forked from OSchip/llvm-project
290 lines
11 KiB
C++
290 lines
11 KiB
C++
//===- Builders.cpp - MLIR Declarative Linalg Builders --------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/Dialect/Affine/EDSC/Intrinsics.h"
|
|
#include "mlir/Dialect/Linalg/EDSC/Builders.h"
|
|
#include "mlir/Dialect/Linalg/EDSC/Intrinsics.h"
|
|
#include "mlir/Dialect/SCF/EDSC/Builders.h"
|
|
#include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
|
|
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::edsc;
|
|
using namespace mlir::edsc::intrinsics;
|
|
using namespace mlir::linalg;
|
|
using namespace mlir::scf;
|
|
|
|
Operation *mlir::edsc::makeGenericLinalgOp(
|
|
ArrayRef<IteratorType> iteratorTypes, ArrayRef<StructuredIndexed> inputs,
|
|
ArrayRef<StructuredIndexed> outputs,
|
|
function_ref<void(ValueRange)> regionBuilder, ArrayRef<Value> otherValues,
|
|
ArrayRef<Attribute> otherAttributes) {
|
|
for (unsigned i = 0, e = outputs.size(); i + 1 < e; ++i)
|
|
assert(!(outputs[i].getType().isa<RankedTensorType>() &&
|
|
outputs[i + 1].getType().isa<MemRefType>()) &&
|
|
"output tensors must be passed after output buffers");
|
|
auto &builder = edsc::ScopedContext::getBuilderRef();
|
|
auto *ctx = builder.getContext();
|
|
unsigned nInputs = inputs.size();
|
|
unsigned nOutputs = outputs.size();
|
|
|
|
SmallVector<SmallVector<AffineExpr, 4>, 4> exprsList;
|
|
exprsList.reserve(nInputs + nOutputs);
|
|
for (auto structuredIndexed : inputs)
|
|
exprsList.emplace_back(structuredIndexed.getExprs().begin(),
|
|
structuredIndexed.getExprs().end());
|
|
for (auto structuredIndexed : outputs)
|
|
exprsList.emplace_back(structuredIndexed.getExprs().begin(),
|
|
structuredIndexed.getExprs().end());
|
|
auto maps = AffineMap::inferFromExprList(exprsList);
|
|
|
|
unsigned nViews = nInputs + nOutputs;
|
|
SmallVector<Value, 4> values;
|
|
values.reserve(nViews);
|
|
values.append(inputs.begin(), inputs.end());
|
|
std::copy_if(outputs.begin(), outputs.end(), std::back_inserter(values),
|
|
[](StructuredIndexed s) { return s.hasValue(); });
|
|
SmallVector<Type, 4> types;
|
|
std::copy_if(outputs.begin(), outputs.end(), std::back_inserter(types),
|
|
[](StructuredIndexed s) { return !s.hasValue(); });
|
|
|
|
auto iteratorStrTypes =
|
|
llvm::to_vector<8>(llvm::map_range(iteratorTypes, toString));
|
|
// clang-format off
|
|
auto *op =
|
|
edsc::ScopedContext::getBuilderRef()
|
|
.create<linalg::GenericOp>(
|
|
edsc::ScopedContext::getLocation(),
|
|
types,
|
|
values,
|
|
IntegerAttr::get(IntegerType::get(64, ctx), nInputs),
|
|
IntegerAttr::get(IntegerType::get(64, ctx), nOutputs),
|
|
builder.getAffineMapArrayAttr(maps),
|
|
builder.getStrArrayAttr(iteratorStrTypes),
|
|
StringAttr() /*doc*/,
|
|
StringAttr() /*library_call*/
|
|
/* TODO: other attributes in op */
|
|
)
|
|
.getOperation();
|
|
// clang-format on
|
|
|
|
using namespace edsc;
|
|
SmallVector<Type, 4> blockTypes;
|
|
blockTypes.reserve(values.size());
|
|
for (auto it : llvm::enumerate(values))
|
|
blockTypes.push_back((it.index() < nViews)
|
|
? getElementTypeOrSelf(it.value())
|
|
: it.value().getType());
|
|
|
|
assert(op->getNumRegions() == 1);
|
|
assert(op->getRegion(0).empty());
|
|
OpBuilder opBuilder(op);
|
|
ScopedContext scope(opBuilder, op->getLoc());
|
|
buildInNewBlock(op->getRegion(0), blockTypes, regionBuilder);
|
|
assert(llvm::hasSingleElement(op->getRegion(0)));
|
|
return op;
|
|
}
|
|
|
|
void mlir::edsc::ops::mulRegionBuilder(ValueRange args) {
|
|
using edsc::op::operator+;
|
|
using edsc::op::operator*;
|
|
assert(args.size() == 2 && "expected 2 block arguments");
|
|
Value a(args[0]), b(args[1]);
|
|
linalg_yield(a * b);
|
|
}
|
|
|
|
void mlir::edsc::ops::macRegionBuilder(ValueRange args) {
|
|
using edsc::op::operator+;
|
|
using edsc::op::operator*;
|
|
assert(args.size() == 3 && "expected 3 block arguments");
|
|
Value a(args[0]), b(args[1]), c(args[2]);
|
|
linalg_yield(c + a * b);
|
|
}
|
|
|
|
Operation *mlir::edsc::ops::linalg_generic_pointwise(
|
|
UnaryPointwiseOpBuilder unaryOp, StructuredIndexed I, StructuredIndexed O) {
|
|
SmallVector<IteratorType, 4> iterTypes(O.getExprs().size(),
|
|
IteratorType::Parallel);
|
|
if (O.getType().isa<RankedTensorType>()) {
|
|
auto fun = [&unaryOp](ValueRange args) {
|
|
assert(args.size() == 1 && "expected 1 block arguments");
|
|
Value a(args[0]);
|
|
linalg_yield(unaryOp(a));
|
|
};
|
|
return makeGenericLinalgOp(iterTypes, {I}, {O}, fun);
|
|
}
|
|
auto fun = [&unaryOp](ValueRange args) {
|
|
assert(args.size() == 2 && "expected 2 block arguments");
|
|
Value a(args[0]);
|
|
linalg_yield(unaryOp(a));
|
|
};
|
|
return makeGenericLinalgOp(iterTypes, {I}, {O}, fun);
|
|
}
|
|
|
|
Operation *mlir::edsc::ops::linalg_generic_pointwise_tanh(StructuredIndexed I,
|
|
StructuredIndexed O) {
|
|
UnaryPointwiseOpBuilder unOp([](Value a) -> Value { return std_tanh(a); });
|
|
return linalg_generic_pointwise(unOp, I, O);
|
|
}
|
|
|
|
/// Binary pointwise operation (with broadcast) entry point.
|
|
Operation *mlir::edsc::ops::linalg_generic_pointwise(
|
|
BinaryPointwiseOpBuilder binaryOp, StructuredIndexed I1,
|
|
StructuredIndexed I2, StructuredIndexed O) {
|
|
SmallVector<IteratorType, 4> iterTypes(O.getExprs().size(),
|
|
IteratorType::Parallel);
|
|
if (O.getType().isa<RankedTensorType>()) {
|
|
auto fun = [&binaryOp](ValueRange args) {
|
|
assert(args.size() == 2 && "expected 2 block arguments");
|
|
Value a(args[0]), b(args[1]);
|
|
linalg_yield(binaryOp(a, b));
|
|
};
|
|
return makeGenericLinalgOp(iterTypes, {I1, I2}, {O}, fun);
|
|
}
|
|
auto fun = [&binaryOp](ValueRange args) {
|
|
assert(args.size() == 3 && "expected 3 block arguments");
|
|
Value a(args[0]), b(args[1]);
|
|
linalg_yield(binaryOp(a, b));
|
|
};
|
|
return makeGenericLinalgOp(iterTypes, {I1, I2}, {O}, fun);
|
|
}
|
|
|
|
Operation *mlir::edsc::ops::linalg_generic_pointwise_add(StructuredIndexed I1,
|
|
StructuredIndexed I2,
|
|
StructuredIndexed O) {
|
|
using edsc::op::operator+;
|
|
BinaryPointwiseOpBuilder binOp(
|
|
[](Value a, Value b) -> Value { return a + b; });
|
|
return linalg_generic_pointwise(binOp, I1, I2, O);
|
|
}
|
|
|
|
Operation *mlir::edsc::ops::linalg_generic_pointwise_max(StructuredIndexed I1,
|
|
StructuredIndexed I2,
|
|
StructuredIndexed O) {
|
|
BinaryPointwiseOpBuilder binOp([](Value a, Value b) -> Value {
|
|
using edsc::op::sgt;
|
|
return std_select(sgt(a, b), a, b);
|
|
});
|
|
return linalg_generic_pointwise(binOp, I1, I2, O);
|
|
}
|
|
|
|
Operation *
|
|
mlir::edsc::ops::linalg_generic_matmul(Value vA, Value vB, Value vC,
|
|
MatmulRegionBuilder regionBuilder) {
|
|
// clang-format off
|
|
AffineExpr m, n, k;
|
|
bindDims(ScopedContext::getContext(), m, n, k);
|
|
StructuredIndexed A(vA), B(vB), C(vC);
|
|
return makeGenericLinalgOp(
|
|
{IteratorType::Parallel, IteratorType::Parallel, IteratorType::Reduction},
|
|
{A({m, k}), B({k, n})},
|
|
{C({m, n})},
|
|
regionBuilder);
|
|
// clang-format on
|
|
}
|
|
|
|
Operation *
|
|
mlir::edsc::ops::linalg_generic_matmul(Value vA, Value vB, RankedTensorType tC,
|
|
MatmulRegionBuilder regionBuilder) {
|
|
// clang-format off
|
|
AffineExpr m, n, k;
|
|
bindDims(ScopedContext::getContext(), m, n, k);
|
|
StructuredIndexed A(vA), B(vB), C(tC);
|
|
return makeGenericLinalgOp(
|
|
{IteratorType::Parallel, IteratorType::Parallel, IteratorType::Reduction},
|
|
{A({m, k}), B({k, n})},
|
|
{C({m, n})},
|
|
regionBuilder);
|
|
// clang-format on
|
|
}
|
|
|
|
Operation *
|
|
mlir::edsc::ops::linalg_generic_matmul(Value vA, Value vB, Value vC,
|
|
RankedTensorType tD,
|
|
MatmulRegionBuilder regionBuilder) {
|
|
// clang-format off
|
|
AffineExpr m, n, k;
|
|
bindDims(ScopedContext::getContext(), m, n, k);
|
|
StructuredIndexed A(vA), B(vB), C(vC), D(tD);
|
|
return makeGenericLinalgOp(
|
|
{IteratorType::Parallel, IteratorType::Parallel, IteratorType::Reduction},
|
|
{A({m, k}), B({k, n}), C({m, n})},
|
|
{D({m, n})},
|
|
regionBuilder);
|
|
// clang-format on
|
|
}
|
|
|
|
Operation *mlir::edsc::ops::linalg_generic_conv_nhwc(Value vI, Value vW,
|
|
Value vO,
|
|
ArrayRef<int> strides,
|
|
ArrayRef<int> dilations) {
|
|
MLIRContext *ctx = ScopedContext::getContext();
|
|
// TODO: some template magic to make everything rank-polymorphic.
|
|
assert((dilations.empty() || dilations.size() == 2) && "only 2-D conv atm");
|
|
assert((strides.empty() || strides.size() == 2) && "only 2-D conv atm");
|
|
|
|
// Some short names.
|
|
auto par = IteratorType::Parallel;
|
|
auto red = IteratorType::Reduction;
|
|
auto s = strides;
|
|
auto d = dilations;
|
|
|
|
AffineExpr b, f, h, w, kh, kw, c;
|
|
bindDims(ctx, b, f, h, w, kh, kw, c);
|
|
unsigned numDims = c.cast<AffineDimExpr>().getPosition() + 1;
|
|
StructuredIndexed I(vI), W(vW), O(vO);
|
|
// clang-format off
|
|
return makeGenericLinalgOp(
|
|
{par, par, par, par, red, red, red}, {
|
|
I({b,
|
|
// Roundtrip to flattened form to serve as canonicalization and ensure
|
|
// consistent ordering of subexpressions.
|
|
simplifyAffineExpr(s[0] * h + d[0] * kh, numDims, 0),
|
|
simplifyAffineExpr(s[1] * w + d[1] * kw, numDims, 0),
|
|
c}),
|
|
W({kh, kw, c, f})}, {
|
|
O({b, h, w, f})},
|
|
macRegionBuilder);
|
|
// clang-format on
|
|
}
|
|
|
|
Operation *mlir::edsc::ops::linalg_generic_dilated_conv_nhwc(
|
|
Value vI, Value vW, Value vO, int depth_multiplier, ArrayRef<int> strides,
|
|
ArrayRef<int> dilations) {
|
|
MLIRContext *ctx = ScopedContext::getContext();
|
|
// TODO: some template magic to make everything rank-polymorphic.
|
|
assert((dilations.empty() || dilations.size() == 2) && "only 2-D conv atm");
|
|
assert((strides.empty() || strides.size() == 2) && "only 2-D conv atm");
|
|
|
|
// Some short names.
|
|
auto par = IteratorType::Parallel;
|
|
auto red = IteratorType::Reduction;
|
|
auto s = strides;
|
|
auto d = dilations;
|
|
|
|
// clang-format off
|
|
AffineExpr b, dm, c, h, w, kh, kw;
|
|
bindDims(ctx, b, dm, c, h, w, kh, kw);
|
|
unsigned numDims = kw.cast<AffineDimExpr>().getPosition() + 1;
|
|
StructuredIndexed I(vI), W(vW), O(vO);
|
|
return makeGenericLinalgOp(
|
|
{par, par, par, par, par, red, red}, {
|
|
I({b,
|
|
// Roundtrip to flattened form to serve as canonicalization and ensure
|
|
// consistent ordering of subexpressions.
|
|
simplifyAffineExpr(s[0] * h + d[0] * kh, numDims, 0),
|
|
simplifyAffineExpr(s[1] * w + d[1] * kw, numDims, 0),
|
|
c}),
|
|
W({kh, kw, c, dm})}, {
|
|
O({b, h, w, simplifyAffineExpr(c * depth_multiplier + dm, numDims, 0)})},
|
|
macRegionBuilder);
|
|
// clang-format on
|
|
}
|