llvm-project/llvm/lib/Target/NVPTX/NVPTXAsmPrinter.cpp

2450 lines
76 KiB
C++

//===-- NVPTXAsmPrinter.cpp - NVPTX LLVM assembly writer ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to NVPTX assembly language.
//
//===----------------------------------------------------------------------===//
#include "InstPrinter/NVPTXInstPrinter.h"
#include "MCTargetDesc/NVPTXBaseInfo.h"
#include "MCTargetDesc/NVPTXMCAsmInfo.h"
#include "NVPTX.h"
#include "NVPTXAsmPrinter.h"
#include "NVPTXMCExpr.h"
#include "NVPTXMachineFunctionInfo.h"
#include "NVPTXRegisterInfo.h"
#include "NVPTXSubtarget.h"
#include "NVPTXTargetMachine.h"
#include "NVPTXUtilities.h"
#include "cl_common_defines.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineValueType.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Transforms/Utils/UnrollLoop.h"
#include <cassert>
#include <cstdint>
#include <cstring>
#include <new>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
#define DEPOTNAME "__local_depot"
static cl::opt<bool>
EmitLineNumbers("nvptx-emit-line-numbers", cl::Hidden,
cl::desc("NVPTX Specific: Emit Line numbers even without -G"),
cl::init(true));
static cl::opt<bool>
InterleaveSrc("nvptx-emit-src", cl::ZeroOrMore, cl::Hidden,
cl::desc("NVPTX Specific: Emit source line in ptx file"),
cl::init(false));
/// DiscoverDependentGlobals - Return a set of GlobalVariables on which \p V
/// depends.
static void
DiscoverDependentGlobals(const Value *V,
DenseSet<const GlobalVariable *> &Globals) {
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
Globals.insert(GV);
else {
if (const User *U = dyn_cast<User>(V)) {
for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i) {
DiscoverDependentGlobals(U->getOperand(i), Globals);
}
}
}
}
/// VisitGlobalVariableForEmission - Add \p GV to the list of GlobalVariable
/// instances to be emitted, but only after any dependents have been added
/// first.s
static void
VisitGlobalVariableForEmission(const GlobalVariable *GV,
SmallVectorImpl<const GlobalVariable *> &Order,
DenseSet<const GlobalVariable *> &Visited,
DenseSet<const GlobalVariable *> &Visiting) {
// Have we already visited this one?
if (Visited.count(GV))
return;
// Do we have a circular dependency?
if (!Visiting.insert(GV).second)
report_fatal_error("Circular dependency found in global variable set");
// Make sure we visit all dependents first
DenseSet<const GlobalVariable *> Others;
for (unsigned i = 0, e = GV->getNumOperands(); i != e; ++i)
DiscoverDependentGlobals(GV->getOperand(i), Others);
for (DenseSet<const GlobalVariable *>::iterator I = Others.begin(),
E = Others.end();
I != E; ++I)
VisitGlobalVariableForEmission(*I, Order, Visited, Visiting);
// Now we can visit ourself
Order.push_back(GV);
Visited.insert(GV);
Visiting.erase(GV);
}
void NVPTXAsmPrinter::emitLineNumberAsDotLoc(const MachineInstr &MI) {
if (!EmitLineNumbers)
return;
if (ignoreLoc(MI))
return;
const DebugLoc &curLoc = MI.getDebugLoc();
if (!prevDebugLoc && !curLoc)
return;
if (prevDebugLoc == curLoc)
return;
prevDebugLoc = curLoc;
if (!curLoc)
return;
auto *Scope = cast_or_null<DIScope>(curLoc.getScope());
if (!Scope)
return;
StringRef fileName(Scope->getFilename());
StringRef dirName(Scope->getDirectory());
SmallString<128> FullPathName = dirName;
if (!dirName.empty() && !sys::path::is_absolute(fileName)) {
sys::path::append(FullPathName, fileName);
fileName = FullPathName;
}
if (filenameMap.find(fileName) == filenameMap.end())
return;
// Emit the line from the source file.
if (InterleaveSrc)
this->emitSrcInText(fileName, curLoc.getLine());
std::stringstream temp;
temp << "\t.loc " << filenameMap[fileName] << " " << curLoc.getLine()
<< " " << curLoc.getCol();
OutStreamer->EmitRawText(temp.str());
}
void NVPTXAsmPrinter::EmitInstruction(const MachineInstr *MI) {
SmallString<128> Str;
raw_svector_ostream OS(Str);
if (static_cast<NVPTXTargetMachine &>(TM).getDrvInterface() == NVPTX::CUDA)
emitLineNumberAsDotLoc(*MI);
MCInst Inst;
lowerToMCInst(MI, Inst);
EmitToStreamer(*OutStreamer, Inst);
}
// Handle symbol backtracking for targets that do not support image handles
bool NVPTXAsmPrinter::lowerImageHandleOperand(const MachineInstr *MI,
unsigned OpNo, MCOperand &MCOp) {
const MachineOperand &MO = MI->getOperand(OpNo);
const MCInstrDesc &MCID = MI->getDesc();
if (MCID.TSFlags & NVPTXII::IsTexFlag) {
// This is a texture fetch, so operand 4 is a texref and operand 5 is
// a samplerref
if (OpNo == 4 && MO.isImm()) {
lowerImageHandleSymbol(MO.getImm(), MCOp);
return true;
}
if (OpNo == 5 && MO.isImm() && !(MCID.TSFlags & NVPTXII::IsTexModeUnifiedFlag)) {
lowerImageHandleSymbol(MO.getImm(), MCOp);
return true;
}
return false;
} else if (MCID.TSFlags & NVPTXII::IsSuldMask) {
unsigned VecSize =
1 << (((MCID.TSFlags & NVPTXII::IsSuldMask) >> NVPTXII::IsSuldShift) - 1);
// For a surface load of vector size N, the Nth operand will be the surfref
if (OpNo == VecSize && MO.isImm()) {
lowerImageHandleSymbol(MO.getImm(), MCOp);
return true;
}
return false;
} else if (MCID.TSFlags & NVPTXII::IsSustFlag) {
// This is a surface store, so operand 0 is a surfref
if (OpNo == 0 && MO.isImm()) {
lowerImageHandleSymbol(MO.getImm(), MCOp);
return true;
}
return false;
} else if (MCID.TSFlags & NVPTXII::IsSurfTexQueryFlag) {
// This is a query, so operand 1 is a surfref/texref
if (OpNo == 1 && MO.isImm()) {
lowerImageHandleSymbol(MO.getImm(), MCOp);
return true;
}
return false;
}
return false;
}
void NVPTXAsmPrinter::lowerImageHandleSymbol(unsigned Index, MCOperand &MCOp) {
// Ewwww
TargetMachine &TM = const_cast<TargetMachine&>(MF->getTarget());
NVPTXTargetMachine &nvTM = static_cast<NVPTXTargetMachine&>(TM);
const NVPTXMachineFunctionInfo *MFI = MF->getInfo<NVPTXMachineFunctionInfo>();
const char *Sym = MFI->getImageHandleSymbol(Index);
std::string *SymNamePtr =
nvTM.getManagedStrPool()->getManagedString(Sym);
MCOp = GetSymbolRef(OutContext.getOrCreateSymbol(StringRef(*SymNamePtr)));
}
void NVPTXAsmPrinter::lowerToMCInst(const MachineInstr *MI, MCInst &OutMI) {
OutMI.setOpcode(MI->getOpcode());
// Special: Do not mangle symbol operand of CALL_PROTOTYPE
if (MI->getOpcode() == NVPTX::CALL_PROTOTYPE) {
const MachineOperand &MO = MI->getOperand(0);
OutMI.addOperand(GetSymbolRef(
OutContext.getOrCreateSymbol(Twine(MO.getSymbolName()))));
return;
}
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
MCOperand MCOp;
if (!nvptxSubtarget->hasImageHandles()) {
if (lowerImageHandleOperand(MI, i, MCOp)) {
OutMI.addOperand(MCOp);
continue;
}
}
if (lowerOperand(MO, MCOp))
OutMI.addOperand(MCOp);
}
}
bool NVPTXAsmPrinter::lowerOperand(const MachineOperand &MO,
MCOperand &MCOp) {
switch (MO.getType()) {
default: llvm_unreachable("unknown operand type");
case MachineOperand::MO_Register:
MCOp = MCOperand::createReg(encodeVirtualRegister(MO.getReg()));
break;
case MachineOperand::MO_Immediate:
MCOp = MCOperand::createImm(MO.getImm());
break;
case MachineOperand::MO_MachineBasicBlock:
MCOp = MCOperand::createExpr(MCSymbolRefExpr::create(
MO.getMBB()->getSymbol(), OutContext));
break;
case MachineOperand::MO_ExternalSymbol:
MCOp = GetSymbolRef(GetExternalSymbolSymbol(MO.getSymbolName()));
break;
case MachineOperand::MO_GlobalAddress:
MCOp = GetSymbolRef(getSymbol(MO.getGlobal()));
break;
case MachineOperand::MO_FPImmediate: {
const ConstantFP *Cnt = MO.getFPImm();
const APFloat &Val = Cnt->getValueAPF();
switch (Cnt->getType()->getTypeID()) {
default: report_fatal_error("Unsupported FP type"); break;
case Type::HalfTyID:
MCOp = MCOperand::createExpr(
NVPTXFloatMCExpr::createConstantFPHalf(Val, OutContext));
break;
case Type::FloatTyID:
MCOp = MCOperand::createExpr(
NVPTXFloatMCExpr::createConstantFPSingle(Val, OutContext));
break;
case Type::DoubleTyID:
MCOp = MCOperand::createExpr(
NVPTXFloatMCExpr::createConstantFPDouble(Val, OutContext));
break;
}
break;
}
}
return true;
}
unsigned NVPTXAsmPrinter::encodeVirtualRegister(unsigned Reg) {
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
const TargetRegisterClass *RC = MRI->getRegClass(Reg);
DenseMap<unsigned, unsigned> &RegMap = VRegMapping[RC];
unsigned RegNum = RegMap[Reg];
// Encode the register class in the upper 4 bits
// Must be kept in sync with NVPTXInstPrinter::printRegName
unsigned Ret = 0;
if (RC == &NVPTX::Int1RegsRegClass) {
Ret = (1 << 28);
} else if (RC == &NVPTX::Int16RegsRegClass) {
Ret = (2 << 28);
} else if (RC == &NVPTX::Int32RegsRegClass) {
Ret = (3 << 28);
} else if (RC == &NVPTX::Int64RegsRegClass) {
Ret = (4 << 28);
} else if (RC == &NVPTX::Float32RegsRegClass) {
Ret = (5 << 28);
} else if (RC == &NVPTX::Float64RegsRegClass) {
Ret = (6 << 28);
} else if (RC == &NVPTX::Float16RegsRegClass) {
Ret = (7 << 28);
} else if (RC == &NVPTX::Float16x2RegsRegClass) {
Ret = (8 << 28);
} else {
report_fatal_error("Bad register class");
}
// Insert the vreg number
Ret |= (RegNum & 0x0FFFFFFF);
return Ret;
} else {
// Some special-use registers are actually physical registers.
// Encode this as the register class ID of 0 and the real register ID.
return Reg & 0x0FFFFFFF;
}
}
MCOperand NVPTXAsmPrinter::GetSymbolRef(const MCSymbol *Symbol) {
const MCExpr *Expr;
Expr = MCSymbolRefExpr::create(Symbol, MCSymbolRefExpr::VK_None,
OutContext);
return MCOperand::createExpr(Expr);
}
void NVPTXAsmPrinter::printReturnValStr(const Function *F, raw_ostream &O) {
const DataLayout &DL = getDataLayout();
const TargetLowering *TLI = nvptxSubtarget->getTargetLowering();
Type *Ty = F->getReturnType();
bool isABI = (nvptxSubtarget->getSmVersion() >= 20);
if (Ty->getTypeID() == Type::VoidTyID)
return;
O << " (";
if (isABI) {
if (Ty->isFloatingPointTy() || Ty->isIntegerTy()) {
unsigned size = 0;
if (auto *ITy = dyn_cast<IntegerType>(Ty)) {
size = ITy->getBitWidth();
} else {
assert(Ty->isFloatingPointTy() && "Floating point type expected here");
size = Ty->getPrimitiveSizeInBits();
}
// PTX ABI requires all scalar return values to be at least 32
// bits in size. fp16 normally uses .b16 as its storage type in
// PTX, so its size must be adjusted here, too.
if (size < 32)
size = 32;
O << ".param .b" << size << " func_retval0";
} else if (isa<PointerType>(Ty)) {
O << ".param .b" << TLI->getPointerTy(DL).getSizeInBits()
<< " func_retval0";
} else if (Ty->isAggregateType() || Ty->isVectorTy()) {
unsigned totalsz = DL.getTypeAllocSize(Ty);
unsigned retAlignment = 0;
if (!getAlign(*F, 0, retAlignment))
retAlignment = DL.getABITypeAlignment(Ty);
O << ".param .align " << retAlignment << " .b8 func_retval0[" << totalsz
<< "]";
} else
llvm_unreachable("Unknown return type");
} else {
SmallVector<EVT, 16> vtparts;
ComputeValueVTs(*TLI, DL, Ty, vtparts);
unsigned idx = 0;
for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
unsigned elems = 1;
EVT elemtype = vtparts[i];
if (vtparts[i].isVector()) {
elems = vtparts[i].getVectorNumElements();
elemtype = vtparts[i].getVectorElementType();
}
for (unsigned j = 0, je = elems; j != je; ++j) {
unsigned sz = elemtype.getSizeInBits();
if (elemtype.isInteger() && (sz < 32))
sz = 32;
O << ".reg .b" << sz << " func_retval" << idx;
if (j < je - 1)
O << ", ";
++idx;
}
if (i < e - 1)
O << ", ";
}
}
O << ") ";
}
void NVPTXAsmPrinter::printReturnValStr(const MachineFunction &MF,
raw_ostream &O) {
const Function *F = MF.getFunction();
printReturnValStr(F, O);
}
// Return true if MBB is the header of a loop marked with
// llvm.loop.unroll.disable.
// TODO: consider "#pragma unroll 1" which is equivalent to "#pragma nounroll".
bool NVPTXAsmPrinter::isLoopHeaderOfNoUnroll(
const MachineBasicBlock &MBB) const {
MachineLoopInfo &LI = getAnalysis<MachineLoopInfo>();
// We insert .pragma "nounroll" only to the loop header.
if (!LI.isLoopHeader(&MBB))
return false;
// llvm.loop.unroll.disable is marked on the back edges of a loop. Therefore,
// we iterate through each back edge of the loop with header MBB, and check
// whether its metadata contains llvm.loop.unroll.disable.
for (auto I = MBB.pred_begin(); I != MBB.pred_end(); ++I) {
const MachineBasicBlock *PMBB = *I;
if (LI.getLoopFor(PMBB) != LI.getLoopFor(&MBB)) {
// Edges from other loops to MBB are not back edges.
continue;
}
if (const BasicBlock *PBB = PMBB->getBasicBlock()) {
if (MDNode *LoopID =
PBB->getTerminator()->getMetadata(LLVMContext::MD_loop)) {
if (GetUnrollMetadata(LoopID, "llvm.loop.unroll.disable"))
return true;
}
}
}
return false;
}
void NVPTXAsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
AsmPrinter::EmitBasicBlockStart(MBB);
if (isLoopHeaderOfNoUnroll(MBB))
OutStreamer->EmitRawText(StringRef("\t.pragma \"nounroll\";\n"));
}
void NVPTXAsmPrinter::EmitFunctionEntryLabel() {
SmallString<128> Str;
raw_svector_ostream O(Str);
if (!GlobalsEmitted) {
emitGlobals(*MF->getFunction()->getParent());
GlobalsEmitted = true;
}
// Set up
MRI = &MF->getRegInfo();
F = MF->getFunction();
emitLinkageDirective(F, O);
if (isKernelFunction(*F))
O << ".entry ";
else {
O << ".func ";
printReturnValStr(*MF, O);
}
CurrentFnSym->print(O, MAI);
emitFunctionParamList(*MF, O);
if (isKernelFunction(*F))
emitKernelFunctionDirectives(*F, O);
OutStreamer->EmitRawText(O.str());
prevDebugLoc = DebugLoc();
}
void NVPTXAsmPrinter::EmitFunctionBodyStart() {
VRegMapping.clear();
OutStreamer->EmitRawText(StringRef("{\n"));
setAndEmitFunctionVirtualRegisters(*MF);
SmallString<128> Str;
raw_svector_ostream O(Str);
emitDemotedVars(MF->getFunction(), O);
OutStreamer->EmitRawText(O.str());
}
void NVPTXAsmPrinter::EmitFunctionBodyEnd() {
OutStreamer->EmitRawText(StringRef("}\n"));
VRegMapping.clear();
}
void NVPTXAsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
unsigned RegNo = MI->getOperand(0).getReg();
if (TargetRegisterInfo::isVirtualRegister(RegNo)) {
OutStreamer->AddComment(Twine("implicit-def: ") +
getVirtualRegisterName(RegNo));
} else {
OutStreamer->AddComment(Twine("implicit-def: ") +
nvptxSubtarget->getRegisterInfo()->getName(RegNo));
}
OutStreamer->AddBlankLine();
}
void NVPTXAsmPrinter::emitKernelFunctionDirectives(const Function &F,
raw_ostream &O) const {
// If the NVVM IR has some of reqntid* specified, then output
// the reqntid directive, and set the unspecified ones to 1.
// If none of reqntid* is specified, don't output reqntid directive.
unsigned reqntidx, reqntidy, reqntidz;
bool specified = false;
if (!getReqNTIDx(F, reqntidx))
reqntidx = 1;
else
specified = true;
if (!getReqNTIDy(F, reqntidy))
reqntidy = 1;
else
specified = true;
if (!getReqNTIDz(F, reqntidz))
reqntidz = 1;
else
specified = true;
if (specified)
O << ".reqntid " << reqntidx << ", " << reqntidy << ", " << reqntidz
<< "\n";
// If the NVVM IR has some of maxntid* specified, then output
// the maxntid directive, and set the unspecified ones to 1.
// If none of maxntid* is specified, don't output maxntid directive.
unsigned maxntidx, maxntidy, maxntidz;
specified = false;
if (!getMaxNTIDx(F, maxntidx))
maxntidx = 1;
else
specified = true;
if (!getMaxNTIDy(F, maxntidy))
maxntidy = 1;
else
specified = true;
if (!getMaxNTIDz(F, maxntidz))
maxntidz = 1;
else
specified = true;
if (specified)
O << ".maxntid " << maxntidx << ", " << maxntidy << ", " << maxntidz
<< "\n";
unsigned mincta;
if (getMinCTASm(F, mincta))
O << ".minnctapersm " << mincta << "\n";
unsigned maxnreg;
if (getMaxNReg(F, maxnreg))
O << ".maxnreg " << maxnreg << "\n";
}
std::string
NVPTXAsmPrinter::getVirtualRegisterName(unsigned Reg) const {
const TargetRegisterClass *RC = MRI->getRegClass(Reg);
std::string Name;
raw_string_ostream NameStr(Name);
VRegRCMap::const_iterator I = VRegMapping.find(RC);
assert(I != VRegMapping.end() && "Bad register class");
const DenseMap<unsigned, unsigned> &RegMap = I->second;
VRegMap::const_iterator VI = RegMap.find(Reg);
assert(VI != RegMap.end() && "Bad virtual register");
unsigned MappedVR = VI->second;
NameStr << getNVPTXRegClassStr(RC) << MappedVR;
NameStr.flush();
return Name;
}
void NVPTXAsmPrinter::emitVirtualRegister(unsigned int vr,
raw_ostream &O) {
O << getVirtualRegisterName(vr);
}
void NVPTXAsmPrinter::printVecModifiedImmediate(
const MachineOperand &MO, const char *Modifier, raw_ostream &O) {
static const char vecelem[] = { '0', '1', '2', '3', '0', '1', '2', '3' };
int Imm = (int) MO.getImm();
if (0 == strcmp(Modifier, "vecelem"))
O << "_" << vecelem[Imm];
else if (0 == strcmp(Modifier, "vecv4comm1")) {
if ((Imm < 0) || (Imm > 3))
O << "//";
} else if (0 == strcmp(Modifier, "vecv4comm2")) {
if ((Imm < 4) || (Imm > 7))
O << "//";
} else if (0 == strcmp(Modifier, "vecv4pos")) {
if (Imm < 0)
Imm = 0;
O << "_" << vecelem[Imm % 4];
} else if (0 == strcmp(Modifier, "vecv2comm1")) {
if ((Imm < 0) || (Imm > 1))
O << "//";
} else if (0 == strcmp(Modifier, "vecv2comm2")) {
if ((Imm < 2) || (Imm > 3))
O << "//";
} else if (0 == strcmp(Modifier, "vecv2pos")) {
if (Imm < 0)
Imm = 0;
O << "_" << vecelem[Imm % 2];
} else
llvm_unreachable("Unknown Modifier on immediate operand");
}
void NVPTXAsmPrinter::emitDeclaration(const Function *F, raw_ostream &O) {
emitLinkageDirective(F, O);
if (isKernelFunction(*F))
O << ".entry ";
else
O << ".func ";
printReturnValStr(F, O);
getSymbol(F)->print(O, MAI);
O << "\n";
emitFunctionParamList(F, O);
O << ";\n";
}
static bool usedInGlobalVarDef(const Constant *C) {
if (!C)
return false;
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
return GV->getName() != "llvm.used";
}
for (const User *U : C->users())
if (const Constant *C = dyn_cast<Constant>(U))
if (usedInGlobalVarDef(C))
return true;
return false;
}
static bool usedInOneFunc(const User *U, Function const *&oneFunc) {
if (const GlobalVariable *othergv = dyn_cast<GlobalVariable>(U)) {
if (othergv->getName() == "llvm.used")
return true;
}
if (const Instruction *instr = dyn_cast<Instruction>(U)) {
if (instr->getParent() && instr->getParent()->getParent()) {
const Function *curFunc = instr->getParent()->getParent();
if (oneFunc && (curFunc != oneFunc))
return false;
oneFunc = curFunc;
return true;
} else
return false;
}
for (const User *UU : U->users())
if (!usedInOneFunc(UU, oneFunc))
return false;
return true;
}
/* Find out if a global variable can be demoted to local scope.
* Currently, this is valid for CUDA shared variables, which have local
* scope and global lifetime. So the conditions to check are :
* 1. Is the global variable in shared address space?
* 2. Does it have internal linkage?
* 3. Is the global variable referenced only in one function?
*/
static bool canDemoteGlobalVar(const GlobalVariable *gv, Function const *&f) {
if (!gv->hasInternalLinkage())
return false;
PointerType *Pty = gv->getType();
if (Pty->getAddressSpace() != ADDRESS_SPACE_SHARED)
return false;
const Function *oneFunc = nullptr;
bool flag = usedInOneFunc(gv, oneFunc);
if (!flag)
return false;
if (!oneFunc)
return false;
f = oneFunc;
return true;
}
static bool useFuncSeen(const Constant *C,
DenseMap<const Function *, bool> &seenMap) {
for (const User *U : C->users()) {
if (const Constant *cu = dyn_cast<Constant>(U)) {
if (useFuncSeen(cu, seenMap))
return true;
} else if (const Instruction *I = dyn_cast<Instruction>(U)) {
const BasicBlock *bb = I->getParent();
if (!bb)
continue;
const Function *caller = bb->getParent();
if (!caller)
continue;
if (seenMap.find(caller) != seenMap.end())
return true;
}
}
return false;
}
void NVPTXAsmPrinter::emitDeclarations(const Module &M, raw_ostream &O) {
DenseMap<const Function *, bool> seenMap;
for (Module::const_iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI) {
const Function *F = &*FI;
if (F->isDeclaration()) {
if (F->use_empty())
continue;
if (F->getIntrinsicID())
continue;
emitDeclaration(F, O);
continue;
}
for (const User *U : F->users()) {
if (const Constant *C = dyn_cast<Constant>(U)) {
if (usedInGlobalVarDef(C)) {
// The use is in the initialization of a global variable
// that is a function pointer, so print a declaration
// for the original function
emitDeclaration(F, O);
break;
}
// Emit a declaration of this function if the function that
// uses this constant expr has already been seen.
if (useFuncSeen(C, seenMap)) {
emitDeclaration(F, O);
break;
}
}
if (!isa<Instruction>(U))
continue;
const Instruction *instr = cast<Instruction>(U);
const BasicBlock *bb = instr->getParent();
if (!bb)
continue;
const Function *caller = bb->getParent();
if (!caller)
continue;
// If a caller has already been seen, then the caller is
// appearing in the module before the callee. so print out
// a declaration for the callee.
if (seenMap.find(caller) != seenMap.end()) {
emitDeclaration(F, O);
break;
}
}
seenMap[F] = true;
}
}
void NVPTXAsmPrinter::recordAndEmitFilenames(Module &M) {
DebugInfoFinder DbgFinder;
DbgFinder.processModule(M);
unsigned i = 1;
for (const DICompileUnit *DIUnit : DbgFinder.compile_units()) {
StringRef Filename = DIUnit->getFilename();
StringRef Dirname = DIUnit->getDirectory();
SmallString<128> FullPathName = Dirname;
if (!Dirname.empty() && !sys::path::is_absolute(Filename)) {
sys::path::append(FullPathName, Filename);
Filename = FullPathName;
}
if (filenameMap.find(Filename) != filenameMap.end())
continue;
filenameMap[Filename] = i;
OutStreamer->EmitDwarfFileDirective(i, "", Filename);
++i;
}
for (DISubprogram *SP : DbgFinder.subprograms()) {
StringRef Filename = SP->getFilename();
StringRef Dirname = SP->getDirectory();
SmallString<128> FullPathName = Dirname;
if (!Dirname.empty() && !sys::path::is_absolute(Filename)) {
sys::path::append(FullPathName, Filename);
Filename = FullPathName;
}
if (filenameMap.find(Filename) != filenameMap.end())
continue;
filenameMap[Filename] = i;
OutStreamer->EmitDwarfFileDirective(i, "", Filename);
++i;
}
}
static bool isEmptyXXStructor(GlobalVariable *GV) {
if (!GV) return true;
const ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
if (!InitList) return true; // Not an array; we don't know how to parse.
return InitList->getNumOperands() == 0;
}
bool NVPTXAsmPrinter::doInitialization(Module &M) {
// Construct a default subtarget off of the TargetMachine defaults. The
// rest of NVPTX isn't friendly to change subtargets per function and
// so the default TargetMachine will have all of the options.
const Triple &TT = TM.getTargetTriple();
StringRef CPU = TM.getTargetCPU();
StringRef FS = TM.getTargetFeatureString();
const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
const NVPTXSubtarget STI(TT, CPU, FS, NTM);
if (M.alias_size()) {
report_fatal_error("Module has aliases, which NVPTX does not support.");
return true; // error
}
if (!isEmptyXXStructor(M.getNamedGlobal("llvm.global_ctors"))) {
report_fatal_error(
"Module has a nontrivial global ctor, which NVPTX does not support.");
return true; // error
}
if (!isEmptyXXStructor(M.getNamedGlobal("llvm.global_dtors"))) {
report_fatal_error(
"Module has a nontrivial global dtor, which NVPTX does not support.");
return true; // error
}
SmallString<128> Str1;
raw_svector_ostream OS1(Str1);
MMI = getAnalysisIfAvailable<MachineModuleInfo>();
// We need to call the parent's one explicitly.
//bool Result = AsmPrinter::doInitialization(M);
// Initialize TargetLoweringObjectFile since we didn't do in
// AsmPrinter::doInitialization either right above or where it's commented out
// below.
const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
.Initialize(OutContext, TM);
// Emit header before any dwarf directives are emitted below.
emitHeader(M, OS1, STI);
OutStreamer->EmitRawText(OS1.str());
// Already commented out
//bool Result = AsmPrinter::doInitialization(M);
// Emit module-level inline asm if it exists.
if (!M.getModuleInlineAsm().empty()) {
OutStreamer->AddComment("Start of file scope inline assembly");
OutStreamer->AddBlankLine();
OutStreamer->EmitRawText(StringRef(M.getModuleInlineAsm()));
OutStreamer->AddBlankLine();
OutStreamer->AddComment("End of file scope inline assembly");
OutStreamer->AddBlankLine();
}
// If we're not NVCL we're CUDA, go ahead and emit filenames.
if (TM.getTargetTriple().getOS() != Triple::NVCL)
recordAndEmitFilenames(M);
GlobalsEmitted = false;
return false; // success
}
void NVPTXAsmPrinter::emitGlobals(const Module &M) {
SmallString<128> Str2;
raw_svector_ostream OS2(Str2);
emitDeclarations(M, OS2);
// As ptxas does not support forward references of globals, we need to first
// sort the list of module-level globals in def-use order. We visit each
// global variable in order, and ensure that we emit it *after* its dependent
// globals. We use a little extra memory maintaining both a set and a list to
// have fast searches while maintaining a strict ordering.
SmallVector<const GlobalVariable *, 8> Globals;
DenseSet<const GlobalVariable *> GVVisited;
DenseSet<const GlobalVariable *> GVVisiting;
// Visit each global variable, in order
for (const GlobalVariable &I : M.globals())
VisitGlobalVariableForEmission(&I, Globals, GVVisited, GVVisiting);
assert(GVVisited.size() == M.getGlobalList().size() &&
"Missed a global variable");
assert(GVVisiting.size() == 0 && "Did not fully process a global variable");
// Print out module-level global variables in proper order
for (unsigned i = 0, e = Globals.size(); i != e; ++i)
printModuleLevelGV(Globals[i], OS2);
OS2 << '\n';
OutStreamer->EmitRawText(OS2.str());
}
void NVPTXAsmPrinter::emitHeader(Module &M, raw_ostream &O,
const NVPTXSubtarget &STI) {
O << "//\n";
O << "// Generated by LLVM NVPTX Back-End\n";
O << "//\n";
O << "\n";
unsigned PTXVersion = STI.getPTXVersion();
O << ".version " << (PTXVersion / 10) << "." << (PTXVersion % 10) << "\n";
O << ".target ";
O << STI.getTargetName();
const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
if (NTM.getDrvInterface() == NVPTX::NVCL)
O << ", texmode_independent";
else {
if (!STI.hasDouble())
O << ", map_f64_to_f32";
}
if (MAI->doesSupportDebugInformation())
O << ", debug";
O << "\n";
O << ".address_size ";
if (NTM.is64Bit())
O << "64";
else
O << "32";
O << "\n";
O << "\n";
}
bool NVPTXAsmPrinter::doFinalization(Module &M) {
// If we did not emit any functions, then the global declarations have not
// yet been emitted.
if (!GlobalsEmitted) {
emitGlobals(M);
GlobalsEmitted = true;
}
// XXX Temproarily remove global variables so that doFinalization() will not
// emit them again (global variables are emitted at beginning).
Module::GlobalListType &global_list = M.getGlobalList();
int i, n = global_list.size();
GlobalVariable **gv_array = new GlobalVariable *[n];
// first, back-up GlobalVariable in gv_array
i = 0;
for (Module::global_iterator I = global_list.begin(), E = global_list.end();
I != E; ++I)
gv_array[i++] = &*I;
// second, empty global_list
while (!global_list.empty())
global_list.remove(global_list.begin());
// call doFinalization
bool ret = AsmPrinter::doFinalization(M);
// now we restore global variables
for (i = 0; i < n; i++)
global_list.insert(global_list.end(), gv_array[i]);
clearAnnotationCache(&M);
delete[] gv_array;
return ret;
//bool Result = AsmPrinter::doFinalization(M);
// Instead of calling the parents doFinalization, we may
// clone parents doFinalization and customize here.
// Currently, we if NVISA out the EmitGlobals() in
// parent's doFinalization, which is too intrusive.
//
// Same for the doInitialization.
//return Result;
}
// This function emits appropriate linkage directives for
// functions and global variables.
//
// extern function declaration -> .extern
// extern function definition -> .visible
// external global variable with init -> .visible
// external without init -> .extern
// appending -> not allowed, assert.
// for any linkage other than
// internal, private, linker_private,
// linker_private_weak, linker_private_weak_def_auto,
// we emit -> .weak.
void NVPTXAsmPrinter::emitLinkageDirective(const GlobalValue *V,
raw_ostream &O) {
if (static_cast<NVPTXTargetMachine &>(TM).getDrvInterface() == NVPTX::CUDA) {
if (V->hasExternalLinkage()) {
if (isa<GlobalVariable>(V)) {
const GlobalVariable *GVar = cast<GlobalVariable>(V);
if (GVar) {
if (GVar->hasInitializer())
O << ".visible ";
else
O << ".extern ";
}
} else if (V->isDeclaration())
O << ".extern ";
else
O << ".visible ";
} else if (V->hasAppendingLinkage()) {
std::string msg;
msg.append("Error: ");
msg.append("Symbol ");
if (V->hasName())
msg.append(V->getName());
msg.append("has unsupported appending linkage type");
llvm_unreachable(msg.c_str());
} else if (!V->hasInternalLinkage() &&
!V->hasPrivateLinkage()) {
O << ".weak ";
}
}
}
void NVPTXAsmPrinter::printModuleLevelGV(const GlobalVariable *GVar,
raw_ostream &O,
bool processDemoted) {
// Skip meta data
if (GVar->hasSection()) {
if (GVar->getSection() == "llvm.metadata")
return;
}
// Skip LLVM intrinsic global variables
if (GVar->getName().startswith("llvm.") ||
GVar->getName().startswith("nvvm."))
return;
const DataLayout &DL = getDataLayout();
// GlobalVariables are always constant pointers themselves.
PointerType *PTy = GVar->getType();
Type *ETy = GVar->getValueType();
if (GVar->hasExternalLinkage()) {
if (GVar->hasInitializer())
O << ".visible ";
else
O << ".extern ";
} else if (GVar->hasLinkOnceLinkage() || GVar->hasWeakLinkage() ||
GVar->hasAvailableExternallyLinkage() ||
GVar->hasCommonLinkage()) {
O << ".weak ";
}
if (isTexture(*GVar)) {
O << ".global .texref " << getTextureName(*GVar) << ";\n";
return;
}
if (isSurface(*GVar)) {
O << ".global .surfref " << getSurfaceName(*GVar) << ";\n";
return;
}
if (GVar->isDeclaration()) {
// (extern) declarations, no definition or initializer
// Currently the only known declaration is for an automatic __local
// (.shared) promoted to global.
emitPTXGlobalVariable(GVar, O);
O << ";\n";
return;
}
if (isSampler(*GVar)) {
O << ".global .samplerref " << getSamplerName(*GVar);
const Constant *Initializer = nullptr;
if (GVar->hasInitializer())
Initializer = GVar->getInitializer();
const ConstantInt *CI = nullptr;
if (Initializer)
CI = dyn_cast<ConstantInt>(Initializer);
if (CI) {
unsigned sample = CI->getZExtValue();
O << " = { ";
for (int i = 0,
addr = ((sample & __CLK_ADDRESS_MASK) >> __CLK_ADDRESS_BASE);
i < 3; i++) {
O << "addr_mode_" << i << " = ";
switch (addr) {
case 0:
O << "wrap";
break;
case 1:
O << "clamp_to_border";
break;
case 2:
O << "clamp_to_edge";
break;
case 3:
O << "wrap";
break;
case 4:
O << "mirror";
break;
}
O << ", ";
}
O << "filter_mode = ";
switch ((sample & __CLK_FILTER_MASK) >> __CLK_FILTER_BASE) {
case 0:
O << "nearest";
break;
case 1:
O << "linear";
break;
case 2:
llvm_unreachable("Anisotropic filtering is not supported");
default:
O << "nearest";
break;
}
if (!((sample & __CLK_NORMALIZED_MASK) >> __CLK_NORMALIZED_BASE)) {
O << ", force_unnormalized_coords = 1";
}
O << " }";
}
O << ";\n";
return;
}
if (GVar->hasPrivateLinkage()) {
if (strncmp(GVar->getName().data(), "unrollpragma", 12) == 0)
return;
// FIXME - need better way (e.g. Metadata) to avoid generating this global
if (strncmp(GVar->getName().data(), "filename", 8) == 0)
return;
if (GVar->use_empty())
return;
}
const Function *demotedFunc = nullptr;
if (!processDemoted && canDemoteGlobalVar(GVar, demotedFunc)) {
O << "// " << GVar->getName() << " has been demoted\n";
if (localDecls.find(demotedFunc) != localDecls.end())
localDecls[demotedFunc].push_back(GVar);
else {
std::vector<const GlobalVariable *> temp;
temp.push_back(GVar);
localDecls[demotedFunc] = temp;
}
return;
}
O << ".";
emitPTXAddressSpace(PTy->getAddressSpace(), O);
if (isManaged(*GVar)) {
O << " .attribute(.managed)";
}
if (GVar->getAlignment() == 0)
O << " .align " << (int)DL.getPrefTypeAlignment(ETy);
else
O << " .align " << GVar->getAlignment();
if (ETy->isFloatingPointTy() || ETy->isPointerTy() ||
(ETy->isIntegerTy() && ETy->getScalarSizeInBits() <= 64)) {
O << " .";
// Special case: ABI requires that we use .u8 for predicates
if (ETy->isIntegerTy(1))
O << "u8";
else
O << getPTXFundamentalTypeStr(ETy, false);
O << " ";
getSymbol(GVar)->print(O, MAI);
// Ptx allows variable initilization only for constant and global state
// spaces.
if (GVar->hasInitializer()) {
if ((PTy->getAddressSpace() == ADDRESS_SPACE_GLOBAL) ||
(PTy->getAddressSpace() == ADDRESS_SPACE_CONST)) {
const Constant *Initializer = GVar->getInitializer();
// 'undef' is treated as there is no value specified.
if (!Initializer->isNullValue() && !isa<UndefValue>(Initializer)) {
O << " = ";
printScalarConstant(Initializer, O);
}
} else {
// The frontend adds zero-initializer to device and constant variables
// that don't have an initial value, and UndefValue to shared
// variables, so skip warning for this case.
if (!GVar->getInitializer()->isNullValue() &&
!isa<UndefValue>(GVar->getInitializer())) {
report_fatal_error("initial value of '" + GVar->getName() +
"' is not allowed in addrspace(" +
Twine(PTy->getAddressSpace()) + ")");
}
}
}
} else {
unsigned int ElementSize = 0;
// Although PTX has direct support for struct type and array type and
// LLVM IR is very similar to PTX, the LLVM CodeGen does not support for
// targets that support these high level field accesses. Structs, arrays
// and vectors are lowered into arrays of bytes.
switch (ETy->getTypeID()) {
case Type::IntegerTyID: // Integers larger than 64 bits
case Type::StructTyID:
case Type::ArrayTyID:
case Type::VectorTyID:
ElementSize = DL.getTypeStoreSize(ETy);
// Ptx allows variable initilization only for constant and
// global state spaces.
if (((PTy->getAddressSpace() == ADDRESS_SPACE_GLOBAL) ||
(PTy->getAddressSpace() == ADDRESS_SPACE_CONST)) &&
GVar->hasInitializer()) {
const Constant *Initializer = GVar->getInitializer();
if (!isa<UndefValue>(Initializer) && !Initializer->isNullValue()) {
AggBuffer aggBuffer(ElementSize, O, *this);
bufferAggregateConstant(Initializer, &aggBuffer);
if (aggBuffer.numSymbols) {
if (static_cast<const NVPTXTargetMachine &>(TM).is64Bit()) {
O << " .u64 ";
getSymbol(GVar)->print(O, MAI);
O << "[";
O << ElementSize / 8;
} else {
O << " .u32 ";
getSymbol(GVar)->print(O, MAI);
O << "[";
O << ElementSize / 4;
}
O << "]";
} else {
O << " .b8 ";
getSymbol(GVar)->print(O, MAI);
O << "[";
O << ElementSize;
O << "]";
}
O << " = {";
aggBuffer.print();
O << "}";
} else {
O << " .b8 ";
getSymbol(GVar)->print(O, MAI);
if (ElementSize) {
O << "[";
O << ElementSize;
O << "]";
}
}
} else {
O << " .b8 ";
getSymbol(GVar)->print(O, MAI);
if (ElementSize) {
O << "[";
O << ElementSize;
O << "]";
}
}
break;
default:
llvm_unreachable("type not supported yet");
}
}
O << ";\n";
}
void NVPTXAsmPrinter::emitDemotedVars(const Function *f, raw_ostream &O) {
if (localDecls.find(f) == localDecls.end())
return;
std::vector<const GlobalVariable *> &gvars = localDecls[f];
for (unsigned i = 0, e = gvars.size(); i != e; ++i) {
O << "\t// demoted variable\n\t";
printModuleLevelGV(gvars[i], O, true);
}
}
void NVPTXAsmPrinter::emitPTXAddressSpace(unsigned int AddressSpace,
raw_ostream &O) const {
switch (AddressSpace) {
case ADDRESS_SPACE_LOCAL:
O << "local";
break;
case ADDRESS_SPACE_GLOBAL:
O << "global";
break;
case ADDRESS_SPACE_CONST:
O << "const";
break;
case ADDRESS_SPACE_SHARED:
O << "shared";
break;
default:
report_fatal_error("Bad address space found while emitting PTX");
break;
}
}
std::string
NVPTXAsmPrinter::getPTXFundamentalTypeStr(Type *Ty, bool useB4PTR) const {
switch (Ty->getTypeID()) {
default:
llvm_unreachable("unexpected type");
break;
case Type::IntegerTyID: {
unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
if (NumBits == 1)
return "pred";
else if (NumBits <= 64) {
std::string name = "u";
return name + utostr(NumBits);
} else {
llvm_unreachable("Integer too large");
break;
}
break;
}
case Type::HalfTyID:
// fp16 is stored as .b16 for compatibility with pre-sm_53 PTX assembly.
return "b16";
case Type::FloatTyID:
return "f32";
case Type::DoubleTyID:
return "f64";
case Type::PointerTyID:
if (static_cast<const NVPTXTargetMachine &>(TM).is64Bit())
if (useB4PTR)
return "b64";
else
return "u64";
else if (useB4PTR)
return "b32";
else
return "u32";
}
llvm_unreachable("unexpected type");
return nullptr;
}
void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable *GVar,
raw_ostream &O) {
const DataLayout &DL = getDataLayout();
// GlobalVariables are always constant pointers themselves.
Type *ETy = GVar->getValueType();
O << ".";
emitPTXAddressSpace(GVar->getType()->getAddressSpace(), O);
if (GVar->getAlignment() == 0)
O << " .align " << (int)DL.getPrefTypeAlignment(ETy);
else
O << " .align " << GVar->getAlignment();
if (ETy->isFloatingPointTy() || ETy->isIntegerTy() || ETy->isPointerTy()) {
O << " .";
O << getPTXFundamentalTypeStr(ETy);
O << " ";
getSymbol(GVar)->print(O, MAI);
return;
}
int64_t ElementSize = 0;
// Although PTX has direct support for struct type and array type and LLVM IR
// is very similar to PTX, the LLVM CodeGen does not support for targets that
// support these high level field accesses. Structs and arrays are lowered
// into arrays of bytes.
switch (ETy->getTypeID()) {
case Type::StructTyID:
case Type::ArrayTyID:
case Type::VectorTyID:
ElementSize = DL.getTypeStoreSize(ETy);
O << " .b8 ";
getSymbol(GVar)->print(O, MAI);
O << "[";
if (ElementSize) {
O << ElementSize;
}
O << "]";
break;
default:
llvm_unreachable("type not supported yet");
}
}
static unsigned int getOpenCLAlignment(const DataLayout &DL, Type *Ty) {
if (Ty->isSingleValueType())
return DL.getPrefTypeAlignment(Ty);
auto *ATy = dyn_cast<ArrayType>(Ty);
if (ATy)
return getOpenCLAlignment(DL, ATy->getElementType());
auto *STy = dyn_cast<StructType>(Ty);
if (STy) {
unsigned int alignStruct = 1;
// Go through each element of the struct and find the
// largest alignment.
for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
Type *ETy = STy->getElementType(i);
unsigned int align = getOpenCLAlignment(DL, ETy);
if (align > alignStruct)
alignStruct = align;
}
return alignStruct;
}
auto *FTy = dyn_cast<FunctionType>(Ty);
if (FTy)
return DL.getPointerPrefAlignment();
return DL.getPrefTypeAlignment(Ty);
}
void NVPTXAsmPrinter::printParamName(Function::const_arg_iterator I,
int paramIndex, raw_ostream &O) {
getSymbol(I->getParent())->print(O, MAI);
O << "_param_" << paramIndex;
}
void NVPTXAsmPrinter::emitFunctionParamList(const Function *F, raw_ostream &O) {
const DataLayout &DL = getDataLayout();
const AttributeList &PAL = F->getAttributes();
const TargetLowering *TLI = nvptxSubtarget->getTargetLowering();
Function::const_arg_iterator I, E;
unsigned paramIndex = 0;
bool first = true;
bool isKernelFunc = isKernelFunction(*F);
bool isABI = (nvptxSubtarget->getSmVersion() >= 20);
MVT thePointerTy = TLI->getPointerTy(DL);
if (F->arg_empty()) {
O << "()\n";
return;
}
O << "(\n";
for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, paramIndex++) {
Type *Ty = I->getType();
if (!first)
O << ",\n";
first = false;
// Handle image/sampler parameters
if (isKernelFunction(*F)) {
if (isSampler(*I) || isImage(*I)) {
if (isImage(*I)) {
std::string sname = I->getName();
if (isImageWriteOnly(*I) || isImageReadWrite(*I)) {
if (nvptxSubtarget->hasImageHandles())
O << "\t.param .u64 .ptr .surfref ";
else
O << "\t.param .surfref ";
CurrentFnSym->print(O, MAI);
O << "_param_" << paramIndex;
}
else { // Default image is read_only
if (nvptxSubtarget->hasImageHandles())
O << "\t.param .u64 .ptr .texref ";
else
O << "\t.param .texref ";
CurrentFnSym->print(O, MAI);
O << "_param_" << paramIndex;
}
} else {
if (nvptxSubtarget->hasImageHandles())
O << "\t.param .u64 .ptr .samplerref ";
else
O << "\t.param .samplerref ";
CurrentFnSym->print(O, MAI);
O << "_param_" << paramIndex;
}
continue;
}
}
if (!PAL.hasAttribute(paramIndex + 1, Attribute::ByVal)) {
if (Ty->isAggregateType() || Ty->isVectorTy()) {
// Just print .param .align <a> .b8 .param[size];
// <a> = PAL.getparamalignment
// size = typeallocsize of element type
unsigned align = PAL.getParamAlignment(paramIndex + 1);
if (align == 0)
align = DL.getABITypeAlignment(Ty);
unsigned sz = DL.getTypeAllocSize(Ty);
O << "\t.param .align " << align << " .b8 ";
printParamName(I, paramIndex, O);
O << "[" << sz << "]";
continue;
}
// Just a scalar
auto *PTy = dyn_cast<PointerType>(Ty);
if (isKernelFunc) {
if (PTy) {
// Special handling for pointer arguments to kernel
O << "\t.param .u" << thePointerTy.getSizeInBits() << " ";
if (static_cast<NVPTXTargetMachine &>(TM).getDrvInterface() !=
NVPTX::CUDA) {
Type *ETy = PTy->getElementType();
int addrSpace = PTy->getAddressSpace();
switch (addrSpace) {
default:
O << ".ptr ";
break;
case ADDRESS_SPACE_CONST:
O << ".ptr .const ";
break;
case ADDRESS_SPACE_SHARED:
O << ".ptr .shared ";
break;
case ADDRESS_SPACE_GLOBAL:
O << ".ptr .global ";
break;
}
O << ".align " << (int)getOpenCLAlignment(DL, ETy) << " ";
}
printParamName(I, paramIndex, O);
continue;
}
// non-pointer scalar to kernel func
O << "\t.param .";
// Special case: predicate operands become .u8 types
if (Ty->isIntegerTy(1))
O << "u8";
else
O << getPTXFundamentalTypeStr(Ty);
O << " ";
printParamName(I, paramIndex, O);
continue;
}
// Non-kernel function, just print .param .b<size> for ABI
// and .reg .b<size> for non-ABI
unsigned sz = 0;
if (isa<IntegerType>(Ty)) {
sz = cast<IntegerType>(Ty)->getBitWidth();
if (sz < 32)
sz = 32;
} else if (isa<PointerType>(Ty))
sz = thePointerTy.getSizeInBits();
else if (Ty->isHalfTy())
// PTX ABI requires all scalar parameters to be at least 32
// bits in size. fp16 normally uses .b16 as its storage type
// in PTX, so its size must be adjusted here, too.
sz = 32;
else
sz = Ty->getPrimitiveSizeInBits();
if (isABI)
O << "\t.param .b" << sz << " ";
else
O << "\t.reg .b" << sz << " ";
printParamName(I, paramIndex, O);
continue;
}
// param has byVal attribute. So should be a pointer
auto *PTy = dyn_cast<PointerType>(Ty);
assert(PTy && "Param with byval attribute should be a pointer type");
Type *ETy = PTy->getElementType();
if (isABI || isKernelFunc) {
// Just print .param .align <a> .b8 .param[size];
// <a> = PAL.getparamalignment
// size = typeallocsize of element type
unsigned align = PAL.getParamAlignment(paramIndex + 1);
if (align == 0)
align = DL.getABITypeAlignment(ETy);
// Work around a bug in ptxas. When PTX code takes address of
// byval parameter with alignment < 4, ptxas generates code to
// spill argument into memory. Alas on sm_50+ ptxas generates
// SASS code that fails with misaligned access. To work around
// the problem, make sure that we align byval parameters by at
// least 4. Matching change must be made in LowerCall() where we
// prepare parameters for the call.
//
// TODO: this will need to be undone when we get to support multi-TU
// device-side compilation as it breaks ABI compatibility with nvcc.
// Hopefully ptxas bug is fixed by then.
if (!isKernelFunc && align < 4)
align = 4;
unsigned sz = DL.getTypeAllocSize(ETy);
O << "\t.param .align " << align << " .b8 ";
printParamName(I, paramIndex, O);
O << "[" << sz << "]";
continue;
} else {
// Split the ETy into constituent parts and
// print .param .b<size> <name> for each part.
// Further, if a part is vector, print the above for
// each vector element.
SmallVector<EVT, 16> vtparts;
ComputeValueVTs(*TLI, DL, ETy, vtparts);
for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
unsigned elems = 1;
EVT elemtype = vtparts[i];
if (vtparts[i].isVector()) {
elems = vtparts[i].getVectorNumElements();
elemtype = vtparts[i].getVectorElementType();
}
for (unsigned j = 0, je = elems; j != je; ++j) {
unsigned sz = elemtype.getSizeInBits();
if (elemtype.isInteger() && (sz < 32))
sz = 32;
O << "\t.reg .b" << sz << " ";
printParamName(I, paramIndex, O);
if (j < je - 1)
O << ",\n";
++paramIndex;
}
if (i < e - 1)
O << ",\n";
}
--paramIndex;
continue;
}
}
O << "\n)\n";
}
void NVPTXAsmPrinter::emitFunctionParamList(const MachineFunction &MF,
raw_ostream &O) {
const Function *F = MF.getFunction();
emitFunctionParamList(F, O);
}
void NVPTXAsmPrinter::setAndEmitFunctionVirtualRegisters(
const MachineFunction &MF) {
SmallString<128> Str;
raw_svector_ostream O(Str);
// Map the global virtual register number to a register class specific
// virtual register number starting from 1 with that class.
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
//unsigned numRegClasses = TRI->getNumRegClasses();
// Emit the Fake Stack Object
const MachineFrameInfo &MFI = MF.getFrameInfo();
int NumBytes = (int) MFI.getStackSize();
if (NumBytes) {
O << "\t.local .align " << MFI.getMaxAlignment() << " .b8 \t" << DEPOTNAME
<< getFunctionNumber() << "[" << NumBytes << "];\n";
if (static_cast<const NVPTXTargetMachine &>(MF.getTarget()).is64Bit()) {
O << "\t.reg .b64 \t%SP;\n";
O << "\t.reg .b64 \t%SPL;\n";
} else {
O << "\t.reg .b32 \t%SP;\n";
O << "\t.reg .b32 \t%SPL;\n";
}
}
// Go through all virtual registers to establish the mapping between the
// global virtual
// register number and the per class virtual register number.
// We use the per class virtual register number in the ptx output.
unsigned int numVRs = MRI->getNumVirtRegs();
for (unsigned i = 0; i < numVRs; i++) {
unsigned int vr = TRI->index2VirtReg(i);
const TargetRegisterClass *RC = MRI->getRegClass(vr);
DenseMap<unsigned, unsigned> &regmap = VRegMapping[RC];
int n = regmap.size();
regmap.insert(std::make_pair(vr, n + 1));
}
// Emit register declarations
// @TODO: Extract out the real register usage
// O << "\t.reg .pred %p<" << NVPTXNumRegisters << ">;\n";
// O << "\t.reg .s16 %rc<" << NVPTXNumRegisters << ">;\n";
// O << "\t.reg .s16 %rs<" << NVPTXNumRegisters << ">;\n";
// O << "\t.reg .s32 %r<" << NVPTXNumRegisters << ">;\n";
// O << "\t.reg .s64 %rd<" << NVPTXNumRegisters << ">;\n";
// O << "\t.reg .f32 %f<" << NVPTXNumRegisters << ">;\n";
// O << "\t.reg .f64 %fd<" << NVPTXNumRegisters << ">;\n";
// Emit declaration of the virtual registers or 'physical' registers for
// each register class
for (unsigned i=0; i< TRI->getNumRegClasses(); i++) {
const TargetRegisterClass *RC = TRI->getRegClass(i);
DenseMap<unsigned, unsigned> &regmap = VRegMapping[RC];
std::string rcname = getNVPTXRegClassName(RC);
std::string rcStr = getNVPTXRegClassStr(RC);
int n = regmap.size();
// Only declare those registers that may be used.
if (n) {
O << "\t.reg " << rcname << " \t" << rcStr << "<" << (n+1)
<< ">;\n";
}
}
OutStreamer->EmitRawText(O.str());
}
void NVPTXAsmPrinter::printFPConstant(const ConstantFP *Fp, raw_ostream &O) {
APFloat APF = APFloat(Fp->getValueAPF()); // make a copy
bool ignored;
unsigned int numHex;
const char *lead;
if (Fp->getType()->getTypeID() == Type::FloatTyID) {
numHex = 8;
lead = "0f";
APF.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &ignored);
} else if (Fp->getType()->getTypeID() == Type::DoubleTyID) {
numHex = 16;
lead = "0d";
APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &ignored);
} else
llvm_unreachable("unsupported fp type");
APInt API = APF.bitcastToAPInt();
std::string hexstr(utohexstr(API.getZExtValue()));
O << lead;
if (hexstr.length() < numHex)
O << std::string(numHex - hexstr.length(), '0');
O << utohexstr(API.getZExtValue());
}
void NVPTXAsmPrinter::printScalarConstant(const Constant *CPV, raw_ostream &O) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
O << CI->getValue();
return;
}
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CPV)) {
printFPConstant(CFP, O);
return;
}
if (isa<ConstantPointerNull>(CPV)) {
O << "0";
return;
}
if (const GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
bool IsNonGenericPointer = false;
if (GVar->getType()->getAddressSpace() != 0) {
IsNonGenericPointer = true;
}
if (EmitGeneric && !isa<Function>(CPV) && !IsNonGenericPointer) {
O << "generic(";
getSymbol(GVar)->print(O, MAI);
O << ")";
} else {
getSymbol(GVar)->print(O, MAI);
}
return;
}
if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
const Value *v = Cexpr->stripPointerCasts();
PointerType *PTy = dyn_cast<PointerType>(Cexpr->getType());
bool IsNonGenericPointer = false;
if (PTy && PTy->getAddressSpace() != 0) {
IsNonGenericPointer = true;
}
if (const GlobalValue *GVar = dyn_cast<GlobalValue>(v)) {
if (EmitGeneric && !isa<Function>(v) && !IsNonGenericPointer) {
O << "generic(";
getSymbol(GVar)->print(O, MAI);
O << ")";
} else {
getSymbol(GVar)->print(O, MAI);
}
return;
} else {
lowerConstant(CPV)->print(O, MAI);
return;
}
}
llvm_unreachable("Not scalar type found in printScalarConstant()");
}
// These utility functions assure we get the right sequence of bytes for a given
// type even for big-endian machines
template <typename T> static void ConvertIntToBytes(unsigned char *p, T val) {
int64_t vp = (int64_t)val;
for (unsigned i = 0; i < sizeof(T); ++i) {
p[i] = (unsigned char)vp;
vp >>= 8;
}
}
static void ConvertFloatToBytes(unsigned char *p, float val) {
int32_t *vp = (int32_t *)&val;
for (unsigned i = 0; i < sizeof(int32_t); ++i) {
p[i] = (unsigned char)*vp;
*vp >>= 8;
}
}
static void ConvertDoubleToBytes(unsigned char *p, double val) {
int64_t *vp = (int64_t *)&val;
for (unsigned i = 0; i < sizeof(int64_t); ++i) {
p[i] = (unsigned char)*vp;
*vp >>= 8;
}
}
void NVPTXAsmPrinter::bufferLEByte(const Constant *CPV, int Bytes,
AggBuffer *aggBuffer) {
const DataLayout &DL = getDataLayout();
if (isa<UndefValue>(CPV) || CPV->isNullValue()) {
int s = DL.getTypeAllocSize(CPV->getType());
if (s < Bytes)
s = Bytes;
aggBuffer->addZeros(s);
return;
}
unsigned char ptr[8];
switch (CPV->getType()->getTypeID()) {
case Type::IntegerTyID: {
Type *ETy = CPV->getType();
if (ETy == Type::getInt8Ty(CPV->getContext())) {
unsigned char c = (unsigned char)cast<ConstantInt>(CPV)->getZExtValue();
ConvertIntToBytes<>(ptr, c);
aggBuffer->addBytes(ptr, 1, Bytes);
} else if (ETy == Type::getInt16Ty(CPV->getContext())) {
short int16 = (short)cast<ConstantInt>(CPV)->getZExtValue();
ConvertIntToBytes<>(ptr, int16);
aggBuffer->addBytes(ptr, 2, Bytes);
} else if (ETy == Type::getInt32Ty(CPV->getContext())) {
if (const ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
int int32 = (int)(constInt->getZExtValue());
ConvertIntToBytes<>(ptr, int32);
aggBuffer->addBytes(ptr, 4, Bytes);
break;
} else if (const auto *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
if (const auto *constInt = dyn_cast_or_null<ConstantInt>(
ConstantFoldConstant(Cexpr, DL))) {
int int32 = (int)(constInt->getZExtValue());
ConvertIntToBytes<>(ptr, int32);
aggBuffer->addBytes(ptr, 4, Bytes);
break;
}
if (Cexpr->getOpcode() == Instruction::PtrToInt) {
Value *v = Cexpr->getOperand(0)->stripPointerCasts();
aggBuffer->addSymbol(v, Cexpr->getOperand(0));
aggBuffer->addZeros(4);
break;
}
}
llvm_unreachable("unsupported integer const type");
} else if (ETy == Type::getInt64Ty(CPV->getContext())) {
if (const ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
long long int64 = (long long)(constInt->getZExtValue());
ConvertIntToBytes<>(ptr, int64);
aggBuffer->addBytes(ptr, 8, Bytes);
break;
} else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
if (const auto *constInt = dyn_cast_or_null<ConstantInt>(
ConstantFoldConstant(Cexpr, DL))) {
long long int64 = (long long)(constInt->getZExtValue());
ConvertIntToBytes<>(ptr, int64);
aggBuffer->addBytes(ptr, 8, Bytes);
break;
}
if (Cexpr->getOpcode() == Instruction::PtrToInt) {
Value *v = Cexpr->getOperand(0)->stripPointerCasts();
aggBuffer->addSymbol(v, Cexpr->getOperand(0));
aggBuffer->addZeros(8);
break;
}
}
llvm_unreachable("unsupported integer const type");
} else
llvm_unreachable("unsupported integer const type");
break;
}
case Type::FloatTyID:
case Type::DoubleTyID: {
const ConstantFP *CFP = dyn_cast<ConstantFP>(CPV);
Type *Ty = CFP->getType();
if (Ty == Type::getFloatTy(CPV->getContext())) {
float float32 = (float) CFP->getValueAPF().convertToFloat();
ConvertFloatToBytes(ptr, float32);
aggBuffer->addBytes(ptr, 4, Bytes);
} else if (Ty == Type::getDoubleTy(CPV->getContext())) {
double float64 = CFP->getValueAPF().convertToDouble();
ConvertDoubleToBytes(ptr, float64);
aggBuffer->addBytes(ptr, 8, Bytes);
} else {
llvm_unreachable("unsupported fp const type");
}
break;
}
case Type::PointerTyID: {
if (const GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
aggBuffer->addSymbol(GVar, GVar);
} else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
const Value *v = Cexpr->stripPointerCasts();
aggBuffer->addSymbol(v, Cexpr);
}
unsigned int s = DL.getTypeAllocSize(CPV->getType());
aggBuffer->addZeros(s);
break;
}
case Type::ArrayTyID:
case Type::VectorTyID:
case Type::StructTyID: {
if (isa<ConstantAggregate>(CPV) || isa<ConstantDataSequential>(CPV)) {
int ElementSize = DL.getTypeAllocSize(CPV->getType());
bufferAggregateConstant(CPV, aggBuffer);
if (Bytes > ElementSize)
aggBuffer->addZeros(Bytes - ElementSize);
} else if (isa<ConstantAggregateZero>(CPV))
aggBuffer->addZeros(Bytes);
else
llvm_unreachable("Unexpected Constant type");
break;
}
default:
llvm_unreachable("unsupported type");
}
}
void NVPTXAsmPrinter::bufferAggregateConstant(const Constant *CPV,
AggBuffer *aggBuffer) {
const DataLayout &DL = getDataLayout();
int Bytes;
// Integers of arbitrary width
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
APInt Val = CI->getValue();
for (unsigned I = 0, E = DL.getTypeAllocSize(CPV->getType()); I < E; ++I) {
uint8_t Byte = Val.getLoBits(8).getZExtValue();
aggBuffer->addBytes(&Byte, 1, 1);
Val = Val.lshr(8);
}
return;
}
// Old constants
if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV)) {
if (CPV->getNumOperands())
for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i)
bufferLEByte(cast<Constant>(CPV->getOperand(i)), 0, aggBuffer);
return;
}
if (const ConstantDataSequential *CDS =
dyn_cast<ConstantDataSequential>(CPV)) {
if (CDS->getNumElements())
for (unsigned i = 0; i < CDS->getNumElements(); ++i)
bufferLEByte(cast<Constant>(CDS->getElementAsConstant(i)), 0,
aggBuffer);
return;
}
if (isa<ConstantStruct>(CPV)) {
if (CPV->getNumOperands()) {
StructType *ST = cast<StructType>(CPV->getType());
for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i) {
if (i == (e - 1))
Bytes = DL.getStructLayout(ST)->getElementOffset(0) +
DL.getTypeAllocSize(ST) -
DL.getStructLayout(ST)->getElementOffset(i);
else
Bytes = DL.getStructLayout(ST)->getElementOffset(i + 1) -
DL.getStructLayout(ST)->getElementOffset(i);
bufferLEByte(cast<Constant>(CPV->getOperand(i)), Bytes, aggBuffer);
}
}
return;
}
llvm_unreachable("unsupported constant type in printAggregateConstant()");
}
// buildTypeNameMap - Run through symbol table looking for type names.
//
bool NVPTXAsmPrinter::ignoreLoc(const MachineInstr &MI) {
switch (MI.getOpcode()) {
default:
return false;
case NVPTX::CallArgBeginInst:
case NVPTX::CallArgEndInst0:
case NVPTX::CallArgEndInst1:
case NVPTX::CallArgF32:
case NVPTX::CallArgF64:
case NVPTX::CallArgI16:
case NVPTX::CallArgI32:
case NVPTX::CallArgI32imm:
case NVPTX::CallArgI64:
case NVPTX::CallArgParam:
case NVPTX::CallVoidInst:
case NVPTX::CallVoidInstReg:
case NVPTX::Callseq_End:
case NVPTX::CallVoidInstReg64:
case NVPTX::DeclareParamInst:
case NVPTX::DeclareRetMemInst:
case NVPTX::DeclareRetRegInst:
case NVPTX::DeclareRetScalarInst:
case NVPTX::DeclareScalarParamInst:
case NVPTX::DeclareScalarRegInst:
case NVPTX::StoreParamF32:
case NVPTX::StoreParamF64:
case NVPTX::StoreParamI16:
case NVPTX::StoreParamI32:
case NVPTX::StoreParamI64:
case NVPTX::StoreParamI8:
case NVPTX::StoreRetvalF32:
case NVPTX::StoreRetvalF64:
case NVPTX::StoreRetvalI16:
case NVPTX::StoreRetvalI32:
case NVPTX::StoreRetvalI64:
case NVPTX::StoreRetvalI8:
case NVPTX::LastCallArgF32:
case NVPTX::LastCallArgF64:
case NVPTX::LastCallArgI16:
case NVPTX::LastCallArgI32:
case NVPTX::LastCallArgI32imm:
case NVPTX::LastCallArgI64:
case NVPTX::LastCallArgParam:
case NVPTX::LoadParamMemF32:
case NVPTX::LoadParamMemF64:
case NVPTX::LoadParamMemI16:
case NVPTX::LoadParamMemI32:
case NVPTX::LoadParamMemI64:
case NVPTX::LoadParamMemI8:
case NVPTX::PrototypeInst:
case NVPTX::DBG_VALUE:
return true;
}
return false;
}
/// lowerConstantForGV - Return an MCExpr for the given Constant. This is mostly
/// a copy from AsmPrinter::lowerConstant, except customized to only handle
/// expressions that are representable in PTX and create
/// NVPTXGenericMCSymbolRefExpr nodes for addrspacecast instructions.
const MCExpr *
NVPTXAsmPrinter::lowerConstantForGV(const Constant *CV, bool ProcessingGeneric) {
MCContext &Ctx = OutContext;
if (CV->isNullValue() || isa<UndefValue>(CV))
return MCConstantExpr::create(0, Ctx);
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
return MCConstantExpr::create(CI->getZExtValue(), Ctx);
if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
const MCSymbolRefExpr *Expr =
MCSymbolRefExpr::create(getSymbol(GV), Ctx);
if (ProcessingGeneric) {
return NVPTXGenericMCSymbolRefExpr::create(Expr, Ctx);
} else {
return Expr;
}
}
const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
if (!CE) {
llvm_unreachable("Unknown constant value to lower!");
}
switch (CE->getOpcode()) {
default:
// If the code isn't optimized, there may be outstanding folding
// opportunities. Attempt to fold the expression using DataLayout as a
// last resort before giving up.
if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
if (C && C != CE)
return lowerConstantForGV(C, ProcessingGeneric);
// Otherwise report the problem to the user.
{
std::string S;
raw_string_ostream OS(S);
OS << "Unsupported expression in static initializer: ";
CE->printAsOperand(OS, /*PrintType=*/false,
!MF ? nullptr : MF->getFunction()->getParent());
report_fatal_error(OS.str());
}
case Instruction::AddrSpaceCast: {
// Strip the addrspacecast and pass along the operand
PointerType *DstTy = cast<PointerType>(CE->getType());
if (DstTy->getAddressSpace() == 0) {
return lowerConstantForGV(cast<const Constant>(CE->getOperand(0)), true);
}
std::string S;
raw_string_ostream OS(S);
OS << "Unsupported expression in static initializer: ";
CE->printAsOperand(OS, /*PrintType=*/ false,
!MF ? nullptr : MF->getFunction()->getParent());
report_fatal_error(OS.str());
}
case Instruction::GetElementPtr: {
const DataLayout &DL = getDataLayout();
// Generate a symbolic expression for the byte address
APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0);
cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI);
const MCExpr *Base = lowerConstantForGV(CE->getOperand(0),
ProcessingGeneric);
if (!OffsetAI)
return Base;
int64_t Offset = OffsetAI.getSExtValue();
return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
Ctx);
}
case Instruction::Trunc:
// We emit the value and depend on the assembler to truncate the generated
// expression properly. This is important for differences between
// blockaddress labels. Since the two labels are in the same function, it
// is reasonable to treat their delta as a 32-bit value.
LLVM_FALLTHROUGH;
case Instruction::BitCast:
return lowerConstantForGV(CE->getOperand(0), ProcessingGeneric);
case Instruction::IntToPtr: {
const DataLayout &DL = getDataLayout();
// Handle casts to pointers by changing them into casts to the appropriate
// integer type. This promotes constant folding and simplifies this code.
Constant *Op = CE->getOperand(0);
Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
false/*ZExt*/);
return lowerConstantForGV(Op, ProcessingGeneric);
}
case Instruction::PtrToInt: {
const DataLayout &DL = getDataLayout();
// Support only foldable casts to/from pointers that can be eliminated by
// changing the pointer to the appropriately sized integer type.
Constant *Op = CE->getOperand(0);
Type *Ty = CE->getType();
const MCExpr *OpExpr = lowerConstantForGV(Op, ProcessingGeneric);
// We can emit the pointer value into this slot if the slot is an
// integer slot equal to the size of the pointer.
if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
return OpExpr;
// Otherwise the pointer is smaller than the resultant integer, mask off
// the high bits so we are sure to get a proper truncation if the input is
// a constant expr.
unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
}
// The MC library also has a right-shift operator, but it isn't consistently
// signed or unsigned between different targets.
case Instruction::Add: {
const MCExpr *LHS = lowerConstantForGV(CE->getOperand(0), ProcessingGeneric);
const MCExpr *RHS = lowerConstantForGV(CE->getOperand(1), ProcessingGeneric);
switch (CE->getOpcode()) {
default: llvm_unreachable("Unknown binary operator constant cast expr");
case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
}
}
}
}
// Copy of MCExpr::print customized for NVPTX
void NVPTXAsmPrinter::printMCExpr(const MCExpr &Expr, raw_ostream &OS) {
switch (Expr.getKind()) {
case MCExpr::Target:
return cast<MCTargetExpr>(&Expr)->printImpl(OS, MAI);
case MCExpr::Constant:
OS << cast<MCConstantExpr>(Expr).getValue();
return;
case MCExpr::SymbolRef: {
const MCSymbolRefExpr &SRE = cast<MCSymbolRefExpr>(Expr);
const MCSymbol &Sym = SRE.getSymbol();
Sym.print(OS, MAI);
return;
}
case MCExpr::Unary: {
const MCUnaryExpr &UE = cast<MCUnaryExpr>(Expr);
switch (UE.getOpcode()) {
case MCUnaryExpr::LNot: OS << '!'; break;
case MCUnaryExpr::Minus: OS << '-'; break;
case MCUnaryExpr::Not: OS << '~'; break;
case MCUnaryExpr::Plus: OS << '+'; break;
}
printMCExpr(*UE.getSubExpr(), OS);
return;
}
case MCExpr::Binary: {
const MCBinaryExpr &BE = cast<MCBinaryExpr>(Expr);
// Only print parens around the LHS if it is non-trivial.
if (isa<MCConstantExpr>(BE.getLHS()) || isa<MCSymbolRefExpr>(BE.getLHS()) ||
isa<NVPTXGenericMCSymbolRefExpr>(BE.getLHS())) {
printMCExpr(*BE.getLHS(), OS);
} else {
OS << '(';
printMCExpr(*BE.getLHS(), OS);
OS<< ')';
}
switch (BE.getOpcode()) {
case MCBinaryExpr::Add:
// Print "X-42" instead of "X+-42".
if (const MCConstantExpr *RHSC = dyn_cast<MCConstantExpr>(BE.getRHS())) {
if (RHSC->getValue() < 0) {
OS << RHSC->getValue();
return;
}
}
OS << '+';
break;
default: llvm_unreachable("Unhandled binary operator");
}
// Only print parens around the LHS if it is non-trivial.
if (isa<MCConstantExpr>(BE.getRHS()) || isa<MCSymbolRefExpr>(BE.getRHS())) {
printMCExpr(*BE.getRHS(), OS);
} else {
OS << '(';
printMCExpr(*BE.getRHS(), OS);
OS << ')';
}
return;
}
}
llvm_unreachable("Invalid expression kind!");
}
/// PrintAsmOperand - Print out an operand for an inline asm expression.
///
bool NVPTXAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode, raw_ostream &O) {
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0)
return true; // Unknown modifier.
switch (ExtraCode[0]) {
default:
// See if this is a generic print operand
return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O);
case 'r':
break;
}
}
printOperand(MI, OpNo, O);
return false;
}
bool NVPTXAsmPrinter::PrintAsmMemoryOperand(
const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant,
const char *ExtraCode, raw_ostream &O) {
if (ExtraCode && ExtraCode[0])
return true; // Unknown modifier
O << '[';
printMemOperand(MI, OpNo, O);
O << ']';
return false;
}
void NVPTXAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
raw_ostream &O, const char *Modifier) {
const MachineOperand &MO = MI->getOperand(opNum);
switch (MO.getType()) {
case MachineOperand::MO_Register:
if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
if (MO.getReg() == NVPTX::VRDepot)
O << DEPOTNAME << getFunctionNumber();
else
O << NVPTXInstPrinter::getRegisterName(MO.getReg());
} else {
emitVirtualRegister(MO.getReg(), O);
}
return;
case MachineOperand::MO_Immediate:
if (!Modifier)
O << MO.getImm();
else if (strstr(Modifier, "vec") == Modifier)
printVecModifiedImmediate(MO, Modifier, O);
else
llvm_unreachable(
"Don't know how to handle modifier on immediate operand");
return;
case MachineOperand::MO_FPImmediate:
printFPConstant(MO.getFPImm(), O);
break;
case MachineOperand::MO_GlobalAddress:
getSymbol(MO.getGlobal())->print(O, MAI);
break;
case MachineOperand::MO_MachineBasicBlock:
MO.getMBB()->getSymbol()->print(O, MAI);
return;
default:
llvm_unreachable("Operand type not supported.");
}
}
void NVPTXAsmPrinter::printMemOperand(const MachineInstr *MI, int opNum,
raw_ostream &O, const char *Modifier) {
printOperand(MI, opNum, O);
if (Modifier && strcmp(Modifier, "add") == 0) {
O << ", ";
printOperand(MI, opNum + 1, O);
} else {
if (MI->getOperand(opNum + 1).isImm() &&
MI->getOperand(opNum + 1).getImm() == 0)
return; // don't print ',0' or '+0'
O << "+";
printOperand(MI, opNum + 1, O);
}
}
void NVPTXAsmPrinter::emitSrcInText(StringRef filename, unsigned line) {
std::stringstream temp;
LineReader *reader = this->getReader(filename);
temp << "\n//";
temp << filename.str();
temp << ":";
temp << line;
temp << " ";
temp << reader->readLine(line);
temp << "\n";
this->OutStreamer->EmitRawText(temp.str());
}
LineReader *NVPTXAsmPrinter::getReader(const std::string &filename) {
if (!reader) {
reader = new LineReader(filename);
}
if (reader->fileName() != filename) {
delete reader;
reader = new LineReader(filename);
}
return reader;
}
std::string LineReader::readLine(unsigned lineNum) {
if (lineNum < theCurLine) {
theCurLine = 0;
fstr.seekg(0, std::ios::beg);
}
while (theCurLine < lineNum) {
fstr.getline(buff, 500);
theCurLine++;
}
return buff;
}
// Force static initialization.
extern "C" void LLVMInitializeNVPTXAsmPrinter() {
RegisterAsmPrinter<NVPTXAsmPrinter> X(getTheNVPTXTarget32());
RegisterAsmPrinter<NVPTXAsmPrinter> Y(getTheNVPTXTarget64());
}