llvm-project/mlir/lib/Dialect/SPIRV/Serialization/Serializer.cpp

1959 lines
73 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===- Serializer.cpp - MLIR SPIR-V Serialization -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the MLIR SPIR-V module to SPIR-V binary serialization.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SPIRV/Serialization.h"
#include "mlir/Dialect/SPIRV/SPIRVAttributes.h"
#include "mlir/Dialect/SPIRV/SPIRVBinaryUtils.h"
#include "mlir/Dialect/SPIRV/SPIRVDialect.h"
#include "mlir/Dialect/SPIRV/SPIRVOps.h"
#include "mlir/Dialect/SPIRV/SPIRVTypes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/RegionGraphTraits.h"
#include "mlir/Support/LogicalResult.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/ADT/bit.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "spirv-serialization"
using namespace mlir;
/// Encodes an SPIR-V instruction with the given `opcode` and `operands` into
/// the given `binary` vector.
static LogicalResult encodeInstructionInto(SmallVectorImpl<uint32_t> &binary,
spirv::Opcode op,
ArrayRef<uint32_t> operands) {
uint32_t wordCount = 1 + operands.size();
binary.push_back(spirv::getPrefixedOpcode(wordCount, op));
binary.append(operands.begin(), operands.end());
return success();
}
/// A pre-order depth-first visitor function for processing basic blocks.
///
/// Visits the basic blocks starting from the given `headerBlock` in pre-order
/// depth-first manner and calls `blockHandler` on each block. Skips handling
/// blocks in the `skipBlocks` list. If `skipHeader` is true, `blockHandler`
/// will not be invoked in `headerBlock` but still handles all `headerBlock`'s
/// successors.
///
/// SPIR-V spec "2.16.1. Universal Validation Rules" requires that "the order
/// of blocks in a function must satisfy the rule that blocks appear before
/// all blocks they dominate." This can be achieved by a pre-order CFG
/// traversal algorithm. To make the serialization output more logical and
/// readable to human, we perform depth-first CFG traversal and delay the
/// serialization of the merge block and the continue block, if exists, until
/// after all other blocks have been processed.
static LogicalResult visitInPrettyBlockOrder(
Block *headerBlock, function_ref<LogicalResult(Block *)> blockHandler,
bool skipHeader = false, ArrayRef<Block *> skipBlocks = {}) {
llvm::df_iterator_default_set<Block *, 4> doneBlocks;
doneBlocks.insert(skipBlocks.begin(), skipBlocks.end());
for (Block *block : llvm::depth_first_ext(headerBlock, doneBlocks)) {
if (skipHeader && block == headerBlock)
continue;
if (failed(blockHandler(block)))
return failure();
}
return success();
}
/// Returns the merge block if the given `op` is a structured control flow op.
/// Otherwise returns nullptr.
static Block *getStructuredControlFlowOpMergeBlock(Operation *op) {
if (auto selectionOp = dyn_cast<spirv::SelectionOp>(op))
return selectionOp.getMergeBlock();
if (auto loopOp = dyn_cast<spirv::LoopOp>(op))
return loopOp.getMergeBlock();
return nullptr;
}
/// Given a predecessor `block` for a block with arguments, returns the block
/// that should be used as the parent block for SPIR-V OpPhi instructions
/// corresponding to the block arguments.
static Block *getPhiIncomingBlock(Block *block) {
// If the predecessor block in question is the entry block for a spv.loop,
// we jump to this spv.loop from its enclosing block.
if (block->isEntryBlock()) {
if (auto loopOp = dyn_cast<spirv::LoopOp>(block->getParentOp())) {
// Then the incoming parent block for OpPhi should be the merge block of
// the structured control flow op before this loop.
Operation *op = loopOp.getOperation();
while ((op = op->getPrevNode()) != nullptr)
if (Block *incomingBlock = getStructuredControlFlowOpMergeBlock(op))
return incomingBlock;
// Or the enclosing block itself if no structured control flow ops
// exists before this loop.
return loopOp.getOperation()->getBlock();
}
}
// Otherwise, we jump from the given predecessor block. Try to see if there is
// a structured control flow op inside it.
for (Operation &op : llvm::reverse(block->getOperations())) {
if (Block *incomingBlock = getStructuredControlFlowOpMergeBlock(&op))
return incomingBlock;
}
return block;
}
namespace {
/// A SPIR-V module serializer.
///
/// A SPIR-V binary module is a single linear stream of instructions; each
/// instruction is composed of 32-bit words with the layout:
///
/// | <word-count>|<opcode> | <operand> | <operand> | ... |
/// | <------ word -------> | <-- word --> | <-- word --> | ... |
///
/// For the first word, the 16 high-order bits are the word count of the
/// instruction, the 16 low-order bits are the opcode enumerant. The
/// instructions then belong to different sections, which must be laid out in
/// the particular order as specified in "2.4 Logical Layout of a Module" of
/// the SPIR-V spec.
class Serializer {
public:
/// Creates a serializer for the given SPIR-V `module`.
explicit Serializer(spirv::ModuleOp module, bool emitDebugInfo = false);
/// Serializes the remembered SPIR-V module.
LogicalResult serialize();
/// Collects the final SPIR-V `binary`.
void collect(SmallVectorImpl<uint32_t> &binary);
#ifndef NDEBUG
/// (For debugging) prints each value and its corresponding result <id>.
void printValueIDMap(raw_ostream &os);
#endif
private:
// Note that there are two main categories of methods in this class:
// * process*() methods are meant to fully serialize a SPIR-V module entity
// (header, type, op, etc.). They update internal vectors containing
// different binary sections. They are not meant to be called except the
// top-level serialization loop.
// * prepare*() methods are meant to be helpers that prepare for serializing
// certain entity. They may or may not update internal vectors containing
// different binary sections. They are meant to be called among themselves
// or by other process*() methods for subtasks.
//===--------------------------------------------------------------------===//
// <id>
//===--------------------------------------------------------------------===//
// Note that it is illegal to use id <0> in SPIR-V binary module. Various
// methods in this class, if using SPIR-V word (uint32_t) as interface,
// check or return id <0> to indicate error in processing.
/// Consumes the next unused <id>. This method will never return 0.
uint32_t getNextID() { return nextID++; }
//===--------------------------------------------------------------------===//
// Module structure
//===--------------------------------------------------------------------===//
uint32_t getSpecConstID(StringRef constName) const {
return specConstIDMap.lookup(constName);
}
uint32_t getVariableID(StringRef varName) const {
return globalVarIDMap.lookup(varName);
}
uint32_t getFunctionID(StringRef fnName) const {
return funcIDMap.lookup(fnName);
}
/// Gets the <id> for the function with the given name. Assigns the next
/// available <id> if the function haven't been deserialized.
uint32_t getOrCreateFunctionID(StringRef fnName);
void processCapability();
void processDebugInfo();
void processExtension();
void processMemoryModel();
LogicalResult processConstantOp(spirv::ConstantOp op);
LogicalResult processSpecConstantOp(spirv::SpecConstantOp op);
/// SPIR-V dialect supports OpUndef using spv.UndefOp that produces a SSA
/// value to use with other operations. The SPIR-V spec recommends that
/// OpUndef be generated at module level. The serialization generates an
/// OpUndef for each type needed at module level.
LogicalResult processUndefOp(spirv::UndefOp op);
/// Emit OpName for the given `resultID`.
LogicalResult processName(uint32_t resultID, StringRef name);
/// Processes a SPIR-V function op.
LogicalResult processFuncOp(spirv::FuncOp op);
LogicalResult processVariableOp(spirv::VariableOp op);
/// Process a SPIR-V GlobalVariableOp
LogicalResult processGlobalVariableOp(spirv::GlobalVariableOp varOp);
/// Process attributes that translate to decorations on the result <id>
LogicalResult processDecoration(Location loc, uint32_t resultID,
NamedAttribute attr);
template <typename DType>
LogicalResult processTypeDecoration(Location loc, DType type,
uint32_t resultId) {
return emitError(loc, "unhandled decoration for type:") << type;
}
/// Process member decoration
LogicalResult processMemberDecoration(
uint32_t structID,
const spirv::StructType::MemberDecorationInfo &memberDecorationInfo);
//===--------------------------------------------------------------------===//
// Types
//===--------------------------------------------------------------------===//
uint32_t getTypeID(Type type) const { return typeIDMap.lookup(type); }
Type getVoidType() { return mlirBuilder.getNoneType(); }
bool isVoidType(Type type) const { return type.isa<NoneType>(); }
/// Returns true if the given type is a pointer type to a struct in some
/// interface storage class.
bool isInterfaceStructPtrType(Type type) const;
/// Main dispatch method for serializing a type. The result <id> of the
/// serialized type will be returned as `typeID`.
LogicalResult processType(Location loc, Type type, uint32_t &typeID);
/// Method for preparing basic SPIR-V type serialization. Returns the type's
/// opcode and operands for the instruction via `typeEnum` and `operands`.
LogicalResult prepareBasicType(Location loc, Type type, uint32_t resultID,
spirv::Opcode &typeEnum,
SmallVectorImpl<uint32_t> &operands);
LogicalResult prepareFunctionType(Location loc, FunctionType type,
spirv::Opcode &typeEnum,
SmallVectorImpl<uint32_t> &operands);
//===--------------------------------------------------------------------===//
// Constant
//===--------------------------------------------------------------------===//
uint32_t getConstantID(Attribute value) const {
return constIDMap.lookup(value);
}
/// Main dispatch method for processing a constant with the given `constType`
/// and `valueAttr`. `constType` is needed here because we can interpret the
/// `valueAttr` as a different type than the type of `valueAttr` itself; for
/// example, ArrayAttr, whose type is NoneType, is used for spirv::ArrayType
/// constants.
uint32_t prepareConstant(Location loc, Type constType, Attribute valueAttr);
/// Prepares array attribute serialization. This method emits corresponding
/// OpConstant* and returns the result <id> associated with it. Returns 0 if
/// failed.
uint32_t prepareArrayConstant(Location loc, Type constType, ArrayAttr attr);
/// Prepares bool/int/float DenseElementsAttr serialization. This method
/// iterates the DenseElementsAttr to construct the constant array, and
/// returns the result <id> associated with it. Returns 0 if failed. Note
/// that the size of `index` must match the rank.
/// TODO: Consider to enhance splat elements cases. For splat cases,
/// we don't need to loop over all elements, especially when the splat value
/// is zero. We can use OpConstantNull when the value is zero.
uint32_t prepareDenseElementsConstant(Location loc, Type constType,
DenseElementsAttr valueAttr, int dim,
MutableArrayRef<uint64_t> index);
/// Prepares scalar attribute serialization. This method emits corresponding
/// OpConstant* and returns the result <id> associated with it. Returns 0 if
/// the attribute is not for a scalar bool/integer/float value. If `isSpec` is
/// true, then the constant will be serialized as a specialization constant.
uint32_t prepareConstantScalar(Location loc, Attribute valueAttr,
bool isSpec = false);
uint32_t prepareConstantBool(Location loc, BoolAttr boolAttr,
bool isSpec = false);
uint32_t prepareConstantInt(Location loc, IntegerAttr intAttr,
bool isSpec = false);
uint32_t prepareConstantFp(Location loc, FloatAttr floatAttr,
bool isSpec = false);
//===--------------------------------------------------------------------===//
// Control flow
//===--------------------------------------------------------------------===//
/// Returns the result <id> for the given block.
uint32_t getBlockID(Block *block) const { return blockIDMap.lookup(block); }
/// Returns the result <id> for the given block. If no <id> has been assigned,
/// assigns the next available <id>
uint32_t getOrCreateBlockID(Block *block);
/// Processes the given `block` and emits SPIR-V instructions for all ops
/// inside. Does not emit OpLabel for this block if `omitLabel` is true.
/// `actionBeforeTerminator` is a callback that will be invoked before
/// handling the terminator op. It can be used to inject the Op*Merge
/// instruction if this is a SPIR-V selection/loop header block.
LogicalResult
processBlock(Block *block, bool omitLabel = false,
function_ref<void()> actionBeforeTerminator = nullptr);
/// Emits OpPhi instructions for the given block if it has block arguments.
LogicalResult emitPhiForBlockArguments(Block *block);
LogicalResult processSelectionOp(spirv::SelectionOp selectionOp);
LogicalResult processLoopOp(spirv::LoopOp loopOp);
LogicalResult processBranchConditionalOp(spirv::BranchConditionalOp);
LogicalResult processBranchOp(spirv::BranchOp branchOp);
//===--------------------------------------------------------------------===//
// Operations
//===--------------------------------------------------------------------===//
LogicalResult encodeExtensionInstruction(Operation *op,
StringRef extensionSetName,
uint32_t opcode,
ArrayRef<uint32_t> operands);
uint32_t getValueID(Value val) const { return valueIDMap.lookup(val); }
LogicalResult processAddressOfOp(spirv::AddressOfOp addressOfOp);
LogicalResult processReferenceOfOp(spirv::ReferenceOfOp referenceOfOp);
/// Main dispatch method for serializing an operation.
LogicalResult processOperation(Operation *op);
/// Method to dispatch to the serialization function for an operation in
/// SPIR-V dialect that is a mirror of an instruction in the SPIR-V spec.
/// This is auto-generated from ODS. Dispatch is handled for all operations
/// in SPIR-V dialect that have hasOpcode == 1.
LogicalResult dispatchToAutogenSerialization(Operation *op);
/// Method to serialize an operation in the SPIR-V dialect that is a mirror of
/// an instruction in the SPIR-V spec. This is auto generated if hasOpcode ==
/// 1 and autogenSerialization == 1 in ODS.
template <typename OpTy> LogicalResult processOp(OpTy op) {
return op.emitError("unsupported op serialization");
}
//===--------------------------------------------------------------------===//
// Utilities
//===--------------------------------------------------------------------===//
/// Emits an OpDecorate instruction to decorate the given `target` with the
/// given `decoration`.
LogicalResult emitDecoration(uint32_t target, spirv::Decoration decoration,
ArrayRef<uint32_t> params = {});
/// Emits an OpLine instruction with the given `loc` location information into
/// the given `binary` vector.
LogicalResult emitDebugLine(SmallVectorImpl<uint32_t> &binary, Location loc);
private:
/// The SPIR-V module to be serialized.
spirv::ModuleOp module;
/// An MLIR builder for getting MLIR constructs.
mlir::Builder mlirBuilder;
/// A flag which indicates if the debuginfo should be emitted.
bool emitDebugInfo = false;
/// A flag which indicates if the last processed instruction was a merge
/// instruction.
/// According to SPIR-V spec: "If a branch merge instruction is used, the last
/// OpLine in the block must be before its merge instruction".
bool lastProcessedWasMergeInst = false;
/// The <id> of the OpString instruction, which specifies a file name, for
/// use by other debug instructions.
uint32_t fileID = 0;
/// The next available result <id>.
uint32_t nextID = 1;
// The following are for different SPIR-V instruction sections. They follow
// the logical layout of a SPIR-V module.
SmallVector<uint32_t, 4> capabilities;
SmallVector<uint32_t, 0> extensions;
SmallVector<uint32_t, 0> extendedSets;
SmallVector<uint32_t, 3> memoryModel;
SmallVector<uint32_t, 0> entryPoints;
SmallVector<uint32_t, 4> executionModes;
SmallVector<uint32_t, 0> debug;
SmallVector<uint32_t, 0> names;
SmallVector<uint32_t, 0> decorations;
SmallVector<uint32_t, 0> typesGlobalValues;
SmallVector<uint32_t, 0> functions;
/// `functionHeader` contains all the instructions that must be in the first
/// block in the function, and `functionBody` contains the rest. After
/// processing FuncOp, the encoded instructions of a function are appended to
/// `functions`. An example of instructions in `functionHeader` in order:
/// OpFunction ...
/// OpFunctionParameter ...
/// OpFunctionParameter ...
/// OpLabel ...
/// OpVariable ...
/// OpVariable ...
SmallVector<uint32_t, 0> functionHeader;
SmallVector<uint32_t, 0> functionBody;
/// Map from type used in SPIR-V module to their <id>s.
DenseMap<Type, uint32_t> typeIDMap;
/// Map from constant values to their <id>s.
DenseMap<Attribute, uint32_t> constIDMap;
/// Map from specialization constant names to their <id>s.
llvm::StringMap<uint32_t> specConstIDMap;
/// Map from GlobalVariableOps name to <id>s.
llvm::StringMap<uint32_t> globalVarIDMap;
/// Map from FuncOps name to <id>s.
llvm::StringMap<uint32_t> funcIDMap;
/// Map from blocks to their <id>s.
DenseMap<Block *, uint32_t> blockIDMap;
/// Map from the Type to the <id> that represents undef value of that type.
DenseMap<Type, uint32_t> undefValIDMap;
/// Map from results of normal operations to their <id>s.
DenseMap<Value, uint32_t> valueIDMap;
/// Map from extended instruction set name to <id>s.
llvm::StringMap<uint32_t> extendedInstSetIDMap;
/// Map from values used in OpPhi instructions to their offset in the
/// `functions` section.
///
/// When processing a block with arguments, we need to emit OpPhi
/// instructions to record the predecessor block <id>s and the values they
/// send to the block in question. But it's not guaranteed all values are
/// visited and thus assigned result <id>s. So we need this list to capture
/// the offsets into `functions` where a value is used so that we can fix it
/// up later after processing all the blocks in a function.
///
/// More concretely, say if we are visiting the following blocks:
///
/// ```mlir
/// ^phi(%arg0: i32):
/// ...
/// ^parent1:
/// ...
/// spv.Branch ^phi(%val0: i32)
/// ^parent2:
/// ...
/// spv.Branch ^phi(%val1: i32)
/// ```
///
/// When we are serializing the `^phi` block, we need to emit at the beginning
/// of the block OpPhi instructions which has the following parameters:
///
/// OpPhi id-for-i32 id-for-%arg0 id-for-%val0 id-for-^parent1
/// id-for-%val1 id-for-^parent2
///
/// But we don't know the <id> for %val0 and %val1 yet. One way is to visit
/// all the blocks twice and use the first visit to assign an <id> to each
/// value. But it's paying the overheads just for OpPhi emission. Instead,
/// we still visit the blocks once for emission. When we emit the OpPhi
/// instructions, we use 0 as a placeholder for the <id>s for %val0 and %val1.
/// At the same time, we record their offsets in the emitted binary (which is
/// placed inside `functions`) here. And then after emitting all blocks, we
/// replace the dummy <id> 0 with the real result <id> by overwriting
/// `functions[offset]`.
DenseMap<Value, SmallVector<size_t, 1>> deferredPhiValues;
};
} // namespace
Serializer::Serializer(spirv::ModuleOp module, bool emitDebugInfo)
: module(module), mlirBuilder(module.getContext()),
emitDebugInfo(emitDebugInfo) {}
LogicalResult Serializer::serialize() {
LLVM_DEBUG(llvm::dbgs() << "+++ starting serialization +++\n");
if (failed(module.verify()))
return failure();
// TODO: handle the other sections
processCapability();
processExtension();
processMemoryModel();
processDebugInfo();
// Iterate over the module body to serialize it. Assumptions are that there is
// only one basic block in the moduleOp
for (auto &op : module.getBlock()) {
if (failed(processOperation(&op))) {
return failure();
}
}
LLVM_DEBUG(llvm::dbgs() << "+++ completed serialization +++\n");
return success();
}
void Serializer::collect(SmallVectorImpl<uint32_t> &binary) {
auto moduleSize = spirv::kHeaderWordCount + capabilities.size() +
extensions.size() + extendedSets.size() +
memoryModel.size() + entryPoints.size() +
executionModes.size() + decorations.size() +
typesGlobalValues.size() + functions.size();
binary.clear();
binary.reserve(moduleSize);
spirv::appendModuleHeader(binary, module.vce_triple()->getVersion(), nextID);
binary.append(capabilities.begin(), capabilities.end());
binary.append(extensions.begin(), extensions.end());
binary.append(extendedSets.begin(), extendedSets.end());
binary.append(memoryModel.begin(), memoryModel.end());
binary.append(entryPoints.begin(), entryPoints.end());
binary.append(executionModes.begin(), executionModes.end());
binary.append(debug.begin(), debug.end());
binary.append(names.begin(), names.end());
binary.append(decorations.begin(), decorations.end());
binary.append(typesGlobalValues.begin(), typesGlobalValues.end());
binary.append(functions.begin(), functions.end());
}
#ifndef NDEBUG
void Serializer::printValueIDMap(raw_ostream &os) {
os << "\n= Value <id> Map =\n\n";
for (auto valueIDPair : valueIDMap) {
Value val = valueIDPair.first;
os << " " << val << " "
<< "id = " << valueIDPair.second << ' ';
if (auto *op = val.getDefiningOp()) {
os << "from op '" << op->getName() << "'";
} else if (auto arg = val.dyn_cast<BlockArgument>()) {
Block *block = arg.getOwner();
os << "from argument of block " << block << ' ';
os << " in op '" << block->getParentOp()->getName() << "'";
}
os << '\n';
}
}
#endif
//===----------------------------------------------------------------------===//
// Module structure
//===----------------------------------------------------------------------===//
uint32_t Serializer::getOrCreateFunctionID(StringRef fnName) {
auto funcID = funcIDMap.lookup(fnName);
if (!funcID) {
funcID = getNextID();
funcIDMap[fnName] = funcID;
}
return funcID;
}
void Serializer::processCapability() {
for (auto cap : module.vce_triple()->getCapabilities())
encodeInstructionInto(capabilities, spirv::Opcode::OpCapability,
{static_cast<uint32_t>(cap)});
}
void Serializer::processDebugInfo() {
if (!emitDebugInfo)
return;
auto fileLoc = module.getLoc().dyn_cast<FileLineColLoc>();
auto fileName = fileLoc ? fileLoc.getFilename() : "<unknown>";
fileID = getNextID();
SmallVector<uint32_t, 16> operands;
operands.push_back(fileID);
spirv::encodeStringLiteralInto(operands, fileName);
encodeInstructionInto(debug, spirv::Opcode::OpString, operands);
// TODO: Encode more debug instructions.
}
void Serializer::processExtension() {
llvm::SmallVector<uint32_t, 16> extName;
for (spirv::Extension ext : module.vce_triple()->getExtensions()) {
extName.clear();
spirv::encodeStringLiteralInto(extName, spirv::stringifyExtension(ext));
encodeInstructionInto(extensions, spirv::Opcode::OpExtension, extName);
}
}
void Serializer::processMemoryModel() {
uint32_t mm = module.getAttrOfType<IntegerAttr>("memory_model").getInt();
uint32_t am = module.getAttrOfType<IntegerAttr>("addressing_model").getInt();
encodeInstructionInto(memoryModel, spirv::Opcode::OpMemoryModel, {am, mm});
}
LogicalResult Serializer::processConstantOp(spirv::ConstantOp op) {
if (auto resultID = prepareConstant(op.getLoc(), op.getType(), op.value())) {
valueIDMap[op.getResult()] = resultID;
return success();
}
return failure();
}
LogicalResult Serializer::processSpecConstantOp(spirv::SpecConstantOp op) {
if (auto resultID = prepareConstantScalar(op.getLoc(), op.default_value(),
/*isSpec=*/true)) {
// Emit the OpDecorate instruction for SpecId.
if (auto specID = op.getAttrOfType<IntegerAttr>("spec_id")) {
auto val = static_cast<uint32_t>(specID.getInt());
emitDecoration(resultID, spirv::Decoration::SpecId, {val});
}
specConstIDMap[op.sym_name()] = resultID;
return processName(resultID, op.sym_name());
}
return failure();
}
LogicalResult Serializer::processUndefOp(spirv::UndefOp op) {
auto undefType = op.getType();
auto &id = undefValIDMap[undefType];
if (!id) {
id = getNextID();
uint32_t typeID = 0;
if (failed(processType(op.getLoc(), undefType, typeID)) ||
failed(encodeInstructionInto(typesGlobalValues, spirv::Opcode::OpUndef,
{typeID, id}))) {
return failure();
}
}
valueIDMap[op.getResult()] = id;
return success();
}
LogicalResult Serializer::processDecoration(Location loc, uint32_t resultID,
NamedAttribute attr) {
auto attrName = attr.first.strref();
auto decorationName = llvm::convertToCamelFromSnakeCase(attrName, true);
auto decoration = spirv::symbolizeDecoration(decorationName);
if (!decoration) {
return emitError(
loc, "non-argument attributes expected to have snake-case-ified "
"decoration name, unhandled attribute with name : ")
<< attrName;
}
SmallVector<uint32_t, 1> args;
switch (decoration.getValue()) {
case spirv::Decoration::Binding:
case spirv::Decoration::DescriptorSet:
case spirv::Decoration::Location:
if (auto intAttr = attr.second.dyn_cast<IntegerAttr>()) {
args.push_back(intAttr.getValue().getZExtValue());
break;
}
return emitError(loc, "expected integer attribute for ") << attrName;
case spirv::Decoration::BuiltIn:
if (auto strAttr = attr.second.dyn_cast<StringAttr>()) {
auto enumVal = spirv::symbolizeBuiltIn(strAttr.getValue());
if (enumVal) {
args.push_back(static_cast<uint32_t>(enumVal.getValue()));
break;
}
return emitError(loc, "invalid ")
<< attrName << " attribute " << strAttr.getValue();
}
return emitError(loc, "expected string attribute for ") << attrName;
case spirv::Decoration::Flat:
case spirv::Decoration::NoPerspective:
if (auto unitAttr = attr.second.dyn_cast<UnitAttr>()) {
// For unit attributes, the args list has no values so we do nothing
break;
}
return emitError(loc, "expected unit attribute for ") << attrName;
default:
return emitError(loc, "unhandled decoration ") << decorationName;
}
return emitDecoration(resultID, decoration.getValue(), args);
}
LogicalResult Serializer::processName(uint32_t resultID, StringRef name) {
assert(!name.empty() && "unexpected empty string for OpName");
SmallVector<uint32_t, 4> nameOperands;
nameOperands.push_back(resultID);
if (failed(spirv::encodeStringLiteralInto(nameOperands, name))) {
return failure();
}
return encodeInstructionInto(names, spirv::Opcode::OpName, nameOperands);
}
namespace {
template <>
LogicalResult Serializer::processTypeDecoration<spirv::ArrayType>(
Location loc, spirv::ArrayType type, uint32_t resultID) {
if (unsigned stride = type.getArrayStride()) {
// OpDecorate %arrayTypeSSA ArrayStride strideLiteral
return emitDecoration(resultID, spirv::Decoration::ArrayStride, {stride});
}
return success();
}
template <>
LogicalResult Serializer::processTypeDecoration<spirv::RuntimeArrayType>(
Location Loc, spirv::RuntimeArrayType type, uint32_t resultID) {
if (unsigned stride = type.getArrayStride()) {
// OpDecorate %arrayTypeSSA ArrayStride strideLiteral
return emitDecoration(resultID, spirv::Decoration::ArrayStride, {stride});
}
return success();
}
LogicalResult Serializer::processMemberDecoration(
uint32_t structID,
const spirv::StructType::MemberDecorationInfo &memberDecoration) {
SmallVector<uint32_t, 4> args(
{structID, memberDecoration.memberIndex,
static_cast<uint32_t>(memberDecoration.decoration)});
if (memberDecoration.hasValue) {
args.push_back(memberDecoration.decorationValue);
}
return encodeInstructionInto(decorations, spirv::Opcode::OpMemberDecorate,
args);
}
} // namespace
LogicalResult Serializer::processFuncOp(spirv::FuncOp op) {
LLVM_DEBUG(llvm::dbgs() << "-- start function '" << op.getName() << "' --\n");
assert(functionHeader.empty() && functionBody.empty());
uint32_t fnTypeID = 0;
// Generate type of the function.
processType(op.getLoc(), op.getType(), fnTypeID);
// Add the function definition.
SmallVector<uint32_t, 4> operands;
uint32_t resTypeID = 0;
auto resultTypes = op.getType().getResults();
if (resultTypes.size() > 1) {
return op.emitError("cannot serialize function with multiple return types");
}
if (failed(processType(op.getLoc(),
(resultTypes.empty() ? getVoidType() : resultTypes[0]),
resTypeID))) {
return failure();
}
operands.push_back(resTypeID);
auto funcID = getOrCreateFunctionID(op.getName());
operands.push_back(funcID);
// TODO: Support other function control options.
operands.push_back(static_cast<uint32_t>(spirv::FunctionControl::None));
operands.push_back(fnTypeID);
encodeInstructionInto(functionHeader, spirv::Opcode::OpFunction, operands);
// Add function name.
if (failed(processName(funcID, op.getName()))) {
return failure();
}
// Declare the parameters.
for (auto arg : op.getArguments()) {
uint32_t argTypeID = 0;
if (failed(processType(op.getLoc(), arg.getType(), argTypeID))) {
return failure();
}
auto argValueID = getNextID();
valueIDMap[arg] = argValueID;
encodeInstructionInto(functionHeader, spirv::Opcode::OpFunctionParameter,
{argTypeID, argValueID});
}
// Process the body.
if (op.isExternal()) {
return op.emitError("external function is unhandled");
}
// Some instructions (e.g., OpVariable) in a function must be in the first
// block in the function. These instructions will be put in functionHeader.
// Thus, we put the label in functionHeader first, and omit it from the first
// block.
encodeInstructionInto(functionHeader, spirv::Opcode::OpLabel,
{getOrCreateBlockID(&op.front())});
processBlock(&op.front(), /*omitLabel=*/true);
if (failed(visitInPrettyBlockOrder(
&op.front(), [&](Block *block) { return processBlock(block); },
/*skipHeader=*/true))) {
return failure();
}
// There might be OpPhi instructions who have value references needing to fix.
for (auto deferredValue : deferredPhiValues) {
Value value = deferredValue.first;
uint32_t id = getValueID(value);
LLVM_DEBUG(llvm::dbgs() << "[phi] fix reference of value " << value
<< " to id = " << id << '\n');
assert(id && "OpPhi references undefined value!");
for (size_t offset : deferredValue.second)
functionBody[offset] = id;
}
deferredPhiValues.clear();
LLVM_DEBUG(llvm::dbgs() << "-- completed function '" << op.getName()
<< "' --\n");
// Insert OpFunctionEnd.
if (failed(encodeInstructionInto(functionBody, spirv::Opcode::OpFunctionEnd,
{}))) {
return failure();
}
functions.append(functionHeader.begin(), functionHeader.end());
functions.append(functionBody.begin(), functionBody.end());
functionHeader.clear();
functionBody.clear();
return success();
}
LogicalResult Serializer::processVariableOp(spirv::VariableOp op) {
SmallVector<uint32_t, 4> operands;
SmallVector<StringRef, 2> elidedAttrs;
uint32_t resultID = 0;
uint32_t resultTypeID = 0;
if (failed(processType(op.getLoc(), op.getType(), resultTypeID))) {
return failure();
}
operands.push_back(resultTypeID);
resultID = getNextID();
valueIDMap[op.getResult()] = resultID;
operands.push_back(resultID);
auto attr = op.getAttr(spirv::attributeName<spirv::StorageClass>());
if (attr) {
operands.push_back(static_cast<uint32_t>(
attr.cast<IntegerAttr>().getValue().getZExtValue()));
}
elidedAttrs.push_back(spirv::attributeName<spirv::StorageClass>());
for (auto arg : op.getODSOperands(0)) {
auto argID = getValueID(arg);
if (!argID) {
return emitError(op.getLoc(), "operand 0 has a use before def");
}
operands.push_back(argID);
}
emitDebugLine(functionHeader, op.getLoc());
encodeInstructionInto(functionHeader, spirv::Opcode::OpVariable, operands);
for (auto attr : op.getAttrs()) {
if (llvm::any_of(elidedAttrs,
[&](StringRef elided) { return attr.first == elided; })) {
continue;
}
if (failed(processDecoration(op.getLoc(), resultID, attr))) {
return failure();
}
}
return success();
}
LogicalResult
Serializer::processGlobalVariableOp(spirv::GlobalVariableOp varOp) {
// Get TypeID.
uint32_t resultTypeID = 0;
SmallVector<StringRef, 4> elidedAttrs;
if (failed(processType(varOp.getLoc(), varOp.type(), resultTypeID))) {
return failure();
}
if (isInterfaceStructPtrType(varOp.type())) {
auto structType = varOp.type()
.cast<spirv::PointerType>()
.getPointeeType()
.cast<spirv::StructType>();
if (failed(
emitDecoration(getTypeID(structType), spirv::Decoration::Block))) {
return varOp.emitError("cannot decorate ")
<< structType << " with Block decoration";
}
}
elidedAttrs.push_back("type");
SmallVector<uint32_t, 4> operands;
operands.push_back(resultTypeID);
auto resultID = getNextID();
// Encode the name.
auto varName = varOp.sym_name();
elidedAttrs.push_back(SymbolTable::getSymbolAttrName());
if (failed(processName(resultID, varName))) {
return failure();
}
globalVarIDMap[varName] = resultID;
operands.push_back(resultID);
// Encode StorageClass.
operands.push_back(static_cast<uint32_t>(varOp.storageClass()));
// Encode initialization.
if (auto initializer = varOp.initializer()) {
auto initializerID = getVariableID(initializer.getValue());
if (!initializerID) {
return emitError(varOp.getLoc(),
"invalid usage of undefined variable as initializer");
}
operands.push_back(initializerID);
elidedAttrs.push_back("initializer");
}
emitDebugLine(typesGlobalValues, varOp.getLoc());
if (failed(encodeInstructionInto(typesGlobalValues, spirv::Opcode::OpVariable,
operands))) {
elidedAttrs.push_back("initializer");
return failure();
}
// Encode decorations.
for (auto attr : varOp.getAttrs()) {
if (llvm::any_of(elidedAttrs,
[&](StringRef elided) { return attr.first == elided; })) {
continue;
}
if (failed(processDecoration(varOp.getLoc(), resultID, attr))) {
return failure();
}
}
return success();
}
//===----------------------------------------------------------------------===//
// Type
//===----------------------------------------------------------------------===//
// According to the SPIR-V spec "Validation Rules for Shader Capabilities":
// "Composite objects in the StorageBuffer, PhysicalStorageBuffer, Uniform, and
// PushConstant Storage Classes must be explicitly laid out."
bool Serializer::isInterfaceStructPtrType(Type type) const {
if (auto ptrType = type.dyn_cast<spirv::PointerType>()) {
switch (ptrType.getStorageClass()) {
case spirv::StorageClass::PhysicalStorageBuffer:
case spirv::StorageClass::PushConstant:
case spirv::StorageClass::StorageBuffer:
case spirv::StorageClass::Uniform:
return ptrType.getPointeeType().isa<spirv::StructType>();
default:
break;
}
}
return false;
}
LogicalResult Serializer::processType(Location loc, Type type,
uint32_t &typeID) {
typeID = getTypeID(type);
if (typeID) {
return success();
}
typeID = getNextID();
SmallVector<uint32_t, 4> operands;
operands.push_back(typeID);
auto typeEnum = spirv::Opcode::OpTypeVoid;
if ((type.isa<FunctionType>() &&
succeeded(prepareFunctionType(loc, type.cast<FunctionType>(), typeEnum,
operands))) ||
succeeded(prepareBasicType(loc, type, typeID, typeEnum, operands))) {
typeIDMap[type] = typeID;
return encodeInstructionInto(typesGlobalValues, typeEnum, operands);
}
return failure();
}
LogicalResult
Serializer::prepareBasicType(Location loc, Type type, uint32_t resultID,
spirv::Opcode &typeEnum,
SmallVectorImpl<uint32_t> &operands) {
if (isVoidType(type)) {
typeEnum = spirv::Opcode::OpTypeVoid;
return success();
}
if (auto intType = type.dyn_cast<IntegerType>()) {
if (intType.getWidth() == 1) {
typeEnum = spirv::Opcode::OpTypeBool;
return success();
}
typeEnum = spirv::Opcode::OpTypeInt;
operands.push_back(intType.getWidth());
// SPIR-V OpTypeInt "Signedness specifies whether there are signed semantics
// to preserve or validate.
// 0 indicates unsigned, or no signedness semantics
// 1 indicates signed semantics."
operands.push_back(intType.isSigned() ? 1 : 0);
return success();
}
if (auto floatType = type.dyn_cast<FloatType>()) {
typeEnum = spirv::Opcode::OpTypeFloat;
operands.push_back(floatType.getWidth());
return success();
}
if (auto vectorType = type.dyn_cast<VectorType>()) {
uint32_t elementTypeID = 0;
if (failed(processType(loc, vectorType.getElementType(), elementTypeID))) {
return failure();
}
typeEnum = spirv::Opcode::OpTypeVector;
operands.push_back(elementTypeID);
operands.push_back(vectorType.getNumElements());
return success();
}
if (auto arrayType = type.dyn_cast<spirv::ArrayType>()) {
typeEnum = spirv::Opcode::OpTypeArray;
uint32_t elementTypeID = 0;
if (failed(processType(loc, arrayType.getElementType(), elementTypeID))) {
return failure();
}
operands.push_back(elementTypeID);
if (auto elementCountID = prepareConstantInt(
loc, mlirBuilder.getI32IntegerAttr(arrayType.getNumElements()))) {
operands.push_back(elementCountID);
}
return processTypeDecoration(loc, arrayType, resultID);
}
if (auto ptrType = type.dyn_cast<spirv::PointerType>()) {
uint32_t pointeeTypeID = 0;
if (failed(processType(loc, ptrType.getPointeeType(), pointeeTypeID))) {
return failure();
}
typeEnum = spirv::Opcode::OpTypePointer;
operands.push_back(static_cast<uint32_t>(ptrType.getStorageClass()));
operands.push_back(pointeeTypeID);
return success();
}
if (auto runtimeArrayType = type.dyn_cast<spirv::RuntimeArrayType>()) {
uint32_t elementTypeID = 0;
if (failed(processType(loc, runtimeArrayType.getElementType(),
elementTypeID))) {
return failure();
}
typeEnum = spirv::Opcode::OpTypeRuntimeArray;
operands.push_back(elementTypeID);
return processTypeDecoration(loc, runtimeArrayType, resultID);
}
if (auto structType = type.dyn_cast<spirv::StructType>()) {
bool hasOffset = structType.hasOffset();
for (auto elementIndex :
llvm::seq<uint32_t>(0, structType.getNumElements())) {
uint32_t elementTypeID = 0;
if (failed(processType(loc, structType.getElementType(elementIndex),
elementTypeID))) {
return failure();
}
operands.push_back(elementTypeID);
if (hasOffset) {
// Decorate each struct member with an offset
spirv::StructType::MemberDecorationInfo offsetDecoration{
elementIndex, /*hasValue=*/1, spirv::Decoration::Offset,
static_cast<uint32_t>(structType.getMemberOffset(elementIndex))};
if (failed(processMemberDecoration(resultID, offsetDecoration))) {
return emitError(loc, "cannot decorate ")
<< elementIndex << "-th member of " << structType
<< " with its offset";
}
}
}
SmallVector<spirv::StructType::MemberDecorationInfo, 4> memberDecorations;
structType.getMemberDecorations(memberDecorations);
for (auto &memberDecoration : memberDecorations) {
if (failed(processMemberDecoration(resultID, memberDecoration))) {
return emitError(loc, "cannot decorate ")
<< static_cast<uint32_t>(memberDecoration.memberIndex)
<< "-th member of " << structType << " with "
<< stringifyDecoration(memberDecoration.decoration);
}
}
typeEnum = spirv::Opcode::OpTypeStruct;
return success();
}
if (auto cooperativeMatrixType =
type.dyn_cast<spirv::CooperativeMatrixNVType>()) {
uint32_t elementTypeID = 0;
if (failed(processType(loc, cooperativeMatrixType.getElementType(),
elementTypeID))) {
return failure();
}
typeEnum = spirv::Opcode::OpTypeCooperativeMatrixNV;
auto getConstantOp = [&](uint32_t id) {
auto attr = IntegerAttr::get(IntegerType::get(32, type.getContext()), id);
return prepareConstantInt(loc, attr);
};
operands.push_back(elementTypeID);
operands.push_back(
getConstantOp(static_cast<uint32_t>(cooperativeMatrixType.getScope())));
operands.push_back(getConstantOp(cooperativeMatrixType.getRows()));
operands.push_back(getConstantOp(cooperativeMatrixType.getColumns()));
return success();
}
if (auto matrixType = type.dyn_cast<spirv::MatrixType>()) {
uint32_t elementTypeID = 0;
if (failed(processType(loc, matrixType.getElementType(), elementTypeID))) {
return failure();
}
typeEnum = spirv::Opcode::OpTypeMatrix;
operands.push_back(elementTypeID);
operands.push_back(matrixType.getNumElements());
return success();
}
// TODO: Handle other types.
return emitError(loc, "unhandled type in serialization: ") << type;
}
LogicalResult
Serializer::prepareFunctionType(Location loc, FunctionType type,
spirv::Opcode &typeEnum,
SmallVectorImpl<uint32_t> &operands) {
typeEnum = spirv::Opcode::OpTypeFunction;
assert(type.getNumResults() <= 1 &&
"serialization supports only a single return value");
uint32_t resultID = 0;
if (failed(processType(
loc, type.getNumResults() == 1 ? type.getResult(0) : getVoidType(),
resultID))) {
return failure();
}
operands.push_back(resultID);
for (auto &res : type.getInputs()) {
uint32_t argTypeID = 0;
if (failed(processType(loc, res, argTypeID))) {
return failure();
}
operands.push_back(argTypeID);
}
return success();
}
//===----------------------------------------------------------------------===//
// Constant
//===----------------------------------------------------------------------===//
uint32_t Serializer::prepareConstant(Location loc, Type constType,
Attribute valueAttr) {
if (auto id = prepareConstantScalar(loc, valueAttr)) {
return id;
}
// This is a composite literal. We need to handle each component separately
// and then emit an OpConstantComposite for the whole.
if (auto id = getConstantID(valueAttr)) {
return id;
}
uint32_t typeID = 0;
if (failed(processType(loc, constType, typeID))) {
return 0;
}
uint32_t resultID = 0;
if (auto attr = valueAttr.dyn_cast<DenseElementsAttr>()) {
int rank = attr.getType().dyn_cast<ShapedType>().getRank();
SmallVector<uint64_t, 4> index(rank);
resultID = prepareDenseElementsConstant(loc, constType, attr,
/*dim=*/0, index);
} else if (auto arrayAttr = valueAttr.dyn_cast<ArrayAttr>()) {
resultID = prepareArrayConstant(loc, constType, arrayAttr);
}
if (resultID == 0) {
emitError(loc, "cannot serialize attribute: ") << valueAttr;
return 0;
}
constIDMap[valueAttr] = resultID;
return resultID;
}
uint32_t Serializer::prepareArrayConstant(Location loc, Type constType,
ArrayAttr attr) {
uint32_t typeID = 0;
if (failed(processType(loc, constType, typeID))) {
return 0;
}
uint32_t resultID = getNextID();
SmallVector<uint32_t, 4> operands = {typeID, resultID};
operands.reserve(attr.size() + 2);
auto elementType = constType.cast<spirv::ArrayType>().getElementType();
for (Attribute elementAttr : attr) {
if (auto elementID = prepareConstant(loc, elementType, elementAttr)) {
operands.push_back(elementID);
} else {
return 0;
}
}
spirv::Opcode opcode = spirv::Opcode::OpConstantComposite;
encodeInstructionInto(typesGlobalValues, opcode, operands);
return resultID;
}
// TODO: Turn the below function into iterative function, instead of
// recursive function.
uint32_t
Serializer::prepareDenseElementsConstant(Location loc, Type constType,
DenseElementsAttr valueAttr, int dim,
MutableArrayRef<uint64_t> index) {
auto shapedType = valueAttr.getType().dyn_cast<ShapedType>();
assert(dim <= shapedType.getRank());
if (shapedType.getRank() == dim) {
if (auto attr = valueAttr.dyn_cast<DenseIntElementsAttr>()) {
return attr.getType().getElementType().isInteger(1)
? prepareConstantBool(loc, attr.getValue<BoolAttr>(index))
: prepareConstantInt(loc, attr.getValue<IntegerAttr>(index));
}
if (auto attr = valueAttr.dyn_cast<DenseFPElementsAttr>()) {
return prepareConstantFp(loc, attr.getValue<FloatAttr>(index));
}
return 0;
}
uint32_t typeID = 0;
if (failed(processType(loc, constType, typeID))) {
return 0;
}
uint32_t resultID = getNextID();
SmallVector<uint32_t, 4> operands = {typeID, resultID};
operands.reserve(shapedType.getDimSize(dim) + 2);
auto elementType = constType.cast<spirv::CompositeType>().getElementType(0);
for (int i = 0; i < shapedType.getDimSize(dim); ++i) {
index[dim] = i;
if (auto elementID = prepareDenseElementsConstant(
loc, elementType, valueAttr, dim + 1, index)) {
operands.push_back(elementID);
} else {
return 0;
}
}
spirv::Opcode opcode = spirv::Opcode::OpConstantComposite;
encodeInstructionInto(typesGlobalValues, opcode, operands);
return resultID;
}
uint32_t Serializer::prepareConstantScalar(Location loc, Attribute valueAttr,
bool isSpec) {
if (auto floatAttr = valueAttr.dyn_cast<FloatAttr>()) {
return prepareConstantFp(loc, floatAttr, isSpec);
}
if (auto boolAttr = valueAttr.dyn_cast<BoolAttr>()) {
return prepareConstantBool(loc, boolAttr, isSpec);
}
if (auto intAttr = valueAttr.dyn_cast<IntegerAttr>()) {
return prepareConstantInt(loc, intAttr, isSpec);
}
return 0;
}
uint32_t Serializer::prepareConstantBool(Location loc, BoolAttr boolAttr,
bool isSpec) {
if (!isSpec) {
// We can de-duplicate normal constants, but not specialization constants.
if (auto id = getConstantID(boolAttr)) {
return id;
}
}
// Process the type for this bool literal
uint32_t typeID = 0;
if (failed(processType(loc, boolAttr.getType(), typeID))) {
return 0;
}
auto resultID = getNextID();
auto opcode = boolAttr.getValue()
? (isSpec ? spirv::Opcode::OpSpecConstantTrue
: spirv::Opcode::OpConstantTrue)
: (isSpec ? spirv::Opcode::OpSpecConstantFalse
: spirv::Opcode::OpConstantFalse);
encodeInstructionInto(typesGlobalValues, opcode, {typeID, resultID});
if (!isSpec) {
constIDMap[boolAttr] = resultID;
}
return resultID;
}
uint32_t Serializer::prepareConstantInt(Location loc, IntegerAttr intAttr,
bool isSpec) {
if (!isSpec) {
// We can de-duplicate normal constants, but not specialization constants.
if (auto id = getConstantID(intAttr)) {
return id;
}
}
// Process the type for this integer literal
uint32_t typeID = 0;
if (failed(processType(loc, intAttr.getType(), typeID))) {
return 0;
}
auto resultID = getNextID();
APInt value = intAttr.getValue();
unsigned bitwidth = value.getBitWidth();
bool isSigned = value.isSignedIntN(bitwidth);
auto opcode =
isSpec ? spirv::Opcode::OpSpecConstant : spirv::Opcode::OpConstant;
// According to SPIR-V spec, "When the type's bit width is less than 32-bits,
// the literal's value appears in the low-order bits of the word, and the
// high-order bits must be 0 for a floating-point type, or 0 for an integer
// type with Signedness of 0, or sign extended when Signedness is 1."
if (bitwidth == 32 || bitwidth == 16) {
uint32_t word = 0;
if (isSigned) {
word = static_cast<int32_t>(value.getSExtValue());
} else {
word = static_cast<uint32_t>(value.getZExtValue());
}
encodeInstructionInto(typesGlobalValues, opcode, {typeID, resultID, word});
}
// According to SPIR-V spec: "When the type's bit width is larger than one
// word, the literals low-order words appear first."
else if (bitwidth == 64) {
struct DoubleWord {
uint32_t word1;
uint32_t word2;
} words;
if (isSigned) {
words = llvm::bit_cast<DoubleWord>(value.getSExtValue());
} else {
words = llvm::bit_cast<DoubleWord>(value.getZExtValue());
}
encodeInstructionInto(typesGlobalValues, opcode,
{typeID, resultID, words.word1, words.word2});
} else {
std::string valueStr;
llvm::raw_string_ostream rss(valueStr);
value.print(rss, /*isSigned=*/false);
emitError(loc, "cannot serialize ")
<< bitwidth << "-bit integer literal: " << rss.str();
return 0;
}
if (!isSpec) {
constIDMap[intAttr] = resultID;
}
return resultID;
}
uint32_t Serializer::prepareConstantFp(Location loc, FloatAttr floatAttr,
bool isSpec) {
if (!isSpec) {
// We can de-duplicate normal constants, but not specialization constants.
if (auto id = getConstantID(floatAttr)) {
return id;
}
}
// Process the type for this float literal
uint32_t typeID = 0;
if (failed(processType(loc, floatAttr.getType(), typeID))) {
return 0;
}
auto resultID = getNextID();
APFloat value = floatAttr.getValue();
APInt intValue = value.bitcastToAPInt();
auto opcode =
isSpec ? spirv::Opcode::OpSpecConstant : spirv::Opcode::OpConstant;
if (&value.getSemantics() == &APFloat::IEEEsingle()) {
uint32_t word = llvm::bit_cast<uint32_t>(value.convertToFloat());
encodeInstructionInto(typesGlobalValues, opcode, {typeID, resultID, word});
} else if (&value.getSemantics() == &APFloat::IEEEdouble()) {
struct DoubleWord {
uint32_t word1;
uint32_t word2;
} words = llvm::bit_cast<DoubleWord>(value.convertToDouble());
encodeInstructionInto(typesGlobalValues, opcode,
{typeID, resultID, words.word1, words.word2});
} else if (&value.getSemantics() == &APFloat::IEEEhalf()) {
uint32_t word =
static_cast<uint32_t>(value.bitcastToAPInt().getZExtValue());
encodeInstructionInto(typesGlobalValues, opcode, {typeID, resultID, word});
} else {
std::string valueStr;
llvm::raw_string_ostream rss(valueStr);
value.print(rss);
emitError(loc, "cannot serialize ")
<< floatAttr.getType() << "-typed float literal: " << rss.str();
return 0;
}
if (!isSpec) {
constIDMap[floatAttr] = resultID;
}
return resultID;
}
//===----------------------------------------------------------------------===//
// Control flow
//===----------------------------------------------------------------------===//
uint32_t Serializer::getOrCreateBlockID(Block *block) {
if (uint32_t id = getBlockID(block))
return id;
return blockIDMap[block] = getNextID();
}
LogicalResult
Serializer::processBlock(Block *block, bool omitLabel,
function_ref<void()> actionBeforeTerminator) {
LLVM_DEBUG(llvm::dbgs() << "processing block " << block << ":\n");
LLVM_DEBUG(block->print(llvm::dbgs()));
LLVM_DEBUG(llvm::dbgs() << '\n');
if (!omitLabel) {
uint32_t blockID = getOrCreateBlockID(block);
LLVM_DEBUG(llvm::dbgs()
<< "[block] " << block << " (id = " << blockID << ")\n");
// Emit OpLabel for this block.
encodeInstructionInto(functionBody, spirv::Opcode::OpLabel, {blockID});
}
// Emit OpPhi instructions for block arguments, if any.
if (failed(emitPhiForBlockArguments(block)))
return failure();
// Process each op in this block except the terminator.
for (auto &op : llvm::make_range(block->begin(), std::prev(block->end()))) {
if (failed(processOperation(&op)))
return failure();
}
// Process the terminator.
if (actionBeforeTerminator)
actionBeforeTerminator();
if (failed(processOperation(&block->back())))
return failure();
return success();
}
LogicalResult Serializer::emitPhiForBlockArguments(Block *block) {
// Nothing to do if this block has no arguments or it's the entry block, which
// always has the same arguments as the function signature.
if (block->args_empty() || block->isEntryBlock())
return success();
// If the block has arguments, we need to create SPIR-V OpPhi instructions.
// A SPIR-V OpPhi instruction is of the syntax:
// OpPhi | result type | result <id> | (value <id>, parent block <id>) pair
// So we need to collect all predecessor blocks and the arguments they send
// to this block.
SmallVector<std::pair<Block *, Operation::operand_iterator>, 4> predecessors;
for (Block *predecessor : block->getPredecessors()) {
auto *terminator = predecessor->getTerminator();
// The predecessor here is the immediate one according to MLIR's IR
// structure. It does not directly map to the incoming parent block for the
// OpPhi instructions at SPIR-V binary level. This is because structured
// control flow ops are serialized to multiple SPIR-V blocks. If there is a
// spv.selection/spv.loop op in the MLIR predecessor block, the branch op
// jumping to the OpPhi's block then resides in the previous structured
// control flow op's merge block.
predecessor = getPhiIncomingBlock(predecessor);
if (auto branchOp = dyn_cast<spirv::BranchOp>(terminator)) {
predecessors.emplace_back(predecessor, branchOp.operand_begin());
} else {
return terminator->emitError("unimplemented terminator for Phi creation");
}
}
// Then create OpPhi instruction for each of the block argument.
for (auto argIndex : llvm::seq<unsigned>(0, block->getNumArguments())) {
BlockArgument arg = block->getArgument(argIndex);
// Get the type <id> and result <id> for this OpPhi instruction.
uint32_t phiTypeID = 0;
if (failed(processType(arg.getLoc(), arg.getType(), phiTypeID)))
return failure();
uint32_t phiID = getNextID();
LLVM_DEBUG(llvm::dbgs() << "[phi] for block argument #" << argIndex << ' '
<< arg << " (id = " << phiID << ")\n");
// Prepare the (value <id>, parent block <id>) pairs.
SmallVector<uint32_t, 8> phiArgs;
phiArgs.push_back(phiTypeID);
phiArgs.push_back(phiID);
for (auto predIndex : llvm::seq<unsigned>(0, predecessors.size())) {
Value value = *(predecessors[predIndex].second + argIndex);
uint32_t predBlockId = getOrCreateBlockID(predecessors[predIndex].first);
LLVM_DEBUG(llvm::dbgs() << "[phi] use predecessor (id = " << predBlockId
<< ") value " << value << ' ');
// Each pair is a value <id> ...
uint32_t valueId = getValueID(value);
if (valueId == 0) {
// The op generating this value hasn't been visited yet so we don't have
// an <id> assigned yet. Record this to fix up later.
LLVM_DEBUG(llvm::dbgs() << "(need to fix)\n");
deferredPhiValues[value].push_back(functionBody.size() + 1 +
phiArgs.size());
} else {
LLVM_DEBUG(llvm::dbgs() << "(id = " << valueId << ")\n");
}
phiArgs.push_back(valueId);
// ... and a parent block <id>.
phiArgs.push_back(predBlockId);
}
encodeInstructionInto(functionBody, spirv::Opcode::OpPhi, phiArgs);
valueIDMap[arg] = phiID;
}
return success();
}
LogicalResult Serializer::processSelectionOp(spirv::SelectionOp selectionOp) {
// Assign <id>s to all blocks so that branches inside the SelectionOp can
// resolve properly.
auto &body = selectionOp.body();
for (Block &block : body)
getOrCreateBlockID(&block);
auto *headerBlock = selectionOp.getHeaderBlock();
auto *mergeBlock = selectionOp.getMergeBlock();
auto mergeID = getBlockID(mergeBlock);
auto loc = selectionOp.getLoc();
// Emit the selection header block, which dominates all other blocks, first.
// We need to emit an OpSelectionMerge instruction before the selection header
// block's terminator.
auto emitSelectionMerge = [&]() {
emitDebugLine(functionBody, loc);
lastProcessedWasMergeInst = true;
// TODO: properly support selection control here
encodeInstructionInto(
functionBody, spirv::Opcode::OpSelectionMerge,
{mergeID, static_cast<uint32_t>(spirv::SelectionControl::None)});
};
// For structured selection, we cannot have blocks in the selection construct
// branching to the selection header block. Entering the selection (and
// reaching the selection header) must be from the block containing the
// spv.selection op. If there are ops ahead of the spv.selection op in the
// block, we can "merge" them into the selection header. So here we don't need
// to emit a separate block; just continue with the existing block.
if (failed(processBlock(headerBlock, /*omitLabel=*/true, emitSelectionMerge)))
return failure();
// Process all blocks with a depth-first visitor starting from the header
// block. The selection header block and merge block are skipped by this
// visitor.
if (failed(visitInPrettyBlockOrder(
headerBlock, [&](Block *block) { return processBlock(block); },
/*skipHeader=*/true, /*skipBlocks=*/{mergeBlock})))
return failure();
// There is nothing to do for the merge block in the selection, which just
// contains a spv._merge op, itself. But we need to have an OpLabel
// instruction to start a new SPIR-V block for ops following this SelectionOp.
// The block should use the <id> for the merge block.
return encodeInstructionInto(functionBody, spirv::Opcode::OpLabel, {mergeID});
}
LogicalResult Serializer::processLoopOp(spirv::LoopOp loopOp) {
// Assign <id>s to all blocks so that branches inside the LoopOp can resolve
// properly. We don't need to assign for the entry block, which is just for
// satisfying MLIR region's structural requirement.
auto &body = loopOp.body();
for (Block &block :
llvm::make_range(std::next(body.begin(), 1), body.end())) {
getOrCreateBlockID(&block);
}
auto *headerBlock = loopOp.getHeaderBlock();
auto *continueBlock = loopOp.getContinueBlock();
auto *mergeBlock = loopOp.getMergeBlock();
auto headerID = getBlockID(headerBlock);
auto continueID = getBlockID(continueBlock);
auto mergeID = getBlockID(mergeBlock);
auto loc = loopOp.getLoc();
// This LoopOp is in some MLIR block with preceding and following ops. In the
// binary format, it should reside in separate SPIR-V blocks from its
// preceding and following ops. So we need to emit unconditional branches to
// jump to this LoopOp's SPIR-V blocks and jumping back to the normal flow
// afterwards.
encodeInstructionInto(functionBody, spirv::Opcode::OpBranch, {headerID});
// LoopOp's entry block is just there for satisfying MLIR's structural
// requirements so we omit it and start serialization from the loop header
// block.
// Emit the loop header block, which dominates all other blocks, first. We
// need to emit an OpLoopMerge instruction before the loop header block's
// terminator.
auto emitLoopMerge = [&]() {
emitDebugLine(functionBody, loc);
lastProcessedWasMergeInst = true;
// TODO: properly support loop control here
encodeInstructionInto(
functionBody, spirv::Opcode::OpLoopMerge,
{mergeID, continueID, static_cast<uint32_t>(spirv::LoopControl::None)});
};
if (failed(processBlock(headerBlock, /*omitLabel=*/false, emitLoopMerge)))
return failure();
// Process all blocks with a depth-first visitor starting from the header
// block. The loop header block, loop continue block, and loop merge block are
// skipped by this visitor and handled later in this function.
if (failed(visitInPrettyBlockOrder(
headerBlock, [&](Block *block) { return processBlock(block); },
/*skipHeader=*/true, /*skipBlocks=*/{continueBlock, mergeBlock})))
return failure();
// We have handled all other blocks. Now get to the loop continue block.
if (failed(processBlock(continueBlock)))
return failure();
// There is nothing to do for the merge block in the loop, which just contains
// a spv._merge op, itself. But we need to have an OpLabel instruction to
// start a new SPIR-V block for ops following this LoopOp. The block should
// use the <id> for the merge block.
return encodeInstructionInto(functionBody, spirv::Opcode::OpLabel, {mergeID});
}
LogicalResult Serializer::processBranchConditionalOp(
spirv::BranchConditionalOp condBranchOp) {
auto conditionID = getValueID(condBranchOp.condition());
auto trueLabelID = getOrCreateBlockID(condBranchOp.getTrueBlock());
auto falseLabelID = getOrCreateBlockID(condBranchOp.getFalseBlock());
SmallVector<uint32_t, 5> arguments{conditionID, trueLabelID, falseLabelID};
if (auto weights = condBranchOp.branch_weights()) {
for (auto val : weights->getValue())
arguments.push_back(val.cast<IntegerAttr>().getInt());
}
emitDebugLine(functionBody, condBranchOp.getLoc());
return encodeInstructionInto(functionBody, spirv::Opcode::OpBranchConditional,
arguments);
}
LogicalResult Serializer::processBranchOp(spirv::BranchOp branchOp) {
emitDebugLine(functionBody, branchOp.getLoc());
return encodeInstructionInto(functionBody, spirv::Opcode::OpBranch,
{getOrCreateBlockID(branchOp.getTarget())});
}
//===----------------------------------------------------------------------===//
// Operation
//===----------------------------------------------------------------------===//
LogicalResult Serializer::encodeExtensionInstruction(
Operation *op, StringRef extensionSetName, uint32_t extensionOpcode,
ArrayRef<uint32_t> operands) {
// Check if the extension has been imported.
auto &setID = extendedInstSetIDMap[extensionSetName];
if (!setID) {
setID = getNextID();
SmallVector<uint32_t, 16> importOperands;
importOperands.push_back(setID);
if (failed(
spirv::encodeStringLiteralInto(importOperands, extensionSetName)) ||
failed(encodeInstructionInto(
extendedSets, spirv::Opcode::OpExtInstImport, importOperands))) {
return failure();
}
}
// The first two operands are the result type <id> and result <id>. The set
// <id> and the opcode need to be insert after this.
if (operands.size() < 2) {
return op->emitError("extended instructions must have a result encoding");
}
SmallVector<uint32_t, 8> extInstOperands;
extInstOperands.reserve(operands.size() + 2);
extInstOperands.append(operands.begin(), std::next(operands.begin(), 2));
extInstOperands.push_back(setID);
extInstOperands.push_back(extensionOpcode);
extInstOperands.append(std::next(operands.begin(), 2), operands.end());
return encodeInstructionInto(functionBody, spirv::Opcode::OpExtInst,
extInstOperands);
}
LogicalResult Serializer::processAddressOfOp(spirv::AddressOfOp addressOfOp) {
auto varName = addressOfOp.variable();
auto variableID = getVariableID(varName);
if (!variableID) {
return addressOfOp.emitError("unknown result <id> for variable ")
<< varName;
}
valueIDMap[addressOfOp.pointer()] = variableID;
return success();
}
LogicalResult
Serializer::processReferenceOfOp(spirv::ReferenceOfOp referenceOfOp) {
auto constName = referenceOfOp.spec_const();
auto constID = getSpecConstID(constName);
if (!constID) {
return referenceOfOp.emitError(
"unknown result <id> for specialization constant ")
<< constName;
}
valueIDMap[referenceOfOp.reference()] = constID;
return success();
}
LogicalResult Serializer::processOperation(Operation *opInst) {
LLVM_DEBUG(llvm::dbgs() << "[op] '" << opInst->getName() << "'\n");
// First dispatch the ops that do not directly mirror an instruction from
// the SPIR-V spec.
return TypeSwitch<Operation *, LogicalResult>(opInst)
.Case([&](spirv::AddressOfOp op) { return processAddressOfOp(op); })
.Case([&](spirv::BranchOp op) { return processBranchOp(op); })
.Case([&](spirv::BranchConditionalOp op) {
return processBranchConditionalOp(op);
})
.Case([&](spirv::ConstantOp op) { return processConstantOp(op); })
.Case([&](spirv::FuncOp op) { return processFuncOp(op); })
.Case([&](spirv::GlobalVariableOp op) {
return processGlobalVariableOp(op);
})
.Case([&](spirv::LoopOp op) { return processLoopOp(op); })
.Case([&](spirv::ModuleEndOp) { return success(); })
.Case([&](spirv::ReferenceOfOp op) { return processReferenceOfOp(op); })
.Case([&](spirv::SelectionOp op) { return processSelectionOp(op); })
.Case([&](spirv::SpecConstantOp op) { return processSpecConstantOp(op); })
.Case([&](spirv::UndefOp op) { return processUndefOp(op); })
.Case([&](spirv::VariableOp op) { return processVariableOp(op); })
// Then handle all the ops that directly mirror SPIR-V instructions with
// auto-generated methods.
.Default(
[&](Operation *op) { return dispatchToAutogenSerialization(op); });
}
namespace {
template <>
LogicalResult
Serializer::processOp<spirv::EntryPointOp>(spirv::EntryPointOp op) {
SmallVector<uint32_t, 4> operands;
// Add the ExecutionModel.
operands.push_back(static_cast<uint32_t>(op.execution_model()));
// Add the function <id>.
auto funcID = getFunctionID(op.fn());
if (!funcID) {
return op.emitError("missing <id> for function ")
<< op.fn()
<< "; function needs to be defined before spv.EntryPoint is "
"serialized";
}
operands.push_back(funcID);
// Add the name of the function.
spirv::encodeStringLiteralInto(operands, op.fn());
// Add the interface values.
if (auto interface = op.interface()) {
for (auto var : interface.getValue()) {
auto id = getVariableID(var.cast<FlatSymbolRefAttr>().getValue());
if (!id) {
return op.emitError("referencing undefined global variable."
"spv.EntryPoint is at the end of spv.module. All "
"referenced variables should already be defined");
}
operands.push_back(id);
}
}
return encodeInstructionInto(entryPoints, spirv::Opcode::OpEntryPoint,
operands);
}
template <>
LogicalResult
Serializer::processOp<spirv::ControlBarrierOp>(spirv::ControlBarrierOp op) {
StringRef argNames[] = {"execution_scope", "memory_scope",
"memory_semantics"};
SmallVector<uint32_t, 3> operands;
for (auto argName : argNames) {
auto argIntAttr = op.getAttrOfType<IntegerAttr>(argName);
auto operand = prepareConstantInt(op.getLoc(), argIntAttr);
if (!operand) {
return failure();
}
operands.push_back(operand);
}
return encodeInstructionInto(functionBody, spirv::Opcode::OpControlBarrier,
operands);
}
template <>
LogicalResult
Serializer::processOp<spirv::ExecutionModeOp>(spirv::ExecutionModeOp op) {
SmallVector<uint32_t, 4> operands;
// Add the function <id>.
auto funcID = getFunctionID(op.fn());
if (!funcID) {
return op.emitError("missing <id> for function ")
<< op.fn()
<< "; function needs to be serialized before ExecutionModeOp is "
"serialized";
}
operands.push_back(funcID);
// Add the ExecutionMode.
operands.push_back(static_cast<uint32_t>(op.execution_mode()));
// Serialize values if any.
auto values = op.values();
if (values) {
for (auto &intVal : values.getValue()) {
operands.push_back(static_cast<uint32_t>(
intVal.cast<IntegerAttr>().getValue().getZExtValue()));
}
}
return encodeInstructionInto(executionModes, spirv::Opcode::OpExecutionMode,
operands);
}
template <>
LogicalResult
Serializer::processOp<spirv::MemoryBarrierOp>(spirv::MemoryBarrierOp op) {
StringRef argNames[] = {"memory_scope", "memory_semantics"};
SmallVector<uint32_t, 2> operands;
for (auto argName : argNames) {
auto argIntAttr = op.getAttrOfType<IntegerAttr>(argName);
auto operand = prepareConstantInt(op.getLoc(), argIntAttr);
if (!operand) {
return failure();
}
operands.push_back(operand);
}
return encodeInstructionInto(functionBody, spirv::Opcode::OpMemoryBarrier,
operands);
}
template <>
LogicalResult
Serializer::processOp<spirv::FunctionCallOp>(spirv::FunctionCallOp op) {
auto funcName = op.callee();
uint32_t resTypeID = 0;
Type resultTy = op.getNumResults() ? *op.result_type_begin() : getVoidType();
if (failed(processType(op.getLoc(), resultTy, resTypeID)))
return failure();
auto funcID = getOrCreateFunctionID(funcName);
auto funcCallID = getNextID();
SmallVector<uint32_t, 8> operands{resTypeID, funcCallID, funcID};
for (auto value : op.arguments()) {
auto valueID = getValueID(value);
assert(valueID && "cannot find a value for spv.FunctionCall");
operands.push_back(valueID);
}
if (!resultTy.isa<NoneType>())
valueIDMap[op.getResult(0)] = funcCallID;
return encodeInstructionInto(functionBody, spirv::Opcode::OpFunctionCall,
operands);
}
// Pull in auto-generated Serializer::dispatchToAutogenSerialization() and
// various Serializer::processOp<...>() specializations.
#define GET_SERIALIZATION_FNS
#include "mlir/Dialect/SPIRV/SPIRVSerialization.inc"
} // namespace
LogicalResult Serializer::emitDecoration(uint32_t target,
spirv::Decoration decoration,
ArrayRef<uint32_t> params) {
uint32_t wordCount = 3 + params.size();
decorations.push_back(
spirv::getPrefixedOpcode(wordCount, spirv::Opcode::OpDecorate));
decorations.push_back(target);
decorations.push_back(static_cast<uint32_t>(decoration));
decorations.append(params.begin(), params.end());
return success();
}
LogicalResult Serializer::emitDebugLine(SmallVectorImpl<uint32_t> &binary,
Location loc) {
if (!emitDebugInfo)
return success();
if (lastProcessedWasMergeInst) {
lastProcessedWasMergeInst = false;
return success();
}
auto fileLoc = loc.dyn_cast<FileLineColLoc>();
if (fileLoc)
encodeInstructionInto(binary, spirv::Opcode::OpLine,
{fileID, fileLoc.getLine(), fileLoc.getColumn()});
return success();
}
LogicalResult spirv::serialize(spirv::ModuleOp module,
SmallVectorImpl<uint32_t> &binary,
bool emitDebugInfo) {
if (!module.vce_triple().hasValue())
return module.emitError(
"module must have 'vce_triple' attribute to be serializeable");
Serializer serializer(module, emitDebugInfo);
if (failed(serializer.serialize()))
return failure();
LLVM_DEBUG(serializer.printValueIDMap(llvm::dbgs()));
serializer.collect(binary);
return success();
}