forked from OSchip/llvm-project
629 lines
24 KiB
C++
629 lines
24 KiB
C++
//===-- SystemZISelLowering.h - SystemZ DAG lowering interface --*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the interfaces that SystemZ uses to lower LLVM code into a
|
|
// selection DAG.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
|
|
#define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
|
|
|
|
#include "SystemZ.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
|
|
namespace llvm {
|
|
namespace SystemZISD {
|
|
enum NodeType : unsigned {
|
|
FIRST_NUMBER = ISD::BUILTIN_OP_END,
|
|
|
|
// Return with a flag operand. Operand 0 is the chain operand.
|
|
RET_FLAG,
|
|
|
|
// Calls a function. Operand 0 is the chain operand and operand 1
|
|
// is the target address. The arguments start at operand 2.
|
|
// There is an optional glue operand at the end.
|
|
CALL,
|
|
SIBCALL,
|
|
|
|
// TLS calls. Like regular calls, except operand 1 is the TLS symbol.
|
|
// (The call target is implicitly __tls_get_offset.)
|
|
TLS_GDCALL,
|
|
TLS_LDCALL,
|
|
|
|
// Wraps a TargetGlobalAddress that should be loaded using PC-relative
|
|
// accesses (LARL). Operand 0 is the address.
|
|
PCREL_WRAPPER,
|
|
|
|
// Used in cases where an offset is applied to a TargetGlobalAddress.
|
|
// Operand 0 is the full TargetGlobalAddress and operand 1 is a
|
|
// PCREL_WRAPPER for an anchor point. This is used so that we can
|
|
// cheaply refer to either the full address or the anchor point
|
|
// as a register base.
|
|
PCREL_OFFSET,
|
|
|
|
// Integer absolute.
|
|
IABS,
|
|
|
|
// Integer comparisons. There are three operands: the two values
|
|
// to compare, and an integer of type SystemZICMP.
|
|
ICMP,
|
|
|
|
// Floating-point comparisons. The two operands are the values to compare.
|
|
FCMP,
|
|
|
|
// Test under mask. The first operand is ANDed with the second operand
|
|
// and the condition codes are set on the result. The third operand is
|
|
// a boolean that is true if the condition codes need to distinguish
|
|
// between CCMASK_TM_MIXED_MSB_0 and CCMASK_TM_MIXED_MSB_1 (which the
|
|
// register forms do but the memory forms don't).
|
|
TM,
|
|
|
|
// Branches if a condition is true. Operand 0 is the chain operand;
|
|
// operand 1 is the 4-bit condition-code mask, with bit N in
|
|
// big-endian order meaning "branch if CC=N"; operand 2 is the
|
|
// target block and operand 3 is the flag operand.
|
|
BR_CCMASK,
|
|
|
|
// Selects between operand 0 and operand 1. Operand 2 is the
|
|
// mask of condition-code values for which operand 0 should be
|
|
// chosen over operand 1; it has the same form as BR_CCMASK.
|
|
// Operand 3 is the flag operand.
|
|
SELECT_CCMASK,
|
|
|
|
// Evaluates to the gap between the stack pointer and the
|
|
// base of the dynamically-allocatable area.
|
|
ADJDYNALLOC,
|
|
|
|
// Count number of bits set in operand 0 per byte.
|
|
POPCNT,
|
|
|
|
// Wrappers around the ISD opcodes of the same name. The output is GR128.
|
|
// Input operands may be GR64 or GR32, depending on the instruction.
|
|
SMUL_LOHI,
|
|
UMUL_LOHI,
|
|
SDIVREM,
|
|
UDIVREM,
|
|
|
|
// Use a series of MVCs to copy bytes from one memory location to another.
|
|
// The operands are:
|
|
// - the target address
|
|
// - the source address
|
|
// - the constant length
|
|
//
|
|
// This isn't a memory opcode because we'd need to attach two
|
|
// MachineMemOperands rather than one.
|
|
MVC,
|
|
|
|
// Like MVC, but implemented as a loop that handles X*256 bytes
|
|
// followed by straight-line code to handle the rest (if any).
|
|
// The value of X is passed as an additional operand.
|
|
MVC_LOOP,
|
|
|
|
// Similar to MVC and MVC_LOOP, but for logic operations (AND, OR, XOR).
|
|
NC,
|
|
NC_LOOP,
|
|
OC,
|
|
OC_LOOP,
|
|
XC,
|
|
XC_LOOP,
|
|
|
|
// Use CLC to compare two blocks of memory, with the same comments
|
|
// as for MVC and MVC_LOOP.
|
|
CLC,
|
|
CLC_LOOP,
|
|
|
|
// Use an MVST-based sequence to implement stpcpy().
|
|
STPCPY,
|
|
|
|
// Use a CLST-based sequence to implement strcmp(). The two input operands
|
|
// are the addresses of the strings to compare.
|
|
STRCMP,
|
|
|
|
// Use an SRST-based sequence to search a block of memory. The first
|
|
// operand is the end address, the second is the start, and the third
|
|
// is the character to search for. CC is set to 1 on success and 2
|
|
// on failure.
|
|
SEARCH_STRING,
|
|
|
|
// Store the CC value in bits 29 and 28 of an integer.
|
|
IPM,
|
|
|
|
// Compiler barrier only; generate a no-op.
|
|
MEMBARRIER,
|
|
|
|
// Transaction begin. The first operand is the chain, the second
|
|
// the TDB pointer, and the third the immediate control field.
|
|
// Returns chain and glue.
|
|
TBEGIN,
|
|
TBEGIN_NOFLOAT,
|
|
|
|
// Transaction end. Just the chain operand. Returns chain and glue.
|
|
TEND,
|
|
|
|
// Create a vector constant by filling byte N of the result with bit
|
|
// 15-N of the single operand.
|
|
BYTE_MASK,
|
|
|
|
// Create a vector constant by replicating an element-sized RISBG-style mask.
|
|
// The first operand specifies the starting set bit and the second operand
|
|
// specifies the ending set bit. Both operands count from the MSB of the
|
|
// element.
|
|
ROTATE_MASK,
|
|
|
|
// Replicate a GPR scalar value into all elements of a vector.
|
|
REPLICATE,
|
|
|
|
// Create a vector from two i64 GPRs.
|
|
JOIN_DWORDS,
|
|
|
|
// Replicate one element of a vector into all elements. The first operand
|
|
// is the vector and the second is the index of the element to replicate.
|
|
SPLAT,
|
|
|
|
// Interleave elements from the high half of operand 0 and the high half
|
|
// of operand 1.
|
|
MERGE_HIGH,
|
|
|
|
// Likewise for the low halves.
|
|
MERGE_LOW,
|
|
|
|
// Concatenate the vectors in the first two operands, shift them left
|
|
// by the third operand, and take the first half of the result.
|
|
SHL_DOUBLE,
|
|
|
|
// Take one element of the first v2i64 operand and the one element of
|
|
// the second v2i64 operand and concatenate them to form a v2i64 result.
|
|
// The third operand is a 4-bit value of the form 0A0B, where A and B
|
|
// are the element selectors for the first operand and second operands
|
|
// respectively.
|
|
PERMUTE_DWORDS,
|
|
|
|
// Perform a general vector permute on vector operands 0 and 1.
|
|
// Each byte of operand 2 controls the corresponding byte of the result,
|
|
// in the same way as a byte-level VECTOR_SHUFFLE mask.
|
|
PERMUTE,
|
|
|
|
// Pack vector operands 0 and 1 into a single vector with half-sized elements.
|
|
PACK,
|
|
|
|
// Likewise, but saturate the result and set CC. PACKS_CC does signed
|
|
// saturation and PACKLS_CC does unsigned saturation.
|
|
PACKS_CC,
|
|
PACKLS_CC,
|
|
|
|
// Unpack the first half of vector operand 0 into double-sized elements.
|
|
// UNPACK_HIGH sign-extends and UNPACKL_HIGH zero-extends.
|
|
UNPACK_HIGH,
|
|
UNPACKL_HIGH,
|
|
|
|
// Likewise for the second half.
|
|
UNPACK_LOW,
|
|
UNPACKL_LOW,
|
|
|
|
// Shift each element of vector operand 0 by the number of bits specified
|
|
// by scalar operand 1.
|
|
VSHL_BY_SCALAR,
|
|
VSRL_BY_SCALAR,
|
|
VSRA_BY_SCALAR,
|
|
|
|
// For each element of the output type, sum across all sub-elements of
|
|
// operand 0 belonging to the corresponding element, and add in the
|
|
// rightmost sub-element of the corresponding element of operand 1.
|
|
VSUM,
|
|
|
|
// Compare integer vector operands 0 and 1 to produce the usual 0/-1
|
|
// vector result. VICMPE is for equality, VICMPH for "signed greater than"
|
|
// and VICMPHL for "unsigned greater than".
|
|
VICMPE,
|
|
VICMPH,
|
|
VICMPHL,
|
|
|
|
// Likewise, but also set the condition codes on the result.
|
|
VICMPES,
|
|
VICMPHS,
|
|
VICMPHLS,
|
|
|
|
// Compare floating-point vector operands 0 and 1 to preoduce the usual 0/-1
|
|
// vector result. VFCMPE is for "ordered and equal", VFCMPH for "ordered and
|
|
// greater than" and VFCMPHE for "ordered and greater than or equal to".
|
|
VFCMPE,
|
|
VFCMPH,
|
|
VFCMPHE,
|
|
|
|
// Likewise, but also set the condition codes on the result.
|
|
VFCMPES,
|
|
VFCMPHS,
|
|
VFCMPHES,
|
|
|
|
// Test floating-point data class for vectors.
|
|
VFTCI,
|
|
|
|
// Extend the even f32 elements of vector operand 0 to produce a vector
|
|
// of f64 elements.
|
|
VEXTEND,
|
|
|
|
// Round the f64 elements of vector operand 0 to f32s and store them in the
|
|
// even elements of the result.
|
|
VROUND,
|
|
|
|
// AND the two vector operands together and set CC based on the result.
|
|
VTM,
|
|
|
|
// String operations that set CC as a side-effect.
|
|
VFAE_CC,
|
|
VFAEZ_CC,
|
|
VFEE_CC,
|
|
VFEEZ_CC,
|
|
VFENE_CC,
|
|
VFENEZ_CC,
|
|
VISTR_CC,
|
|
VSTRC_CC,
|
|
VSTRCZ_CC,
|
|
|
|
// Test Data Class.
|
|
//
|
|
// Operand 0: the value to test
|
|
// Operand 1: the bit mask
|
|
TDC,
|
|
|
|
// Wrappers around the inner loop of an 8- or 16-bit ATOMIC_SWAP or
|
|
// ATOMIC_LOAD_<op>.
|
|
//
|
|
// Operand 0: the address of the containing 32-bit-aligned field
|
|
// Operand 1: the second operand of <op>, in the high bits of an i32
|
|
// for everything except ATOMIC_SWAPW
|
|
// Operand 2: how many bits to rotate the i32 left to bring the first
|
|
// operand into the high bits
|
|
// Operand 3: the negative of operand 2, for rotating the other way
|
|
// Operand 4: the width of the field in bits (8 or 16)
|
|
ATOMIC_SWAPW = ISD::FIRST_TARGET_MEMORY_OPCODE,
|
|
ATOMIC_LOADW_ADD,
|
|
ATOMIC_LOADW_SUB,
|
|
ATOMIC_LOADW_AND,
|
|
ATOMIC_LOADW_OR,
|
|
ATOMIC_LOADW_XOR,
|
|
ATOMIC_LOADW_NAND,
|
|
ATOMIC_LOADW_MIN,
|
|
ATOMIC_LOADW_MAX,
|
|
ATOMIC_LOADW_UMIN,
|
|
ATOMIC_LOADW_UMAX,
|
|
|
|
// A wrapper around the inner loop of an ATOMIC_CMP_SWAP.
|
|
//
|
|
// Operand 0: the address of the containing 32-bit-aligned field
|
|
// Operand 1: the compare value, in the low bits of an i32
|
|
// Operand 2: the swap value, in the low bits of an i32
|
|
// Operand 3: how many bits to rotate the i32 left to bring the first
|
|
// operand into the high bits
|
|
// Operand 4: the negative of operand 2, for rotating the other way
|
|
// Operand 5: the width of the field in bits (8 or 16)
|
|
ATOMIC_CMP_SWAPW,
|
|
|
|
// Atomic compare-and-swap returning glue (condition code).
|
|
// Val, OUTCHAIN, glue = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
|
|
ATOMIC_CMP_SWAP,
|
|
|
|
// 128-bit atomic load.
|
|
// Val, OUTCHAIN = ATOMIC_LOAD_128(INCHAIN, ptr)
|
|
ATOMIC_LOAD_128,
|
|
|
|
// 128-bit atomic store.
|
|
// OUTCHAIN = ATOMIC_STORE_128(INCHAIN, val, ptr)
|
|
ATOMIC_STORE_128,
|
|
|
|
// 128-bit atomic compare-and-swap.
|
|
// Val, OUTCHAIN, glue = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
|
|
ATOMIC_CMP_SWAP_128,
|
|
|
|
// Byte swapping load.
|
|
//
|
|
// Operand 0: the address to load from
|
|
// Operand 1: the type of load (i16, i32, i64)
|
|
LRV,
|
|
|
|
// Byte swapping store.
|
|
//
|
|
// Operand 0: the value to store
|
|
// Operand 1: the address to store to
|
|
// Operand 2: the type of store (i16, i32, i64)
|
|
STRV,
|
|
|
|
// Prefetch from the second operand using the 4-bit control code in
|
|
// the first operand. The code is 1 for a load prefetch and 2 for
|
|
// a store prefetch.
|
|
PREFETCH
|
|
};
|
|
|
|
// Return true if OPCODE is some kind of PC-relative address.
|
|
inline bool isPCREL(unsigned Opcode) {
|
|
return Opcode == PCREL_WRAPPER || Opcode == PCREL_OFFSET;
|
|
}
|
|
} // end namespace SystemZISD
|
|
|
|
namespace SystemZICMP {
|
|
// Describes whether an integer comparison needs to be signed or unsigned,
|
|
// or whether either type is OK.
|
|
enum {
|
|
Any,
|
|
UnsignedOnly,
|
|
SignedOnly
|
|
};
|
|
} // end namespace SystemZICMP
|
|
|
|
class SystemZSubtarget;
|
|
class SystemZTargetMachine;
|
|
|
|
class SystemZTargetLowering : public TargetLowering {
|
|
public:
|
|
explicit SystemZTargetLowering(const TargetMachine &TM,
|
|
const SystemZSubtarget &STI);
|
|
|
|
// Override TargetLowering.
|
|
MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
|
|
return MVT::i32;
|
|
}
|
|
MVT getVectorIdxTy(const DataLayout &DL) const override {
|
|
// Only the lower 12 bits of an element index are used, so we don't
|
|
// want to clobber the upper 32 bits of a GPR unnecessarily.
|
|
return MVT::i32;
|
|
}
|
|
TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(EVT VT)
|
|
const override {
|
|
// Widen subvectors to the full width rather than promoting integer
|
|
// elements. This is better because:
|
|
//
|
|
// (a) it means that we can handle the ABI for passing and returning
|
|
// sub-128 vectors without having to handle them as legal types.
|
|
//
|
|
// (b) we don't have instructions to extend on load and truncate on store,
|
|
// so promoting the integers is less efficient.
|
|
//
|
|
// (c) there are no multiplication instructions for the widest integer
|
|
// type (v2i64).
|
|
if (VT.getScalarSizeInBits() % 8 == 0)
|
|
return TypeWidenVector;
|
|
return TargetLoweringBase::getPreferredVectorAction(VT);
|
|
}
|
|
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &,
|
|
EVT) const override;
|
|
bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
|
|
bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;
|
|
bool isLegalICmpImmediate(int64_t Imm) const override;
|
|
bool isLegalAddImmediate(int64_t Imm) const override;
|
|
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty,
|
|
unsigned AS,
|
|
Instruction *I = nullptr) const override;
|
|
bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS,
|
|
unsigned Align,
|
|
bool *Fast) const override;
|
|
bool isTruncateFree(Type *, Type *) const override;
|
|
bool isTruncateFree(EVT, EVT) const override;
|
|
const char *getTargetNodeName(unsigned Opcode) const override;
|
|
std::pair<unsigned, const TargetRegisterClass *>
|
|
getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
|
|
StringRef Constraint, MVT VT) const override;
|
|
TargetLowering::ConstraintType
|
|
getConstraintType(StringRef Constraint) const override;
|
|
TargetLowering::ConstraintWeight
|
|
getSingleConstraintMatchWeight(AsmOperandInfo &info,
|
|
const char *constraint) const override;
|
|
void LowerAsmOperandForConstraint(SDValue Op,
|
|
std::string &Constraint,
|
|
std::vector<SDValue> &Ops,
|
|
SelectionDAG &DAG) const override;
|
|
|
|
unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
|
|
if (ConstraintCode.size() == 1) {
|
|
switch(ConstraintCode[0]) {
|
|
default:
|
|
break;
|
|
case 'o':
|
|
return InlineAsm::Constraint_o;
|
|
case 'Q':
|
|
return InlineAsm::Constraint_Q;
|
|
case 'R':
|
|
return InlineAsm::Constraint_R;
|
|
case 'S':
|
|
return InlineAsm::Constraint_S;
|
|
case 'T':
|
|
return InlineAsm::Constraint_T;
|
|
}
|
|
}
|
|
return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
|
|
}
|
|
|
|
/// If a physical register, this returns the register that receives the
|
|
/// exception address on entry to an EH pad.
|
|
unsigned
|
|
getExceptionPointerRegister(const Constant *PersonalityFn) const override {
|
|
return SystemZ::R6D;
|
|
}
|
|
|
|
/// If a physical register, this returns the register that receives the
|
|
/// exception typeid on entry to a landing pad.
|
|
unsigned
|
|
getExceptionSelectorRegister(const Constant *PersonalityFn) const override {
|
|
return SystemZ::R7D;
|
|
}
|
|
|
|
/// Override to support customized stack guard loading.
|
|
bool useLoadStackGuardNode() const override {
|
|
return true;
|
|
}
|
|
void insertSSPDeclarations(Module &M) const override {
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
EmitInstrWithCustomInserter(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const override;
|
|
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
|
|
void LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results,
|
|
SelectionDAG &DAG) const override;
|
|
void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
|
|
SelectionDAG &DAG) const override;
|
|
bool allowTruncateForTailCall(Type *, Type *) const override;
|
|
bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
|
|
SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv,
|
|
bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
const SDLoc &DL, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const override;
|
|
SDValue LowerCall(CallLoweringInfo &CLI,
|
|
SmallVectorImpl<SDValue> &InVals) const override;
|
|
|
|
bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
|
|
bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
LLVMContext &Context) const override;
|
|
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
|
|
SelectionDAG &DAG) const override;
|
|
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
|
|
|
|
/// Determine which of the bits specified in Mask are known to be either
|
|
/// zero or one and return them in the KnownZero/KnownOne bitsets.
|
|
void computeKnownBitsForTargetNode(const SDValue Op,
|
|
KnownBits &Known,
|
|
const APInt &DemandedElts,
|
|
const SelectionDAG &DAG,
|
|
unsigned Depth = 0) const override;
|
|
|
|
ISD::NodeType getExtendForAtomicOps() const override {
|
|
return ISD::ANY_EXTEND;
|
|
}
|
|
|
|
bool supportSwiftError() const override {
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
const SystemZSubtarget &Subtarget;
|
|
|
|
// Implement LowerOperation for individual opcodes.
|
|
SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
|
|
const SDLoc &DL, EVT VT,
|
|
SDValue CmpOp0, SDValue CmpOp1) const;
|
|
SDValue lowerVectorSETCC(SelectionDAG &DAG, const SDLoc &DL,
|
|
EVT VT, ISD::CondCode CC,
|
|
SDValue CmpOp0, SDValue CmpOp1) const;
|
|
SDValue lowerSETCC(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerGlobalAddress(GlobalAddressSDNode *Node,
|
|
SelectionDAG &DAG) const;
|
|
SDValue lowerTLSGetOffset(GlobalAddressSDNode *Node,
|
|
SelectionDAG &DAG, unsigned Opcode,
|
|
SDValue GOTOffset) const;
|
|
SDValue lowerThreadPointer(const SDLoc &DL, SelectionDAG &DAG) const;
|
|
SDValue lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
|
|
SelectionDAG &DAG) const;
|
|
SDValue lowerBlockAddress(BlockAddressSDNode *Node,
|
|
SelectionDAG &DAG) const;
|
|
SDValue lowerJumpTable(JumpTableSDNode *JT, SelectionDAG &DAG) const;
|
|
SDValue lowerConstantPool(ConstantPoolSDNode *CP, SelectionDAG &DAG) const;
|
|
SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerVASTART(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerSDIVREM(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerUDIVREM(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerOR(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerCTPOP(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerATOMIC_LOAD_OP(SDValue Op, SelectionDAG &DAG,
|
|
unsigned Opcode) const;
|
|
SDValue lowerATOMIC_LOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
|
|
SDValue lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
|
|
unsigned UnpackHigh) const;
|
|
SDValue lowerShift(SDValue Op, SelectionDAG &DAG, unsigned ByScalar) const;
|
|
|
|
bool canTreatAsByteVector(EVT VT) const;
|
|
SDValue combineExtract(const SDLoc &DL, EVT ElemVT, EVT VecVT, SDValue OrigOp,
|
|
unsigned Index, DAGCombinerInfo &DCI,
|
|
bool Force) const;
|
|
SDValue combineTruncateExtract(const SDLoc &DL, EVT TruncVT, SDValue Op,
|
|
DAGCombinerInfo &DCI) const;
|
|
SDValue combineSIGN_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
SDValue combineMERGE(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
SDValue combineSTORE(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
SDValue combineEXTRACT_VECTOR_ELT(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
SDValue combineJOIN_DWORDS(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
SDValue combineFP_ROUND(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
SDValue combineBSWAP(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
SDValue combineSHIFTROT(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
|
|
// If the last instruction before MBBI in MBB was some form of COMPARE,
|
|
// try to replace it with a COMPARE AND BRANCH just before MBBI.
|
|
// CCMask and Target are the BRC-like operands for the branch.
|
|
// Return true if the change was made.
|
|
bool convertPrevCompareToBranch(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator MBBI,
|
|
unsigned CCMask,
|
|
MachineBasicBlock *Target) const;
|
|
|
|
// Implement EmitInstrWithCustomInserter for individual operation types.
|
|
MachineBasicBlock *emitSelect(MachineInstr &MI, MachineBasicBlock *BB,
|
|
unsigned LOCROpcode) const;
|
|
MachineBasicBlock *emitCondStore(MachineInstr &MI, MachineBasicBlock *BB,
|
|
unsigned StoreOpcode, unsigned STOCOpcode,
|
|
bool Invert) const;
|
|
MachineBasicBlock *emitPair128(MachineInstr &MI,
|
|
MachineBasicBlock *MBB) const;
|
|
MachineBasicBlock *emitExt128(MachineInstr &MI, MachineBasicBlock *MBB,
|
|
bool ClearEven) const;
|
|
MachineBasicBlock *emitAtomicLoadBinary(MachineInstr &MI,
|
|
MachineBasicBlock *BB,
|
|
unsigned BinOpcode, unsigned BitSize,
|
|
bool Invert = false) const;
|
|
MachineBasicBlock *emitAtomicLoadMinMax(MachineInstr &MI,
|
|
MachineBasicBlock *MBB,
|
|
unsigned CompareOpcode,
|
|
unsigned KeepOldMask,
|
|
unsigned BitSize) const;
|
|
MachineBasicBlock *emitAtomicCmpSwapW(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const;
|
|
MachineBasicBlock *emitMemMemWrapper(MachineInstr &MI, MachineBasicBlock *BB,
|
|
unsigned Opcode) const;
|
|
MachineBasicBlock *emitStringWrapper(MachineInstr &MI, MachineBasicBlock *BB,
|
|
unsigned Opcode) const;
|
|
MachineBasicBlock *emitTransactionBegin(MachineInstr &MI,
|
|
MachineBasicBlock *MBB,
|
|
unsigned Opcode, bool NoFloat) const;
|
|
MachineBasicBlock *emitLoadAndTestCmp0(MachineInstr &MI,
|
|
MachineBasicBlock *MBB,
|
|
unsigned Opcode) const;
|
|
|
|
const TargetRegisterClass *getRepRegClassFor(MVT VT) const override;
|
|
};
|
|
} // end namespace llvm
|
|
|
|
#endif
|