llvm-project/lldb/source/Commands/CommandObjectMemory.cpp

1804 lines
64 KiB
C++

//===-- CommandObjectMemory.cpp ---------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// C Includes
#include <inttypes.h>
// C++ Includes
// Other libraries and framework includes
#include "clang/AST/Decl.h"
// Project includes
#include "CommandObjectMemory.h"
#include "Plugins/ExpressionParser/Clang/ClangPersistentVariables.h"
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/Section.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Core/ValueObjectMemory.h"
#include "lldb/DataFormatters/ValueObjectPrinter.h"
#include "lldb/Host/StringConvert.h"
#include "lldb/Interpreter/Args.h"
#include "lldb/Interpreter/CommandInterpreter.h"
#include "lldb/Interpreter/CommandReturnObject.h"
#include "lldb/Interpreter/OptionGroupFormat.h"
#include "lldb/Interpreter/OptionGroupOutputFile.h"
#include "lldb/Interpreter/OptionGroupValueObjectDisplay.h"
#include "lldb/Interpreter/OptionValueString.h"
#include "lldb/Interpreter/Options.h"
#include "lldb/Symbol/ClangASTContext.h"
#include "lldb/Symbol/SymbolFile.h"
#include "lldb/Symbol/TypeList.h"
#include "lldb/Target/MemoryHistory.h"
#include "lldb/Target/MemoryRegionInfo.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/Thread.h"
#include "lldb/lldb-private.h"
using namespace lldb;
using namespace lldb_private;
static OptionDefinition g_option_table[] = {
// clang-format off
{LLDB_OPT_SET_1, false, "num-per-line", 'l', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeNumberPerLine, "The number of items per line to display." },
{LLDB_OPT_SET_2, false, "binary", 'b', OptionParser::eNoArgument, nullptr, nullptr, 0, eArgTypeNone, "If true, memory will be saved as binary. If false, the memory is saved save as an ASCII dump that "
"uses the format, size, count and number per line settings." },
{LLDB_OPT_SET_3, true , "type", 't', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeNone, "The name of a type to view memory as." },
{LLDB_OPT_SET_3, false, "offset", 'E', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeCount, "How many elements of the specified type to skip before starting to display data." },
{LLDB_OPT_SET_1 |
LLDB_OPT_SET_2 |
LLDB_OPT_SET_3, false, "force", 'r', OptionParser::eNoArgument, nullptr, nullptr, 0, eArgTypeNone, "Necessary if reading over target.max-memory-read-size bytes." },
// clang-format on
};
class OptionGroupReadMemory : public OptionGroup {
public:
OptionGroupReadMemory()
: m_num_per_line(1, 1), m_output_as_binary(false), m_view_as_type(),
m_offset(0, 0) {}
~OptionGroupReadMemory() override = default;
uint32_t GetNumDefinitions() override {
return sizeof(g_option_table) / sizeof(OptionDefinition);
}
const OptionDefinition *GetDefinitions() override { return g_option_table; }
Error SetOptionValue(uint32_t option_idx, const char *option_arg,
ExecutionContext *execution_context) override {
Error error;
const int short_option = g_option_table[option_idx].short_option;
switch (short_option) {
case 'l':
error = m_num_per_line.SetValueFromString(option_arg);
if (m_num_per_line.GetCurrentValue() == 0)
error.SetErrorStringWithFormat(
"invalid value for --num-per-line option '%s'", option_arg);
break;
case 'b':
m_output_as_binary = true;
break;
case 't':
error = m_view_as_type.SetValueFromString(option_arg);
break;
case 'r':
m_force = true;
break;
case 'E':
error = m_offset.SetValueFromString(option_arg);
break;
default:
error.SetErrorStringWithFormat("unrecognized short option '%c'",
short_option);
break;
}
return error;
}
void OptionParsingStarting(ExecutionContext *execution_context) override {
m_num_per_line.Clear();
m_output_as_binary = false;
m_view_as_type.Clear();
m_force = false;
m_offset.Clear();
}
Error FinalizeSettings(Target *target, OptionGroupFormat &format_options) {
Error error;
OptionValueUInt64 &byte_size_value = format_options.GetByteSizeValue();
OptionValueUInt64 &count_value = format_options.GetCountValue();
const bool byte_size_option_set = byte_size_value.OptionWasSet();
const bool num_per_line_option_set = m_num_per_line.OptionWasSet();
const bool count_option_set = format_options.GetCountValue().OptionWasSet();
switch (format_options.GetFormat()) {
default:
break;
case eFormatBoolean:
if (!byte_size_option_set)
byte_size_value = 1;
if (!num_per_line_option_set)
m_num_per_line = 1;
if (!count_option_set)
format_options.GetCountValue() = 8;
break;
case eFormatCString:
break;
case eFormatInstruction:
if (count_option_set)
byte_size_value = target->GetArchitecture().GetMaximumOpcodeByteSize();
m_num_per_line = 1;
break;
case eFormatAddressInfo:
if (!byte_size_option_set)
byte_size_value = target->GetArchitecture().GetAddressByteSize();
m_num_per_line = 1;
if (!count_option_set)
format_options.GetCountValue() = 8;
break;
case eFormatPointer:
byte_size_value = target->GetArchitecture().GetAddressByteSize();
if (!num_per_line_option_set)
m_num_per_line = 4;
if (!count_option_set)
format_options.GetCountValue() = 8;
break;
case eFormatBinary:
case eFormatFloat:
case eFormatOctal:
case eFormatDecimal:
case eFormatEnum:
case eFormatUnicode16:
case eFormatUnicode32:
case eFormatUnsigned:
case eFormatHexFloat:
if (!byte_size_option_set)
byte_size_value = 4;
if (!num_per_line_option_set)
m_num_per_line = 1;
if (!count_option_set)
format_options.GetCountValue() = 8;
break;
case eFormatBytes:
case eFormatBytesWithASCII:
if (byte_size_option_set) {
if (byte_size_value > 1)
error.SetErrorStringWithFormat(
"display format (bytes/bytes with ASCII) conflicts with the "
"specified byte size %" PRIu64 "\n"
"\tconsider using a different display format or don't specify "
"the byte size.",
byte_size_value.GetCurrentValue());
} else
byte_size_value = 1;
if (!num_per_line_option_set)
m_num_per_line = 16;
if (!count_option_set)
format_options.GetCountValue() = 32;
break;
case eFormatCharArray:
case eFormatChar:
case eFormatCharPrintable:
if (!byte_size_option_set)
byte_size_value = 1;
if (!num_per_line_option_set)
m_num_per_line = 32;
if (!count_option_set)
format_options.GetCountValue() = 64;
break;
case eFormatComplex:
if (!byte_size_option_set)
byte_size_value = 8;
if (!num_per_line_option_set)
m_num_per_line = 1;
if (!count_option_set)
format_options.GetCountValue() = 8;
break;
case eFormatComplexInteger:
if (!byte_size_option_set)
byte_size_value = 8;
if (!num_per_line_option_set)
m_num_per_line = 1;
if (!count_option_set)
format_options.GetCountValue() = 8;
break;
case eFormatHex:
if (!byte_size_option_set)
byte_size_value = 4;
if (!num_per_line_option_set) {
switch (byte_size_value) {
case 1:
case 2:
m_num_per_line = 8;
break;
case 4:
m_num_per_line = 4;
break;
case 8:
m_num_per_line = 2;
break;
default:
m_num_per_line = 1;
break;
}
}
if (!count_option_set)
count_value = 8;
break;
case eFormatVectorOfChar:
case eFormatVectorOfSInt8:
case eFormatVectorOfUInt8:
case eFormatVectorOfSInt16:
case eFormatVectorOfUInt16:
case eFormatVectorOfSInt32:
case eFormatVectorOfUInt32:
case eFormatVectorOfSInt64:
case eFormatVectorOfUInt64:
case eFormatVectorOfFloat16:
case eFormatVectorOfFloat32:
case eFormatVectorOfFloat64:
case eFormatVectorOfUInt128:
if (!byte_size_option_set)
byte_size_value = 128;
if (!num_per_line_option_set)
m_num_per_line = 1;
if (!count_option_set)
count_value = 4;
break;
}
return error;
}
bool AnyOptionWasSet() const {
return m_num_per_line.OptionWasSet() || m_output_as_binary ||
m_view_as_type.OptionWasSet() || m_offset.OptionWasSet();
}
OptionValueUInt64 m_num_per_line;
bool m_output_as_binary;
OptionValueString m_view_as_type;
bool m_force;
OptionValueUInt64 m_offset;
};
//----------------------------------------------------------------------
// Read memory from the inferior process
//----------------------------------------------------------------------
class CommandObjectMemoryRead : public CommandObjectParsed {
public:
CommandObjectMemoryRead(CommandInterpreter &interpreter)
: CommandObjectParsed(
interpreter, "memory read",
"Read from the memory of the current target process.", nullptr,
eCommandRequiresTarget | eCommandProcessMustBePaused),
m_option_group(), m_format_options(eFormatBytesWithASCII, 1, 8),
m_memory_options(), m_outfile_options(), m_varobj_options(),
m_next_addr(LLDB_INVALID_ADDRESS), m_prev_byte_size(0),
m_prev_format_options(eFormatBytesWithASCII, 1, 8),
m_prev_memory_options(), m_prev_outfile_options(),
m_prev_varobj_options() {
CommandArgumentEntry arg1;
CommandArgumentEntry arg2;
CommandArgumentData start_addr_arg;
CommandArgumentData end_addr_arg;
// Define the first (and only) variant of this arg.
start_addr_arg.arg_type = eArgTypeAddressOrExpression;
start_addr_arg.arg_repetition = eArgRepeatPlain;
// There is only one variant this argument could be; put it into the
// argument entry.
arg1.push_back(start_addr_arg);
// Define the first (and only) variant of this arg.
end_addr_arg.arg_type = eArgTypeAddressOrExpression;
end_addr_arg.arg_repetition = eArgRepeatOptional;
// There is only one variant this argument could be; put it into the
// argument entry.
arg2.push_back(end_addr_arg);
// Push the data for the first argument into the m_arguments vector.
m_arguments.push_back(arg1);
m_arguments.push_back(arg2);
// Add the "--format" and "--count" options to group 1 and 3
m_option_group.Append(&m_format_options,
OptionGroupFormat::OPTION_GROUP_FORMAT |
OptionGroupFormat::OPTION_GROUP_COUNT,
LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3);
m_option_group.Append(&m_format_options,
OptionGroupFormat::OPTION_GROUP_GDB_FMT,
LLDB_OPT_SET_1 | LLDB_OPT_SET_3);
// Add the "--size" option to group 1 and 2
m_option_group.Append(&m_format_options,
OptionGroupFormat::OPTION_GROUP_SIZE,
LLDB_OPT_SET_1 | LLDB_OPT_SET_2);
m_option_group.Append(&m_memory_options);
m_option_group.Append(&m_outfile_options, LLDB_OPT_SET_ALL,
LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3);
m_option_group.Append(&m_varobj_options, LLDB_OPT_SET_ALL, LLDB_OPT_SET_3);
m_option_group.Finalize();
}
~CommandObjectMemoryRead() override = default;
Options *GetOptions() override { return &m_option_group; }
const char *GetRepeatCommand(Args &current_command_args,
uint32_t index) override {
return m_cmd_name.c_str();
}
protected:
bool DoExecute(Args &command, CommandReturnObject &result) override {
// No need to check "target" for validity as eCommandRequiresTarget ensures
// it is valid
Target *target = m_exe_ctx.GetTargetPtr();
const size_t argc = command.GetArgumentCount();
if ((argc == 0 && m_next_addr == LLDB_INVALID_ADDRESS) || argc > 2) {
result.AppendErrorWithFormat("%s takes a start address expression with "
"an optional end address expression.\n",
m_cmd_name.c_str());
result.AppendRawWarning("Expressions should be quoted if they contain "
"spaces or other special characters.\n");
result.SetStatus(eReturnStatusFailed);
return false;
}
CompilerType clang_ast_type;
Error error;
const char *view_as_type_cstr =
m_memory_options.m_view_as_type.GetCurrentValue();
if (view_as_type_cstr && view_as_type_cstr[0]) {
// We are viewing memory as a type
SymbolContext sc;
const bool exact_match = false;
TypeList type_list;
uint32_t reference_count = 0;
uint32_t pointer_count = 0;
size_t idx;
#define ALL_KEYWORDS \
KEYWORD("const") \
KEYWORD("volatile") \
KEYWORD("restrict") \
KEYWORD("struct") \
KEYWORD("class") \
KEYWORD("union")
#define KEYWORD(s) s,
static const char *g_keywords[] = {ALL_KEYWORDS};
#undef KEYWORD
#define KEYWORD(s) (sizeof(s) - 1),
static const int g_keyword_lengths[] = {ALL_KEYWORDS};
#undef KEYWORD
#undef ALL_KEYWORDS
static size_t g_num_keywords = sizeof(g_keywords) / sizeof(const char *);
std::string type_str(view_as_type_cstr);
// Remove all instances of g_keywords that are followed by spaces
for (size_t i = 0; i < g_num_keywords; ++i) {
const char *keyword = g_keywords[i];
int keyword_len = g_keyword_lengths[i];
idx = 0;
while ((idx = type_str.find(keyword, idx)) != std::string::npos) {
if (type_str[idx + keyword_len] == ' ' ||
type_str[idx + keyword_len] == '\t') {
type_str.erase(idx, keyword_len + 1);
idx = 0;
} else {
idx += keyword_len;
}
}
}
bool done = type_str.empty();
//
idx = type_str.find_first_not_of(" \t");
if (idx > 0 && idx != std::string::npos)
type_str.erase(0, idx);
while (!done) {
// Strip trailing spaces
if (type_str.empty())
done = true;
else {
switch (type_str[type_str.size() - 1]) {
case '*':
++pointer_count;
LLVM_FALLTHROUGH;
case ' ':
case '\t':
type_str.erase(type_str.size() - 1);
break;
case '&':
if (reference_count == 0) {
reference_count = 1;
type_str.erase(type_str.size() - 1);
} else {
result.AppendErrorWithFormat("invalid type string: '%s'\n",
view_as_type_cstr);
result.SetStatus(eReturnStatusFailed);
return false;
}
break;
default:
done = true;
break;
}
}
}
llvm::DenseSet<lldb_private::SymbolFile *> searched_symbol_files;
ConstString lookup_type_name(type_str.c_str());
StackFrame *frame = m_exe_ctx.GetFramePtr();
if (frame) {
sc = frame->GetSymbolContext(eSymbolContextModule);
if (sc.module_sp) {
sc.module_sp->FindTypes(sc, lookup_type_name, exact_match, 1,
searched_symbol_files, type_list);
}
}
if (type_list.GetSize() == 0) {
target->GetImages().FindTypes(sc, lookup_type_name, exact_match, 1,
searched_symbol_files, type_list);
}
if (type_list.GetSize() == 0 && lookup_type_name.GetCString() &&
*lookup_type_name.GetCString() == '$') {
if (ClangPersistentVariables *persistent_vars =
llvm::dyn_cast_or_null<ClangPersistentVariables>(
target->GetPersistentExpressionStateForLanguage(
lldb::eLanguageTypeC))) {
clang::TypeDecl *tdecl = llvm::dyn_cast_or_null<clang::TypeDecl>(
persistent_vars->GetPersistentDecl(
ConstString(lookup_type_name)));
if (tdecl) {
clang_ast_type.SetCompilerType(
ClangASTContext::GetASTContext(&tdecl->getASTContext()),
reinterpret_cast<lldb::opaque_compiler_type_t>(
const_cast<clang::Type *>(tdecl->getTypeForDecl())));
}
}
}
if (!clang_ast_type.IsValid()) {
if (type_list.GetSize() == 0) {
result.AppendErrorWithFormat("unable to find any types that match "
"the raw type '%s' for full type '%s'\n",
lookup_type_name.GetCString(),
view_as_type_cstr);
result.SetStatus(eReturnStatusFailed);
return false;
} else {
TypeSP type_sp(type_list.GetTypeAtIndex(0));
clang_ast_type = type_sp->GetFullCompilerType();
}
}
while (pointer_count > 0) {
CompilerType pointer_type = clang_ast_type.GetPointerType();
if (pointer_type.IsValid())
clang_ast_type = pointer_type;
else {
result.AppendError("unable make a pointer type\n");
result.SetStatus(eReturnStatusFailed);
return false;
}
--pointer_count;
}
m_format_options.GetByteSizeValue() = clang_ast_type.GetByteSize(nullptr);
if (m_format_options.GetByteSizeValue() == 0) {
result.AppendErrorWithFormat(
"unable to get the byte size of the type '%s'\n",
view_as_type_cstr);
result.SetStatus(eReturnStatusFailed);
return false;
}
if (!m_format_options.GetCountValue().OptionWasSet())
m_format_options.GetCountValue() = 1;
} else {
error = m_memory_options.FinalizeSettings(target, m_format_options);
}
// Look for invalid combinations of settings
if (error.Fail()) {
result.AppendError(error.AsCString());
result.SetStatus(eReturnStatusFailed);
return false;
}
lldb::addr_t addr;
size_t total_byte_size = 0;
if (argc == 0) {
// Use the last address and byte size and all options as they were
// if no options have been set
addr = m_next_addr;
total_byte_size = m_prev_byte_size;
clang_ast_type = m_prev_clang_ast_type;
if (!m_format_options.AnyOptionWasSet() &&
!m_memory_options.AnyOptionWasSet() &&
!m_outfile_options.AnyOptionWasSet() &&
!m_varobj_options.AnyOptionWasSet()) {
m_format_options = m_prev_format_options;
m_memory_options = m_prev_memory_options;
m_outfile_options = m_prev_outfile_options;
m_varobj_options = m_prev_varobj_options;
}
}
size_t item_count = m_format_options.GetCountValue().GetCurrentValue();
// TODO For non-8-bit byte addressable architectures this needs to be
// revisited to fully support all lldb's range of formatting options.
// Furthermore code memory reads (for those architectures) will not
// be correctly formatted even w/o formatting options.
size_t item_byte_size =
target->GetArchitecture().GetDataByteSize() > 1
? target->GetArchitecture().GetDataByteSize()
: m_format_options.GetByteSizeValue().GetCurrentValue();
const size_t num_per_line =
m_memory_options.m_num_per_line.GetCurrentValue();
if (total_byte_size == 0) {
total_byte_size = item_count * item_byte_size;
if (total_byte_size == 0)
total_byte_size = 32;
}
if (argc > 0)
addr = Args::StringToAddress(&m_exe_ctx, command.GetArgumentAtIndex(0),
LLDB_INVALID_ADDRESS, &error);
if (addr == LLDB_INVALID_ADDRESS) {
result.AppendError("invalid start address expression.");
result.AppendError(error.AsCString());
result.SetStatus(eReturnStatusFailed);
return false;
}
if (argc == 2) {
lldb::addr_t end_addr =
Args::StringToAddress(&m_exe_ctx, command.GetArgumentAtIndex(1),
LLDB_INVALID_ADDRESS, nullptr);
if (end_addr == LLDB_INVALID_ADDRESS) {
result.AppendError("invalid end address expression.");
result.AppendError(error.AsCString());
result.SetStatus(eReturnStatusFailed);
return false;
} else if (end_addr <= addr) {
result.AppendErrorWithFormat(
"end address (0x%" PRIx64
") must be greater that the start address (0x%" PRIx64 ").\n",
end_addr, addr);
result.SetStatus(eReturnStatusFailed);
return false;
} else if (m_format_options.GetCountValue().OptionWasSet()) {
result.AppendErrorWithFormat(
"specify either the end address (0x%" PRIx64
") or the count (--count %" PRIu64 "), not both.\n",
end_addr, (uint64_t)item_count);
result.SetStatus(eReturnStatusFailed);
return false;
}
total_byte_size = end_addr - addr;
item_count = total_byte_size / item_byte_size;
}
uint32_t max_unforced_size = target->GetMaximumMemReadSize();
if (total_byte_size > max_unforced_size && !m_memory_options.m_force) {
result.AppendErrorWithFormat(
"Normally, \'memory read\' will not read over %" PRIu32
" bytes of data.\n",
max_unforced_size);
result.AppendErrorWithFormat(
"Please use --force to override this restriction just once.\n");
result.AppendErrorWithFormat("or set target.max-memory-read-size if you "
"will often need a larger limit.\n");
return false;
}
DataBufferSP data_sp;
size_t bytes_read = 0;
if (clang_ast_type.GetOpaqueQualType()) {
// Make sure we don't display our type as ASCII bytes like the default
// memory read
if (!m_format_options.GetFormatValue().OptionWasSet())
m_format_options.GetFormatValue().SetCurrentValue(eFormatDefault);
bytes_read = clang_ast_type.GetByteSize(nullptr) *
m_format_options.GetCountValue().GetCurrentValue();
if (argc > 0)
addr = addr + (clang_ast_type.GetByteSize(nullptr) *
m_memory_options.m_offset.GetCurrentValue());
} else if (m_format_options.GetFormatValue().GetCurrentValue() !=
eFormatCString) {
data_sp.reset(new DataBufferHeap(total_byte_size, '\0'));
if (data_sp->GetBytes() == nullptr) {
result.AppendErrorWithFormat(
"can't allocate 0x%" PRIx32
" bytes for the memory read buffer, specify a smaller size to read",
(uint32_t)total_byte_size);
result.SetStatus(eReturnStatusFailed);
return false;
}
Address address(addr, nullptr);
bytes_read = target->ReadMemory(address, false, data_sp->GetBytes(),
data_sp->GetByteSize(), error);
if (bytes_read == 0) {
const char *error_cstr = error.AsCString();
if (error_cstr && error_cstr[0]) {
result.AppendError(error_cstr);
} else {
result.AppendErrorWithFormat(
"failed to read memory from 0x%" PRIx64 ".\n", addr);
}
result.SetStatus(eReturnStatusFailed);
return false;
}
if (bytes_read < total_byte_size)
result.AppendWarningWithFormat(
"Not all bytes (%" PRIu64 "/%" PRIu64
") were able to be read from 0x%" PRIx64 ".\n",
(uint64_t)bytes_read, (uint64_t)total_byte_size, addr);
} else {
// we treat c-strings as a special case because they do not have a fixed
// size
if (m_format_options.GetByteSizeValue().OptionWasSet() &&
!m_format_options.HasGDBFormat())
item_byte_size = m_format_options.GetByteSizeValue().GetCurrentValue();
else
item_byte_size = target->GetMaximumSizeOfStringSummary();
if (!m_format_options.GetCountValue().OptionWasSet())
item_count = 1;
data_sp.reset(new DataBufferHeap((item_byte_size + 1) * item_count,
'\0')); // account for NULLs as necessary
if (data_sp->GetBytes() == nullptr) {
result.AppendErrorWithFormat(
"can't allocate 0x%" PRIx64
" bytes for the memory read buffer, specify a smaller size to read",
(uint64_t)((item_byte_size + 1) * item_count));
result.SetStatus(eReturnStatusFailed);
return false;
}
uint8_t *data_ptr = data_sp->GetBytes();
auto data_addr = addr;
auto count = item_count;
item_count = 0;
bool break_on_no_NULL = false;
while (item_count < count) {
std::string buffer;
buffer.resize(item_byte_size + 1, 0);
Error error;
size_t read = target->ReadCStringFromMemory(data_addr, &buffer[0],
item_byte_size + 1, error);
if (error.Fail()) {
result.AppendErrorWithFormat(
"failed to read memory from 0x%" PRIx64 ".\n", addr);
result.SetStatus(eReturnStatusFailed);
return false;
}
if (item_byte_size == read) {
result.AppendWarningWithFormat(
"unable to find a NULL terminated string at 0x%" PRIx64
".Consider increasing the maximum read length.\n",
data_addr);
--read;
break_on_no_NULL = true;
} else
++read; // account for final NULL byte
memcpy(data_ptr, &buffer[0], read);
data_ptr += read;
data_addr += read;
bytes_read += read;
item_count++; // if we break early we know we only read item_count
// strings
if (break_on_no_NULL)
break;
}
data_sp.reset(new DataBufferHeap(data_sp->GetBytes(), bytes_read + 1));
}
m_next_addr = addr + bytes_read;
m_prev_byte_size = bytes_read;
m_prev_format_options = m_format_options;
m_prev_memory_options = m_memory_options;
m_prev_outfile_options = m_outfile_options;
m_prev_varobj_options = m_varobj_options;
m_prev_clang_ast_type = clang_ast_type;
StreamFile outfile_stream;
Stream *output_stream = nullptr;
const FileSpec &outfile_spec =
m_outfile_options.GetFile().GetCurrentValue();
if (outfile_spec) {
char path[PATH_MAX];
outfile_spec.GetPath(path, sizeof(path));
uint32_t open_options =
File::eOpenOptionWrite | File::eOpenOptionCanCreate;
const bool append = m_outfile_options.GetAppend().GetCurrentValue();
if (append)
open_options |= File::eOpenOptionAppend;
if (outfile_stream.GetFile().Open(path, open_options).Success()) {
if (m_memory_options.m_output_as_binary) {
const size_t bytes_written =
outfile_stream.Write(data_sp->GetBytes(), bytes_read);
if (bytes_written > 0) {
result.GetOutputStream().Printf(
"%zi bytes %s to '%s'\n", bytes_written,
append ? "appended" : "written", path);
return true;
} else {
result.AppendErrorWithFormat("Failed to write %" PRIu64
" bytes to '%s'.\n",
(uint64_t)bytes_read, path);
result.SetStatus(eReturnStatusFailed);
return false;
}
} else {
// We are going to write ASCII to the file just point the
// output_stream to our outfile_stream...
output_stream = &outfile_stream;
}
} else {
result.AppendErrorWithFormat("Failed to open file '%s' for %s.\n", path,
append ? "append" : "write");
result.SetStatus(eReturnStatusFailed);
return false;
}
} else {
output_stream = &result.GetOutputStream();
}
ExecutionContextScope *exe_scope = m_exe_ctx.GetBestExecutionContextScope();
if (clang_ast_type.GetOpaqueQualType()) {
for (uint32_t i = 0; i < item_count; ++i) {
addr_t item_addr = addr + (i * item_byte_size);
Address address(item_addr);
StreamString name_strm;
name_strm.Printf("0x%" PRIx64, item_addr);
ValueObjectSP valobj_sp(ValueObjectMemory::Create(
exe_scope, name_strm.GetString().c_str(), address, clang_ast_type));
if (valobj_sp) {
Format format = m_format_options.GetFormat();
if (format != eFormatDefault)
valobj_sp->SetFormat(format);
DumpValueObjectOptions options(m_varobj_options.GetAsDumpOptions(
eLanguageRuntimeDescriptionDisplayVerbosityFull, format));
valobj_sp->Dump(*output_stream, options);
} else {
result.AppendErrorWithFormat(
"failed to create a value object for: (%s) %s\n",
view_as_type_cstr, name_strm.GetString().c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
}
return true;
}
result.SetStatus(eReturnStatusSuccessFinishResult);
DataExtractor data(data_sp, target->GetArchitecture().GetByteOrder(),
target->GetArchitecture().GetAddressByteSize(),
target->GetArchitecture().GetDataByteSize());
Format format = m_format_options.GetFormat();
if (((format == eFormatChar) || (format == eFormatCharPrintable)) &&
(item_byte_size != 1)) {
// if a count was not passed, or it is 1
if (!m_format_options.GetCountValue().OptionWasSet() || item_count == 1) {
// this turns requests such as
// memory read -fc -s10 -c1 *charPtrPtr
// which make no sense (what is a char of size 10?)
// into a request for fetching 10 chars of size 1 from the same memory
// location
format = eFormatCharArray;
item_count = item_byte_size;
item_byte_size = 1;
} else {
// here we passed a count, and it was not 1
// so we have a byte_size and a count
// we could well multiply those, but instead let's just fail
result.AppendErrorWithFormat(
"reading memory as characters of size %" PRIu64 " is not supported",
(uint64_t)item_byte_size);
result.SetStatus(eReturnStatusFailed);
return false;
}
}
assert(output_stream);
size_t bytes_dumped =
data.Dump(output_stream, 0, format, item_byte_size, item_count,
num_per_line / target->GetArchitecture().GetDataByteSize(),
addr, 0, 0, exe_scope);
m_next_addr = addr + bytes_dumped;
output_stream->EOL();
return true;
}
OptionGroupOptions m_option_group;
OptionGroupFormat m_format_options;
OptionGroupReadMemory m_memory_options;
OptionGroupOutputFile m_outfile_options;
OptionGroupValueObjectDisplay m_varobj_options;
lldb::addr_t m_next_addr;
lldb::addr_t m_prev_byte_size;
OptionGroupFormat m_prev_format_options;
OptionGroupReadMemory m_prev_memory_options;
OptionGroupOutputFile m_prev_outfile_options;
OptionGroupValueObjectDisplay m_prev_varobj_options;
CompilerType m_prev_clang_ast_type;
};
OptionDefinition g_memory_find_option_table[] = {
// clang-format off
{LLDB_OPT_SET_1, true, "expression", 'e', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeExpression, "Evaluate an expression to obtain a byte pattern."},
{LLDB_OPT_SET_2, true, "string", 's', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeName, "Use text to find a byte pattern."},
{LLDB_OPT_SET_ALL, false, "count", 'c', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeCount, "How many times to perform the search."},
{LLDB_OPT_SET_ALL, false, "dump-offset", 'o', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeOffset, "When dumping memory for a match, an offset from the match location to start dumping from."},
// clang-format on
};
//----------------------------------------------------------------------
// Find the specified data in memory
//----------------------------------------------------------------------
class CommandObjectMemoryFind : public CommandObjectParsed {
public:
class OptionGroupFindMemory : public OptionGroup {
public:
OptionGroupFindMemory() : OptionGroup(), m_count(1), m_offset(0) {}
~OptionGroupFindMemory() override = default;
uint32_t GetNumDefinitions() override {
return sizeof(g_memory_find_option_table) / sizeof(OptionDefinition);
}
const OptionDefinition *GetDefinitions() override {
return g_memory_find_option_table;
}
Error SetOptionValue(uint32_t option_idx, const char *option_arg,
ExecutionContext *execution_context) override {
Error error;
const int short_option =
g_memory_find_option_table[option_idx].short_option;
switch (short_option) {
case 'e':
m_expr.SetValueFromString(option_arg);
break;
case 's':
m_string.SetValueFromString(option_arg);
break;
case 'c':
if (m_count.SetValueFromString(option_arg).Fail())
error.SetErrorString("unrecognized value for count");
break;
case 'o':
if (m_offset.SetValueFromString(option_arg).Fail())
error.SetErrorString("unrecognized value for dump-offset");
break;
default:
error.SetErrorStringWithFormat("unrecognized short option '%c'",
short_option);
break;
}
return error;
}
void OptionParsingStarting(ExecutionContext *execution_context) override {
m_expr.Clear();
m_string.Clear();
m_count.Clear();
}
OptionValueString m_expr;
OptionValueString m_string;
OptionValueUInt64 m_count;
OptionValueUInt64 m_offset;
};
CommandObjectMemoryFind(CommandInterpreter &interpreter)
: CommandObjectParsed(
interpreter, "memory find",
"Find a value in the memory of the current target process.",
nullptr, eCommandRequiresProcess | eCommandProcessMustBeLaunched),
m_option_group(), m_memory_options() {
CommandArgumentEntry arg1;
CommandArgumentEntry arg2;
CommandArgumentData addr_arg;
CommandArgumentData value_arg;
// Define the first (and only) variant of this arg.
addr_arg.arg_type = eArgTypeAddressOrExpression;
addr_arg.arg_repetition = eArgRepeatPlain;
// There is only one variant this argument could be; put it into the
// argument entry.
arg1.push_back(addr_arg);
// Define the first (and only) variant of this arg.
value_arg.arg_type = eArgTypeAddressOrExpression;
value_arg.arg_repetition = eArgRepeatPlain;
// There is only one variant this argument could be; put it into the
// argument entry.
arg2.push_back(value_arg);
// Push the data for the first argument into the m_arguments vector.
m_arguments.push_back(arg1);
m_arguments.push_back(arg2);
m_option_group.Append(&m_memory_options);
m_option_group.Finalize();
}
~CommandObjectMemoryFind() override = default;
Options *GetOptions() override { return &m_option_group; }
protected:
class ProcessMemoryIterator {
public:
ProcessMemoryIterator(ProcessSP process_sp, lldb::addr_t base)
: m_process_sp(process_sp), m_base_addr(base), m_is_valid(true) {
lldbassert(process_sp.get() != nullptr);
}
bool IsValid() { return m_is_valid; }
uint8_t operator[](lldb::addr_t offset) {
if (!IsValid())
return 0;
uint8_t retval = 0;
Error error;
if (0 ==
m_process_sp->ReadMemory(m_base_addr + offset, &retval, 1, error)) {
m_is_valid = false;
return 0;
}
return retval;
}
private:
ProcessSP m_process_sp;
lldb::addr_t m_base_addr;
bool m_is_valid;
};
bool DoExecute(Args &command, CommandReturnObject &result) override {
// No need to check "process" for validity as eCommandRequiresProcess
// ensures it is valid
Process *process = m_exe_ctx.GetProcessPtr();
const size_t argc = command.GetArgumentCount();
if (argc != 2) {
result.AppendError("two addresses needed for memory find");
return false;
}
Error error;
lldb::addr_t low_addr =
Args::StringToAddress(&m_exe_ctx, command.GetArgumentAtIndex(0),
LLDB_INVALID_ADDRESS, &error);
if (low_addr == LLDB_INVALID_ADDRESS || error.Fail()) {
result.AppendError("invalid low address");
return false;
}
lldb::addr_t high_addr =
Args::StringToAddress(&m_exe_ctx, command.GetArgumentAtIndex(1),
LLDB_INVALID_ADDRESS, &error);
if (high_addr == LLDB_INVALID_ADDRESS || error.Fail()) {
result.AppendError("invalid high address");
return false;
}
if (high_addr <= low_addr) {
result.AppendError(
"starting address must be smaller than ending address");
return false;
}
lldb::addr_t found_location = LLDB_INVALID_ADDRESS;
DataBufferHeap buffer;
if (m_memory_options.m_string.OptionWasSet())
buffer.CopyData(m_memory_options.m_string.GetStringValue(),
strlen(m_memory_options.m_string.GetStringValue()));
else if (m_memory_options.m_expr.OptionWasSet()) {
StackFrame *frame = m_exe_ctx.GetFramePtr();
ValueObjectSP result_sp;
if ((eExpressionCompleted ==
process->GetTarget().EvaluateExpression(
m_memory_options.m_expr.GetStringValue(), frame, result_sp)) &&
result_sp) {
uint64_t value = result_sp->GetValueAsUnsigned(0);
switch (result_sp->GetCompilerType().GetByteSize(nullptr)) {
case 1: {
uint8_t byte = (uint8_t)value;
buffer.CopyData(&byte, 1);
} break;
case 2: {
uint16_t word = (uint16_t)value;
buffer.CopyData(&word, 2);
} break;
case 4: {
uint32_t lword = (uint32_t)value;
buffer.CopyData(&lword, 4);
} break;
case 8: {
buffer.CopyData(&value, 8);
} break;
case 3:
case 5:
case 6:
case 7:
result.AppendError("unknown type. pass a string instead");
return false;
default:
result.AppendError(
"result size larger than 8 bytes. pass a string instead");
return false;
}
} else {
result.AppendError(
"expression evaluation failed. pass a string instead");
return false;
}
} else {
result.AppendError(
"please pass either a block of text, or an expression to evaluate.");
return false;
}
size_t count = m_memory_options.m_count.GetCurrentValue();
found_location = low_addr;
bool ever_found = false;
while (count) {
found_location = FastSearch(found_location, high_addr, buffer.GetBytes(),
buffer.GetByteSize());
if (found_location == LLDB_INVALID_ADDRESS) {
if (!ever_found) {
result.AppendMessage("data not found within the range.\n");
result.SetStatus(lldb::eReturnStatusSuccessFinishNoResult);
} else
result.AppendMessage("no more matches within the range.\n");
break;
}
result.AppendMessageWithFormat("data found at location: 0x%" PRIx64 "\n",
found_location);
DataBufferHeap dumpbuffer(32, 0);
process->ReadMemory(
found_location + m_memory_options.m_offset.GetCurrentValue(),
dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(), error);
if (!error.Fail()) {
DataExtractor data(dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(),
process->GetByteOrder(),
process->GetAddressByteSize());
data.Dump(&result.GetOutputStream(), 0, lldb::eFormatBytesWithASCII, 1,
dumpbuffer.GetByteSize(), 16,
found_location + m_memory_options.m_offset.GetCurrentValue(),
0, 0);
result.GetOutputStream().EOL();
}
--count;
found_location++;
ever_found = true;
}
result.SetStatus(lldb::eReturnStatusSuccessFinishResult);
return true;
}
lldb::addr_t FastSearch(lldb::addr_t low, lldb::addr_t high, uint8_t *buffer,
size_t buffer_size) {
const size_t region_size = high - low;
if (region_size < buffer_size)
return LLDB_INVALID_ADDRESS;
std::vector<size_t> bad_char_heuristic(256, buffer_size);
ProcessSP process_sp = m_exe_ctx.GetProcessSP();
ProcessMemoryIterator iterator(process_sp, low);
for (size_t idx = 0; idx < buffer_size - 1; idx++) {
decltype(bad_char_heuristic)::size_type bcu_idx = buffer[idx];
bad_char_heuristic[bcu_idx] = buffer_size - idx - 1;
}
for (size_t s = 0; s <= (region_size - buffer_size);) {
int64_t j = buffer_size - 1;
while (j >= 0 && buffer[j] == iterator[s + j])
j--;
if (j < 0)
return low + s;
else
s += bad_char_heuristic[iterator[s + buffer_size - 1]];
}
return LLDB_INVALID_ADDRESS;
}
OptionGroupOptions m_option_group;
OptionGroupFindMemory m_memory_options;
};
OptionDefinition g_memory_write_option_table[] = {
// clang-format off
{LLDB_OPT_SET_1, true, "infile", 'i', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeFilename, "Write memory using the contents of a file."},
{LLDB_OPT_SET_1, false, "offset", 'o', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeOffset, "Start writing bytes from an offset within the input file."},
// clang-format on
};
//----------------------------------------------------------------------
// Write memory to the inferior process
//----------------------------------------------------------------------
class CommandObjectMemoryWrite : public CommandObjectParsed {
public:
class OptionGroupWriteMemory : public OptionGroup {
public:
OptionGroupWriteMemory() : OptionGroup() {}
~OptionGroupWriteMemory() override = default;
uint32_t GetNumDefinitions() override {
return sizeof(g_memory_write_option_table) / sizeof(OptionDefinition);
}
const OptionDefinition *GetDefinitions() override {
return g_memory_write_option_table;
}
Error SetOptionValue(uint32_t option_idx, const char *option_arg,
ExecutionContext *execution_context) override {
Error error;
const int short_option =
g_memory_write_option_table[option_idx].short_option;
switch (short_option) {
case 'i':
m_infile.SetFile(option_arg, true);
if (!m_infile.Exists()) {
m_infile.Clear();
error.SetErrorStringWithFormat("input file does not exist: '%s'",
option_arg);
}
break;
case 'o': {
bool success;
m_infile_offset = StringConvert::ToUInt64(option_arg, 0, 0, &success);
if (!success) {
error.SetErrorStringWithFormat("invalid offset string '%s'",
option_arg);
}
} break;
default:
error.SetErrorStringWithFormat("unrecognized short option '%c'",
short_option);
break;
}
return error;
}
void OptionParsingStarting(ExecutionContext *execution_context) override {
m_infile.Clear();
m_infile_offset = 0;
}
FileSpec m_infile;
off_t m_infile_offset;
};
CommandObjectMemoryWrite(CommandInterpreter &interpreter)
: CommandObjectParsed(
interpreter, "memory write",
"Write to the memory of the current target process.", nullptr,
eCommandRequiresProcess | eCommandProcessMustBeLaunched),
m_option_group(), m_format_options(eFormatBytes, 1, UINT64_MAX),
m_memory_options() {
CommandArgumentEntry arg1;
CommandArgumentEntry arg2;
CommandArgumentData addr_arg;
CommandArgumentData value_arg;
// Define the first (and only) variant of this arg.
addr_arg.arg_type = eArgTypeAddress;
addr_arg.arg_repetition = eArgRepeatPlain;
// There is only one variant this argument could be; put it into the
// argument entry.
arg1.push_back(addr_arg);
// Define the first (and only) variant of this arg.
value_arg.arg_type = eArgTypeValue;
value_arg.arg_repetition = eArgRepeatPlus;
// There is only one variant this argument could be; put it into the
// argument entry.
arg2.push_back(value_arg);
// Push the data for the first argument into the m_arguments vector.
m_arguments.push_back(arg1);
m_arguments.push_back(arg2);
m_option_group.Append(&m_format_options,
OptionGroupFormat::OPTION_GROUP_FORMAT,
LLDB_OPT_SET_1);
m_option_group.Append(&m_format_options,
OptionGroupFormat::OPTION_GROUP_SIZE,
LLDB_OPT_SET_1 | LLDB_OPT_SET_2);
m_option_group.Append(&m_memory_options, LLDB_OPT_SET_ALL, LLDB_OPT_SET_2);
m_option_group.Finalize();
}
~CommandObjectMemoryWrite() override = default;
Options *GetOptions() override { return &m_option_group; }
bool UIntValueIsValidForSize(uint64_t uval64, size_t total_byte_size) {
if (total_byte_size > 8)
return false;
if (total_byte_size == 8)
return true;
const uint64_t max = ((uint64_t)1 << (uint64_t)(total_byte_size * 8)) - 1;
return uval64 <= max;
}
bool SIntValueIsValidForSize(int64_t sval64, size_t total_byte_size) {
if (total_byte_size > 8)
return false;
if (total_byte_size == 8)
return true;
const int64_t max = ((int64_t)1 << (uint64_t)(total_byte_size * 8 - 1)) - 1;
const int64_t min = ~(max);
return min <= sval64 && sval64 <= max;
}
protected:
bool DoExecute(Args &command, CommandReturnObject &result) override {
// No need to check "process" for validity as eCommandRequiresProcess
// ensures it is valid
Process *process = m_exe_ctx.GetProcessPtr();
const size_t argc = command.GetArgumentCount();
if (m_memory_options.m_infile) {
if (argc < 1) {
result.AppendErrorWithFormat(
"%s takes a destination address when writing file contents.\n",
m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
} else if (argc < 2) {
result.AppendErrorWithFormat(
"%s takes a destination address and at least one value.\n",
m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
StreamString buffer(
Stream::eBinary,
process->GetTarget().GetArchitecture().GetAddressByteSize(),
process->GetTarget().GetArchitecture().GetByteOrder());
OptionValueUInt64 &byte_size_value = m_format_options.GetByteSizeValue();
size_t item_byte_size = byte_size_value.GetCurrentValue();
Error error;
lldb::addr_t addr =
Args::StringToAddress(&m_exe_ctx, command.GetArgumentAtIndex(0),
LLDB_INVALID_ADDRESS, &error);
if (addr == LLDB_INVALID_ADDRESS) {
result.AppendError("invalid address expression\n");
result.AppendError(error.AsCString());
result.SetStatus(eReturnStatusFailed);
return false;
}
if (m_memory_options.m_infile) {
size_t length = SIZE_MAX;
if (item_byte_size > 1)
length = item_byte_size;
lldb::DataBufferSP data_sp(m_memory_options.m_infile.ReadFileContents(
m_memory_options.m_infile_offset, length));
if (data_sp) {
length = data_sp->GetByteSize();
if (length > 0) {
Error error;
size_t bytes_written =
process->WriteMemory(addr, data_sp->GetBytes(), length, error);
if (bytes_written == length) {
// All bytes written
result.GetOutputStream().Printf(
"%" PRIu64 " bytes were written to 0x%" PRIx64 "\n",
(uint64_t)bytes_written, addr);
result.SetStatus(eReturnStatusSuccessFinishResult);
} else if (bytes_written > 0) {
// Some byte written
result.GetOutputStream().Printf(
"%" PRIu64 " bytes of %" PRIu64
" requested were written to 0x%" PRIx64 "\n",
(uint64_t)bytes_written, (uint64_t)length, addr);
result.SetStatus(eReturnStatusSuccessFinishResult);
} else {
result.AppendErrorWithFormat("Memory write to 0x%" PRIx64
" failed: %s.\n",
addr, error.AsCString());
result.SetStatus(eReturnStatusFailed);
}
}
} else {
result.AppendErrorWithFormat("Unable to read contents of file.\n");
result.SetStatus(eReturnStatusFailed);
}
return result.Succeeded();
} else if (item_byte_size == 0) {
if (m_format_options.GetFormat() == eFormatPointer)
item_byte_size = buffer.GetAddressByteSize();
else
item_byte_size = 1;
}
command.Shift(); // shift off the address argument
uint64_t uval64;
int64_t sval64;
bool success = false;
const size_t num_value_args = command.GetArgumentCount();
for (size_t i = 0; i < num_value_args; ++i) {
const char *value_str = command.GetArgumentAtIndex(i);
switch (m_format_options.GetFormat()) {
case kNumFormats:
case eFormatFloat: // TODO: add support for floats soon
case eFormatCharPrintable:
case eFormatBytesWithASCII:
case eFormatComplex:
case eFormatEnum:
case eFormatUnicode16:
case eFormatUnicode32:
case eFormatVectorOfChar:
case eFormatVectorOfSInt8:
case eFormatVectorOfUInt8:
case eFormatVectorOfSInt16:
case eFormatVectorOfUInt16:
case eFormatVectorOfSInt32:
case eFormatVectorOfUInt32:
case eFormatVectorOfSInt64:
case eFormatVectorOfUInt64:
case eFormatVectorOfFloat16:
case eFormatVectorOfFloat32:
case eFormatVectorOfFloat64:
case eFormatVectorOfUInt128:
case eFormatOSType:
case eFormatComplexInteger:
case eFormatAddressInfo:
case eFormatHexFloat:
case eFormatInstruction:
case eFormatVoid:
result.AppendError("unsupported format for writing memory");
result.SetStatus(eReturnStatusFailed);
return false;
case eFormatDefault:
case eFormatBytes:
case eFormatHex:
case eFormatHexUppercase:
case eFormatPointer:
// Decode hex bytes
uval64 = StringConvert::ToUInt64(value_str, UINT64_MAX, 16, &success);
if (!success) {
result.AppendErrorWithFormat(
"'%s' is not a valid hex string value.\n", value_str);
result.SetStatus(eReturnStatusFailed);
return false;
} else if (!UIntValueIsValidForSize(uval64, item_byte_size)) {
result.AppendErrorWithFormat("Value 0x%" PRIx64
" is too large to fit in a %" PRIu64
" byte unsigned integer value.\n",
uval64, (uint64_t)item_byte_size);
result.SetStatus(eReturnStatusFailed);
return false;
}
buffer.PutMaxHex64(uval64, item_byte_size);
break;
case eFormatBoolean:
uval64 = Args::StringToBoolean(value_str, false, &success);
if (!success) {
result.AppendErrorWithFormat(
"'%s' is not a valid boolean string value.\n", value_str);
result.SetStatus(eReturnStatusFailed);
return false;
}
buffer.PutMaxHex64(uval64, item_byte_size);
break;
case eFormatBinary:
uval64 = StringConvert::ToUInt64(value_str, UINT64_MAX, 2, &success);
if (!success) {
result.AppendErrorWithFormat(
"'%s' is not a valid binary string value.\n", value_str);
result.SetStatus(eReturnStatusFailed);
return false;
} else if (!UIntValueIsValidForSize(uval64, item_byte_size)) {
result.AppendErrorWithFormat("Value 0x%" PRIx64
" is too large to fit in a %" PRIu64
" byte unsigned integer value.\n",
uval64, (uint64_t)item_byte_size);
result.SetStatus(eReturnStatusFailed);
return false;
}
buffer.PutMaxHex64(uval64, item_byte_size);
break;
case eFormatCharArray:
case eFormatChar:
case eFormatCString:
if (value_str[0]) {
size_t len = strlen(value_str);
// Include the NULL for C strings...
if (m_format_options.GetFormat() == eFormatCString)
++len;
Error error;
if (process->WriteMemory(addr, value_str, len, error) == len) {
addr += len;
} else {
result.AppendErrorWithFormat("Memory write to 0x%" PRIx64
" failed: %s.\n",
addr, error.AsCString());
result.SetStatus(eReturnStatusFailed);
return false;
}
}
break;
case eFormatDecimal:
sval64 = StringConvert::ToSInt64(value_str, INT64_MAX, 0, &success);
if (!success) {
result.AppendErrorWithFormat(
"'%s' is not a valid signed decimal value.\n", value_str);
result.SetStatus(eReturnStatusFailed);
return false;
} else if (!SIntValueIsValidForSize(sval64, item_byte_size)) {
result.AppendErrorWithFormat(
"Value %" PRIi64 " is too large or small to fit in a %" PRIu64
" byte signed integer value.\n",
sval64, (uint64_t)item_byte_size);
result.SetStatus(eReturnStatusFailed);
return false;
}
buffer.PutMaxHex64(sval64, item_byte_size);
break;
case eFormatUnsigned:
uval64 = StringConvert::ToUInt64(value_str, UINT64_MAX, 0, &success);
if (!success) {
result.AppendErrorWithFormat(
"'%s' is not a valid unsigned decimal string value.\n",
value_str);
result.SetStatus(eReturnStatusFailed);
return false;
} else if (!UIntValueIsValidForSize(uval64, item_byte_size)) {
result.AppendErrorWithFormat("Value %" PRIu64
" is too large to fit in a %" PRIu64
" byte unsigned integer value.\n",
uval64, (uint64_t)item_byte_size);
result.SetStatus(eReturnStatusFailed);
return false;
}
buffer.PutMaxHex64(uval64, item_byte_size);
break;
case eFormatOctal:
uval64 = StringConvert::ToUInt64(value_str, UINT64_MAX, 8, &success);
if (!success) {
result.AppendErrorWithFormat(
"'%s' is not a valid octal string value.\n", value_str);
result.SetStatus(eReturnStatusFailed);
return false;
} else if (!UIntValueIsValidForSize(uval64, item_byte_size)) {
result.AppendErrorWithFormat("Value %" PRIo64
" is too large to fit in a %" PRIu64
" byte unsigned integer value.\n",
uval64, (uint64_t)item_byte_size);
result.SetStatus(eReturnStatusFailed);
return false;
}
buffer.PutMaxHex64(uval64, item_byte_size);
break;
}
}
if (!buffer.GetString().empty()) {
Error error;
if (process->WriteMemory(addr, buffer.GetString().c_str(),
buffer.GetString().size(),
error) == buffer.GetString().size())
return true;
else {
result.AppendErrorWithFormat("Memory write to 0x%" PRIx64
" failed: %s.\n",
addr, error.AsCString());
result.SetStatus(eReturnStatusFailed);
return false;
}
}
return true;
}
OptionGroupOptions m_option_group;
OptionGroupFormat m_format_options;
OptionGroupWriteMemory m_memory_options;
};
//----------------------------------------------------------------------
// Get malloc/free history of a memory address.
//----------------------------------------------------------------------
class CommandObjectMemoryHistory : public CommandObjectParsed {
public:
CommandObjectMemoryHistory(CommandInterpreter &interpreter)
: CommandObjectParsed(
interpreter, "memory history", "Print recorded stack traces for "
"allocation/deallocation events "
"associated with an address.",
nullptr,
eCommandRequiresTarget | eCommandRequiresProcess |
eCommandProcessMustBePaused | eCommandProcessMustBeLaunched) {
CommandArgumentEntry arg1;
CommandArgumentData addr_arg;
// Define the first (and only) variant of this arg.
addr_arg.arg_type = eArgTypeAddress;
addr_arg.arg_repetition = eArgRepeatPlain;
// There is only one variant this argument could be; put it into the
// argument entry.
arg1.push_back(addr_arg);
// Push the data for the first argument into the m_arguments vector.
m_arguments.push_back(arg1);
}
~CommandObjectMemoryHistory() override = default;
const char *GetRepeatCommand(Args &current_command_args,
uint32_t index) override {
return m_cmd_name.c_str();
}
protected:
bool DoExecute(Args &command, CommandReturnObject &result) override {
const size_t argc = command.GetArgumentCount();
if (argc == 0 || argc > 1) {
result.AppendErrorWithFormat("%s takes an address expression",
m_cmd_name.c_str());
result.SetStatus(eReturnStatusFailed);
return false;
}
Error error;
lldb::addr_t addr =
Args::StringToAddress(&m_exe_ctx, command.GetArgumentAtIndex(0),
LLDB_INVALID_ADDRESS, &error);
if (addr == LLDB_INVALID_ADDRESS) {
result.AppendError("invalid address expression");
result.AppendError(error.AsCString());
result.SetStatus(eReturnStatusFailed);
return false;
}
Stream *output_stream = &result.GetOutputStream();
const ProcessSP &process_sp = m_exe_ctx.GetProcessSP();
const MemoryHistorySP &memory_history =
MemoryHistory::FindPlugin(process_sp);
if (!memory_history) {
result.AppendError("no available memory history provider");
result.SetStatus(eReturnStatusFailed);
return false;
}
HistoryThreads thread_list = memory_history->GetHistoryThreads(addr);
for (auto thread : thread_list) {
thread->GetStatus(*output_stream, 0, UINT32_MAX, 0);
}
result.SetStatus(eReturnStatusSuccessFinishResult);
return true;
}
};
//-------------------------------------------------------------------------
// CommandObjectMemoryRegion
//-------------------------------------------------------------------------
#pragma mark CommandObjectMemoryRegion
class CommandObjectMemoryRegion : public CommandObjectParsed {
public:
CommandObjectMemoryRegion(CommandInterpreter &interpreter)
: CommandObjectParsed(interpreter, "memory region",
"Get information on the memory region containing "
"an address in the current target process.",
"memory region ADDR",
eCommandRequiresProcess | eCommandTryTargetAPILock |
eCommandProcessMustBeLaunched),
m_prev_end_addr(LLDB_INVALID_ADDRESS) {}
~CommandObjectMemoryRegion() override = default;
protected:
bool DoExecute(Args &command, CommandReturnObject &result) override {
ProcessSP process_sp = m_exe_ctx.GetProcessSP();
if (process_sp) {
Error error;
lldb::addr_t load_addr = m_prev_end_addr;
m_prev_end_addr = LLDB_INVALID_ADDRESS;
const size_t argc = command.GetArgumentCount();
if (argc > 1 || (argc == 0 && load_addr == LLDB_INVALID_ADDRESS)) {
result.AppendErrorWithFormat("'%s' takes one argument:\nUsage: %s\n",
m_cmd_name.c_str(), m_cmd_syntax.c_str());
result.SetStatus(eReturnStatusFailed);
} else {
const char *load_addr_cstr = command.GetArgumentAtIndex(0);
if (command.GetArgumentCount() == 1) {
load_addr = Args::StringToAddress(&m_exe_ctx, load_addr_cstr,
LLDB_INVALID_ADDRESS, &error);
if (error.Fail() || load_addr == LLDB_INVALID_ADDRESS) {
result.AppendErrorWithFormat(
"invalid address argument \"%s\": %s\n", load_addr_cstr,
error.AsCString());
result.SetStatus(eReturnStatusFailed);
}
}
lldb_private::MemoryRegionInfo range_info;
error = process_sp->GetMemoryRegionInfo(load_addr, range_info);
if (error.Success()) {
lldb_private::Address addr;
ConstString section_name;
if (process_sp->GetTarget().ResolveLoadAddress(load_addr, addr)) {
SectionSP section_sp(addr.GetSection());
if (section_sp) {
// Got the top most section, not the deepest section
while (section_sp->GetParent())
section_sp = section_sp->GetParent();
section_name = section_sp->GetName();
}
}
result.AppendMessageWithFormat(
"[0x%16.16" PRIx64 "-0x%16.16" PRIx64 ") %c%c%c%s%s\n",
range_info.GetRange().GetRangeBase(),
range_info.GetRange().GetRangeEnd(),
range_info.GetReadable() ? 'r' : '-',
range_info.GetWritable() ? 'w' : '-',
range_info.GetExecutable() ? 'x' : '-', section_name ? " " : "",
section_name ? section_name.AsCString() : "");
m_prev_end_addr = range_info.GetRange().GetRangeEnd();
result.SetStatus(eReturnStatusSuccessFinishResult);
} else {
result.SetStatus(eReturnStatusFailed);
result.AppendErrorWithFormat("%s\n", error.AsCString());
}
}
} else {
m_prev_end_addr = LLDB_INVALID_ADDRESS;
result.AppendError("invalid process");
result.SetStatus(eReturnStatusFailed);
}
return result.Succeeded();
}
const char *GetRepeatCommand(Args &current_command_args,
uint32_t index) override {
// If we repeat this command, repeat it without any arguments so we can
// show the next memory range
return m_cmd_name.c_str();
}
lldb::addr_t m_prev_end_addr;
};
//-------------------------------------------------------------------------
// CommandObjectMemory
//-------------------------------------------------------------------------
CommandObjectMemory::CommandObjectMemory(CommandInterpreter &interpreter)
: CommandObjectMultiword(
interpreter, "memory",
"Commands for operating on memory in the current target process.",
"memory <subcommand> [<subcommand-options>]") {
LoadSubCommand("find",
CommandObjectSP(new CommandObjectMemoryFind(interpreter)));
LoadSubCommand("read",
CommandObjectSP(new CommandObjectMemoryRead(interpreter)));
LoadSubCommand("write",
CommandObjectSP(new CommandObjectMemoryWrite(interpreter)));
LoadSubCommand("history",
CommandObjectSP(new CommandObjectMemoryHistory(interpreter)));
LoadSubCommand("region",
CommandObjectSP(new CommandObjectMemoryRegion(interpreter)));
}
CommandObjectMemory::~CommandObjectMemory() = default;