forked from OSchip/llvm-project
1827 lines
65 KiB
C++
1827 lines
65 KiB
C++
//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Expr class and subclasses.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/APValue.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/RecordLayout.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
using namespace clang;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Primary Expressions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// getValueAsApproximateDouble - This returns the value as an inaccurate
|
|
/// double. Note that this may cause loss of precision, but is useful for
|
|
/// debugging dumps, etc.
|
|
double FloatingLiteral::getValueAsApproximateDouble() const {
|
|
llvm::APFloat V = getValue();
|
|
bool ignored;
|
|
V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
|
|
&ignored);
|
|
return V.convertToDouble();
|
|
}
|
|
|
|
StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
|
|
unsigned ByteLength, bool Wide,
|
|
QualType Ty,
|
|
SourceLocation *Loc, unsigned NumStrs) {
|
|
// Allocate enough space for the StringLiteral plus an array of locations for
|
|
// any concatenated string tokens.
|
|
void *Mem = C.Allocate(sizeof(StringLiteral)+
|
|
sizeof(SourceLocation)*(NumStrs-1),
|
|
llvm::alignof<StringLiteral>());
|
|
StringLiteral *SL = new (Mem) StringLiteral(Ty);
|
|
|
|
// OPTIMIZE: could allocate this appended to the StringLiteral.
|
|
char *AStrData = new (C, 1) char[ByteLength];
|
|
memcpy(AStrData, StrData, ByteLength);
|
|
SL->StrData = AStrData;
|
|
SL->ByteLength = ByteLength;
|
|
SL->IsWide = Wide;
|
|
SL->TokLocs[0] = Loc[0];
|
|
SL->NumConcatenated = NumStrs;
|
|
|
|
if (NumStrs != 1)
|
|
memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
|
|
return SL;
|
|
}
|
|
|
|
|
|
void StringLiteral::Destroy(ASTContext &C) {
|
|
C.Deallocate(const_cast<char*>(StrData));
|
|
this->~StringLiteral();
|
|
C.Deallocate(this);
|
|
}
|
|
|
|
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
|
|
/// corresponds to, e.g. "sizeof" or "[pre]++".
|
|
const char *UnaryOperator::getOpcodeStr(Opcode Op) {
|
|
switch (Op) {
|
|
default: assert(0 && "Unknown unary operator");
|
|
case PostInc: return "++";
|
|
case PostDec: return "--";
|
|
case PreInc: return "++";
|
|
case PreDec: return "--";
|
|
case AddrOf: return "&";
|
|
case Deref: return "*";
|
|
case Plus: return "+";
|
|
case Minus: return "-";
|
|
case Not: return "~";
|
|
case LNot: return "!";
|
|
case Real: return "__real";
|
|
case Imag: return "__imag";
|
|
case Extension: return "__extension__";
|
|
case OffsetOf: return "__builtin_offsetof";
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Postfix Operators.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args,
|
|
unsigned numargs, QualType t, SourceLocation rparenloc)
|
|
: Expr(SC, t,
|
|
fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
|
|
fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
|
|
NumArgs(numargs) {
|
|
|
|
SubExprs = new (C) Stmt*[numargs+1];
|
|
SubExprs[FN] = fn;
|
|
for (unsigned i = 0; i != numargs; ++i)
|
|
SubExprs[i+ARGS_START] = args[i];
|
|
|
|
RParenLoc = rparenloc;
|
|
}
|
|
|
|
CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
|
|
QualType t, SourceLocation rparenloc)
|
|
: Expr(CallExprClass, t,
|
|
fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
|
|
fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
|
|
NumArgs(numargs) {
|
|
|
|
SubExprs = new (C) Stmt*[numargs+1];
|
|
SubExprs[FN] = fn;
|
|
for (unsigned i = 0; i != numargs; ++i)
|
|
SubExprs[i+ARGS_START] = args[i];
|
|
|
|
RParenLoc = rparenloc;
|
|
}
|
|
|
|
void CallExpr::Destroy(ASTContext& C) {
|
|
DestroyChildren(C);
|
|
if (SubExprs) C.Deallocate(SubExprs);
|
|
this->~CallExpr();
|
|
C.Deallocate(this);
|
|
}
|
|
|
|
/// setNumArgs - This changes the number of arguments present in this call.
|
|
/// Any orphaned expressions are deleted by this, and any new operands are set
|
|
/// to null.
|
|
void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
|
|
// No change, just return.
|
|
if (NumArgs == getNumArgs()) return;
|
|
|
|
// If shrinking # arguments, just delete the extras and forgot them.
|
|
if (NumArgs < getNumArgs()) {
|
|
for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
|
|
getArg(i)->Destroy(C);
|
|
this->NumArgs = NumArgs;
|
|
return;
|
|
}
|
|
|
|
// Otherwise, we are growing the # arguments. New an bigger argument array.
|
|
Stmt **NewSubExprs = new Stmt*[NumArgs+1];
|
|
// Copy over args.
|
|
for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
|
|
NewSubExprs[i] = SubExprs[i];
|
|
// Null out new args.
|
|
for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
|
|
NewSubExprs[i] = 0;
|
|
|
|
delete [] SubExprs;
|
|
SubExprs = NewSubExprs;
|
|
this->NumArgs = NumArgs;
|
|
}
|
|
|
|
/// isBuiltinCall - If this is a call to a builtin, return the builtin ID. If
|
|
/// not, return 0.
|
|
unsigned CallExpr::isBuiltinCall(ASTContext &Context) const {
|
|
// All simple function calls (e.g. func()) are implicitly cast to pointer to
|
|
// function. As a result, we try and obtain the DeclRefExpr from the
|
|
// ImplicitCastExpr.
|
|
const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
|
|
if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
|
|
return 0;
|
|
|
|
const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
|
|
if (!DRE)
|
|
return 0;
|
|
|
|
const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
|
|
if (!FDecl)
|
|
return 0;
|
|
|
|
if (!FDecl->getIdentifier())
|
|
return 0;
|
|
|
|
return FDecl->getBuiltinID(Context);
|
|
}
|
|
|
|
|
|
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
|
|
/// corresponds to, e.g. "<<=".
|
|
const char *BinaryOperator::getOpcodeStr(Opcode Op) {
|
|
switch (Op) {
|
|
default: assert(0 && "Unknown binary operator");
|
|
case Mul: return "*";
|
|
case Div: return "/";
|
|
case Rem: return "%";
|
|
case Add: return "+";
|
|
case Sub: return "-";
|
|
case Shl: return "<<";
|
|
case Shr: return ">>";
|
|
case LT: return "<";
|
|
case GT: return ">";
|
|
case LE: return "<=";
|
|
case GE: return ">=";
|
|
case EQ: return "==";
|
|
case NE: return "!=";
|
|
case And: return "&";
|
|
case Xor: return "^";
|
|
case Or: return "|";
|
|
case LAnd: return "&&";
|
|
case LOr: return "||";
|
|
case Assign: return "=";
|
|
case MulAssign: return "*=";
|
|
case DivAssign: return "/=";
|
|
case RemAssign: return "%=";
|
|
case AddAssign: return "+=";
|
|
case SubAssign: return "-=";
|
|
case ShlAssign: return "<<=";
|
|
case ShrAssign: return ">>=";
|
|
case AndAssign: return "&=";
|
|
case XorAssign: return "^=";
|
|
case OrAssign: return "|=";
|
|
case Comma: return ",";
|
|
}
|
|
}
|
|
|
|
InitListExpr::InitListExpr(SourceLocation lbraceloc,
|
|
Expr **initExprs, unsigned numInits,
|
|
SourceLocation rbraceloc)
|
|
: Expr(InitListExprClass, QualType()),
|
|
LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
|
|
UnionFieldInit(0), HadArrayRangeDesignator(false) {
|
|
|
|
InitExprs.insert(InitExprs.end(), initExprs, initExprs+numInits);
|
|
}
|
|
|
|
void InitListExpr::resizeInits(ASTContext &Context, unsigned NumInits) {
|
|
for (unsigned Idx = NumInits, LastIdx = InitExprs.size();
|
|
Idx < LastIdx; ++Idx)
|
|
delete InitExprs[Idx];
|
|
InitExprs.resize(NumInits, 0);
|
|
}
|
|
|
|
Expr *InitListExpr::updateInit(unsigned Init, Expr *expr) {
|
|
if (Init >= InitExprs.size()) {
|
|
InitExprs.insert(InitExprs.end(), Init - InitExprs.size() + 1, 0);
|
|
InitExprs.back() = expr;
|
|
return 0;
|
|
}
|
|
|
|
Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
|
|
InitExprs[Init] = expr;
|
|
return Result;
|
|
}
|
|
|
|
/// getFunctionType - Return the underlying function type for this block.
|
|
///
|
|
const FunctionType *BlockExpr::getFunctionType() const {
|
|
return getType()->getAsBlockPointerType()->
|
|
getPointeeType()->getAsFunctionType();
|
|
}
|
|
|
|
SourceLocation BlockExpr::getCaretLocation() const {
|
|
return TheBlock->getCaretLocation();
|
|
}
|
|
const Stmt *BlockExpr::getBody() const { return TheBlock->getBody(); }
|
|
Stmt *BlockExpr::getBody() { return TheBlock->getBody(); }
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Generic Expression Routines
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// isUnusedResultAWarning - Return true if this immediate expression should
|
|
/// be warned about if the result is unused. If so, fill in Loc and Ranges
|
|
/// with location to warn on and the source range[s] to report with the
|
|
/// warning.
|
|
bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
|
|
SourceRange &R2) const {
|
|
switch (getStmtClass()) {
|
|
default:
|
|
Loc = getExprLoc();
|
|
R1 = getSourceRange();
|
|
return true;
|
|
case ParenExprClass:
|
|
return cast<ParenExpr>(this)->getSubExpr()->
|
|
isUnusedResultAWarning(Loc, R1, R2);
|
|
case UnaryOperatorClass: {
|
|
const UnaryOperator *UO = cast<UnaryOperator>(this);
|
|
|
|
switch (UO->getOpcode()) {
|
|
default: break;
|
|
case UnaryOperator::PostInc:
|
|
case UnaryOperator::PostDec:
|
|
case UnaryOperator::PreInc:
|
|
case UnaryOperator::PreDec: // ++/--
|
|
return false; // Not a warning.
|
|
case UnaryOperator::Deref:
|
|
// Dereferencing a volatile pointer is a side-effect.
|
|
if (getType().isVolatileQualified())
|
|
return false;
|
|
break;
|
|
case UnaryOperator::Real:
|
|
case UnaryOperator::Imag:
|
|
// accessing a piece of a volatile complex is a side-effect.
|
|
if (UO->getSubExpr()->getType().isVolatileQualified())
|
|
return false;
|
|
break;
|
|
case UnaryOperator::Extension:
|
|
return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2);
|
|
}
|
|
Loc = UO->getOperatorLoc();
|
|
R1 = UO->getSubExpr()->getSourceRange();
|
|
return true;
|
|
}
|
|
case BinaryOperatorClass: {
|
|
const BinaryOperator *BO = cast<BinaryOperator>(this);
|
|
// Consider comma to have side effects if the LHS or RHS does.
|
|
if (BO->getOpcode() == BinaryOperator::Comma)
|
|
return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2) ||
|
|
BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2);
|
|
|
|
if (BO->isAssignmentOp())
|
|
return false;
|
|
Loc = BO->getOperatorLoc();
|
|
R1 = BO->getLHS()->getSourceRange();
|
|
R2 = BO->getRHS()->getSourceRange();
|
|
return true;
|
|
}
|
|
case CompoundAssignOperatorClass:
|
|
return false;
|
|
|
|
case ConditionalOperatorClass: {
|
|
// The condition must be evaluated, but if either the LHS or RHS is a
|
|
// warning, warn about them.
|
|
const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
|
|
if (Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2))
|
|
return true;
|
|
return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2);
|
|
}
|
|
|
|
case MemberExprClass:
|
|
// If the base pointer or element is to a volatile pointer/field, accessing
|
|
// it is a side effect.
|
|
if (getType().isVolatileQualified())
|
|
return false;
|
|
Loc = cast<MemberExpr>(this)->getMemberLoc();
|
|
R1 = SourceRange(Loc, Loc);
|
|
R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
|
|
return true;
|
|
|
|
case ArraySubscriptExprClass:
|
|
// If the base pointer or element is to a volatile pointer/field, accessing
|
|
// it is a side effect.
|
|
if (getType().isVolatileQualified())
|
|
return false;
|
|
Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
|
|
R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
|
|
R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
|
|
return true;
|
|
|
|
case CallExprClass:
|
|
case CXXOperatorCallExprClass: {
|
|
// If this is a direct call, get the callee.
|
|
const CallExpr *CE = cast<CallExpr>(this);
|
|
const Expr *CalleeExpr = CE->getCallee()->IgnoreParenCasts();
|
|
if (const DeclRefExpr *CalleeDRE = dyn_cast<DeclRefExpr>(CalleeExpr)) {
|
|
// If the callee has attribute pure, const, or warn_unused_result, warn
|
|
// about it. void foo() { strlen("bar"); } should warn.
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeDRE->getDecl()))
|
|
if (FD->getAttr<WarnUnusedResultAttr>() ||
|
|
FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
|
|
Loc = CE->getCallee()->getLocStart();
|
|
R1 = CE->getCallee()->getSourceRange();
|
|
|
|
if (unsigned NumArgs = CE->getNumArgs())
|
|
R2 = SourceRange(CE->getArg(0)->getLocStart(),
|
|
CE->getArg(NumArgs-1)->getLocEnd());
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
case ObjCMessageExprClass:
|
|
return false;
|
|
case StmtExprClass: {
|
|
// Statement exprs don't logically have side effects themselves, but are
|
|
// sometimes used in macros in ways that give them a type that is unused.
|
|
// For example ({ blah; foo(); }) will end up with a type if foo has a type.
|
|
// however, if the result of the stmt expr is dead, we don't want to emit a
|
|
// warning.
|
|
const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
|
|
if (!CS->body_empty())
|
|
if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
|
|
return E->isUnusedResultAWarning(Loc, R1, R2);
|
|
|
|
Loc = cast<StmtExpr>(this)->getLParenLoc();
|
|
R1 = getSourceRange();
|
|
return true;
|
|
}
|
|
case CStyleCastExprClass:
|
|
// If this is a cast to void, check the operand. Otherwise, the result of
|
|
// the cast is unused.
|
|
if (getType()->isVoidType())
|
|
return cast<CastExpr>(this)->getSubExpr()->isUnusedResultAWarning(Loc,
|
|
R1, R2);
|
|
Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
|
|
R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
|
|
return true;
|
|
case CXXFunctionalCastExprClass:
|
|
// If this is a cast to void, check the operand. Otherwise, the result of
|
|
// the cast is unused.
|
|
if (getType()->isVoidType())
|
|
return cast<CastExpr>(this)->getSubExpr()->isUnusedResultAWarning(Loc,
|
|
R1, R2);
|
|
Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
|
|
R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
|
|
return true;
|
|
|
|
case ImplicitCastExprClass:
|
|
// Check the operand, since implicit casts are inserted by Sema
|
|
return cast<ImplicitCastExpr>(this)
|
|
->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2);
|
|
|
|
case CXXDefaultArgExprClass:
|
|
return cast<CXXDefaultArgExpr>(this)
|
|
->getExpr()->isUnusedResultAWarning(Loc, R1, R2);
|
|
|
|
case CXXNewExprClass:
|
|
// FIXME: In theory, there might be new expressions that don't have side
|
|
// effects (e.g. a placement new with an uninitialized POD).
|
|
case CXXDeleteExprClass:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// DeclCanBeLvalue - Determine whether the given declaration can be
|
|
/// an lvalue. This is a helper routine for isLvalue.
|
|
static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) {
|
|
// C++ [temp.param]p6:
|
|
// A non-type non-reference template-parameter is not an lvalue.
|
|
if (const NonTypeTemplateParmDecl *NTTParm
|
|
= dyn_cast<NonTypeTemplateParmDecl>(Decl))
|
|
return NTTParm->getType()->isReferenceType();
|
|
|
|
return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) ||
|
|
// C++ 3.10p2: An lvalue refers to an object or function.
|
|
(Ctx.getLangOptions().CPlusPlus &&
|
|
(isa<FunctionDecl>(Decl) || isa<OverloadedFunctionDecl>(Decl)));
|
|
}
|
|
|
|
/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
|
|
/// incomplete type other than void. Nonarray expressions that can be lvalues:
|
|
/// - name, where name must be a variable
|
|
/// - e[i]
|
|
/// - (e), where e must be an lvalue
|
|
/// - e.name, where e must be an lvalue
|
|
/// - e->name
|
|
/// - *e, the type of e cannot be a function type
|
|
/// - string-constant
|
|
/// - (__real__ e) and (__imag__ e) where e is an lvalue [GNU extension]
|
|
/// - reference type [C++ [expr]]
|
|
///
|
|
Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
|
|
// first, check the type (C99 6.3.2.1). Expressions with function
|
|
// type in C are not lvalues, but they can be lvalues in C++.
|
|
if (!Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
|
|
return LV_NotObjectType;
|
|
|
|
// Allow qualified void which is an incomplete type other than void (yuck).
|
|
if (TR->isVoidType() && !Ctx.getCanonicalType(TR).getCVRQualifiers())
|
|
return LV_IncompleteVoidType;
|
|
|
|
/// FIXME: Expressions can't have reference type, so the following
|
|
/// isn't needed.
|
|
if (TR->isReferenceType()) // C++ [expr]
|
|
return LV_Valid;
|
|
|
|
// the type looks fine, now check the expression
|
|
switch (getStmtClass()) {
|
|
case StringLiteralClass: // C99 6.5.1p4
|
|
return LV_Valid;
|
|
case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
|
|
// For vectors, make sure base is an lvalue (i.e. not a function call).
|
|
if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
|
|
return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
|
|
return LV_Valid;
|
|
case DeclRefExprClass:
|
|
case QualifiedDeclRefExprClass: { // C99 6.5.1p2
|
|
const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
|
|
if (DeclCanBeLvalue(RefdDecl, Ctx))
|
|
return LV_Valid;
|
|
break;
|
|
}
|
|
case BlockDeclRefExprClass: {
|
|
const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
|
|
if (isa<VarDecl>(BDR->getDecl()))
|
|
return LV_Valid;
|
|
break;
|
|
}
|
|
case MemberExprClass: {
|
|
const MemberExpr *m = cast<MemberExpr>(this);
|
|
if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4:
|
|
NamedDecl *Member = m->getMemberDecl();
|
|
// C++ [expr.ref]p4:
|
|
// If E2 is declared to have type "reference to T", then E1.E2
|
|
// is an lvalue.
|
|
if (ValueDecl *Value = dyn_cast<ValueDecl>(Member))
|
|
if (Value->getType()->isReferenceType())
|
|
return LV_Valid;
|
|
|
|
// -- If E2 is a static data member [...] then E1.E2 is an lvalue.
|
|
if (isa<CXXClassVarDecl>(Member))
|
|
return LV_Valid;
|
|
|
|
// -- If E2 is a non-static data member [...]. If E1 is an
|
|
// lvalue, then E1.E2 is an lvalue.
|
|
if (isa<FieldDecl>(Member))
|
|
return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);
|
|
|
|
// -- If it refers to a static member function [...], then
|
|
// E1.E2 is an lvalue.
|
|
// -- Otherwise, if E1.E2 refers to a non-static member
|
|
// function [...], then E1.E2 is not an lvalue.
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member))
|
|
return Method->isStatic()? LV_Valid : LV_MemberFunction;
|
|
|
|
// -- If E2 is a member enumerator [...], the expression E1.E2
|
|
// is not an lvalue.
|
|
if (isa<EnumConstantDecl>(Member))
|
|
return LV_InvalidExpression;
|
|
|
|
// Not an lvalue.
|
|
return LV_InvalidExpression;
|
|
}
|
|
|
|
// C99 6.5.2.3p4
|
|
return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);
|
|
}
|
|
case UnaryOperatorClass:
|
|
if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
|
|
return LV_Valid; // C99 6.5.3p4
|
|
|
|
if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
|
|
cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
|
|
cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
|
|
return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx); // GNU.
|
|
|
|
if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1
|
|
(cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc ||
|
|
cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec))
|
|
return LV_Valid;
|
|
break;
|
|
case ImplicitCastExprClass:
|
|
return cast<ImplicitCastExpr>(this)->isLvalueCast()? LV_Valid
|
|
: LV_InvalidExpression;
|
|
case ParenExprClass: // C99 6.5.1p5
|
|
return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
|
|
case BinaryOperatorClass:
|
|
case CompoundAssignOperatorClass: {
|
|
const BinaryOperator *BinOp = cast<BinaryOperator>(this);
|
|
|
|
if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1
|
|
BinOp->getOpcode() == BinaryOperator::Comma)
|
|
return BinOp->getRHS()->isLvalue(Ctx);
|
|
|
|
// C++ [expr.mptr.oper]p6
|
|
if ((BinOp->getOpcode() == BinaryOperator::PtrMemD ||
|
|
BinOp->getOpcode() == BinaryOperator::PtrMemI) &&
|
|
!BinOp->getType()->isFunctionType())
|
|
return BinOp->getLHS()->isLvalue(Ctx);
|
|
|
|
if (!BinOp->isAssignmentOp())
|
|
return LV_InvalidExpression;
|
|
|
|
if (Ctx.getLangOptions().CPlusPlus)
|
|
// C++ [expr.ass]p1:
|
|
// The result of an assignment operation [...] is an lvalue.
|
|
return LV_Valid;
|
|
|
|
|
|
// C99 6.5.16:
|
|
// An assignment expression [...] is not an lvalue.
|
|
return LV_InvalidExpression;
|
|
}
|
|
case CallExprClass:
|
|
case CXXOperatorCallExprClass:
|
|
case CXXMemberCallExprClass: {
|
|
// C++ [expr.call]p10:
|
|
// A function call is an lvalue if and only if the result type
|
|
// is a reference.
|
|
QualType CalleeType = cast<CallExpr>(this)->getCallee()->getType();
|
|
if (const PointerType *FnTypePtr = CalleeType->getAsPointerType())
|
|
CalleeType = FnTypePtr->getPointeeType();
|
|
if (const FunctionType *FnType = CalleeType->getAsFunctionType())
|
|
if (FnType->getResultType()->isReferenceType())
|
|
return LV_Valid;
|
|
|
|
break;
|
|
}
|
|
case CompoundLiteralExprClass: // C99 6.5.2.5p5
|
|
return LV_Valid;
|
|
case ChooseExprClass:
|
|
// __builtin_choose_expr is an lvalue if the selected operand is.
|
|
if (cast<ChooseExpr>(this)->isConditionTrue(Ctx))
|
|
return cast<ChooseExpr>(this)->getLHS()->isLvalue(Ctx);
|
|
else
|
|
return cast<ChooseExpr>(this)->getRHS()->isLvalue(Ctx);
|
|
|
|
case ExtVectorElementExprClass:
|
|
if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
|
|
return LV_DuplicateVectorComponents;
|
|
return LV_Valid;
|
|
case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
|
|
return LV_Valid;
|
|
case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
|
|
return LV_Valid;
|
|
case ObjCKVCRefExprClass: // FIXME: check if read-only property.
|
|
return LV_Valid;
|
|
case PredefinedExprClass:
|
|
return LV_Valid;
|
|
case VAArgExprClass:
|
|
return LV_NotObjectType;
|
|
case CXXDefaultArgExprClass:
|
|
return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
|
|
case CXXConditionDeclExprClass:
|
|
return LV_Valid;
|
|
case CStyleCastExprClass:
|
|
case CXXFunctionalCastExprClass:
|
|
case CXXStaticCastExprClass:
|
|
case CXXDynamicCastExprClass:
|
|
case CXXReinterpretCastExprClass:
|
|
case CXXConstCastExprClass:
|
|
// The result of an explicit cast is an lvalue if the type we are
|
|
// casting to is a reference type. See C++ [expr.cast]p1,
|
|
// C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2,
|
|
// C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1.
|
|
if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()->isReferenceType())
|
|
return LV_Valid;
|
|
break;
|
|
case CXXTypeidExprClass:
|
|
// C++ 5.2.8p1: The result of a typeid expression is an lvalue of ...
|
|
return LV_Valid;
|
|
default:
|
|
break;
|
|
}
|
|
return LV_InvalidExpression;
|
|
}
|
|
|
|
/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
|
|
/// does not have an incomplete type, does not have a const-qualified type, and
|
|
/// if it is a structure or union, does not have any member (including,
|
|
/// recursively, any member or element of all contained aggregates or unions)
|
|
/// with a const-qualified type.
|
|
Expr::isModifiableLvalueResult Expr::isModifiableLvalue(ASTContext &Ctx) const {
|
|
isLvalueResult lvalResult = isLvalue(Ctx);
|
|
|
|
switch (lvalResult) {
|
|
case LV_Valid:
|
|
// C++ 3.10p11: Functions cannot be modified, but pointers to
|
|
// functions can be modifiable.
|
|
if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
|
|
return MLV_NotObjectType;
|
|
break;
|
|
|
|
case LV_NotObjectType: return MLV_NotObjectType;
|
|
case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
|
|
case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
|
|
case LV_InvalidExpression:
|
|
// If the top level is a C-style cast, and the subexpression is a valid
|
|
// lvalue, then this is probably a use of the old-school "cast as lvalue"
|
|
// GCC extension. We don't support it, but we want to produce good
|
|
// diagnostics when it happens so that the user knows why.
|
|
if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(this))
|
|
if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid)
|
|
return MLV_LValueCast;
|
|
return MLV_InvalidExpression;
|
|
case LV_MemberFunction: return MLV_MemberFunction;
|
|
}
|
|
|
|
QualType CT = Ctx.getCanonicalType(getType());
|
|
|
|
if (CT.isConstQualified())
|
|
return MLV_ConstQualified;
|
|
if (CT->isArrayType())
|
|
return MLV_ArrayType;
|
|
if (CT->isIncompleteType())
|
|
return MLV_IncompleteType;
|
|
|
|
if (const RecordType *r = CT->getAsRecordType()) {
|
|
if (r->hasConstFields())
|
|
return MLV_ConstQualified;
|
|
}
|
|
// The following is illegal:
|
|
// void takeclosure(void (^C)(void));
|
|
// void func() { int x = 1; takeclosure(^{ x = 7 }); }
|
|
//
|
|
if (getStmtClass() == BlockDeclRefExprClass) {
|
|
const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
|
|
if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl()))
|
|
return MLV_NotBlockQualified;
|
|
}
|
|
|
|
// Assigning to an 'implicit' property?
|
|
else if (getStmtClass() == ObjCKVCRefExprClass) {
|
|
const ObjCKVCRefExpr* KVCExpr = cast<ObjCKVCRefExpr>(this);
|
|
if (KVCExpr->getSetterMethod() == 0)
|
|
return MLV_NoSetterProperty;
|
|
}
|
|
return MLV_Valid;
|
|
}
|
|
|
|
/// hasGlobalStorage - Return true if this expression has static storage
|
|
/// duration. This means that the address of this expression is a link-time
|
|
/// constant.
|
|
bool Expr::hasGlobalStorage() const {
|
|
switch (getStmtClass()) {
|
|
default:
|
|
return false;
|
|
case ParenExprClass:
|
|
return cast<ParenExpr>(this)->getSubExpr()->hasGlobalStorage();
|
|
case ImplicitCastExprClass:
|
|
return cast<ImplicitCastExpr>(this)->getSubExpr()->hasGlobalStorage();
|
|
case CompoundLiteralExprClass:
|
|
return cast<CompoundLiteralExpr>(this)->isFileScope();
|
|
case DeclRefExprClass:
|
|
case QualifiedDeclRefExprClass: {
|
|
const Decl *D = cast<DeclRefExpr>(this)->getDecl();
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(D))
|
|
return VD->hasGlobalStorage();
|
|
if (isa<FunctionDecl>(D))
|
|
return true;
|
|
return false;
|
|
}
|
|
case MemberExprClass: {
|
|
const MemberExpr *M = cast<MemberExpr>(this);
|
|
return !M->isArrow() && M->getBase()->hasGlobalStorage();
|
|
}
|
|
case ArraySubscriptExprClass:
|
|
return cast<ArraySubscriptExpr>(this)->getBase()->hasGlobalStorage();
|
|
case PredefinedExprClass:
|
|
return true;
|
|
case CXXDefaultArgExprClass:
|
|
return cast<CXXDefaultArgExpr>(this)->getExpr()->hasGlobalStorage();
|
|
}
|
|
}
|
|
|
|
Expr* Expr::IgnoreParens() {
|
|
Expr* E = this;
|
|
while (ParenExpr* P = dyn_cast<ParenExpr>(E))
|
|
E = P->getSubExpr();
|
|
|
|
return E;
|
|
}
|
|
|
|
/// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
|
|
/// or CastExprs or ImplicitCastExprs, returning their operand.
|
|
Expr *Expr::IgnoreParenCasts() {
|
|
Expr *E = this;
|
|
while (true) {
|
|
if (ParenExpr *P = dyn_cast<ParenExpr>(E))
|
|
E = P->getSubExpr();
|
|
else if (CastExpr *P = dyn_cast<CastExpr>(E))
|
|
E = P->getSubExpr();
|
|
else
|
|
return E;
|
|
}
|
|
}
|
|
|
|
/// hasAnyTypeDependentArguments - Determines if any of the expressions
|
|
/// in Exprs is type-dependent.
|
|
bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
|
|
for (unsigned I = 0; I < NumExprs; ++I)
|
|
if (Exprs[I]->isTypeDependent())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// hasAnyValueDependentArguments - Determines if any of the expressions
|
|
/// in Exprs is value-dependent.
|
|
bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
|
|
for (unsigned I = 0; I < NumExprs; ++I)
|
|
if (Exprs[I]->isValueDependent())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Expr::isConstantInitializer(ASTContext &Ctx) const {
|
|
// This function is attempting whether an expression is an initializer
|
|
// which can be evaluated at compile-time. isEvaluatable handles most
|
|
// of the cases, but it can't deal with some initializer-specific
|
|
// expressions, and it can't deal with aggregates; we deal with those here,
|
|
// and fall back to isEvaluatable for the other cases.
|
|
|
|
// FIXME: This function assumes the variable being assigned to
|
|
// isn't a reference type!
|
|
|
|
switch (getStmtClass()) {
|
|
default: break;
|
|
case StringLiteralClass:
|
|
return true;
|
|
case CompoundLiteralExprClass: {
|
|
// This handles gcc's extension that allows global initializers like
|
|
// "struct x {int x;} x = (struct x) {};".
|
|
// FIXME: This accepts other cases it shouldn't!
|
|
const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
|
|
return Exp->isConstantInitializer(Ctx);
|
|
}
|
|
case InitListExprClass: {
|
|
// FIXME: This doesn't deal with fields with reference types correctly.
|
|
// FIXME: This incorrectly allows pointers cast to integers to be assigned
|
|
// to bitfields.
|
|
const InitListExpr *Exp = cast<InitListExpr>(this);
|
|
unsigned numInits = Exp->getNumInits();
|
|
for (unsigned i = 0; i < numInits; i++) {
|
|
if (!Exp->getInit(i)->isConstantInitializer(Ctx))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
case ImplicitValueInitExprClass:
|
|
return true;
|
|
case ParenExprClass: {
|
|
return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
|
|
}
|
|
case UnaryOperatorClass: {
|
|
const UnaryOperator* Exp = cast<UnaryOperator>(this);
|
|
if (Exp->getOpcode() == UnaryOperator::Extension)
|
|
return Exp->getSubExpr()->isConstantInitializer(Ctx);
|
|
break;
|
|
}
|
|
case CStyleCastExprClass:
|
|
// Handle casts with a destination that's a struct or union; this
|
|
// deals with both the gcc no-op struct cast extension and the
|
|
// cast-to-union extension.
|
|
if (getType()->isRecordType())
|
|
return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
|
|
break;
|
|
}
|
|
|
|
return isEvaluatable(Ctx);
|
|
}
|
|
|
|
/// isIntegerConstantExpr - this recursive routine will test if an expression is
|
|
/// an integer constant expression. Note: With the introduction of VLA's in
|
|
/// C99 the result of the sizeof operator is no longer always a constant
|
|
/// expression. The generalization of the wording to include any subexpression
|
|
/// that is not evaluated (C99 6.6p3) means that nonconstant subexpressions
|
|
/// can appear as operands to other operators (e.g. &&, ||, ?:). For instance,
|
|
/// "0 || f()" can be treated as a constant expression. In C90 this expression,
|
|
/// occurring in a context requiring a constant, would have been a constraint
|
|
/// violation. FIXME: This routine currently implements C90 semantics.
|
|
/// To properly implement C99 semantics this routine will need to evaluate
|
|
/// expressions involving operators previously mentioned.
|
|
|
|
/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
|
|
/// comma, etc
|
|
///
|
|
/// FIXME: This should ext-warn on overflow during evaluation! ISO C does not
|
|
/// permit this. This includes things like (int)1e1000
|
|
///
|
|
/// FIXME: Handle offsetof. Two things to do: Handle GCC's __builtin_offsetof
|
|
/// to support gcc 4.0+ and handle the idiom GCC recognizes with a null pointer
|
|
/// cast+dereference.
|
|
bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
|
|
SourceLocation *Loc, bool isEvaluated) const {
|
|
if (!isIntegerConstantExprInternal(Result, Ctx, Loc, isEvaluated))
|
|
return false;
|
|
assert(Result == EvaluateAsInt(Ctx) && "Inconsistent Evaluate() result!");
|
|
return true;
|
|
}
|
|
|
|
bool Expr::isIntegerConstantExprInternal(llvm::APSInt &Result, ASTContext &Ctx,
|
|
SourceLocation *Loc, bool isEvaluated) const {
|
|
|
|
// Pretest for integral type; some parts of the code crash for types that
|
|
// can't be sized.
|
|
if (!getType()->isIntegralType()) {
|
|
if (Loc) *Loc = getLocStart();
|
|
return false;
|
|
}
|
|
switch (getStmtClass()) {
|
|
default:
|
|
if (Loc) *Loc = getLocStart();
|
|
return false;
|
|
case ParenExprClass:
|
|
return cast<ParenExpr>(this)->getSubExpr()->
|
|
isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated);
|
|
case IntegerLiteralClass:
|
|
// NOTE: getValue() returns an APInt, we must set sign.
|
|
Result = cast<IntegerLiteral>(this)->getValue();
|
|
Result.setIsUnsigned(getType()->isUnsignedIntegerType());
|
|
break;
|
|
case CharacterLiteralClass: {
|
|
const CharacterLiteral *CL = cast<CharacterLiteral>(this);
|
|
Result = Ctx.MakeIntValue(CL->getValue(), getType());
|
|
break;
|
|
}
|
|
case CXXBoolLiteralExprClass: {
|
|
const CXXBoolLiteralExpr *BL = cast<CXXBoolLiteralExpr>(this);
|
|
Result = Ctx.MakeIntValue(BL->getValue(), getType());
|
|
break;
|
|
}
|
|
case CXXZeroInitValueExprClass:
|
|
Result = Ctx.MakeIntValue(0, getType());
|
|
break;
|
|
case TypesCompatibleExprClass: {
|
|
const TypesCompatibleExpr *TCE = cast<TypesCompatibleExpr>(this);
|
|
// Per gcc docs "this built-in function ignores top level
|
|
// qualifiers". We need to use the canonical version to properly
|
|
// be able to strip CRV qualifiers from the type.
|
|
QualType T0 = Ctx.getCanonicalType(TCE->getArgType1());
|
|
QualType T1 = Ctx.getCanonicalType(TCE->getArgType2());
|
|
Result = Ctx.MakeIntValue(Ctx.typesAreCompatible(T0.getUnqualifiedType(),
|
|
T1.getUnqualifiedType()),
|
|
getType());
|
|
break;
|
|
}
|
|
case CallExprClass:
|
|
case CXXOperatorCallExprClass: {
|
|
const CallExpr *CE = cast<CallExpr>(this);
|
|
|
|
// If this is a call to a builtin function, constant fold it otherwise
|
|
// reject it.
|
|
if (CE->isBuiltinCall(Ctx)) {
|
|
EvalResult EvalResult;
|
|
if (CE->Evaluate(EvalResult, Ctx)) {
|
|
assert(!EvalResult.HasSideEffects &&
|
|
"Foldable builtin call should not have side effects!");
|
|
Result = EvalResult.Val.getInt();
|
|
break; // It is a constant, expand it.
|
|
}
|
|
}
|
|
|
|
if (Loc) *Loc = getLocStart();
|
|
return false;
|
|
}
|
|
case DeclRefExprClass:
|
|
case QualifiedDeclRefExprClass:
|
|
if (const EnumConstantDecl *D =
|
|
dyn_cast<EnumConstantDecl>(cast<DeclRefExpr>(this)->getDecl())) {
|
|
Result = D->getInitVal();
|
|
break;
|
|
}
|
|
if (Ctx.getLangOptions().CPlusPlus &&
|
|
getType().getCVRQualifiers() == QualType::Const) {
|
|
// C++ 7.1.5.1p2
|
|
// A variable of non-volatile const-qualified integral or enumeration
|
|
// type initialized by an ICE can be used in ICEs.
|
|
if (const VarDecl *Dcl =
|
|
dyn_cast<VarDecl>(cast<DeclRefExpr>(this)->getDecl())) {
|
|
if (const Expr *Init = Dcl->getInit())
|
|
return Init->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated);
|
|
}
|
|
}
|
|
if (Loc) *Loc = getLocStart();
|
|
return false;
|
|
case UnaryOperatorClass: {
|
|
const UnaryOperator *Exp = cast<UnaryOperator>(this);
|
|
|
|
// Get the operand value. If this is offsetof, do not evalute the
|
|
// operand. This affects C99 6.6p3.
|
|
if (!Exp->isOffsetOfOp() && !Exp->getSubExpr()->
|
|
isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
|
|
return false;
|
|
|
|
switch (Exp->getOpcode()) {
|
|
// Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
|
|
// See C99 6.6p3.
|
|
default:
|
|
if (Loc) *Loc = Exp->getOperatorLoc();
|
|
return false;
|
|
case UnaryOperator::Extension:
|
|
return true; // FIXME: this is wrong.
|
|
case UnaryOperator::LNot: {
|
|
Result = Ctx.MakeIntValue(Result == 0, getType());
|
|
break;
|
|
}
|
|
case UnaryOperator::Plus:
|
|
break;
|
|
case UnaryOperator::Minus:
|
|
Result = -Result;
|
|
break;
|
|
case UnaryOperator::Not:
|
|
Result = ~Result;
|
|
break;
|
|
case UnaryOperator::OffsetOf:
|
|
Result = Ctx.MakeIntValue(Exp->evaluateOffsetOf(Ctx), getType());
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case SizeOfAlignOfExprClass: {
|
|
const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(this);
|
|
QualType ArgTy = Exp->getTypeOfArgument();
|
|
|
|
// alignof is always an ICE; sizeof is an ICE if and only if
|
|
// the operand isn't a VLA
|
|
if (Exp->isSizeOf() && ArgTy->isVariableArrayType()) {
|
|
if (Loc) *Loc = Exp->getOperatorLoc();
|
|
return false;
|
|
}
|
|
|
|
// Use the Evaluate logic to calculate the value, since the
|
|
// calculation is non-trivial.
|
|
Result = EvaluateAsInt(Ctx);
|
|
break;
|
|
}
|
|
case BinaryOperatorClass: {
|
|
const BinaryOperator *Exp = cast<BinaryOperator>(this);
|
|
llvm::APSInt LHS, RHS;
|
|
|
|
// Initialize result to have correct signedness and width.
|
|
Result = Ctx.MakeIntValue(0, getType());
|
|
|
|
// The LHS of a constant expr is always evaluated and needed.
|
|
if (!Exp->getLHS()->isIntegerConstantExpr(LHS, Ctx, Loc, isEvaluated))
|
|
return false;
|
|
|
|
// The short-circuiting &&/|| operators don't necessarily evaluate their
|
|
// RHS. Make sure to pass isEvaluated down correctly.
|
|
if (Exp->isLogicalOp()) {
|
|
bool RHSEval;
|
|
if (Exp->getOpcode() == BinaryOperator::LAnd)
|
|
RHSEval = LHS != 0;
|
|
else {
|
|
assert(Exp->getOpcode() == BinaryOperator::LOr &&"Unexpected logical");
|
|
RHSEval = LHS == 0;
|
|
}
|
|
|
|
if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc,
|
|
isEvaluated & RHSEval))
|
|
return false;
|
|
} else {
|
|
if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc, isEvaluated))
|
|
return false;
|
|
}
|
|
|
|
switch (Exp->getOpcode()) {
|
|
default:
|
|
if (Loc) *Loc = getLocStart();
|
|
return false;
|
|
case BinaryOperator::Mul:
|
|
Result = LHS * RHS;
|
|
break;
|
|
case BinaryOperator::Div:
|
|
if (RHS == 0) {
|
|
if (!isEvaluated) break;
|
|
if (Loc) *Loc = getLocStart();
|
|
return false;
|
|
}
|
|
Result = LHS / RHS;
|
|
break;
|
|
case BinaryOperator::Rem:
|
|
if (RHS == 0) {
|
|
if (!isEvaluated) break;
|
|
if (Loc) *Loc = getLocStart();
|
|
return false;
|
|
}
|
|
Result = LHS % RHS;
|
|
break;
|
|
case BinaryOperator::Add: Result = LHS + RHS; break;
|
|
case BinaryOperator::Sub: Result = LHS - RHS; break;
|
|
case BinaryOperator::Shl:
|
|
Result = LHS <<
|
|
static_cast<uint32_t>(RHS.getLimitedValue(LHS.getBitWidth()-1));
|
|
break;
|
|
case BinaryOperator::Shr:
|
|
Result = LHS >>
|
|
static_cast<uint32_t>(RHS.getLimitedValue(LHS.getBitWidth()-1));
|
|
break;
|
|
case BinaryOperator::LT: Result = LHS < RHS; break;
|
|
case BinaryOperator::GT: Result = LHS > RHS; break;
|
|
case BinaryOperator::LE: Result = LHS <= RHS; break;
|
|
case BinaryOperator::GE: Result = LHS >= RHS; break;
|
|
case BinaryOperator::EQ: Result = LHS == RHS; break;
|
|
case BinaryOperator::NE: Result = LHS != RHS; break;
|
|
case BinaryOperator::And: Result = LHS & RHS; break;
|
|
case BinaryOperator::Xor: Result = LHS ^ RHS; break;
|
|
case BinaryOperator::Or: Result = LHS | RHS; break;
|
|
case BinaryOperator::LAnd:
|
|
Result = LHS != 0 && RHS != 0;
|
|
break;
|
|
case BinaryOperator::LOr:
|
|
Result = LHS != 0 || RHS != 0;
|
|
break;
|
|
|
|
case BinaryOperator::Comma:
|
|
// C99 6.6p3: "shall not contain assignment, ..., or comma operators,
|
|
// *except* when they are contained within a subexpression that is not
|
|
// evaluated". Note that Assignment can never happen due to constraints
|
|
// on the LHS subexpr, so we don't need to check it here.
|
|
if (isEvaluated) {
|
|
if (Loc) *Loc = getLocStart();
|
|
return false;
|
|
}
|
|
|
|
// The result of the constant expr is the RHS.
|
|
Result = RHS;
|
|
break;
|
|
}
|
|
|
|
assert(!Exp->isAssignmentOp() && "LHS can't be a constant expr!");
|
|
break;
|
|
}
|
|
case ImplicitCastExprClass:
|
|
case CStyleCastExprClass:
|
|
case CXXFunctionalCastExprClass: {
|
|
const Expr *SubExpr = cast<CastExpr>(this)->getSubExpr();
|
|
SourceLocation CastLoc = getLocStart();
|
|
|
|
// C99 6.6p6: shall only convert arithmetic types to integer types.
|
|
if (!SubExpr->getType()->isArithmeticType() ||
|
|
!getType()->isIntegerType()) {
|
|
if (Loc) *Loc = SubExpr->getLocStart();
|
|
return false;
|
|
}
|
|
|
|
uint32_t DestWidth = static_cast<uint32_t>(Ctx.getTypeSize(getType()));
|
|
|
|
// Handle simple integer->integer casts.
|
|
if (SubExpr->getType()->isIntegerType()) {
|
|
if (!SubExpr->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
|
|
return false;
|
|
|
|
// Figure out if this is a truncate, extend or noop cast.
|
|
// If the input is signed, do a sign extend, noop, or truncate.
|
|
if (getType()->isBooleanType()) {
|
|
// Conversion to bool compares against zero.
|
|
Result = Ctx.MakeIntValue(Result != 0, getType());
|
|
} else if (SubExpr->getType()->isSignedIntegerType()) {
|
|
Result.sextOrTrunc(DestWidth);
|
|
Result.setIsUnsigned(getType()->isUnsignedIntegerType());
|
|
} else { // If the input is unsigned, do a zero extend, noop,
|
|
// or truncate.
|
|
Result.zextOrTrunc(DestWidth);
|
|
Result.setIsUnsigned(getType()->isUnsignedIntegerType());
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Allow floating constants that are the immediate operands of casts or that
|
|
// are parenthesized.
|
|
const Expr *Operand = SubExpr->IgnoreParens();
|
|
|
|
// If this isn't a floating literal, we can't handle it.
|
|
const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(Operand);
|
|
if (!FL) {
|
|
if (Loc) *Loc = Operand->getLocStart();
|
|
return false;
|
|
}
|
|
|
|
// If the destination is boolean, compare against zero.
|
|
if (getType()->isBooleanType()) {
|
|
Result = Ctx.MakeIntValue(!FL->getValue().isZero(), getType());
|
|
break;
|
|
}
|
|
|
|
// Determine whether we are converting to unsigned or signed.
|
|
bool DestSigned = getType()->isSignedIntegerType();
|
|
|
|
// TODO: Warn on overflow, but probably not here: isIntegerConstantExpr can
|
|
// be called multiple times per AST.
|
|
uint64_t Space[4];
|
|
bool ignored;
|
|
(void)FL->getValue().convertToInteger(Space, DestWidth, DestSigned,
|
|
llvm::APFloat::rmTowardZero,
|
|
&ignored);
|
|
Result = llvm::APInt(DestWidth, 4, Space);
|
|
Result.setIsUnsigned(getType()->isUnsignedIntegerType());
|
|
break;
|
|
}
|
|
case ConditionalOperatorClass: {
|
|
const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
|
|
|
|
const Expr *Cond = Exp->getCond();
|
|
|
|
if (!Cond->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
|
|
return false;
|
|
|
|
const Expr *TrueExp = Exp->getLHS();
|
|
const Expr *FalseExp = Exp->getRHS();
|
|
if (Result == 0) std::swap(TrueExp, FalseExp);
|
|
|
|
// If the condition (ignoring parens) is a __builtin_constant_p call,
|
|
// then only the true side is actually considered in an integer constant
|
|
// expression, and it is fully evaluated. This is an important GNU
|
|
// extension. See GCC PR38377 for discussion.
|
|
if (const CallExpr *CallCE = dyn_cast<CallExpr>(Cond->IgnoreParenCasts()))
|
|
if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) {
|
|
EvalResult EVResult;
|
|
if (!Evaluate(EVResult, Ctx) || EVResult.HasSideEffects)
|
|
return false;
|
|
assert(EVResult.Val.isInt() && "FP conditional expr not expected");
|
|
Result = EVResult.Val.getInt();
|
|
if (Loc) *Loc = EVResult.DiagLoc;
|
|
return true;
|
|
}
|
|
|
|
// Evaluate the false one first, discard the result.
|
|
llvm::APSInt Tmp;
|
|
if (FalseExp && !FalseExp->isIntegerConstantExpr(Tmp, Ctx, Loc, false))
|
|
return false;
|
|
// Evalute the true one, capture the result. Note that if TrueExp
|
|
// is False then this is an instant of the gcc missing LHS
|
|
// extension, and we will just reuse Result.
|
|
if (TrueExp &&
|
|
!TrueExp->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
|
|
return false;
|
|
break;
|
|
}
|
|
case CXXDefaultArgExprClass:
|
|
return cast<CXXDefaultArgExpr>(this)
|
|
->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated);
|
|
|
|
case UnaryTypeTraitExprClass:
|
|
Result = Ctx.MakeIntValue(cast<UnaryTypeTraitExpr>(this)->EvaluateTrait(),
|
|
getType());
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isNullPointerConstant - C99 6.3.2.3p3 - Return true if this is either an
|
|
/// integer constant expression with the value zero, or if this is one that is
|
|
/// cast to void*.
|
|
bool Expr::isNullPointerConstant(ASTContext &Ctx) const
|
|
{
|
|
// Strip off a cast to void*, if it exists. Except in C++.
|
|
if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
|
|
if (!Ctx.getLangOptions().CPlusPlus) {
|
|
// Check that it is a cast to void*.
|
|
if (const PointerType *PT = CE->getType()->getAsPointerType()) {
|
|
QualType Pointee = PT->getPointeeType();
|
|
if (Pointee.getCVRQualifiers() == 0 &&
|
|
Pointee->isVoidType() && // to void*
|
|
CE->getSubExpr()->getType()->isIntegerType()) // from int.
|
|
return CE->getSubExpr()->isNullPointerConstant(Ctx);
|
|
}
|
|
}
|
|
} else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
|
|
// Ignore the ImplicitCastExpr type entirely.
|
|
return ICE->getSubExpr()->isNullPointerConstant(Ctx);
|
|
} else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
|
|
// Accept ((void*)0) as a null pointer constant, as many other
|
|
// implementations do.
|
|
return PE->getSubExpr()->isNullPointerConstant(Ctx);
|
|
} else if (const CXXDefaultArgExpr *DefaultArg
|
|
= dyn_cast<CXXDefaultArgExpr>(this)) {
|
|
// See through default argument expressions
|
|
return DefaultArg->getExpr()->isNullPointerConstant(Ctx);
|
|
} else if (isa<GNUNullExpr>(this)) {
|
|
// The GNU __null extension is always a null pointer constant.
|
|
return true;
|
|
}
|
|
|
|
// This expression must be an integer type.
|
|
if (!getType()->isIntegerType())
|
|
return false;
|
|
|
|
// If we have an integer constant expression, we need to *evaluate* it and
|
|
// test for the value 0.
|
|
// FIXME: We should probably return false if we're compiling in strict mode
|
|
// and Diag is not null (this indicates that the value was foldable but not
|
|
// an ICE.
|
|
EvalResult Result;
|
|
return Evaluate(Result, Ctx) && !Result.HasSideEffects &&
|
|
Result.Val.isInt() && Result.Val.getInt() == 0;
|
|
}
|
|
|
|
/// isBitField - Return true if this expression is a bit-field.
|
|
bool Expr::isBitField() {
|
|
Expr *E = this->IgnoreParenCasts();
|
|
if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
|
|
if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
|
|
return Field->isBitField();
|
|
return false;
|
|
}
|
|
|
|
/// isArrow - Return true if the base expression is a pointer to vector,
|
|
/// return false if the base expression is a vector.
|
|
bool ExtVectorElementExpr::isArrow() const {
|
|
return getBase()->getType()->isPointerType();
|
|
}
|
|
|
|
unsigned ExtVectorElementExpr::getNumElements() const {
|
|
if (const VectorType *VT = getType()->getAsVectorType())
|
|
return VT->getNumElements();
|
|
return 1;
|
|
}
|
|
|
|
/// containsDuplicateElements - Return true if any element access is repeated.
|
|
bool ExtVectorElementExpr::containsDuplicateElements() const {
|
|
const char *compStr = Accessor.getName();
|
|
unsigned length = Accessor.getLength();
|
|
|
|
// Halving swizzles do not contain duplicate elements.
|
|
if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
|
|
!strcmp(compStr, "even") || !strcmp(compStr, "odd"))
|
|
return false;
|
|
|
|
// Advance past s-char prefix on hex swizzles.
|
|
if (*compStr == 's') {
|
|
compStr++;
|
|
length--;
|
|
}
|
|
|
|
for (unsigned i = 0; i != length-1; i++) {
|
|
const char *s = compStr+i;
|
|
for (const char c = *s++; *s; s++)
|
|
if (c == *s)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
|
|
void ExtVectorElementExpr::getEncodedElementAccess(
|
|
llvm::SmallVectorImpl<unsigned> &Elts) const {
|
|
const char *compStr = Accessor.getName();
|
|
if (*compStr == 's')
|
|
compStr++;
|
|
|
|
bool isHi = !strcmp(compStr, "hi");
|
|
bool isLo = !strcmp(compStr, "lo");
|
|
bool isEven = !strcmp(compStr, "even");
|
|
bool isOdd = !strcmp(compStr, "odd");
|
|
|
|
for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
|
|
uint64_t Index;
|
|
|
|
if (isHi)
|
|
Index = e + i;
|
|
else if (isLo)
|
|
Index = i;
|
|
else if (isEven)
|
|
Index = 2 * i;
|
|
else if (isOdd)
|
|
Index = 2 * i + 1;
|
|
else
|
|
Index = ExtVectorType::getAccessorIdx(compStr[i]);
|
|
|
|
Elts.push_back(Index);
|
|
}
|
|
}
|
|
|
|
// constructor for instance messages.
|
|
ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo,
|
|
QualType retType, ObjCMethodDecl *mproto,
|
|
SourceLocation LBrac, SourceLocation RBrac,
|
|
Expr **ArgExprs, unsigned nargs)
|
|
: Expr(ObjCMessageExprClass, retType), SelName(selInfo),
|
|
MethodProto(mproto) {
|
|
NumArgs = nargs;
|
|
SubExprs = new Stmt*[NumArgs+1];
|
|
SubExprs[RECEIVER] = receiver;
|
|
if (NumArgs) {
|
|
for (unsigned i = 0; i != NumArgs; ++i)
|
|
SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
|
|
}
|
|
LBracloc = LBrac;
|
|
RBracloc = RBrac;
|
|
}
|
|
|
|
// constructor for class messages.
|
|
// FIXME: clsName should be typed to ObjCInterfaceType
|
|
ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo,
|
|
QualType retType, ObjCMethodDecl *mproto,
|
|
SourceLocation LBrac, SourceLocation RBrac,
|
|
Expr **ArgExprs, unsigned nargs)
|
|
: Expr(ObjCMessageExprClass, retType), SelName(selInfo),
|
|
MethodProto(mproto) {
|
|
NumArgs = nargs;
|
|
SubExprs = new Stmt*[NumArgs+1];
|
|
SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown);
|
|
if (NumArgs) {
|
|
for (unsigned i = 0; i != NumArgs; ++i)
|
|
SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
|
|
}
|
|
LBracloc = LBrac;
|
|
RBracloc = RBrac;
|
|
}
|
|
|
|
// constructor for class messages.
|
|
ObjCMessageExpr::ObjCMessageExpr(ObjCInterfaceDecl *cls, Selector selInfo,
|
|
QualType retType, ObjCMethodDecl *mproto,
|
|
SourceLocation LBrac, SourceLocation RBrac,
|
|
Expr **ArgExprs, unsigned nargs)
|
|
: Expr(ObjCMessageExprClass, retType), SelName(selInfo),
|
|
MethodProto(mproto) {
|
|
NumArgs = nargs;
|
|
SubExprs = new Stmt*[NumArgs+1];
|
|
SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown);
|
|
if (NumArgs) {
|
|
for (unsigned i = 0; i != NumArgs; ++i)
|
|
SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
|
|
}
|
|
LBracloc = LBrac;
|
|
RBracloc = RBrac;
|
|
}
|
|
|
|
ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const {
|
|
uintptr_t x = (uintptr_t) SubExprs[RECEIVER];
|
|
switch (x & Flags) {
|
|
default:
|
|
assert(false && "Invalid ObjCMessageExpr.");
|
|
case IsInstMeth:
|
|
return ClassInfo(0, 0);
|
|
case IsClsMethDeclUnknown:
|
|
return ClassInfo(0, (IdentifierInfo*) (x & ~Flags));
|
|
case IsClsMethDeclKnown: {
|
|
ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags);
|
|
return ClassInfo(D, D->getIdentifier());
|
|
}
|
|
}
|
|
}
|
|
|
|
bool ChooseExpr::isConditionTrue(ASTContext &C) const {
|
|
return getCond()->getIntegerConstantExprValue(C) != 0;
|
|
}
|
|
|
|
static int64_t evaluateOffsetOf(ASTContext& C, const Expr *E) {
|
|
if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
|
|
QualType Ty = ME->getBase()->getType();
|
|
|
|
RecordDecl *RD = Ty->getAsRecordType()->getDecl();
|
|
const ASTRecordLayout &RL = C.getASTRecordLayout(RD);
|
|
if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
|
|
// FIXME: This is linear time. And the fact that we're indexing
|
|
// into the layout by position in the record means that we're
|
|
// either stuck numbering the fields in the AST or we have to keep
|
|
// the linear search (yuck and yuck).
|
|
unsigned i = 0;
|
|
for (RecordDecl::field_iterator Field = RD->field_begin(),
|
|
FieldEnd = RD->field_end();
|
|
Field != FieldEnd; (void)++Field, ++i) {
|
|
if (*Field == FD)
|
|
break;
|
|
}
|
|
|
|
return RL.getFieldOffset(i) + evaluateOffsetOf(C, ME->getBase());
|
|
}
|
|
} else if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
|
|
const Expr *Base = ASE->getBase();
|
|
|
|
int64_t size = C.getTypeSize(ASE->getType());
|
|
size *= ASE->getIdx()->getIntegerConstantExprValue(C).getSExtValue();
|
|
|
|
return size + evaluateOffsetOf(C, Base);
|
|
} else if (isa<CompoundLiteralExpr>(E))
|
|
return 0;
|
|
|
|
assert(0 && "Unknown offsetof subexpression!");
|
|
return 0;
|
|
}
|
|
|
|
int64_t UnaryOperator::evaluateOffsetOf(ASTContext& C) const
|
|
{
|
|
assert(Opc == OffsetOf && "Unary operator not offsetof!");
|
|
|
|
unsigned CharSize = C.Target.getCharWidth();
|
|
return ::evaluateOffsetOf(C, cast<Expr>(Val)) / CharSize;
|
|
}
|
|
|
|
void SizeOfAlignOfExpr::Destroy(ASTContext& C) {
|
|
// Override default behavior of traversing children. If this has a type
|
|
// operand and the type is a variable-length array, the child iteration
|
|
// will iterate over the size expression. However, this expression belongs
|
|
// to the type, not to this, so we don't want to delete it.
|
|
// We still want to delete this expression.
|
|
if (isArgumentType()) {
|
|
this->~SizeOfAlignOfExpr();
|
|
C.Deallocate(this);
|
|
}
|
|
else
|
|
Expr::Destroy(C);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DesignatedInitExpr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
|
|
assert(Kind == FieldDesignator && "Only valid on a field designator");
|
|
if (Field.NameOrField & 0x01)
|
|
return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
|
|
else
|
|
return getField()->getIdentifier();
|
|
}
|
|
|
|
DesignatedInitExpr *
|
|
DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
|
|
unsigned NumDesignators,
|
|
Expr **IndexExprs, unsigned NumIndexExprs,
|
|
SourceLocation ColonOrEqualLoc,
|
|
bool UsesColonSyntax, Expr *Init) {
|
|
void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
|
|
sizeof(Designator) * NumDesignators +
|
|
sizeof(Stmt *) * (NumIndexExprs + 1), 8);
|
|
DesignatedInitExpr *DIE
|
|
= new (Mem) DesignatedInitExpr(C.VoidTy, NumDesignators,
|
|
ColonOrEqualLoc, UsesColonSyntax,
|
|
NumIndexExprs + 1);
|
|
|
|
// Fill in the designators
|
|
unsigned ExpectedNumSubExprs = 0;
|
|
designators_iterator Desig = DIE->designators_begin();
|
|
for (unsigned Idx = 0; Idx < NumDesignators; ++Idx, ++Desig) {
|
|
new (static_cast<void*>(Desig)) Designator(Designators[Idx]);
|
|
if (Designators[Idx].isArrayDesignator())
|
|
++ExpectedNumSubExprs;
|
|
else if (Designators[Idx].isArrayRangeDesignator())
|
|
ExpectedNumSubExprs += 2;
|
|
}
|
|
assert(ExpectedNumSubExprs == NumIndexExprs && "Wrong number of indices!");
|
|
|
|
// Fill in the subexpressions, including the initializer expression.
|
|
child_iterator Child = DIE->child_begin();
|
|
*Child++ = Init;
|
|
for (unsigned Idx = 0; Idx < NumIndexExprs; ++Idx, ++Child)
|
|
*Child = IndexExprs[Idx];
|
|
|
|
return DIE;
|
|
}
|
|
|
|
SourceRange DesignatedInitExpr::getSourceRange() const {
|
|
SourceLocation StartLoc;
|
|
Designator &First =
|
|
*const_cast<DesignatedInitExpr*>(this)->designators_begin();
|
|
if (First.isFieldDesignator()) {
|
|
if (UsesColonSyntax)
|
|
StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
|
|
else
|
|
StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
|
|
} else
|
|
StartLoc =
|
|
SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
|
|
return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
|
|
}
|
|
|
|
DesignatedInitExpr::designators_iterator
|
|
DesignatedInitExpr::designators_begin() {
|
|
char* Ptr = static_cast<char*>(static_cast<void *>(this));
|
|
Ptr += sizeof(DesignatedInitExpr);
|
|
return static_cast<Designator*>(static_cast<void*>(Ptr));
|
|
}
|
|
|
|
DesignatedInitExpr::designators_iterator DesignatedInitExpr::designators_end() {
|
|
return designators_begin() + NumDesignators;
|
|
}
|
|
|
|
Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
|
|
assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
|
|
char* Ptr = static_cast<char*>(static_cast<void *>(this));
|
|
Ptr += sizeof(DesignatedInitExpr);
|
|
Ptr += sizeof(Designator) * NumDesignators;
|
|
Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
|
|
return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
|
|
}
|
|
|
|
Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
|
|
assert(D.Kind == Designator::ArrayRangeDesignator &&
|
|
"Requires array range designator");
|
|
char* Ptr = static_cast<char*>(static_cast<void *>(this));
|
|
Ptr += sizeof(DesignatedInitExpr);
|
|
Ptr += sizeof(Designator) * NumDesignators;
|
|
Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
|
|
return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
|
|
}
|
|
|
|
Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
|
|
assert(D.Kind == Designator::ArrayRangeDesignator &&
|
|
"Requires array range designator");
|
|
char* Ptr = static_cast<char*>(static_cast<void *>(this));
|
|
Ptr += sizeof(DesignatedInitExpr);
|
|
Ptr += sizeof(Designator) * NumDesignators;
|
|
Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
|
|
return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ExprIterator.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
|
|
Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
|
|
Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
|
|
const Expr* ConstExprIterator::operator[](size_t idx) const {
|
|
return cast<Expr>(I[idx]);
|
|
}
|
|
const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
|
|
const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Child Iterators for iterating over subexpressions/substatements
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// DeclRefExpr
|
|
Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
|
|
Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
|
|
|
|
// ObjCIvarRefExpr
|
|
Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
|
|
Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
|
|
|
|
// ObjCPropertyRefExpr
|
|
Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
|
|
Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
|
|
|
|
// ObjCKVCRefExpr
|
|
Stmt::child_iterator ObjCKVCRefExpr::child_begin() { return &Base; }
|
|
Stmt::child_iterator ObjCKVCRefExpr::child_end() { return &Base+1; }
|
|
|
|
// ObjCSuperExpr
|
|
Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); }
|
|
Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); }
|
|
|
|
// PredefinedExpr
|
|
Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
|
|
Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
|
|
|
|
// IntegerLiteral
|
|
Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
|
|
Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
|
|
|
|
// CharacterLiteral
|
|
Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
|
|
Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
|
|
|
|
// FloatingLiteral
|
|
Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
|
|
Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
|
|
|
|
// ImaginaryLiteral
|
|
Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
|
|
Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
|
|
|
|
// StringLiteral
|
|
Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
|
|
Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
|
|
|
|
// ParenExpr
|
|
Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
|
|
Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
|
|
|
|
// UnaryOperator
|
|
Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
|
|
Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
|
|
|
|
// SizeOfAlignOfExpr
|
|
Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
|
|
// If this is of a type and the type is a VLA type (and not a typedef), the
|
|
// size expression of the VLA needs to be treated as an executable expression.
|
|
// Why isn't this weirdness documented better in StmtIterator?
|
|
if (isArgumentType()) {
|
|
if (VariableArrayType* T = dyn_cast<VariableArrayType>(
|
|
getArgumentType().getTypePtr()))
|
|
return child_iterator(T);
|
|
return child_iterator();
|
|
}
|
|
return child_iterator(&Argument.Ex);
|
|
}
|
|
Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
|
|
if (isArgumentType())
|
|
return child_iterator();
|
|
return child_iterator(&Argument.Ex + 1);
|
|
}
|
|
|
|
// ArraySubscriptExpr
|
|
Stmt::child_iterator ArraySubscriptExpr::child_begin() {
|
|
return &SubExprs[0];
|
|
}
|
|
Stmt::child_iterator ArraySubscriptExpr::child_end() {
|
|
return &SubExprs[0]+END_EXPR;
|
|
}
|
|
|
|
// CallExpr
|
|
Stmt::child_iterator CallExpr::child_begin() {
|
|
return &SubExprs[0];
|
|
}
|
|
Stmt::child_iterator CallExpr::child_end() {
|
|
return &SubExprs[0]+NumArgs+ARGS_START;
|
|
}
|
|
|
|
// MemberExpr
|
|
Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
|
|
Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
|
|
|
|
// ExtVectorElementExpr
|
|
Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
|
|
Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
|
|
|
|
// CompoundLiteralExpr
|
|
Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
|
|
Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
|
|
|
|
// CastExpr
|
|
Stmt::child_iterator CastExpr::child_begin() { return &Op; }
|
|
Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
|
|
|
|
// BinaryOperator
|
|
Stmt::child_iterator BinaryOperator::child_begin() {
|
|
return &SubExprs[0];
|
|
}
|
|
Stmt::child_iterator BinaryOperator::child_end() {
|
|
return &SubExprs[0]+END_EXPR;
|
|
}
|
|
|
|
// ConditionalOperator
|
|
Stmt::child_iterator ConditionalOperator::child_begin() {
|
|
return &SubExprs[0];
|
|
}
|
|
Stmt::child_iterator ConditionalOperator::child_end() {
|
|
return &SubExprs[0]+END_EXPR;
|
|
}
|
|
|
|
// AddrLabelExpr
|
|
Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
|
|
Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
|
|
|
|
// StmtExpr
|
|
Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
|
|
Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
|
|
|
|
// TypesCompatibleExpr
|
|
Stmt::child_iterator TypesCompatibleExpr::child_begin() {
|
|
return child_iterator();
|
|
}
|
|
|
|
Stmt::child_iterator TypesCompatibleExpr::child_end() {
|
|
return child_iterator();
|
|
}
|
|
|
|
// ChooseExpr
|
|
Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
|
|
Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
|
|
|
|
// GNUNullExpr
|
|
Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
|
|
Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
|
|
|
|
// ShuffleVectorExpr
|
|
Stmt::child_iterator ShuffleVectorExpr::child_begin() {
|
|
return &SubExprs[0];
|
|
}
|
|
Stmt::child_iterator ShuffleVectorExpr::child_end() {
|
|
return &SubExprs[0]+NumExprs;
|
|
}
|
|
|
|
// VAArgExpr
|
|
Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
|
|
Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
|
|
|
|
// InitListExpr
|
|
Stmt::child_iterator InitListExpr::child_begin() {
|
|
return InitExprs.size() ? &InitExprs[0] : 0;
|
|
}
|
|
Stmt::child_iterator InitListExpr::child_end() {
|
|
return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
|
|
}
|
|
|
|
// DesignatedInitExpr
|
|
Stmt::child_iterator DesignatedInitExpr::child_begin() {
|
|
char* Ptr = static_cast<char*>(static_cast<void *>(this));
|
|
Ptr += sizeof(DesignatedInitExpr);
|
|
Ptr += sizeof(Designator) * NumDesignators;
|
|
return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
|
|
}
|
|
Stmt::child_iterator DesignatedInitExpr::child_end() {
|
|
return child_iterator(&*child_begin() + NumSubExprs);
|
|
}
|
|
|
|
// ImplicitValueInitExpr
|
|
Stmt::child_iterator ImplicitValueInitExpr::child_begin() {
|
|
return child_iterator();
|
|
}
|
|
|
|
Stmt::child_iterator ImplicitValueInitExpr::child_end() {
|
|
return child_iterator();
|
|
}
|
|
|
|
// ObjCStringLiteral
|
|
Stmt::child_iterator ObjCStringLiteral::child_begin() {
|
|
return &String;
|
|
}
|
|
Stmt::child_iterator ObjCStringLiteral::child_end() {
|
|
return &String+1;
|
|
}
|
|
|
|
// ObjCEncodeExpr
|
|
Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
|
|
Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
|
|
|
|
// ObjCSelectorExpr
|
|
Stmt::child_iterator ObjCSelectorExpr::child_begin() {
|
|
return child_iterator();
|
|
}
|
|
Stmt::child_iterator ObjCSelectorExpr::child_end() {
|
|
return child_iterator();
|
|
}
|
|
|
|
// ObjCProtocolExpr
|
|
Stmt::child_iterator ObjCProtocolExpr::child_begin() {
|
|
return child_iterator();
|
|
}
|
|
Stmt::child_iterator ObjCProtocolExpr::child_end() {
|
|
return child_iterator();
|
|
}
|
|
|
|
// ObjCMessageExpr
|
|
Stmt::child_iterator ObjCMessageExpr::child_begin() {
|
|
return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START;
|
|
}
|
|
Stmt::child_iterator ObjCMessageExpr::child_end() {
|
|
return &SubExprs[0]+ARGS_START+getNumArgs();
|
|
}
|
|
|
|
// Blocks
|
|
Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
|
|
Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
|
|
|
|
Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
|
|
Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }
|