forked from OSchip/llvm-project
377 lines
16 KiB
C++
377 lines
16 KiB
C++
//===- AffineStructuresTest.cpp - Tests for AffineStructures ----*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Analysis/AffineStructures.h"
|
|
|
|
#include <gmock/gmock.h>
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <numeric>
|
|
|
|
namespace mlir {
|
|
|
|
/// If 'hasValue' is true, check that findIntegerSample returns a valid sample
|
|
/// for the FlatAffineConstraints fac.
|
|
///
|
|
/// If hasValue is false, check that findIntegerSample does not return None.
|
|
static void checkSample(bool hasValue, const FlatAffineConstraints &fac) {
|
|
Optional<SmallVector<int64_t, 8>> maybeSample = fac.findIntegerSample();
|
|
if (!hasValue) {
|
|
EXPECT_FALSE(maybeSample.hasValue());
|
|
if (maybeSample.hasValue()) {
|
|
for (auto x : *maybeSample)
|
|
llvm::errs() << x << ' ';
|
|
llvm::errs() << '\n';
|
|
}
|
|
} else {
|
|
ASSERT_TRUE(maybeSample.hasValue());
|
|
EXPECT_TRUE(fac.containsPoint(*maybeSample));
|
|
}
|
|
}
|
|
|
|
/// Construct a FlatAffineConstraints from a set of inequality and
|
|
/// equality constraints.
|
|
static FlatAffineConstraints
|
|
makeFACFromConstraints(unsigned dims, ArrayRef<SmallVector<int64_t, 4>> ineqs,
|
|
ArrayRef<SmallVector<int64_t, 4>> eqs) {
|
|
FlatAffineConstraints fac(ineqs.size(), eqs.size(), dims + 1, dims);
|
|
for (const auto &eq : eqs)
|
|
fac.addEquality(eq);
|
|
for (const auto &ineq : ineqs)
|
|
fac.addInequality(ineq);
|
|
return fac;
|
|
}
|
|
|
|
/// Check sampling for all the permutations of the dimensions for the given
|
|
/// constraint set. Since the GBR algorithm progresses dimension-wise, different
|
|
/// orderings may cause the algorithm to proceed differently. At least some of
|
|
///.these permutations should make it past the heuristics and test the
|
|
/// implementation of the GBR algorithm itself.
|
|
static void checkPermutationsSample(bool hasValue, unsigned nDim,
|
|
ArrayRef<SmallVector<int64_t, 4>> ineqs,
|
|
ArrayRef<SmallVector<int64_t, 4>> eqs) {
|
|
SmallVector<unsigned, 4> perm(nDim);
|
|
std::iota(perm.begin(), perm.end(), 0);
|
|
auto permute = [&perm](ArrayRef<int64_t> coeffs) {
|
|
SmallVector<int64_t, 4> permuted;
|
|
for (unsigned id : perm)
|
|
permuted.push_back(coeffs[id]);
|
|
permuted.push_back(coeffs.back());
|
|
return permuted;
|
|
};
|
|
do {
|
|
SmallVector<SmallVector<int64_t, 4>, 4> permutedIneqs, permutedEqs;
|
|
for (const auto &ineq : ineqs)
|
|
permutedIneqs.push_back(permute(ineq));
|
|
for (const auto &eq : eqs)
|
|
permutedEqs.push_back(permute(eq));
|
|
|
|
checkSample(hasValue,
|
|
makeFACFromConstraints(nDim, permutedIneqs, permutedEqs));
|
|
} while (std::next_permutation(perm.begin(), perm.end()));
|
|
}
|
|
|
|
TEST(FlatAffineConstraintsTest, FindSampleTest) {
|
|
// Bounded sets with only inequalities.
|
|
|
|
// 0 <= 7x <= 5
|
|
checkSample(true, makeFACFromConstraints(1, {{7, 0}, {-7, 5}}, {}));
|
|
|
|
// 1 <= 5x and 5x <= 4 (no solution).
|
|
checkSample(false, makeFACFromConstraints(1, {{5, -1}, {-5, 4}}, {}));
|
|
|
|
// 1 <= 5x and 5x <= 9 (solution: x = 1).
|
|
checkSample(true, makeFACFromConstraints(1, {{5, -1}, {-5, 9}}, {}));
|
|
|
|
// Bounded sets with equalities.
|
|
// x >= 8 and 40 >= y and x = y.
|
|
checkSample(
|
|
true, makeFACFromConstraints(2, {{1, 0, -8}, {0, -1, 40}}, {{1, -1, 0}}));
|
|
|
|
// x <= 10 and y <= 10 and 10 <= z and x + 2y = 3z.
|
|
// solution: x = y = z = 10.
|
|
checkSample(true, makeFACFromConstraints(
|
|
3, {{-1, 0, 0, 10}, {0, -1, 0, 10}, {0, 0, 1, -10}},
|
|
{{1, 2, -3, 0}}));
|
|
|
|
// x <= 10 and y <= 10 and 11 <= z and x + 2y = 3z.
|
|
// This implies x + 2y >= 33 and x + 2y <= 30, which has no solution.
|
|
checkSample(false, makeFACFromConstraints(
|
|
3, {{-1, 0, 0, 10}, {0, -1, 0, 10}, {0, 0, 1, -11}},
|
|
{{1, 2, -3, 0}}));
|
|
|
|
// 0 <= r and r <= 3 and 4q + r = 7.
|
|
// Solution: q = 1, r = 3.
|
|
checkSample(true,
|
|
makeFACFromConstraints(2, {{0, 1, 0}, {0, -1, 3}}, {{4, 1, -7}}));
|
|
|
|
// 4q + r = 7 and r = 0.
|
|
// Solution: q = 1, r = 3.
|
|
checkSample(false, makeFACFromConstraints(2, {}, {{4, 1, -7}, {0, 1, 0}}));
|
|
|
|
// The next two sets are large sets that should take a long time to sample
|
|
// with a naive branch and bound algorithm but can be sampled efficiently with
|
|
// the GBR algorithm.
|
|
//
|
|
// This is a triangle with vertices at (1/3, 0), (2/3, 0) and (10000, 10000).
|
|
checkSample(
|
|
true,
|
|
makeFACFromConstraints(
|
|
2, {{0, 1, 0}, {300000, -299999, -100000}, {-300000, 299998, 200000}},
|
|
{}));
|
|
|
|
// This is a tetrahedron with vertices at
|
|
// (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 10000), and (10000, 10000, 10000).
|
|
// The first three points form a triangular base on the xz plane with the
|
|
// apex at the fourth point, which is the only integer point.
|
|
checkPermutationsSample(
|
|
true, 3,
|
|
{
|
|
{0, 1, 0, 0}, // y >= 0
|
|
{0, -1, 1, 0}, // z >= y
|
|
{300000, -299998, -1,
|
|
-100000}, // -300000x + 299998y + 100000 + z <= 0.
|
|
{-150000, 149999, 0, 100000}, // -150000x + 149999y + 100000 >= 0.
|
|
},
|
|
{});
|
|
|
|
// Same thing with some spurious extra dimensions equated to constants.
|
|
checkSample(true,
|
|
makeFACFromConstraints(
|
|
5,
|
|
{
|
|
{0, 1, 0, 1, -1, 0},
|
|
{0, -1, 1, -1, 1, 0},
|
|
{300000, -299998, -1, -9, 21, -112000},
|
|
{-150000, 149999, 0, -15, 47, 68000},
|
|
},
|
|
{{0, 0, 0, 1, -1, 0}, // p = q.
|
|
{0, 0, 0, 1, 1, -2000}})); // p + q = 20000 => p = q = 10000.
|
|
|
|
// This is a tetrahedron with vertices at
|
|
// (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 100), (100, 100 - 1/3, 100).
|
|
checkPermutationsSample(false, 3,
|
|
{
|
|
{0, 1, 0, 0},
|
|
{0, -300, 299, 0},
|
|
{300 * 299, -89400, -299, -100 * 299},
|
|
{-897, 894, 0, 598},
|
|
},
|
|
{});
|
|
|
|
// Two tests involving equalities that are integer empty but not rational
|
|
// empty.
|
|
|
|
// This is a line segment from (0, 1/3) to (100, 100 + 1/3).
|
|
checkSample(false, makeFACFromConstraints(
|
|
2,
|
|
{
|
|
{1, 0, 0}, // x >= 0.
|
|
{-1, 0, 100} // -x + 100 >= 0, i.e., x <= 100.
|
|
},
|
|
{
|
|
{3, -3, 1} // 3x - 3y + 1 = 0, i.e., y = x + 1/3.
|
|
}));
|
|
|
|
// A thin parallelogram. 0 <= x <= 100 and x + 1/3 <= y <= x + 2/3.
|
|
checkSample(false, makeFACFromConstraints(2,
|
|
{
|
|
{1, 0, 0}, // x >= 0.
|
|
{-1, 0, 100}, // x <= 100.
|
|
{3, -3, 2}, // 3x - 3y >= -2.
|
|
{-3, 3, -1}, // 3x - 3y <= -1.
|
|
},
|
|
{}));
|
|
|
|
checkSample(true, makeFACFromConstraints(2,
|
|
{
|
|
{2, 0, 0}, // 2x >= 1.
|
|
{-2, 0, 99}, // 2x <= 99.
|
|
{0, 2, 0}, // 2y >= 0.
|
|
{0, -2, 99}, // 2y <= 99.
|
|
},
|
|
{}));
|
|
}
|
|
|
|
TEST(FlatAffineConstraintsTest, IsIntegerEmptyTest) {
|
|
// 1 <= 5x and 5x <= 4 (no solution).
|
|
EXPECT_TRUE(
|
|
makeFACFromConstraints(1, {{5, -1}, {-5, 4}}, {}).isIntegerEmpty());
|
|
// 1 <= 5x and 5x <= 9 (solution: x = 1).
|
|
EXPECT_FALSE(
|
|
makeFACFromConstraints(1, {{5, -1}, {-5, 9}}, {}).isIntegerEmpty());
|
|
|
|
// An unbounded set, which isIntegerEmpty should detect as unbounded and
|
|
// return without calling findIntegerSample.
|
|
EXPECT_FALSE(makeFACFromConstraints(3,
|
|
{
|
|
{2, 0, 0, -1},
|
|
{-2, 0, 0, 1},
|
|
{0, 2, 0, -1},
|
|
{0, -2, 0, 1},
|
|
{0, 0, 2, -1},
|
|
},
|
|
{})
|
|
.isIntegerEmpty());
|
|
|
|
// FlatAffineConstraints::isEmpty() does not detect the following sets to be
|
|
// empty.
|
|
|
|
// 3x + 7y = 1 and 0 <= x, y <= 10.
|
|
// Since x and y are non-negative, 3x + 7y can never be 1.
|
|
EXPECT_TRUE(
|
|
makeFACFromConstraints(
|
|
2, {{1, 0, 0}, {-1, 0, 10}, {0, 1, 0}, {0, -1, 10}}, {{3, 7, -1}})
|
|
.isIntegerEmpty());
|
|
|
|
// 2x = 3y and y = x - 1 and x + y = 6z + 2 and 0 <= x, y <= 100.
|
|
// Substituting y = x - 1 in 3y = 2x, we obtain x = 3 and hence y = 2.
|
|
// Since x + y = 5 cannot be equal to 6z + 2 for any z, the set is empty.
|
|
EXPECT_TRUE(
|
|
makeFACFromConstraints(3,
|
|
{
|
|
{1, 0, 0, 0},
|
|
{-1, 0, 0, 100},
|
|
{0, 1, 0, 0},
|
|
{0, -1, 0, 100},
|
|
},
|
|
{{2, -3, 0, 0}, {1, -1, 0, -1}, {1, 1, -6, -2}})
|
|
.isIntegerEmpty());
|
|
|
|
// 2x = 3y and y = x - 1 + 6z and x + y = 6q + 2 and 0 <= x, y <= 100.
|
|
// 2x = 3y implies x is a multiple of 3 and y is even.
|
|
// Now y = x - 1 + 6z implies y = 2 mod 3. In fact, since y is even, we have
|
|
// y = 2 mod 6. Then since x = y + 1 + 6z, we have x = 3 mod 6, implying
|
|
// x + y = 5 mod 6, which contradicts x + y = 6q + 2, so the set is empty.
|
|
EXPECT_TRUE(makeFACFromConstraints(
|
|
4,
|
|
{
|
|
{1, 0, 0, 0, 0},
|
|
{-1, 0, 0, 0, 100},
|
|
{0, 1, 0, 0, 0},
|
|
{0, -1, 0, 0, 100},
|
|
},
|
|
{{2, -3, 0, 0, 0}, {1, -1, 6, 0, -1}, {1, 1, 0, -6, -2}})
|
|
.isIntegerEmpty());
|
|
}
|
|
|
|
TEST(FlatAffineConstraintsTest, removeRedundantConstraintsTest) {
|
|
FlatAffineConstraints fac = makeFACFromConstraints(1,
|
|
{
|
|
{1, -2}, // x >= 2.
|
|
{-1, 2} // x <= 2.
|
|
},
|
|
{{1, -2}}); // x == 2.
|
|
fac.removeRedundantConstraints();
|
|
|
|
// Both inequalities are redundant given the equality. Both have been removed.
|
|
EXPECT_EQ(fac.getNumInequalities(), 0u);
|
|
EXPECT_EQ(fac.getNumEqualities(), 1u);
|
|
|
|
FlatAffineConstraints fac2 =
|
|
makeFACFromConstraints(2,
|
|
{
|
|
{1, 0, -3}, // x >= 3.
|
|
{0, 1, -2} // y >= 2 (redundant).
|
|
},
|
|
{{1, -1, 0}}); // x == y.
|
|
fac2.removeRedundantConstraints();
|
|
|
|
// The second inequality is redundant and should have been removed. The
|
|
// remaining inequality should be the first one.
|
|
EXPECT_EQ(fac2.getNumInequalities(), 1u);
|
|
EXPECT_THAT(fac2.getInequality(0), testing::ElementsAre(1, 0, -3));
|
|
EXPECT_EQ(fac2.getNumEqualities(), 1u);
|
|
|
|
FlatAffineConstraints fac3 =
|
|
makeFACFromConstraints(3, {},
|
|
{{1, -1, 0, 0}, // x == y.
|
|
{1, 0, -1, 0}, // x == z.
|
|
{0, 1, -1, 0}}); // y == z.
|
|
fac3.removeRedundantConstraints();
|
|
|
|
// One of the three equalities can be removed.
|
|
EXPECT_EQ(fac3.getNumInequalities(), 0u);
|
|
EXPECT_EQ(fac3.getNumEqualities(), 2u);
|
|
|
|
FlatAffineConstraints fac4 = makeFACFromConstraints(
|
|
17,
|
|
{{0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1},
|
|
{0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 500},
|
|
{0, 0, 0, -16, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1},
|
|
{0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 998},
|
|
{0, 0, 0, 16, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15},
|
|
{0, 0, 0, 0, -16, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1},
|
|
{0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 998},
|
|
{0, 0, 0, 0, 16, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15},
|
|
{0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1},
|
|
{0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1},
|
|
{0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 500},
|
|
{0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 15},
|
|
{0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -16, 0, 0, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -16, 0, 1, 0, 0, 0},
|
|
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1},
|
|
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 998},
|
|
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, -1, 0, 0, 15},
|
|
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0},
|
|
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1},
|
|
{0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8},
|
|
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 8, 8},
|
|
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -8, -1},
|
|
{0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -8, -1},
|
|
{0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0},
|
|
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -10},
|
|
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 10},
|
|
{0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -13},
|
|
{0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 13},
|
|
{0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -10},
|
|
{0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10},
|
|
{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -13},
|
|
{-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13}},
|
|
{});
|
|
|
|
// The above is a large set of constraints without any redundant constraints,
|
|
// as verified by the Fourier-Motzkin based removeRedundantInequalities.
|
|
unsigned nIneq = fac4.getNumInequalities();
|
|
unsigned nEq = fac4.getNumEqualities();
|
|
fac4.removeRedundantInequalities();
|
|
ASSERT_EQ(fac4.getNumInequalities(), nIneq);
|
|
ASSERT_EQ(fac4.getNumEqualities(), nEq);
|
|
// Now we test that removeRedundantConstraints does not find any constraints
|
|
// to be redundant either.
|
|
fac4.removeRedundantConstraints();
|
|
EXPECT_EQ(fac4.getNumInequalities(), nIneq);
|
|
EXPECT_EQ(fac4.getNumEqualities(), nEq);
|
|
|
|
FlatAffineConstraints fac5 =
|
|
makeFACFromConstraints(2,
|
|
{
|
|
{128, 0, 127}, // [0]: 128x >= -127.
|
|
{-1, 0, 7}, // [1]: x <= 7.
|
|
{-128, 1, 0}, // [2]: y >= 128x.
|
|
{0, 1, 0} // [3]: y >= 0.
|
|
},
|
|
{});
|
|
// [0] implies that 128x >= 0, since x has to be an integer. (This should be
|
|
// caught by GCDTightenInqualities().)
|
|
// So [2] and [0] imply [3] since we have y >= 128x >= 0.
|
|
fac5.removeRedundantConstraints();
|
|
EXPECT_EQ(fac5.getNumInequalities(), 3u);
|
|
SmallVector<int64_t, 8> redundantConstraint = {0, 1, 0};
|
|
for (unsigned i = 0; i < 3; ++i) {
|
|
// Ensure that the removed constraint was the redundant constraint [3].
|
|
EXPECT_NE(fac5.getInequality(i), ArrayRef<int64_t>(redundantConstraint));
|
|
}
|
|
}
|
|
|
|
} // namespace mlir
|