forked from OSchip/llvm-project
306 lines
12 KiB
C++
306 lines
12 KiB
C++
//===- VectorUtils.cpp - MLIR Utilities for VectorOps ------------------===//
|
|
//
|
|
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements utility methods for working with the Vector dialect.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Vector/VectorUtils.h"
|
|
#include "mlir/Analysis/LoopAnalysis.h"
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
|
#include "mlir/Dialect/Vector/VectorOps.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/IntegerSet.h"
|
|
#include "mlir/IR/Operation.h"
|
|
#include "mlir/Support/LLVM.h"
|
|
#include "mlir/Support/MathExtras.h"
|
|
#include <numeric>
|
|
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
|
|
using llvm::SetVector;
|
|
|
|
using namespace mlir;
|
|
|
|
/// Return the number of elements of basis, `0` if empty.
|
|
int64_t mlir::computeMaxLinearIndex(ArrayRef<int64_t> basis) {
|
|
if (basis.empty())
|
|
return 0;
|
|
return std::accumulate(basis.begin(), basis.end(), 1,
|
|
std::multiplies<int64_t>());
|
|
}
|
|
|
|
/// Given a shape with sizes greater than 0 along all dimensions,
|
|
/// return the distance, in number of elements, between a slice in a dimension
|
|
/// and the next slice in the same dimension.
|
|
/// e.g. shape[3, 4, 5] -> linearization_basis[20, 5, 1]
|
|
SmallVector<int64_t, 8> mlir::computeStrides(ArrayRef<int64_t> shape) {
|
|
if (shape.empty())
|
|
return {};
|
|
SmallVector<int64_t, 8> tmp;
|
|
tmp.reserve(shape.size());
|
|
int64_t running = 1;
|
|
for (auto size : llvm::reverse(shape)) {
|
|
assert(size > 0 && "size must be nonnegative");
|
|
tmp.push_back(running);
|
|
running *= size;
|
|
}
|
|
return SmallVector<int64_t, 8>(tmp.rbegin(), tmp.rend());
|
|
}
|
|
|
|
SmallVector<int64_t, 4> mlir::computeStrides(ArrayRef<int64_t> shape,
|
|
ArrayRef<int64_t> sizes) {
|
|
int64_t rank = shape.size();
|
|
// Compute the count for each dimension.
|
|
SmallVector<int64_t, 4> sliceDimCounts(rank);
|
|
for (int64_t r = 0; r < rank; ++r)
|
|
sliceDimCounts[r] = ceilDiv(shape[r], sizes[r]);
|
|
// Use that to compute the slice stride for each dimension.
|
|
SmallVector<int64_t, 4> sliceStrides(rank);
|
|
sliceStrides[rank - 1] = 1;
|
|
for (int64_t r = rank - 2; r >= 0; --r)
|
|
sliceStrides[r] = sliceStrides[r + 1] * sliceDimCounts[r + 1];
|
|
return sliceStrides;
|
|
}
|
|
|
|
int64_t mlir::linearize(ArrayRef<int64_t> offsets, ArrayRef<int64_t> basis) {
|
|
assert(offsets.size() == basis.size());
|
|
int64_t linearIndex = 0;
|
|
for (unsigned idx = 0, e = basis.size(); idx < e; ++idx)
|
|
linearIndex += offsets[idx] * basis[idx];
|
|
return linearIndex;
|
|
}
|
|
|
|
SmallVector<int64_t, 4> mlir::delinearize(ArrayRef<int64_t> sliceStrides,
|
|
int64_t index) {
|
|
int64_t rank = sliceStrides.size();
|
|
SmallVector<int64_t, 4> vectorOffsets(rank);
|
|
for (int64_t r = 0; r < rank; ++r) {
|
|
assert(sliceStrides[r] > 0);
|
|
vectorOffsets[r] = index / sliceStrides[r];
|
|
index %= sliceStrides[r];
|
|
}
|
|
return vectorOffsets;
|
|
}
|
|
|
|
SmallVector<int64_t, 4> mlir::computeElementOffsetsFromVectorSliceOffsets(
|
|
ArrayRef<int64_t> sizes, ArrayRef<int64_t> vectorOffsets) {
|
|
SmallVector<int64_t, 4> result;
|
|
for (auto it : llvm::zip(vectorOffsets, sizes))
|
|
result.push_back(std::get<0>(it) * std::get<1>(it));
|
|
return result;
|
|
}
|
|
|
|
SmallVector<int64_t, 4>
|
|
mlir::computeSliceSizes(ArrayRef<int64_t> shape, ArrayRef<int64_t> sizes,
|
|
ArrayRef<int64_t> elementOffsets) {
|
|
int64_t rank = shape.size();
|
|
SmallVector<int64_t, 4> sliceSizes(rank);
|
|
for (unsigned r = 0; r < rank; ++r)
|
|
sliceSizes[r] = std::min(sizes[r], shape[r] - elementOffsets[r]);
|
|
return sliceSizes;
|
|
}
|
|
|
|
Optional<SmallVector<int64_t, 4>> mlir::shapeRatio(ArrayRef<int64_t> superShape,
|
|
ArrayRef<int64_t> subShape) {
|
|
if (superShape.size() < subShape.size()) {
|
|
return Optional<SmallVector<int64_t, 4>>();
|
|
}
|
|
|
|
// Starting from the end, compute the integer divisors.
|
|
std::vector<int64_t> result;
|
|
result.reserve(superShape.size());
|
|
int64_t superSize = 0, subSize = 0;
|
|
for (auto it :
|
|
llvm::zip(llvm::reverse(superShape), llvm::reverse(subShape))) {
|
|
std::tie(superSize, subSize) = it;
|
|
assert(superSize > 0 && "superSize must be > 0");
|
|
assert(subSize > 0 && "subSize must be > 0");
|
|
|
|
// If integral division does not occur, return and let the caller decide.
|
|
if (superSize % subSize != 0)
|
|
return None;
|
|
result.push_back(superSize / subSize);
|
|
}
|
|
|
|
// At this point we computed the ratio (in reverse) for the common
|
|
// size. Fill with the remaining entries from the super-vector shape (still in
|
|
// reverse).
|
|
int commonSize = subShape.size();
|
|
std::copy(superShape.rbegin() + commonSize, superShape.rend(),
|
|
std::back_inserter(result));
|
|
|
|
assert(result.size() == superShape.size() &&
|
|
"super to sub shape ratio is not of the same size as the super rank");
|
|
|
|
// Reverse again to get it back in the proper order and return.
|
|
return SmallVector<int64_t, 4>{result.rbegin(), result.rend()};
|
|
}
|
|
|
|
Optional<SmallVector<int64_t, 4>> mlir::shapeRatio(VectorType superVectorType,
|
|
VectorType subVectorType) {
|
|
assert(superVectorType.getElementType() == subVectorType.getElementType() &&
|
|
"vector types must be of the same elemental type");
|
|
return shapeRatio(superVectorType.getShape(), subVectorType.getShape());
|
|
}
|
|
|
|
/// Constructs a permutation map from memref indices to vector dimension.
|
|
///
|
|
/// The implementation uses the knowledge of the mapping of enclosing loop to
|
|
/// vector dimension. `enclosingLoopToVectorDim` carries this information as a
|
|
/// map with:
|
|
/// - keys representing "vectorized enclosing loops";
|
|
/// - values representing the corresponding vector dimension.
|
|
/// The algorithm traverses "vectorized enclosing loops" and extracts the
|
|
/// at-most-one MemRef index that is invariant along said loop. This index is
|
|
/// guaranteed to be at most one by construction: otherwise the MemRef is not
|
|
/// vectorizable.
|
|
/// If this invariant index is found, it is added to the permutation_map at the
|
|
/// proper vector dimension.
|
|
/// If no index is found to be invariant, 0 is added to the permutation_map and
|
|
/// corresponds to a vector broadcast along that dimension.
|
|
///
|
|
/// Returns an empty AffineMap if `enclosingLoopToVectorDim` is empty,
|
|
/// signalling that no permutation map can be constructed given
|
|
/// `enclosingLoopToVectorDim`.
|
|
///
|
|
/// Examples can be found in the documentation of `makePermutationMap`, in the
|
|
/// header file.
|
|
static AffineMap makePermutationMap(
|
|
ArrayRef<Value> indices,
|
|
const DenseMap<Operation *, unsigned> &enclosingLoopToVectorDim) {
|
|
if (enclosingLoopToVectorDim.empty())
|
|
return AffineMap();
|
|
MLIRContext *context =
|
|
enclosingLoopToVectorDim.begin()->getFirst()->getContext();
|
|
SmallVector<AffineExpr, 4> perm(enclosingLoopToVectorDim.size(),
|
|
getAffineConstantExpr(0, context));
|
|
|
|
for (auto kvp : enclosingLoopToVectorDim) {
|
|
assert(kvp.second < perm.size());
|
|
auto invariants = getInvariantAccesses(
|
|
cast<AffineForOp>(kvp.first).getInductionVar(), indices);
|
|
unsigned numIndices = indices.size();
|
|
unsigned countInvariantIndices = 0;
|
|
for (unsigned dim = 0; dim < numIndices; ++dim) {
|
|
if (!invariants.count(indices[dim])) {
|
|
assert(perm[kvp.second] == getAffineConstantExpr(0, context) &&
|
|
"permutationMap already has an entry along dim");
|
|
perm[kvp.second] = getAffineDimExpr(dim, context);
|
|
} else {
|
|
++countInvariantIndices;
|
|
}
|
|
}
|
|
assert((countInvariantIndices == numIndices ||
|
|
countInvariantIndices == numIndices - 1) &&
|
|
"Vectorization prerequisite violated: at most 1 index may be "
|
|
"invariant wrt a vectorized loop");
|
|
}
|
|
return AffineMap::get(indices.size(), 0, perm, context);
|
|
}
|
|
|
|
/// Implementation detail that walks up the parents and records the ones with
|
|
/// the specified type.
|
|
/// TODO: could also be implemented as a collect parents followed by a
|
|
/// filter and made available outside this file.
|
|
template <typename T>
|
|
static SetVector<Operation *> getParentsOfType(Operation *op) {
|
|
SetVector<Operation *> res;
|
|
auto *current = op;
|
|
while (auto *parent = current->getParentOp()) {
|
|
if (auto typedParent = dyn_cast<T>(parent)) {
|
|
assert(res.count(parent) == 0 && "Already inserted");
|
|
res.insert(parent);
|
|
}
|
|
current = parent;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/// Returns the enclosing AffineForOp, from closest to farthest.
|
|
static SetVector<Operation *> getEnclosingforOps(Operation *op) {
|
|
return getParentsOfType<AffineForOp>(op);
|
|
}
|
|
|
|
AffineMap mlir::makePermutationMap(
|
|
Operation *op, ArrayRef<Value> indices,
|
|
const DenseMap<Operation *, unsigned> &loopToVectorDim) {
|
|
DenseMap<Operation *, unsigned> enclosingLoopToVectorDim;
|
|
auto enclosingLoops = getEnclosingforOps(op);
|
|
for (auto *forInst : enclosingLoops) {
|
|
auto it = loopToVectorDim.find(forInst);
|
|
if (it != loopToVectorDim.end()) {
|
|
enclosingLoopToVectorDim.insert(*it);
|
|
}
|
|
}
|
|
return ::makePermutationMap(indices, enclosingLoopToVectorDim);
|
|
}
|
|
|
|
bool matcher::operatesOnSuperVectorsOf(Operation &op,
|
|
VectorType subVectorType) {
|
|
// First, extract the vector type and distinguish between:
|
|
// a. ops that *must* lower a super-vector (i.e. vector.transfer_read,
|
|
// vector.transfer_write); and
|
|
// b. ops that *may* lower a super-vector (all other ops).
|
|
// The ops that *may* lower a super-vector only do so if the super-vector to
|
|
// sub-vector ratio exists. The ops that *must* lower a super-vector are
|
|
// explicitly checked for this property.
|
|
/// TODO: there should be a single function for all ops to do this so we
|
|
/// do not have to special case. Maybe a trait, or just a method, unclear atm.
|
|
bool mustDivide = false;
|
|
(void)mustDivide;
|
|
VectorType superVectorType;
|
|
if (auto read = dyn_cast<vector::TransferReadOp>(op)) {
|
|
superVectorType = read.getVectorType();
|
|
mustDivide = true;
|
|
} else if (auto write = dyn_cast<vector::TransferWriteOp>(op)) {
|
|
superVectorType = write.getVectorType();
|
|
mustDivide = true;
|
|
} else if (op.getNumResults() == 0) {
|
|
if (!isa<ReturnOp>(op)) {
|
|
op.emitError("NYI: assuming only return operations can have 0 "
|
|
" results at this point");
|
|
}
|
|
return false;
|
|
} else if (op.getNumResults() == 1) {
|
|
if (auto v = op.getResult(0).getType().dyn_cast<VectorType>()) {
|
|
superVectorType = v;
|
|
} else {
|
|
// Not a vector type.
|
|
return false;
|
|
}
|
|
} else {
|
|
// Not a vector.transfer and has more than 1 result, fail hard for now to
|
|
// wake us up when something changes.
|
|
op.emitError("NYI: operation has more than 1 result");
|
|
return false;
|
|
}
|
|
|
|
// Get the ratio.
|
|
auto ratio = shapeRatio(superVectorType, subVectorType);
|
|
|
|
// Sanity check.
|
|
assert((ratio.hasValue() || !mustDivide) &&
|
|
"vector.transfer operation in which super-vector size is not an"
|
|
" integer multiple of sub-vector size");
|
|
|
|
// This catches cases that are not strictly necessary to have multiplicity but
|
|
// still aren't divisible by the sub-vector shape.
|
|
// This could be useful information if we wanted to reshape at the level of
|
|
// the vector type (but we would have to look at the compute and distinguish
|
|
// between parallel, reduction and possibly other cases.
|
|
if (!ratio.hasValue()) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|