rescheduled");
|
||
STATISTIC(ScopsOptimized, "Number of scops optimized");
|
||
|
||
STATISTIC(NumAffineLoopsOptimized, "Number of affine loops optimized");
|
||
STATISTIC(NumBoxedLoopsOptimized, "Number of boxed loops optimized");
|
||
|
||
#define THREE_STATISTICS(VARNAME, DESC) \
|
||
static Statistic VARNAME[3] = { \
|
||
{DEBUG_TYPE, #VARNAME "0", DESC " (original)", {0}, {false}}, \
|
||
{DEBUG_TYPE, #VARNAME "1", DESC " (after scheduler)", {0}, {false}}, \
|
||
{DEBUG_TYPE, #VARNAME "2", DESC " (after optimizer)", {0}, {false}}}
|
||
|
||
THREE_STATISTICS(NumBands, "Number of bands");
|
||
THREE_STATISTICS(NumBandMembers, "Number of band members");
|
||
THREE_STATISTICS(NumCoincident, "Number of coincident band members");
|
||
THREE_STATISTICS(NumPermutable, "Number of permutable bands");
|
||
THREE_STATISTICS(NumFilters, "Number of filter nodes");
|
||
THREE_STATISTICS(NumExtension, "Number of extension nodes");
|
||
|
||
STATISTIC(FirstLevelTileOpts, "Number of first level tiling applied");
|
||
STATISTIC(SecondLevelTileOpts, "Number of second level tiling applied");
|
||
STATISTIC(RegisterTileOpts, "Number of register tiling applied");
|
||
STATISTIC(PrevectOpts, "Number of strip-mining for prevectorization applied");
|
||
STATISTIC(MatMulOpts,
|
||
"Number of matrix multiplication patterns detected and optimized");
|
||
|
||
/// Create an isl::union_set, which describes the isolate option based on
|
||
/// IsolateDomain.
|
||
///
|
||
/// @param IsolateDomain An isl::set whose @p OutDimsNum last dimensions should
|
||
/// belong to the current band node.
|
||
/// @param OutDimsNum A number of dimensions that should belong to
|
||
/// the current band node.
|
||
static isl::union_set getIsolateOptions(isl::set IsolateDomain,
|
||
unsigned OutDimsNum) {
|
||
unsigned Dims = IsolateDomain.dim(isl::dim::set);
|
||
assert(OutDimsNum <= Dims &&
|
||
"The isl::set IsolateDomain is used to describe the range of schedule "
|
||
"dimensions values, which should be isolated. Consequently, the "
|
||
"number of its dimensions should be greater than or equal to the "
|
||
"number of the schedule dimensions.");
|
||
isl::map IsolateRelation = isl::map::from_domain(IsolateDomain);
|
||
IsolateRelation = IsolateRelation.move_dims(isl::dim::out, 0, isl::dim::in,
|
||
Dims - OutDimsNum, OutDimsNum);
|
||
isl::set IsolateOption = IsolateRelation.wrap();
|
||
isl::id Id = isl::id::alloc(IsolateOption.get_ctx(), "isolate", nullptr);
|
||
IsolateOption = IsolateOption.set_tuple_id(Id);
|
||
return isl::union_set(IsolateOption);
|
||
}
|
||
|
||
namespace {
|
||
/// Create an isl::union_set, which describes the specified option for the
|
||
/// dimension of the current node.
|
||
///
|
||
/// @param Ctx An isl::ctx, which is used to create the isl::union_set.
|
||
/// @param Option The name of the option.
|
||
isl::union_set getDimOptions(isl::ctx Ctx, const char *Option) {
|
||
isl::space Space(Ctx, 0, 1);
|
||
auto DimOption = isl::set::universe(Space);
|
||
auto Id = isl::id::alloc(Ctx, Option, nullptr);
|
||
DimOption = DimOption.set_tuple_id(Id);
|
||
return isl::union_set(DimOption);
|
||
}
|
||
} // namespace
|
||
|
||
/// Create an isl::union_set, which describes the option of the form
|
||
/// [isolate[] -> unroll[x]].
|
||
///
|
||
/// @param Ctx An isl::ctx, which is used to create the isl::union_set.
|
||
static isl::union_set getUnrollIsolatedSetOptions(isl::ctx Ctx) {
|
||
isl::space Space = isl::space(Ctx, 0, 0, 1);
|
||
isl::map UnrollIsolatedSetOption = isl::map::universe(Space);
|
||
isl::id DimInId = isl::id::alloc(Ctx, "isolate", nullptr);
|
||
isl::id DimOutId = isl::id::alloc(Ctx, "unroll", nullptr);
|
||
UnrollIsolatedSetOption =
|
||
UnrollIsolatedSetOption.set_tuple_id(isl::dim::in, DimInId);
|
||
UnrollIsolatedSetOption =
|
||
UnrollIsolatedSetOption.set_tuple_id(isl::dim::out, DimOutId);
|
||
return UnrollIsolatedSetOption.wrap();
|
||
}
|
||
|
||
/// Make the last dimension of Set to take values from 0 to VectorWidth - 1.
|
||
///
|
||
/// @param Set A set, which should be modified.
|
||
/// @param VectorWidth A parameter, which determines the constraint.
|
||
static isl::set addExtentConstraints(isl::set Set, int VectorWidth) {
|
||
unsigned Dims = Set.dim(isl::dim::set);
|
||
isl::space Space = Set.get_space();
|
||
isl::local_space LocalSpace = isl::local_space(Space);
|
||
isl::constraint ExtConstr = isl::constraint::alloc_inequality(LocalSpace);
|
||
ExtConstr = ExtConstr.set_constant_si(0);
|
||
ExtConstr = ExtConstr.set_coefficient_si(isl::dim::set, Dims - 1, 1);
|
||
Set = Set.add_constraint(ExtConstr);
|
||
ExtConstr = isl::constraint::alloc_inequality(LocalSpace);
|
||
ExtConstr = ExtConstr.set_constant_si(VectorWidth - 1);
|
||
ExtConstr = ExtConstr.set_coefficient_si(isl::dim::set, Dims - 1, -1);
|
||
return Set.add_constraint(ExtConstr);
|
||
}
|
||
|
||
isl::set getPartialTilePrefixes(isl::set ScheduleRange, int VectorWidth) {
|
||
unsigned Dims = ScheduleRange.dim(isl::dim::set);
|
||
isl::set LoopPrefixes =
|
||
ScheduleRange.drop_constraints_involving_dims(isl::dim::set, Dims - 1, 1);
|
||
auto ExtentPrefixes = addExtentConstraints(LoopPrefixes, VectorWidth);
|
||
isl::set BadPrefixes = ExtentPrefixes.subtract(ScheduleRange);
|
||
BadPrefixes = BadPrefixes.project_out(isl::dim::set, Dims - 1, 1);
|
||
LoopPrefixes = LoopPrefixes.project_out(isl::dim::set, Dims - 1, 1);
|
||
return LoopPrefixes.subtract(BadPrefixes);
|
||
}
|
||
|
||
isl::schedule_node
|
||
ScheduleTreeOptimizer::isolateFullPartialTiles(isl::schedule_node Node,
|
||
int VectorWidth) {
|
||
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
|
||
Node = Node.child(0).child(0);
|
||
isl::union_map SchedRelUMap = Node.get_prefix_schedule_relation();
|
||
isl::map ScheduleRelation = isl::map::from_union_map(SchedRelUMap);
|
||
isl::set ScheduleRange = ScheduleRelation.range();
|
||
isl::set IsolateDomain = getPartialTilePrefixes(ScheduleRange, VectorWidth);
|
||
auto AtomicOption = getDimOptions(IsolateDomain.get_ctx(), "atomic");
|
||
isl::union_set IsolateOption = getIsolateOptions(IsolateDomain, 1);
|
||
Node = Node.parent().parent();
|
||
isl::union_set Options = IsolateOption.unite(AtomicOption);
|
||
Node = Node.band_set_ast_build_options(Options);
|
||
return Node;
|
||
}
|
||
|
||
isl::schedule_node ScheduleTreeOptimizer::prevectSchedBand(
|
||
isl::schedule_node Node, unsigned DimToVectorize, int VectorWidth) {
|
||
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
|
||
|
||
auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
|
||
auto ScheduleDimensions = Space.dim(isl::dim::set);
|
||
assert(DimToVectorize < ScheduleDimensions);
|
||
|
||
if (DimToVectorize > 0) {
|
||
Node = isl::manage(
|
||
isl_schedule_node_band_split(Node.release(), DimToVectorize));
|
||
Node = Node.child(0);
|
||
}
|
||
if (DimToVectorize < ScheduleDimensions - 1)
|
||
Node = isl::manage(isl_schedule_node_band_split(Node.release(), 1));
|
||
Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
|
||
auto Sizes = isl::multi_val::zero(Space);
|
||
Sizes = Sizes.set_val(0, isl::val(Node.get_ctx(), VectorWidth));
|
||
Node =
|
||
isl::manage(isl_schedule_node_band_tile(Node.release(), Sizes.release()));
|
||
Node = isolateFullPartialTiles(Node, VectorWidth);
|
||
Node = Node.child(0);
|
||
// Make sure the "trivially vectorizable loop" is not unrolled. Otherwise,
|
||
// we will have troubles to match it in the backend.
|
||
Node = Node.band_set_ast_build_options(
|
||
isl::union_set(Node.get_ctx(), "{ unroll[x]: 1 = 0 }"));
|
||
Node = isl::manage(isl_schedule_node_band_sink(Node.release()));
|
||
Node = Node.child(0);
|
||
if (isl_schedule_node_get_type(Node.get()) == isl_schedule_node_leaf)
|
||
Node = Node.parent();
|
||
auto LoopMarker = isl::id::alloc(Node.get_ctx(), "SIMD", nullptr);
|
||
PrevectOpts++;
|
||
return Node.insert_mark(LoopMarker);
|
||
}
|
||
|
||
isl::schedule_node ScheduleTreeOptimizer::tileNode(isl::schedule_node Node,
|
||
const char *Identifier,
|
||
ArrayRef<int> TileSizes,
|
||
int DefaultTileSize) {
|
||
auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
|
||
auto Dims = Space.dim(isl::dim::set);
|
||
auto Sizes = isl::multi_val::zero(Space);
|
||
std::string IdentifierString(Identifier);
|
||
for (unsigned i = 0; i < Dims; i++) {
|
||
auto tileSize = i < TileSizes.size() ? TileSizes[i] : DefaultTileSize;
|
||
Sizes = Sizes.set_val(i, isl::val(Node.get_ctx(), tileSize));
|
||
}
|
||
auto TileLoopMarkerStr = IdentifierString + " - Tiles";
|
||
auto TileLoopMarker =
|
||
isl::id::alloc(Node.get_ctx(), TileLoopMarkerStr, nullptr);
|
||
Node = Node.insert_mark(TileLoopMarker);
|
||
Node = Node.child(0);
|
||
Node =
|
||
isl::manage(isl_schedule_node_band_tile(Node.release(), Sizes.release()));
|
||
Node = Node.child(0);
|
||
auto PointLoopMarkerStr = IdentifierString + " - Points";
|
||
auto PointLoopMarker =
|
||
isl::id::alloc(Node.get_ctx(), PointLoopMarkerStr, nullptr);
|
||
Node = Node.insert_mark(PointLoopMarker);
|
||
return Node.child(0);
|
||
}
|
||
|
||
isl::schedule_node ScheduleTreeOptimizer::applyRegisterTiling(
|
||
isl::schedule_node Node, ArrayRef<int> TileSizes, int DefaultTileSize) {
|
||
Node = tileNode(Node, "Register tiling", TileSizes, DefaultTileSize);
|
||
auto Ctx = Node.get_ctx();
|
||
return Node.band_set_ast_build_options(isl::union_set(Ctx, "{unroll[x]}"));
|
||
}
|
||
|
||
static bool isSimpleInnermostBand(const isl::schedule_node &Node) {
|
||
assert(isl_schedule_node_get_type(Node.keep()) == isl_schedule_node_band);
|
||
assert(isl_schedule_node_n_children(Node.keep()) == 1);
|
||
|
||
auto ChildType = isl_schedule_node_get_type(Node.child(0).keep());
|
||
|
||
if (ChildType == isl_schedule_node_leaf)
|
||
return true;
|
||
|
||
if (ChildType != isl_schedule_node_sequence)
|
||
return false;
|
||
|
||
auto Sequence = Node.child(0);
|
||
|
||
for (int c = 0, nc = isl_schedule_node_n_children(Sequence.keep()); c < nc;
|
||
++c) {
|
||
auto Child = Sequence.child(c);
|
||
if (isl_schedule_node_get_type(Child.keep()) != isl_schedule_node_filter)
|
||
return false;
|
||
if (isl_schedule_node_get_type(Child.child(0).keep()) !=
|
||
isl_schedule_node_leaf)
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
bool ScheduleTreeOptimizer::isTileableBandNode(isl::schedule_node Node) {
|
||
if (isl_schedule_node_get_type(Node.get()) != isl_schedule_node_band)
|
||
return false;
|
||
|
||
if (isl_schedule_node_n_children(Node.get()) != 1)
|
||
return false;
|
||
|
||
if (!isl_schedule_node_band_get_permutable(Node.get()))
|
||
return false;
|
||
|
||
auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
|
||
auto Dims = Space.dim(isl::dim::set);
|
||
|
||
if (Dims <= 1)
|
||
return false;
|
||
|
||
return isSimpleInnermostBand(Node);
|
||
}
|
||
|
||
__isl_give isl::schedule_node
|
||
ScheduleTreeOptimizer::standardBandOpts(isl::schedule_node Node, void *User) {
|
||
if (FirstLevelTiling) {
|
||
Node = tileNode(Node, "1st level tiling", FirstLevelTileSizes,
|
||
FirstLevelDefaultTileSize);
|
||
FirstLevelTileOpts++;
|
||
}
|
||
|
||
if (SecondLevelTiling) {
|
||
Node = tileNode(Node, "2nd level tiling", SecondLevelTileSizes,
|
||
SecondLevelDefaultTileSize);
|
||
SecondLevelTileOpts++;
|
||
}
|
||
|
||
if (RegisterTiling) {
|
||
Node =
|
||
applyRegisterTiling(Node, RegisterTileSizes, RegisterDefaultTileSize);
|
||
RegisterTileOpts++;
|
||
}
|
||
|
||
if (PollyVectorizerChoice == VECTORIZER_NONE)
|
||
return Node;
|
||
|
||
auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
|
||
auto Dims = Space.dim(isl::dim::set);
|
||
|
||
for (int i = Dims - 1; i >= 0; i--)
|
||
if (Node.band_member_get_coincident(i)) {
|
||
Node = prevectSchedBand(Node, i, PrevectorWidth);
|
||
break;
|
||
}
|
||
|
||
return Node;
|
||
}
|
||
|
||
/// Permute the two dimensions of the isl map.
|
||
///
|
||
/// Permute @p DstPos and @p SrcPos dimensions of the isl map @p Map that
|
||
/// have type @p DimType.
|
||
///
|
||
/// @param Map The isl map to be modified.
|
||
/// @param DimType The type of the dimensions.
|
||
/// @param DstPos The first dimension.
|
||
/// @param SrcPos The second dimension.
|
||
/// @return The modified map.
|
||
isl::map permuteDimensions(isl::map Map, isl::dim DimType, unsigned DstPos,
|
||
unsigned SrcPos) {
|
||
assert(DstPos < Map.dim(DimType) && SrcPos < Map.dim(DimType));
|
||
if (DstPos == SrcPos)
|
||
return Map;
|
||
isl::id DimId;
|
||
if (Map.has_tuple_id(DimType))
|
||
DimId = Map.get_tuple_id(DimType);
|
||
auto FreeDim = DimType == isl::dim::in ? isl::dim::out : isl::dim::in;
|
||
isl::id FreeDimId;
|
||
if (Map.has_tuple_id(FreeDim))
|
||
FreeDimId = Map.get_tuple_id(FreeDim);
|
||
auto MaxDim = std::max(DstPos, SrcPos);
|
||
auto MinDim = std::min(DstPos, SrcPos);
|
||
Map = Map.move_dims(FreeDim, 0, DimType, MaxDim, 1);
|
||
Map = Map.move_dims(FreeDim, 0, DimType, MinDim, 1);
|
||
Map = Map.move_dims(DimType, MinDim, FreeDim, 1, 1);
|
||
Map = Map.move_dims(DimType, MaxDim, FreeDim, 0, 1);
|
||
if (DimId)
|
||
Map = Map.set_tuple_id(DimType, DimId);
|
||
if (FreeDimId)
|
||
Map = Map.set_tuple_id(FreeDim, FreeDimId);
|
||
return Map;
|
||
}
|
||
|
||
/// Check the form of the access relation.
|
||
///
|
||
/// Check that the access relation @p AccMap has the form M[i][j], where i
|
||
/// is a @p FirstPos and j is a @p SecondPos.
|
||
///
|
||
/// @param AccMap The access relation to be checked.
|
||
/// @param FirstPos The index of the input dimension that is mapped to
|
||
/// the first output dimension.
|
||
/// @param SecondPos The index of the input dimension that is mapped to the
|
||
/// second output dimension.
|
||
/// @return True in case @p AccMap has the expected form and false,
|
||
/// otherwise.
|
||
static bool isMatMulOperandAcc(isl::set Domain, isl::map AccMap, int &FirstPos,
|
||
int &SecondPos) {
|
||
isl::space Space = AccMap.get_space();
|
||
isl::map Universe = isl::map::universe(Space);
|
||
|
||
if (Space.dim(isl::dim::out) != 2)
|
||
return false;
|
||
|
||
// MatMul has the form:
|
||
// for (i = 0; i < N; i++)
|
||
// for (j = 0; j < M; j++)
|
||
// for (k = 0; k < P; k++)
|
||
// C[i, j] += A[i, k] * B[k, j]
|
||
//
|
||
// Permutation of three outer loops: 3! = 6 possibilities.
|
||
int FirstDims[] = {0, 0, 1, 1, 2, 2};
|
||
int SecondDims[] = {1, 2, 2, 0, 0, 1};
|
||
for (int i = 0; i < 6; i += 1) {
|
||
auto PossibleMatMul =
|
||
Universe.equate(isl::dim::in, FirstDims[i], isl::dim::out, 0)
|
||
.equate(isl::dim::in, SecondDims[i], isl::dim::out, 1);
|
||
|
||
AccMap = AccMap.intersect_domain(Domain);
|
||
PossibleMatMul = PossibleMatMul.intersect_domain(Domain);
|
||
|
||
// If AccMap spans entire domain (Non-partial write),
|
||
// compute FirstPos and SecondPos.
|
||
// If AccMap != PossibleMatMul here (the two maps have been gisted at
|
||
// this point), it means that the writes are not complete, or in other
|
||
// words, it is a Partial write and Partial writes must be rejected.
|
||
if (AccMap.is_equal(PossibleMatMul)) {
|
||
if (FirstPos != -1 && FirstPos != FirstDims[i])
|
||
continue;
|
||
FirstPos = FirstDims[i];
|
||
if (SecondPos != -1 && SecondPos != SecondDims[i])
|
||
continue;
|
||
SecondPos = SecondDims[i];
|
||
return true;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/// Does the memory access represent a non-scalar operand of the matrix
|
||
/// multiplication.
|
||
///
|
||
/// Check that the memory access @p MemAccess is the read access to a non-scalar
|
||
/// operand of the matrix multiplication or its result.
|
||
///
|
||
/// @param MemAccess The memory access to be checked.
|
||
/// @param MMI Parameters of the matrix multiplication operands.
|
||
/// @return True in case the memory access represents the read access
|
||
/// to a non-scalar operand of the matrix multiplication and
|
||
/// false, otherwise.
|
||
static bool isMatMulNonScalarReadAccess(MemoryAccess *MemAccess,
|
||
MatMulInfoTy &MMI) {
|
||
if (!MemAccess->isLatestArrayKind() || !MemAccess->isRead())
|
||
return false;
|
||
auto AccMap = MemAccess->getLatestAccessRelation();
|
||
isl::set StmtDomain = MemAccess->getStatement()->getDomain();
|
||
if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.j) && !MMI.ReadFromC) {
|
||
MMI.ReadFromC = MemAccess;
|
||
return true;
|
||
}
|
||
if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.k) && !MMI.A) {
|
||
MMI.A = MemAccess;
|
||
return true;
|
||
}
|
||
if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.k, MMI.j) && !MMI.B) {
|
||
MMI.B = MemAccess;
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/// Check accesses to operands of the matrix multiplication.
|
||
///
|
||
/// Check that accesses of the SCoP statement, which corresponds to
|
||
/// the partial schedule @p PartialSchedule, are scalar in terms of loops
|
||
/// containing the matrix multiplication, in case they do not represent
|
||
/// accesses to the non-scalar operands of the matrix multiplication or
|
||
/// its result.
|
||
///
|
||
/// @param PartialSchedule The partial schedule of the SCoP statement.
|
||
/// @param MMI Parameters of the matrix multiplication operands.
|
||
/// @return True in case the corresponding SCoP statement
|
||
/// represents matrix multiplication and false,
|
||
/// otherwise.
|
||
static bool containsOnlyMatrMultAcc(isl::map PartialSchedule,
|
||
MatMulInfoTy &MMI) {
|
||
auto InputDimId = PartialSchedule.get_tuple_id(isl::dim::in);
|
||
auto *Stmt = static_cast<ScopStmt *>(InputDimId.get_user());
|
||
unsigned OutDimNum = PartialSchedule.dim(isl::dim::out);
|
||
assert(OutDimNum > 2 && "In case of the matrix multiplication the loop nest "
|
||
"and, consequently, the corresponding scheduling "
|
||
"functions have at least three dimensions.");
|
||
auto MapI =
|
||
permuteDimensions(PartialSchedule, isl::dim::out, MMI.i, OutDimNum - 1);
|
||
auto MapJ =
|
||
permuteDimensions(PartialSchedule, isl::dim::out, MMI.j, OutDimNum - 1);
|
||
auto MapK =
|
||
permuteDimensions(PartialSchedule, isl::dim::out, MMI.k, OutDimNum - 1);
|
||
|
||
auto Accesses = getAccessesInOrder(*Stmt);
|
||
for (auto *MemA = Accesses.begin(); MemA != Accesses.end() - 1; MemA++) {
|
||
auto *MemAccessPtr = *MemA;
|
||
if (MemAccessPtr->isLatestArrayKind() && MemAccessPtr != MMI.WriteToC &&
|
||
!isMatMulNonScalarReadAccess(MemAccessPtr, MMI) &&
|
||
!(MemAccessPtr->isStrideZero(MapI)) &&
|
||
MemAccessPtr->isStrideZero(MapJ) && MemAccessPtr->isStrideZero(MapK))
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/// Check for dependencies corresponding to the matrix multiplication.
|
||
///
|
||
/// Check that there is only true dependence of the form
|
||
/// S(..., k, ...) -> S(..., k + 1, …), where S is the SCoP statement
|
||
/// represented by @p Schedule and k is @p Pos. Such a dependence corresponds
|
||
/// to the dependency produced by the matrix multiplication.
|
||
///
|
||
/// @param Schedule The schedule of the SCoP statement.
|
||
/// @param D The SCoP dependencies.
|
||
/// @param Pos The parameter to describe an acceptable true dependence.
|
||
/// In case it has a negative value, try to determine its
|
||
/// acceptable value.
|
||
/// @return True in case dependencies correspond to the matrix multiplication
|
||
/// and false, otherwise.
|
||
static bool containsOnlyMatMulDep(isl::map Schedule, const Dependences *D,
|
||
int &Pos) {
|
||
auto Dep = isl::manage(D->getDependences(Dependences::TYPE_RAW));
|
||
auto Red = isl::manage(D->getDependences(Dependences::TYPE_RED));
|
||
if (Red)
|
||
Dep = Dep.unite(Red);
|
||
auto DomainSpace = Schedule.get_space().domain();
|
||
auto Space = DomainSpace.map_from_domain_and_range(DomainSpace);
|
||
auto Deltas = Dep.extract_map(Space).deltas();
|
||
int DeltasDimNum = Deltas.dim(isl::dim::set);
|
||
for (int i = 0; i < DeltasDimNum; i++) {
|
||
auto Val = Deltas.plain_get_val_if_fixed(isl::dim::set, i);
|
||
Pos = Pos < 0 && Val.is_one() ? i : Pos;
|
||
if (Val.is_nan() || !(Val.is_zero() || (i == Pos && Val.is_one())))
|
||
return false;
|
||
}
|
||
if (DeltasDimNum == 0 || Pos < 0)
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
/// Check if the SCoP statement could probably be optimized with analytical
|
||
/// modeling.
|
||
///
|
||
/// containsMatrMult tries to determine whether the following conditions
|
||
/// are true:
|
||
/// 1. The last memory access modeling an array, MA1, represents writing to
|
||
/// memory and has the form S(..., i1, ..., i2, ...) -> M(i1, i2) or
|
||
/// S(..., i2, ..., i1, ...) -> M(i1, i2), where S is the SCoP statement
|
||
/// under consideration.
|
||
/// 2. There is only one loop-carried true dependency, and it has the
|
||
/// form S(..., i3, ...) -> S(..., i3 + 1, ...), and there are no
|
||
/// loop-carried or anti dependencies.
|
||
/// 3. SCoP contains three access relations, MA2, MA3, and MA4 that represent
|
||
/// reading from memory and have the form S(..., i3, ...) -> M(i1, i3),
|
||
/// S(..., i3, ...) -> M(i3, i2), S(...) -> M(i1, i2), respectively,
|
||
/// and all memory accesses of the SCoP that are different from MA1, MA2,
|
||
/// MA3, and MA4 have stride 0, if the innermost loop is exchanged with any
|
||
/// of loops i1, i2 and i3.
|
||
///
|
||
/// @param PartialSchedule The PartialSchedule that contains a SCoP statement
|
||
/// to check.
|
||
/// @D The SCoP dependencies.
|
||
/// @MMI Parameters of the matrix multiplication operands.
|
||
static bool containsMatrMult(isl::map PartialSchedule, const Dependences *D,
|
||
MatMulInfoTy &MMI) {
|
||
auto InputDimsId = PartialSchedule.get_tuple_id(isl::dim::in);
|
||
auto *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
|
||
if (Stmt->size() <= 1)
|
||
return false;
|
||
|
||
auto Accesses = getAccessesInOrder(*Stmt);
|
||
for (auto *MemA = Accesses.end() - 1; MemA != Accesses.begin(); MemA--) {
|
||
auto *MemAccessPtr = *MemA;
|
||
if (!MemAccessPtr->isLatestArrayKind())
|
||
continue;
|
||
if (!MemAccessPtr->isWrite())
|
||
return false;
|
||
auto AccMap = MemAccessPtr->getLatestAccessRelation();
|
||
if (!isMatMulOperandAcc(Stmt->getDomain(), AccMap, MMI.i, MMI.j))
|
||
return false;
|
||
MMI.WriteToC = MemAccessPtr;
|
||
break;
|
||
}
|
||
|
||
if (!containsOnlyMatMulDep(PartialSchedule, D, MMI.k))
|
||
return false;
|
||
|
||
if (!MMI.WriteToC || !containsOnlyMatrMultAcc(PartialSchedule, MMI))
|
||
return false;
|
||
|
||
if (!MMI.A || !MMI.B || !MMI.ReadFromC)
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
/// Permute two dimensions of the band node.
|
||
///
|
||
/// Permute FirstDim and SecondDim dimensions of the Node.
|
||
///
|
||
/// @param Node The band node to be modified.
|
||
/// @param FirstDim The first dimension to be permuted.
|
||
/// @param SecondDim The second dimension to be permuted.
|
||
static isl::schedule_node permuteBandNodeDimensions(isl::schedule_node Node,
|
||
unsigned FirstDim,
|
||
unsigned SecondDim) {
|
||
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band &&
|
||
isl_schedule_node_band_n_member(Node.get()) >
|
||
std::max(FirstDim, SecondDim));
|
||
auto PartialSchedule =
|
||
isl::manage(isl_schedule_node_band_get_partial_schedule(Node.get()));
|
||
auto PartialScheduleFirstDim = PartialSchedule.get_union_pw_aff(FirstDim);
|
||
auto PartialScheduleSecondDim = PartialSchedule.get_union_pw_aff(SecondDim);
|
||
PartialSchedule =
|
||
PartialSchedule.set_union_pw_aff(SecondDim, PartialScheduleFirstDim);
|
||
PartialSchedule =
|
||
PartialSchedule.set_union_pw_aff(FirstDim, PartialScheduleSecondDim);
|
||
Node = isl::manage(isl_schedule_node_delete(Node.release()));
|
||
return Node.insert_partial_schedule(PartialSchedule);
|
||
}
|
||
|
||
isl::schedule_node ScheduleTreeOptimizer::createMicroKernel(
|
||
isl::schedule_node Node, MicroKernelParamsTy MicroKernelParams) {
|
||
Node = applyRegisterTiling(Node, {MicroKernelParams.Mr, MicroKernelParams.Nr},
|
||
1);
|
||
Node = Node.parent().parent();
|
||
return permuteBandNodeDimensions(Node, 0, 1).child(0).child(0);
|
||
}
|
||
|
||
isl::schedule_node ScheduleTreeOptimizer::createMacroKernel(
|
||
isl::schedule_node Node, MacroKernelParamsTy MacroKernelParams) {
|
||
assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
|
||
if (MacroKernelParams.Mc == 1 && MacroKernelParams.Nc == 1 &&
|
||
MacroKernelParams.Kc == 1)
|
||
return Node;
|
||
int DimOutNum = isl_schedule_node_band_n_member(Node.get());
|
||
std::vector<int> TileSizes(DimOutNum, 1);
|
||
TileSizes[DimOutNum - 3] = MacroKernelParams.Mc;
|
||
TileSizes[DimOutNum - 2] = MacroKernelParams.Nc;
|
||
TileSizes[DimOutNum - 1] = MacroKernelParams.Kc;
|
||
Node = tileNode(Node, "1st level tiling", TileSizes, 1);
|
||
Node = Node.parent().parent();
|
||
Node = permuteBandNodeDimensions(Node, DimOutNum - 2, DimOutNum - 1);
|
||
Node = permuteBandNodeDimensions(Node, DimOutNum - 3, DimOutNum - 1);
|
||
return Node.child(0).child(0);
|
||
}
|
||
|
||
/// Get the size of the widest type of the matrix multiplication operands
|
||
/// in bytes, including alignment padding.
|
||
///
|
||
/// @param MMI Parameters of the matrix multiplication operands.
|
||
/// @return The size of the widest type of the matrix multiplication operands
|
||
/// in bytes, including alignment padding.
|
||
static uint64_t getMatMulAlignTypeSize(MatMulInfoTy MMI) {
|
||
auto *S = MMI.A->getStatement()->getParent();
|
||
auto &DL = S->getFunction().getParent()->getDataLayout();
|
||
auto ElementSizeA = DL.getTypeAllocSize(MMI.A->getElementType());
|
||
auto ElementSizeB = DL.getTypeAllocSize(MMI.B->getElementType());
|
||
auto ElementSizeC = DL.getTypeAllocSize(MMI.WriteToC->getElementType());
|
||
return std::max({ElementSizeA, ElementSizeB, ElementSizeC});
|
||
}
|
||
|
||
/// Get the size of the widest type of the matrix multiplication operands
|
||
/// in bits.
|
||
///
|
||
/// @param MMI Parameters of the matrix multiplication operands.
|
||
/// @return The size of the widest type of the matrix multiplication operands
|
||
/// in bits.
|
||
static uint64_t getMatMulTypeSize(MatMulInfoTy MMI) {
|
||
auto *S = MMI.A->getStatement()->getParent();
|
||
auto &DL = S->getFunction().getParent()->getDataLayout();
|
||
auto ElementSizeA = DL.getTypeSizeInBits(MMI.A->getElementType());
|
||
auto ElementSizeB = DL.getTypeSizeInBits(MMI.B->getElementType());
|
||
auto ElementSizeC = DL.getTypeSizeInBits(MMI.WriteToC->getElementType());
|
||
return std::max({ElementSizeA, ElementSizeB, ElementSizeC});
|
||
}
|
||
|
||
/// Get parameters of the BLIS micro kernel.
|
||
///
|
||
/// We choose the Mr and Nr parameters of the micro kernel to be large enough
|
||
/// such that no stalls caused by the combination of latencies and dependencies
|
||
/// are introduced during the updates of the resulting matrix of the matrix
|
||
/// multiplication. However, they should also be as small as possible to
|
||
/// release more registers for entries of multiplied matrices.
|
||
///
|
||
/// @param TTI Target Transform Info.
|
||
/// @param MMI Parameters of the matrix multiplication operands.
|
||
/// @return The structure of type MicroKernelParamsTy.
|
||
/// @see MicroKernelParamsTy
|
||
static struct MicroKernelParamsTy
|
||
getMicroKernelParams(const TargetTransformInfo *TTI, MatMulInfoTy MMI) {
|
||
assert(TTI && "The target transform info should be provided.");
|
||
|
||
// Nvec - Number of double-precision floating-point numbers that can be hold
|
||
// by a vector register. Use 2 by default.
|
||
long RegisterBitwidth = VectorRegisterBitwidth;
|
||
|
||
if (RegisterBitwidth == -1)
|
||
RegisterBitwidth = TTI->getRegisterBitWidth(true);
|
||
auto ElementSize = getMatMulTypeSize(MMI);
|
||
assert(ElementSize > 0 && "The element size of the matrix multiplication "
|
||
"operands should be greater than zero.");
|
||
auto Nvec = RegisterBitwidth / ElementSize;
|
||
if (Nvec == 0)
|
||
Nvec = 2;
|
||
int Nr =
|
||
ceil(sqrt(Nvec * LatencyVectorFma * ThroughputVectorFma) / Nvec) * Nvec;
|
||
int Mr = ceil(Nvec * LatencyVectorFma * ThroughputVectorFma / Nr);
|
||
return {Mr, Nr};
|
||
}
|
||
|
||
namespace {
|
||
/// Determine parameters of the target cache.
|
||
///
|
||
/// @param TTI Target Transform Info.
|
||
void getTargetCacheParameters(const llvm::TargetTransformInfo *TTI) {
|
||
auto L1DCache = llvm::TargetTransformInfo::CacheLevel::L1D;
|
||
auto L2DCache = llvm::TargetTransformInfo::CacheLevel::L2D;
|
||
if (FirstCacheLevelSize == -1) {
|
||
if (TTI->getCacheSize(L1DCache).hasValue())
|
||
FirstCacheLevelSize = TTI->getCacheSize(L1DCache).getValue();
|
||
else
|
||
FirstCacheLevelSize = static_cast<int>(FirstCacheLevelDefaultSize);
|
||
}
|
||
if (SecondCacheLevelSize == -1) {
|
||
if (TTI->getCacheSize(L2DCache).hasValue())
|
||
SecondCacheLevelSize = TTI->getCacheSize(L2DCache).getValue();
|
||
else
|
||
SecondCacheLevelSize = static_cast<int>(SecondCacheLevelDefaultSize);
|
||
}
|
||
if (FirstCacheLevelAssociativity == -1) {
|
||
if (TTI->getCacheAssociativity(L1DCache).hasValue())
|
||
FirstCacheLevelAssociativity =
|
||
TTI->getCacheAssociativity(L1DCache).getValue();
|
||
else
|
||
FirstCacheLevelAssociativity =
|
||
static_cast<int>(FirstCacheLevelDefaultAssociativity);
|
||
}
|
||
if (SecondCacheLevelAssociativity == -1) {
|
||
if (TTI->getCacheAssociativity(L2DCache).hasValue())
|
||
SecondCacheLevelAssociativity =
|
||
TTI->getCacheAssociativity(L2DCache).getValue();
|
||
else
|
||
SecondCacheLevelAssociativity =
|
||
static_cast<int>(SecondCacheLevelDefaultAssociativity);
|
||
}
|
||
}
|
||
} // namespace
|
||
|
||
/// Get parameters of the BLIS macro kernel.
|
||
///
|
||
/// During the computation of matrix multiplication, blocks of partitioned
|
||
/// matrices are mapped to different layers of the memory hierarchy.
|
||
/// To optimize data reuse, blocks should be ideally kept in cache between
|
||
/// iterations. Since parameters of the macro kernel determine sizes of these
|
||
/// blocks, there are upper and lower bounds on these parameters.
|
||
///
|
||
/// @param TTI Target Transform Info.
|
||
/// @param MicroKernelParams Parameters of the micro-kernel
|
||
/// to be taken into account.
|
||
/// @param MMI Parameters of the matrix multiplication operands.
|
||
/// @return The structure of type MacroKernelParamsTy.
|
||
/// @see MacroKernelParamsTy
|
||
/// @see MicroKernelParamsTy
|
||
static struct MacroKernelParamsTy
|
||
getMacroKernelParams(const llvm::TargetTransformInfo *TTI,
|
||
const MicroKernelParamsTy &MicroKernelParams,
|
||
MatMulInfoTy MMI) {
|
||
getTargetCacheParameters(TTI);
|
||
// According to www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf,
|
||
// it requires information about the first two levels of a cache to determine
|
||
// all the parameters of a macro-kernel. It also checks that an associativity
|
||
// degree of a cache level is greater than two. Otherwise, another algorithm
|
||
// for determination of the parameters should be used.
|
||
if (!(MicroKernelParams.Mr > 0 && MicroKernelParams.Nr > 0 &&
|
||
FirstCacheLevelSize > 0 && SecondCacheLevelSize > 0 &&
|
||
FirstCacheLevelAssociativity > 2 && SecondCacheLevelAssociativity > 2))
|
||
return {1, 1, 1};
|
||
// The quotient should be greater than zero.
|
||
if (PollyPatternMatchingNcQuotient <= 0)
|
||
return {1, 1, 1};
|
||
int Car = floor(
|
||
(FirstCacheLevelAssociativity - 1) /
|
||
(1 + static_cast<double>(MicroKernelParams.Nr) / MicroKernelParams.Mr));
|
||
|
||
// Car can be computed to be zero since it is floor to int.
|
||
// On Mac OS, division by 0 does not raise a signal. This causes negative
|
||
// tile sizes to be computed. Prevent division by Cac==0 by early returning
|
||
// if this happens.
|
||
if (Car == 0)
|
||
return {1, 1, 1};
|
||
|
||
auto ElementSize = getMatMulAlignTypeSize(MMI);
|
||
assert(ElementSize > 0 && "The element size of the matrix multiplication "
|
||
"operands should be greater than zero.");
|
||
int Kc = (Car * FirstCacheLevelSize) /
|
||
(MicroKernelParams.Mr * FirstCacheLevelAssociativity * ElementSize);
|
||
double Cac =
|
||
static_cast<double>(Kc * ElementSize * SecondCacheLevelAssociativity) /
|
||
SecondCacheLevelSize;
|
||
int Mc = floor((SecondCacheLevelAssociativity - 2) / Cac);
|
||
int Nc = PollyPatternMatchingNcQuotient * MicroKernelParams.Nr;
|
||
|
||
assert(Mc > 0 && Nc > 0 && Kc > 0 &&
|
||
"Matrix block sizes should be greater than zero");
|
||
return {Mc, Nc, Kc};
|
||
}
|
||
|
||
/// Create an access relation that is specific to
|
||
/// the matrix multiplication pattern.
|
||
///
|
||
/// Create an access relation of the following form:
|
||
/// [O0, O1, O2, O3, O4, O5, O6, O7, O8] -> [OI, O5, OJ]
|
||
/// where I is @p FirstDim, J is @p SecondDim.
|
||
///
|
||
/// It can be used, for example, to create relations that helps to consequently
|
||
/// access elements of operands of a matrix multiplication after creation of
|
||
/// the BLIS micro and macro kernels.
|
||
///
|
||
/// @see ScheduleTreeOptimizer::createMicroKernel
|
||
/// @see ScheduleTreeOptimizer::createMacroKernel
|
||
///
|
||
/// Subsequently, the described access relation is applied to the range of
|
||
/// @p MapOldIndVar, that is used to map original induction variables to
|
||
/// the ones, which are produced by schedule transformations. It helps to
|
||
/// define relations using a new space and, at the same time, keep them
|
||
/// in the original one.
|
||
///
|
||
/// @param MapOldIndVar The relation, which maps original induction variables
|
||
/// to the ones, which are produced by schedule
|
||
/// transformations.
|
||
/// @param FirstDim, SecondDim The input dimensions that are used to define
|
||
/// the specified access relation.
|
||
/// @return The specified access relation.
|
||
isl::map getMatMulAccRel(isl::map MapOldIndVar, unsigned FirstDim,
|
||
unsigned SecondDim) {
|
||
auto AccessRelSpace = isl::space(MapOldIndVar.get_ctx(), 0, 9, 3);
|
||
auto AccessRel = isl::map::universe(AccessRelSpace);
|
||
AccessRel = AccessRel.equate(isl::dim::in, FirstDim, isl::dim::out, 0);
|
||
AccessRel = AccessRel.equate(isl::dim::in, 5, isl::dim::out, 1);
|
||
AccessRel = AccessRel.equate(isl::dim::in, SecondDim, isl::dim::out, 2);
|
||
return MapOldIndVar.apply_range(AccessRel);
|
||
}
|
||
|
||
isl::schedule_node createExtensionNode(isl::schedule_node Node,
|
||
isl::map ExtensionMap) {
|
||
auto Extension = isl::union_map(ExtensionMap);
|
||
auto NewNode = isl::schedule_node::from_extension(Extension);
|
||
return Node.graft_before(NewNode);
|
||
}
|
||
|
||
/// Apply the packing transformation.
|
||
///
|
||
/// The packing transformation can be described as a data-layout
|
||
/// transformation that requires to introduce a new array, copy data
|
||
/// to the array, and change memory access locations to reference the array.
|
||
/// It can be used to ensure that elements of the new array are read in-stride
|
||
/// access, aligned to cache lines boundaries, and preloaded into certain cache
|
||
/// levels.
|
||
///
|
||
/// As an example let us consider the packing of the array A that would help
|
||
/// to read its elements with in-stride access. An access to the array A
|
||
/// is represented by an access relation that has the form
|
||
/// S[i, j, k] -> A[i, k]. The scheduling function of the SCoP statement S has
|
||
/// the form S[i,j, k] -> [floor((j mod Nc) / Nr), floor((i mod Mc) / Mr),
|
||
/// k mod Kc, j mod Nr, i mod Mr].
|
||
///
|
||
/// To ensure that elements of the array A are read in-stride access, we add
|
||
/// a new array Packed_A[Mc/Mr][Kc][Mr] to the SCoP, using
|
||
/// Scop::createScopArrayInfo, change the access relation
|
||
/// S[i, j, k] -> A[i, k] to
|
||
/// S[i, j, k] -> Packed_A[floor((i mod Mc) / Mr), k mod Kc, i mod Mr], using
|
||
/// MemoryAccess::setNewAccessRelation, and copy the data to the array, using
|
||
/// the copy statement created by Scop::addScopStmt.
|
||
///
|
||
/// @param Node The schedule node to be optimized.
|
||
/// @param MapOldIndVar The relation, which maps original induction variables
|
||
/// to the ones, which are produced by schedule
|
||
/// transformations.
|
||
/// @param MicroParams, MacroParams Parameters of the BLIS kernel
|
||
/// to be taken into account.
|
||
/// @param MMI Parameters of the matrix multiplication operands.
|
||
/// @return The optimized schedule node.
|
||
static isl::schedule_node
|
||
optimizeDataLayoutMatrMulPattern(isl::schedule_node Node, isl::map MapOldIndVar,
|
||
MicroKernelParamsTy MicroParams,
|
||
MacroKernelParamsTy MacroParams,
|
||
MatMulInfoTy &MMI) {
|
||
auto InputDimsId = MapOldIndVar.get_tuple_id(isl::dim::in);
|
||
auto *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
|
||
|
||
// Create a copy statement that corresponds to the memory access to the
|
||
// matrix B, the second operand of the matrix multiplication.
|
||
Node = Node.parent().parent().parent().parent().parent().parent();
|
||
Node = isl::manage(isl_schedule_node_band_split(Node.release(), 2)).child(0);
|
||
auto AccRel = getMatMulAccRel(MapOldIndVar, 3, 7);
|
||
unsigned FirstDimSize = MacroParams.Nc / MicroParams.Nr;
|
||
unsigned SecondDimSize = MacroParams.Kc;
|
||
unsigned ThirdDimSize = MicroParams.Nr;
|
||
auto *SAI = Stmt->getParent()->createScopArrayInfo(
|
||
MMI.B->getElementType(), "Packed_B",
|
||
{FirstDimSize, SecondDimSize, ThirdDimSize});
|
||
AccRel = AccRel.set_tuple_id(isl::dim::out, SAI->getBasePtrId());
|
||
auto OldAcc = MMI.B->getLatestAccessRelation();
|
||
MMI.B->setNewAccessRelation(AccRel);
|
||
auto ExtMap = MapOldIndVar.project_out(isl::dim::out, 2,
|
||
MapOldIndVar.dim(isl::dim::out) - 2);
|
||
ExtMap = ExtMap.reverse();
|
||
ExtMap = ExtMap.fix_si(isl::dim::out, MMI.i, 0);
|
||
auto Domain = Stmt->getDomain();
|
||
|
||
// Restrict the domains of the copy statements to only execute when also its
|
||
// originating statement is executed.
|
||
auto DomainId = Domain.get_tuple_id();
|
||
auto *NewStmt = Stmt->getParent()->addScopStmt(
|
||
OldAcc, MMI.B->getLatestAccessRelation(), Domain);
|
||
ExtMap = ExtMap.set_tuple_id(isl::dim::out, DomainId);
|
||
ExtMap = ExtMap.intersect_range(Domain);
|
||
ExtMap = ExtMap.set_tuple_id(isl::dim::out, NewStmt->getDomainId());
|
||
Node = createExtensionNode(Node, ExtMap);
|
||
|
||
// Create a copy statement that corresponds to the memory access
|
||
// to the matrix A, the first operand of the matrix multiplication.
|
||
Node = Node.child(0);
|
||
AccRel = getMatMulAccRel(MapOldIndVar, 4, 6);
|
||
FirstDimSize = MacroParams.Mc / MicroParams.Mr;
|
||
ThirdDimSize = MicroParams.Mr;
|
||
SAI = Stmt->getParent()->createScopArrayInfo(
|
||
MMI.A->getElementType(), "Packed_A",
|
||
{FirstDimSize, SecondDimSize, ThirdDimSize});
|
||
AccRel = AccRel.set_tuple_id(isl::dim::out, SAI->getBasePtrId());
|
||
OldAcc = MMI.A->getLatestAccessRelation();
|
||
MMI.A->setNewAccessRelation(AccRel);
|
||
ExtMap = MapOldIndVar.project_out(isl::dim::out, 3,
|
||
MapOldIndVar.dim(isl::dim::out) - 3);
|
||
ExtMap = ExtMap.reverse();
|
||
ExtMap = ExtMap.fix_si(isl::dim::out, MMI.j, 0);
|
||
NewStmt = Stmt->getParent()->addScopStmt(
|
||
OldAcc, MMI.A->getLatestAccessRelation(), Domain);
|
||
|
||
// Restrict the domains of the copy statements to only execute when also its
|
||
// originating statement is executed.
|
||
ExtMap = ExtMap.set_tuple_id(isl::dim::out, DomainId);
|
||
ExtMap = ExtMap.intersect_range(Domain);
|
||
ExtMap = ExtMap.set_tuple_id(isl::dim::out, NewStmt->getDomainId());
|
||
Node = createExtensionNode(Node, ExtMap);
|
||
return Node.child(0).child(0).child(0).child(0).child(0);
|
||
}
|
||
|
||
/// Get a relation mapping induction variables produced by schedule
|
||
/// transformations to the original ones.
|
||
///
|
||
/// @param Node The schedule node produced as the result of creation
|
||
/// of the BLIS kernels.
|
||
/// @param MicroKernelParams, MacroKernelParams Parameters of the BLIS kernel
|
||
/// to be taken into account.
|
||
/// @return The relation mapping original induction variables to the ones
|
||
/// produced by schedule transformation.
|
||
/// @see ScheduleTreeOptimizer::createMicroKernel
|
||
/// @see ScheduleTreeOptimizer::createMacroKernel
|
||
/// @see getMacroKernelParams
|
||
isl::map
|
||
getInductionVariablesSubstitution(isl::schedule_node Node,
|
||
MicroKernelParamsTy MicroKernelParams,
|
||
MacroKernelParamsTy MacroKernelParams) {
|
||
auto Child = Node.child(0);
|
||
auto UnMapOldIndVar = Child.get_prefix_schedule_union_map();
|
||
auto MapOldIndVar = isl::map::from_union_map(UnMapOldIndVar);
|
||
if (MapOldIndVar.dim(isl::dim::out) > 9)
|
||
return MapOldIndVar.project_out(isl::dim::out, 0,
|
||
MapOldIndVar.dim(isl::dim::out) - 9);
|
||
return MapOldIndVar;
|
||
}
|
||
|
||
/// Isolate a set of partial tile prefixes and unroll the isolated part.
|
||
///
|
||
/// The set should ensure that it contains only partial tile prefixes that have
|
||
/// exactly Mr x Nr iterations of the two innermost loops produced by
|
||
/// the optimization of the matrix multiplication. Mr and Nr are parameters of
|
||
/// the micro-kernel.
|
||
///
|
||
/// In case of parametric bounds, this helps to auto-vectorize the unrolled
|
||
/// innermost loops, using the SLP vectorizer.
|
||
///
|
||
/// @param Node The schedule node to be modified.
|
||
/// @param MicroKernelParams Parameters of the micro-kernel
|
||
/// to be taken into account.
|
||
/// @return The modified isl_schedule_node.
|
||
static isl::schedule_node
|
||
isolateAndUnrollMatMulInnerLoops(isl::schedule_node Node,
|
||
struct MicroKernelParamsTy MicroKernelParams) {
|
||
isl::schedule_node Child = Node.get_child(0);
|
||
isl::union_map UnMapOldIndVar = Child.get_prefix_schedule_relation();
|
||
isl::set Prefix = isl::map::from_union_map(UnMapOldIndVar).range();
|
||
unsigned Dims = Prefix.dim(isl::dim::set);
|
||
Prefix = Prefix.project_out(isl::dim::set, Dims - 1, 1);
|
||
Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Nr);
|
||
Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Mr);
|
||
|
||
isl::union_set IsolateOption =
|
||
getIsolateOptions(Prefix.add_dims(isl::dim::set, 3), 3);
|
||
isl::ctx Ctx = Node.get_ctx();
|
||
auto Options = IsolateOption.unite(getDimOptions(Ctx, "unroll"));
|
||
Options = Options.unite(getUnrollIsolatedSetOptions(Ctx));
|
||
Node = Node.band_set_ast_build_options(Options);
|
||
Node = Node.parent().parent().parent();
|
||
IsolateOption = getIsolateOptions(Prefix, 3);
|
||
Options = IsolateOption.unite(getDimOptions(Ctx, "separate"));
|
||
Node = Node.band_set_ast_build_options(Options);
|
||
Node = Node.child(0).child(0).child(0);
|
||
return Node;
|
||
}
|
||
|
||
/// Mark @p BasePtr with "Inter iteration alias-free" mark node.
|
||
///
|
||
/// @param Node The child of the mark node to be inserted.
|
||
/// @param BasePtr The pointer to be marked.
|
||
/// @return The modified isl_schedule_node.
|
||
static isl::schedule_node markInterIterationAliasFree(isl::schedule_node Node,
|
||
Value *BasePtr) {
|
||
if (!BasePtr)
|
||
return Node;
|
||
|
||
auto Id =
|
||
isl::id::alloc(Node.get_ctx(), "Inter iteration alias-free", BasePtr);
|
||
return Node.insert_mark(Id).child(0);
|
||
}
|
||
|
||
/// Insert "Loop Vectorizer Disabled" mark node.
|
||
///
|
||
/// @param Node The child of the mark node to be inserted.
|
||
/// @return The modified isl_schedule_node.
|
||
static isl::schedule_node markLoopVectorizerDisabled(isl::schedule_node Node) {
|
||
auto Id = isl::id::alloc(Node.get_ctx(), "Loop Vectorizer Disabled", nullptr);
|
||
return Node.insert_mark(Id).child(0);
|
||
}
|
||
|
||
/// Restore the initial ordering of dimensions of the band node
|
||
///
|
||
/// In case the band node represents all the dimensions of the iteration
|
||
/// domain, recreate the band node to restore the initial ordering of the
|
||
/// dimensions.
|
||
///
|
||
/// @param Node The band node to be modified.
|
||
/// @return The modified schedule node.
|
||
static isl::schedule_node
|
||
getBandNodeWithOriginDimOrder(isl::schedule_node Node) {
|
||
assert(isl_schedule_node_get_type(Node.keep()) == isl_schedule_node_band);
|
||
if (isl_schedule_node_get_type(Node.child(0).keep()) !=
|
||
isl_schedule_node_leaf)
|
||
return Node;
|
||
auto Domain = Node.get_universe_domain();
|
||
assert(isl_union_set_n_set(Domain.keep()) == 1);
|
||
if (Node.get_schedule_depth() != 0 ||
|
||
(isl::set(Domain).dim(isl::dim::set) !=
|
||
isl_schedule_node_band_n_member(Node.keep())))
|
||
return Node;
|
||
Node = isl::manage(isl_schedule_node_delete(Node.take()));
|
||
auto PartialSchedulePwAff = Domain.identity_union_pw_multi_aff();
|
||
auto PartialScheduleMultiPwAff =
|
||
isl::multi_union_pw_aff(PartialSchedulePwAff);
|
||
PartialScheduleMultiPwAff =
|
||
PartialScheduleMultiPwAff.reset_tuple_id(isl::dim::set);
|
||
return Node.insert_partial_schedule(PartialScheduleMultiPwAff);
|
||
}
|
||
|
||
isl::schedule_node
|
||
ScheduleTreeOptimizer::optimizeMatMulPattern(isl::schedule_node Node,
|
||
const TargetTransformInfo *TTI,
|
||
MatMulInfoTy &MMI) {
|
||
assert(TTI && "The target transform info should be provided.");
|
||
Node = markInterIterationAliasFree(
|
||
Node, MMI.WriteToC->getLatestScopArrayInfo()->getBasePtr());
|
||
int DimOutNum = isl_schedule_node_band_n_member(Node.get());
|
||
assert(DimOutNum > 2 && "In case of the matrix multiplication the loop nest "
|
||
"and, consequently, the corresponding scheduling "
|
||
"functions have at least three dimensions.");
|
||
Node = getBandNodeWithOriginDimOrder(Node);
|
||
Node = permuteBandNodeDimensions(Node, MMI.i, DimOutNum - 3);
|
||
int NewJ = MMI.j == DimOutNum - 3 ? MMI.i : MMI.j;
|
||
int NewK = MMI.k == DimOutNum - 3 ? MMI.i : MMI.k;
|
||
Node = permuteBandNodeDimensions(Node, NewJ, DimOutNum - 2);
|
||
NewK = NewK == DimOutNum - 2 ? NewJ : NewK;
|
||
Node = permuteBandNodeDimensions(Node, NewK, DimOutNum - 1);
|
||
auto MicroKernelParams = getMicroKernelParams(TTI, MMI);
|
||
auto MacroKernelParams = getMacroKernelParams(TTI, MicroKernelParams, MMI);
|
||
Node = createMacroKernel(Node, MacroKernelParams);
|
||
Node = createMicroKernel(Node, MicroKernelParams);
|
||
if (MacroKernelParams.Mc == 1 || MacroKernelParams.Nc == 1 ||
|
||
MacroKernelParams.Kc == 1)
|
||
return Node;
|
||
auto MapOldIndVar = getInductionVariablesSubstitution(Node, MicroKernelParams,
|
||
MacroKernelParams);
|
||
if (!MapOldIndVar)
|
||
return Node;
|
||
Node = markLoopVectorizerDisabled(Node.parent()).child(0);
|
||
Node = isolateAndUnrollMatMulInnerLoops(Node, MicroKernelParams);
|
||
return optimizeDataLayoutMatrMulPattern(Node, MapOldIndVar, MicroKernelParams,
|
||
MacroKernelParams, MMI);
|
||
}
|
||
|
||
bool ScheduleTreeOptimizer::isMatrMultPattern(isl::schedule_node Node,
|
||
const Dependences *D,
|
||
MatMulInfoTy &MMI) {
|
||
auto PartialSchedule = isl::manage(
|
||
isl_schedule_node_band_get_partial_schedule_union_map(Node.get()));
|
||
Node = Node.child(0);
|
||
auto LeafType = isl_schedule_node_get_type(Node.get());
|
||
Node = Node.parent();
|
||
if (LeafType != isl_schedule_node_leaf ||
|
||
isl_schedule_node_band_n_member(Node.get()) < 3 ||
|
||
Node.get_schedule_depth() != 0 ||
|
||
isl_union_map_n_map(PartialSchedule.get()) != 1)
|
||
return false;
|
||
auto NewPartialSchedule = isl::map::from_union_map(PartialSchedule);
|
||
if (containsMatrMult(NewPartialSchedule, D, MMI))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
__isl_give isl_schedule_node *
|
||
ScheduleTreeOptimizer::optimizeBand(__isl_take isl_schedule_node *Node,
|
||
void *User) {
|
||
if (!isTileableBandNode(isl::manage_copy(Node)))
|
||
return Node;
|
||
|
||
const OptimizerAdditionalInfoTy *OAI =
|
||
static_cast<const OptimizerAdditionalInfoTy *>(User);
|
||
|
||
MatMulInfoTy MMI;
|
||
if (PMBasedOpts && User &&
|
||
isMatrMultPattern(isl::manage_copy(Node), OAI->D, MMI)) {
|
||
DEBUG(dbgs() << "The matrix multiplication pattern was detected\n");
|
||
MatMulOpts++;
|
||
return optimizeMatMulPattern(isl::manage(Node), OAI->TTI, MMI).release();
|
||
}
|
||
|
||
return standardBandOpts(isl::manage(Node), User).release();
|
||
}
|
||
|
||
isl::schedule
|
||
ScheduleTreeOptimizer::optimizeSchedule(isl::schedule Schedule,
|
||
const OptimizerAdditionalInfoTy *OAI) {
|
||
auto Root = Schedule.get_root();
|
||
Root = optimizeScheduleNode(Root, OAI);
|
||
return Root.get_schedule();
|
||
}
|
||
|
||
isl::schedule_node ScheduleTreeOptimizer::optimizeScheduleNode(
|
||
isl::schedule_node Node, const OptimizerAdditionalInfoTy *OAI) {
|
||
Node = isl::manage(isl_schedule_node_map_descendant_bottom_up(
|
||
Node.release(), optimizeBand,
|
||
const_cast<void *>(static_cast<const void *>(OAI))));
|
||
return Node;
|
||
}
|
||
|
||
bool ScheduleTreeOptimizer::isProfitableSchedule(Scop &S,
|
||
isl::schedule NewSchedule) {
|
||
// To understand if the schedule has been optimized we check if the schedule
|
||
// has changed at all.
|
||
// TODO: We can improve this by tracking if any necessarily beneficial
|
||
// transformations have been performed. This can e.g. be tiling, loop
|
||
// interchange, or ...) We can track this either at the place where the
|
||
// transformation has been performed or, in case of automatic ILP based
|
||
// optimizations, by comparing (yet to be defined) performance metrics
|
||
// before/after the scheduling optimizer
|
||
// (e.g., #stride-one accesses)
|
||
if (S.containsExtensionNode(NewSchedule))
|
||
return true;
|
||
auto NewScheduleMap = NewSchedule.get_map();
|
||
auto OldSchedule = S.getSchedule();
|
||
assert(OldSchedule && "Only IslScheduleOptimizer can insert extension nodes "
|
||
"that make Scop::getSchedule() return nullptr.");
|
||
bool changed = !OldSchedule.is_equal(NewScheduleMap);
|
||
return changed;
|
||
}
|
||
|
||
namespace {
|
||
|
||
class IslScheduleOptimizer : public ScopPass {
|
||
public:
|
||
static char ID;
|
||
|
||
explicit IslScheduleOptimizer() : ScopPass(ID) {}
|
||
|
||
~IslScheduleOptimizer() override { isl_schedule_free(LastSchedule); }
|
||
|
||
/// Optimize the schedule of the SCoP @p S.
|
||
bool runOnScop(Scop &S) override;
|
||
|
||
/// Print the new schedule for the SCoP @p S.
|
||
void printScop(raw_ostream &OS, Scop &S) const override;
|
||
|
||
/// Register all analyses and transformation required.
|
||
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
||
|
||
/// Release the internal memory.
|
||
void releaseMemory() override {
|
||
isl_schedule_free(LastSchedule);
|
||
LastSchedule = nullptr;
|
||
}
|
||
|
||
private:
|
||
isl_schedule *LastSchedule = nullptr;
|
||
};
|
||
} // namespace
|
||
|
||
char IslScheduleOptimizer::ID = 0;
|
||
|
||
/// Collect statistics for the schedule tree.
|
||
///
|
||
/// @param Schedule The schedule tree to analyze. If not a schedule tree it is
|
||
/// ignored.
|
||
/// @param Version The version of the schedule tree that is analyzed.
|
||
/// 0 for the original schedule tree before any transformation.
|
||
/// 1 for the schedule tree after isl's rescheduling.
|
||
/// 2 for the schedule tree after optimizations are applied
|
||
/// (tiling, pattern matching)
|
||
static void walkScheduleTreeForStatistics(isl::schedule Schedule, int Version) {
|
||
auto Root = Schedule.get_root();
|
||
if (!Root)
|
||
return;
|
||
|
||
isl_schedule_node_foreach_descendant_top_down(
|
||
Root.get(),
|
||
[](__isl_keep isl_schedule_node *nodeptr, void *user) -> isl_bool {
|
||
isl::schedule_node Node = isl::manage_copy(nodeptr);
|
||
int Version = *static_cast<int *>(user);
|
||
|
||
switch (isl_schedule_node_get_type(Node.get())) {
|
||
case isl_schedule_node_band: {
|
||
NumBands[Version]++;
|
||
if (isl_schedule_node_band_get_permutable(Node.get()) ==
|
||
isl_bool_true)
|
||
NumPermutable[Version]++;
|
||
|
||
int CountMembers = isl_schedule_node_band_n_member(Node.get());
|
||
NumBandMembers[Version] += CountMembers;
|
||
for (int i = 0; i < CountMembers; i += 1) {
|
||
if (Node.band_member_get_coincident(i))
|
||
NumCoincident[Version]++;
|
||
}
|
||
break;
|
||
}
|
||
|
||
case isl_schedule_node_filter:
|
||
NumFilters[Version]++;
|
||
break;
|
||
|
||
case isl_schedule_node_extension:
|
||
NumExtension[Version]++;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return isl_bool_true;
|
||
},
|
||
&Version);
|
||
}
|
||
|
||
bool IslScheduleOptimizer::runOnScop(Scop &S) {
|
||
// Skip SCoPs in case they're already optimised by PPCGCodeGeneration
|
||
if (S.isToBeSkipped())
|
||
return false;
|
||
|
||
// Skip empty SCoPs but still allow code generation as it will delete the
|
||
// loops present but not needed.
|
||
if (S.getSize() == 0) {
|
||
S.markAsOptimized();
|
||
return false;
|
||
}
|
||
|
||
const Dependences &D =
|
||
getAnalysis<DependenceInfo>().getDependences(Dependences::AL_Statement);
|
||
|
||
if (D.getSharedIslCtx() != S.getSharedIslCtx()) {
|
||
DEBUG(dbgs() << "DependenceInfo for another SCoP/isl_ctx\n");
|
||
return false;
|
||
}
|
||
|
||
if (!D.hasValidDependences())
|
||
return false;
|
||
|
||
isl_schedule_free(LastSchedule);
|
||
LastSchedule = nullptr;
|
||
|
||
// Build input data.
|
||
int ValidityKinds =
|
||
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
|
||
int ProximityKinds;
|
||
|
||
if (OptimizeDeps == "all")
|
||
ProximityKinds =
|
||
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
|
||
else if (OptimizeDeps == "raw")
|
||
ProximityKinds = Dependences::TYPE_RAW;
|
||
else {
|
||
errs() << "Do not know how to optimize for '" << OptimizeDeps << "'"
|
||
<< " Falling back to optimizing all dependences.\n";
|
||
ProximityKinds =
|
||
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
|
||
}
|
||
|
||
isl::union_set Domain = S.getDomains();
|
||
|
||
if (!Domain)
|
||
return false;
|
||
|
||
ScopsProcessed++;
|
||
walkScheduleTreeForStatistics(S.getScheduleTree(), 0);
|
||
|
||
isl::union_map Validity = give(D.getDependences(ValidityKinds));
|
||
isl::union_map Proximity = give(D.getDependences(ProximityKinds));
|
||
|
||
// Simplify the dependences by removing the constraints introduced by the
|
||
// domains. This can speed up the scheduling time significantly, as large
|
||
// constant coefficients will be removed from the dependences. The
|
||
// introduction of some additional dependences reduces the possible
|
||
// transformations, but in most cases, such transformation do not seem to be
|
||
// interesting anyway. In some cases this option may stop the scheduler to
|
||
// find any schedule.
|
||
if (SimplifyDeps == "yes") {
|
||
Validity = Validity.gist_domain(Domain);
|
||
Validity = Validity.gist_range(Domain);
|
||
Proximity = Proximity.gist_domain(Domain);
|
||
Proximity = Proximity.gist_range(Domain);
|
||
} else if (SimplifyDeps != "no") {
|
||
errs() << "warning: Option -polly-opt-simplify-deps should either be 'yes' "
|
||
"or 'no'. Falling back to default: 'yes'\n";
|
||
}
|
||
|
||
DEBUG(dbgs() << "\n\nCompute schedule from: ");
|
||
DEBUG(dbgs() << "Domain := " << Domain << ";\n");
|
||
DEBUG(dbgs() << "Proximity := " << Proximity << ";\n");
|
||
DEBUG(dbgs() << "Validity := " << Validity << ";\n");
|
||
|
||
unsigned IslSerializeSCCs;
|
||
|
||
if (FusionStrategy == "max") {
|
||
IslSerializeSCCs = 0;
|
||
} else if (FusionStrategy == "min") {
|
||
IslSerializeSCCs = 1;
|
||
} else {
|
||
errs() << "warning: Unknown fusion strategy. Falling back to maximal "
|
||
"fusion.\n";
|
||
IslSerializeSCCs = 0;
|
||
}
|
||
|
||
int IslMaximizeBands;
|
||
|
||
if (MaximizeBandDepth == "yes") {
|
||
IslMaximizeBands = 1;
|
||
} else if (MaximizeBandDepth == "no") {
|
||
IslMaximizeBands = 0;
|
||
} else {
|
||
errs() << "warning: Option -polly-opt-maximize-bands should either be 'yes'"
|
||
" or 'no'. Falling back to default: 'yes'\n";
|
||
IslMaximizeBands = 1;
|
||
}
|
||
|
||
int IslOuterCoincidence;
|
||
|
||
if (OuterCoincidence == "yes") {
|
||
IslOuterCoincidence = 1;
|
||
} else if (OuterCoincidence == "no") {
|
||
IslOuterCoincidence = 0;
|
||
} else {
|
||
errs() << "warning: Option -polly-opt-outer-coincidence should either be "
|
||
"'yes' or 'no'. Falling back to default: 'no'\n";
|
||
IslOuterCoincidence = 0;
|
||
}
|
||
|
||
isl_ctx *Ctx = S.getIslCtx().get();
|
||
|
||
isl_options_set_schedule_outer_coincidence(Ctx, IslOuterCoincidence);
|
||
isl_options_set_schedule_serialize_sccs(Ctx, IslSerializeSCCs);
|
||
isl_options_set_schedule_maximize_band_depth(Ctx, IslMaximizeBands);
|
||
isl_options_set_schedule_max_constant_term(Ctx, MaxConstantTerm);
|
||
isl_options_set_schedule_max_coefficient(Ctx, MaxCoefficient);
|
||
isl_options_set_tile_scale_tile_loops(Ctx, 0);
|
||
|
||
auto OnErrorStatus = isl_options_get_on_error(Ctx);
|
||
isl_options_set_on_error(Ctx, ISL_ON_ERROR_CONTINUE);
|
||
|
||
auto SC = isl::schedule_constraints::on_domain(Domain);
|
||
SC = SC.set_proximity(Proximity);
|
||
SC = SC.set_validity(Validity);
|
||
SC = SC.set_coincidence(Validity);
|
||
auto Schedule = SC.compute_schedule();
|
||
isl_options_set_on_error(Ctx, OnErrorStatus);
|
||
|
||
walkScheduleTreeForStatistics(Schedule, 1);
|
||
|
||
// In cases the scheduler is not able to optimize the code, we just do not
|
||
// touch the schedule.
|
||
if (!Schedule)
|
||
return false;
|
||
|
||
ScopsRescheduled++;
|
||
|
||
DEBUG({
|
||
auto *P = isl_printer_to_str(Ctx);
|
||
P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
|
||
P = isl_printer_print_schedule(P, Schedule.get());
|
||
auto *str = isl_printer_get_str(P);
|
||
dbgs() << "NewScheduleTree: \n" << str << "\n";
|
||
free(str);
|
||
isl_printer_free(P);
|
||
});
|
||
|
||
Function &F = S.getFunction();
|
||
auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
||
const OptimizerAdditionalInfoTy OAI = {TTI, const_cast<Dependences *>(&D)};
|
||
auto NewSchedule = ScheduleTreeOptimizer::optimizeSchedule(Schedule, &OAI);
|
||
walkScheduleTreeForStatistics(NewSchedule, 2);
|
||
|
||
if (!ScheduleTreeOptimizer::isProfitableSchedule(S, NewSchedule))
|
||
return false;
|
||
|
||
auto ScopStats = S.getStatistics();
|
||
ScopsOptimized++;
|
||
NumAffineLoopsOptimized += ScopStats.NumAffineLoops;
|
||
NumBoxedLoopsOptimized += ScopStats.NumBoxedLoops;
|
||
|
||
S.setScheduleTree(NewSchedule);
|
||
S.markAsOptimized();
|
||
|
||
if (OptimizedScops)
|
||
errs() << S;
|
||
|
||
return false;
|
||
}
|
||
|
||
void IslScheduleOptimizer::printScop(raw_ostream &OS, Scop &) const {
|
||
isl_printer *p;
|
||
char *ScheduleStr;
|
||
|
||
OS << "Calculated schedule:\n";
|
||
|
||
if (!LastSchedule) {
|
||
OS << "n/a\n";
|
||
return;
|
||
}
|
||
|
||
p = isl_printer_to_str(isl_schedule_get_ctx(LastSchedule));
|
||
p = isl_printer_print_schedule(p, LastSchedule);
|
||
ScheduleStr = isl_printer_get_str(p);
|
||
isl_printer_free(p);
|
||
|
||
OS << ScheduleStr << "\n";
|
||
}
|
||
|
||
void IslScheduleOptimizer::getAnalysisUsage(AnalysisUsage &AU) const {
|
||
ScopPass::getAnalysisUsage(AU);
|
||
AU.addRequired<DependenceInfo>();
|
||
AU.addRequired<TargetTransformInfoWrapperPass>();
|
||
|
||
AU.addPreserved<DependenceInfo>();
|
||
}
|
||
|
||
Pass *polly::createIslScheduleOptimizerPass() {
|
||
return new IslScheduleOptimizer();
|
||
}
|
||
|
||
INITIALIZE_PASS_BEGIN(IslScheduleOptimizer, "polly-opt-isl",
|
||
"Polly - Optimize schedule of SCoP", false, false);
|
||
INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
|
||
INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass);
|
||
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass);
|
||
INITIALIZE_PASS_END(IslScheduleOptimizer, "polly-opt-isl",
|
||
"Polly - Optimize schedule of SCoP", false, false)
|