forked from OSchip/llvm-project
1996 lines
72 KiB
C++
1996 lines
72 KiB
C++
//===- AffineStructures.cpp - MLIR Affine Structures Class-------*- C++ -*-===//
|
|
//
|
|
// Copyright 2019 The MLIR Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
// =============================================================================
|
|
//
|
|
// Structures for affine/polyhedral analysis of MLIR functions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Analysis/AffineStructures.h"
|
|
#include "mlir/Analysis/AffineAnalysis.h"
|
|
#include "mlir/IR/AffineExprVisitor.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/IR/Instructions.h"
|
|
#include "mlir/IR/IntegerSet.h"
|
|
#include "mlir/Support/MathExtras.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#define DEBUG_TYPE "affine-structures"
|
|
|
|
using namespace mlir;
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MutableAffineMap.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
MutableAffineMap::MutableAffineMap(AffineMap map)
|
|
: numDims(map.getNumDims()), numSymbols(map.getNumSymbols()),
|
|
// A map always has at least 1 result by construction
|
|
context(map.getResult(0).getContext()) {
|
|
for (auto result : map.getResults())
|
|
results.push_back(result);
|
|
for (auto rangeSize : map.getRangeSizes())
|
|
results.push_back(rangeSize);
|
|
}
|
|
|
|
void MutableAffineMap::reset(AffineMap map) {
|
|
results.clear();
|
|
rangeSizes.clear();
|
|
numDims = map.getNumDims();
|
|
numSymbols = map.getNumSymbols();
|
|
// A map always has at least 1 result by construction
|
|
context = map.getResult(0).getContext();
|
|
for (auto result : map.getResults())
|
|
results.push_back(result);
|
|
for (auto rangeSize : map.getRangeSizes())
|
|
results.push_back(rangeSize);
|
|
}
|
|
|
|
bool MutableAffineMap::isMultipleOf(unsigned idx, int64_t factor) const {
|
|
if (results[idx].isMultipleOf(factor))
|
|
return true;
|
|
|
|
// TODO(bondhugula): use simplifyAffineExpr and FlatAffineConstraints to
|
|
// complete this (for a more powerful analysis).
|
|
return false;
|
|
}
|
|
|
|
// Simplifies the result affine expressions of this map. The expressions have to
|
|
// be pure for the simplification implemented.
|
|
void MutableAffineMap::simplify() {
|
|
// Simplify each of the results if possible.
|
|
// TODO(ntv): functional-style map
|
|
for (unsigned i = 0, e = getNumResults(); i < e; i++) {
|
|
results[i] = simplifyAffineExpr(getResult(i), numDims, numSymbols);
|
|
}
|
|
}
|
|
|
|
AffineMap MutableAffineMap::getAffineMap() const {
|
|
return AffineMap::get(numDims, numSymbols, results, rangeSizes);
|
|
}
|
|
|
|
MutableIntegerSet::MutableIntegerSet(IntegerSet set, MLIRContext *context)
|
|
: numDims(set.getNumDims()), numSymbols(set.getNumSymbols()),
|
|
context(context) {
|
|
// TODO(bondhugula)
|
|
}
|
|
|
|
// Universal set.
|
|
MutableIntegerSet::MutableIntegerSet(unsigned numDims, unsigned numSymbols,
|
|
MLIRContext *context)
|
|
: numDims(numDims), numSymbols(numSymbols), context(context) {}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AffineValueMap.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
AffineValueMap::AffineValueMap(const AffineApplyOp &op)
|
|
: map(op.getAffineMap()) {
|
|
for (auto *operand : op.getOperands())
|
|
operands.push_back(const_cast<Value *>(operand));
|
|
for (unsigned i = 0, e = op.getNumResults(); i < e; i++)
|
|
results.push_back(const_cast<Value *>(op.getResult(i)));
|
|
}
|
|
|
|
AffineValueMap::AffineValueMap(AffineMap map, ArrayRef<Value *> operands)
|
|
: map(map) {
|
|
for (Value *operand : operands) {
|
|
this->operands.push_back(operand);
|
|
}
|
|
}
|
|
|
|
void AffineValueMap::reset(AffineMap map, ArrayRef<Value *> operands) {
|
|
this->operands.clear();
|
|
this->results.clear();
|
|
this->map.reset(map);
|
|
for (Value *operand : operands) {
|
|
this->operands.push_back(operand);
|
|
}
|
|
}
|
|
|
|
// Returns true and sets 'indexOfMatch' if 'valueToMatch' is found in
|
|
// 'valuesToSearch' beginning at 'indexStart'. Returns false otherwise.
|
|
static bool findIndex(Value *valueToMatch, ArrayRef<Value *> valuesToSearch,
|
|
unsigned indexStart, unsigned *indexOfMatch) {
|
|
unsigned size = valuesToSearch.size();
|
|
for (unsigned i = indexStart; i < size; ++i) {
|
|
if (valueToMatch == valuesToSearch[i]) {
|
|
*indexOfMatch = i;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
inline bool AffineValueMap::isMultipleOf(unsigned idx, int64_t factor) const {
|
|
return map.isMultipleOf(idx, factor);
|
|
}
|
|
|
|
/// This method uses the invariant that operands are always positionally aligned
|
|
/// with the AffineDimExpr in the underlying AffineMap.
|
|
bool AffineValueMap::isFunctionOf(unsigned idx, Value *value) const {
|
|
unsigned index;
|
|
if (!findIndex(value, operands, /*indexStart=*/0, &index)) {
|
|
return false;
|
|
}
|
|
auto expr = const_cast<AffineValueMap *>(this)->getAffineMap().getResult(idx);
|
|
// TODO(ntv): this is better implemented on a flattened representation.
|
|
// At least for now it is conservative.
|
|
return expr.isFunctionOfDim(index);
|
|
}
|
|
|
|
Value *AffineValueMap::getOperand(unsigned i) const {
|
|
return static_cast<Value *>(operands[i]);
|
|
}
|
|
|
|
ArrayRef<Value *> AffineValueMap::getOperands() const {
|
|
return ArrayRef<Value *>(operands);
|
|
}
|
|
|
|
AffineMap AffineValueMap::getAffineMap() const { return map.getAffineMap(); }
|
|
|
|
AffineValueMap::~AffineValueMap() {}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FlatAffineConstraints.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Copy constructor.
|
|
FlatAffineConstraints::FlatAffineConstraints(
|
|
const FlatAffineConstraints &other) {
|
|
numReservedCols = other.numReservedCols;
|
|
numDims = other.getNumDimIds();
|
|
numSymbols = other.getNumSymbolIds();
|
|
numIds = other.getNumIds();
|
|
|
|
auto otherIds = other.getIds();
|
|
ids.reserve(numReservedCols);
|
|
ids.append(otherIds.begin(), otherIds.end());
|
|
|
|
unsigned numReservedEqualities = other.getNumReservedEqualities();
|
|
unsigned numReservedInequalities = other.getNumReservedInequalities();
|
|
|
|
equalities.reserve(numReservedEqualities * numReservedCols);
|
|
inequalities.reserve(numReservedInequalities * numReservedCols);
|
|
|
|
for (unsigned r = 0, e = other.getNumInequalities(); r < e; r++) {
|
|
addInequality(other.getInequality(r));
|
|
}
|
|
for (unsigned r = 0, e = other.getNumEqualities(); r < e; r++) {
|
|
addEquality(other.getEquality(r));
|
|
}
|
|
}
|
|
|
|
// Clones this object.
|
|
std::unique_ptr<FlatAffineConstraints> FlatAffineConstraints::clone() const {
|
|
return std::make_unique<FlatAffineConstraints>(*this);
|
|
}
|
|
|
|
// Construct from an IntegerSet.
|
|
FlatAffineConstraints::FlatAffineConstraints(IntegerSet set)
|
|
: numReservedCols(set.getNumOperands() + 1),
|
|
numIds(set.getNumDims() + set.getNumSymbols()), numDims(set.getNumDims()),
|
|
numSymbols(set.getNumSymbols()) {
|
|
equalities.reserve(set.getNumEqualities() * numReservedCols);
|
|
inequalities.reserve(set.getNumInequalities() * numReservedCols);
|
|
ids.resize(numIds, None);
|
|
|
|
// Flatten expressions and add them to the constraint system.
|
|
std::vector<SmallVector<int64_t, 8>> flatExprs;
|
|
FlatAffineConstraints localVarCst;
|
|
if (!getFlattenedAffineExprs(set, &flatExprs, &localVarCst)) {
|
|
assert(false && "flattening unimplemented for semi-affine integer sets");
|
|
return;
|
|
}
|
|
assert(flatExprs.size() == set.getNumConstraints());
|
|
for (unsigned l = 0, e = localVarCst.getNumLocalIds(); l < e; l++) {
|
|
addLocalId(getNumLocalIds());
|
|
}
|
|
|
|
for (unsigned i = 0, e = flatExprs.size(); i < e; ++i) {
|
|
const auto &flatExpr = flatExprs[i];
|
|
assert(flatExpr.size() == getNumCols());
|
|
if (set.getEqFlags()[i]) {
|
|
addEquality(flatExpr);
|
|
} else {
|
|
addInequality(flatExpr);
|
|
}
|
|
}
|
|
// Add the other constraints involving local id's from flattening.
|
|
append(localVarCst);
|
|
}
|
|
|
|
void FlatAffineConstraints::reset(unsigned numReservedInequalities,
|
|
unsigned numReservedEqualities,
|
|
unsigned newNumReservedCols,
|
|
unsigned newNumDims, unsigned newNumSymbols,
|
|
unsigned newNumLocals,
|
|
ArrayRef<Value *> idArgs) {
|
|
assert(newNumReservedCols >= newNumDims + newNumSymbols + newNumLocals + 1 &&
|
|
"minimum 1 column");
|
|
numReservedCols = newNumReservedCols;
|
|
numDims = newNumDims;
|
|
numSymbols = newNumSymbols;
|
|
numIds = numDims + numSymbols + newNumLocals;
|
|
equalities.clear();
|
|
inequalities.clear();
|
|
if (numReservedEqualities >= 1)
|
|
equalities.reserve(newNumReservedCols * numReservedEqualities);
|
|
if (numReservedInequalities >= 1)
|
|
inequalities.reserve(newNumReservedCols * numReservedInequalities);
|
|
ids.clear();
|
|
if (idArgs.empty()) {
|
|
ids.resize(numIds, None);
|
|
} else {
|
|
ids.reserve(idArgs.size());
|
|
ids.append(idArgs.begin(), idArgs.end());
|
|
}
|
|
}
|
|
|
|
void FlatAffineConstraints::reset(unsigned newNumDims, unsigned newNumSymbols,
|
|
unsigned newNumLocals,
|
|
ArrayRef<Value *> idArgs) {
|
|
reset(0, 0, newNumDims + newNumSymbols + newNumLocals + 1, newNumDims,
|
|
newNumSymbols, newNumLocals, idArgs);
|
|
}
|
|
|
|
void FlatAffineConstraints::append(const FlatAffineConstraints &other) {
|
|
assert(other.getNumCols() == getNumCols());
|
|
assert(other.getNumDimIds() == getNumDimIds());
|
|
assert(other.getNumSymbolIds() == getNumSymbolIds());
|
|
|
|
inequalities.reserve(inequalities.size() +
|
|
other.getNumInequalities() * numReservedCols);
|
|
equalities.reserve(equalities.size() +
|
|
other.getNumEqualities() * numReservedCols);
|
|
|
|
for (unsigned r = 0, e = other.getNumInequalities(); r < e; r++) {
|
|
addInequality(other.getInequality(r));
|
|
}
|
|
for (unsigned r = 0, e = other.getNumEqualities(); r < e; r++) {
|
|
addEquality(other.getEquality(r));
|
|
}
|
|
}
|
|
|
|
void FlatAffineConstraints::addLocalId(unsigned pos) {
|
|
addId(IdKind::Local, pos);
|
|
}
|
|
|
|
void FlatAffineConstraints::addDimId(unsigned pos, Value *id) {
|
|
addId(IdKind::Dimension, pos, id);
|
|
}
|
|
|
|
void FlatAffineConstraints::addSymbolId(unsigned pos, Value *id) {
|
|
addId(IdKind::Symbol, pos, id);
|
|
}
|
|
|
|
/// Adds a dimensional identifier. The added column is initialized to
|
|
/// zero.
|
|
void FlatAffineConstraints::addId(IdKind kind, unsigned pos, Value *id) {
|
|
if (kind == IdKind::Dimension) {
|
|
assert(pos <= getNumDimIds());
|
|
} else if (kind == IdKind::Symbol) {
|
|
assert(pos <= getNumSymbolIds());
|
|
} else {
|
|
assert(pos <= getNumLocalIds());
|
|
}
|
|
|
|
unsigned oldNumReservedCols = numReservedCols;
|
|
|
|
// Check if a resize is necessary.
|
|
if (getNumCols() + 1 > numReservedCols) {
|
|
equalities.resize(getNumEqualities() * (getNumCols() + 1));
|
|
inequalities.resize(getNumInequalities() * (getNumCols() + 1));
|
|
numReservedCols++;
|
|
}
|
|
|
|
unsigned absolutePos;
|
|
|
|
if (kind == IdKind::Dimension) {
|
|
absolutePos = pos;
|
|
numDims++;
|
|
} else if (kind == IdKind::Symbol) {
|
|
absolutePos = pos + getNumDimIds();
|
|
numSymbols++;
|
|
} else {
|
|
absolutePos = pos + getNumDimIds() + getNumSymbolIds();
|
|
}
|
|
numIds++;
|
|
|
|
// Note that getNumCols() now will already return the new size, which will be
|
|
// at least one.
|
|
int numInequalities = static_cast<int>(getNumInequalities());
|
|
int numEqualities = static_cast<int>(getNumEqualities());
|
|
int numCols = static_cast<int>(getNumCols());
|
|
for (int r = numInequalities - 1; r >= 0; r--) {
|
|
for (int c = numCols - 2; c >= 0; c--) {
|
|
if (c < absolutePos)
|
|
atIneq(r, c) = inequalities[r * oldNumReservedCols + c];
|
|
else
|
|
atIneq(r, c + 1) = inequalities[r * oldNumReservedCols + c];
|
|
}
|
|
atIneq(r, absolutePos) = 0;
|
|
}
|
|
|
|
for (int r = numEqualities - 1; r >= 0; r--) {
|
|
for (int c = numCols - 2; c >= 0; c--) {
|
|
// All values in column absolutePositions < absolutePos have the same
|
|
// coordinates in the 2-d view of the coefficient buffer.
|
|
if (c < absolutePos)
|
|
atEq(r, c) = equalities[r * oldNumReservedCols + c];
|
|
else
|
|
// Those at absolutePosition >= absolutePos, get a shifted
|
|
// absolutePosition.
|
|
atEq(r, c + 1) = equalities[r * oldNumReservedCols + c];
|
|
}
|
|
// Initialize added dimension to zero.
|
|
atEq(r, absolutePos) = 0;
|
|
}
|
|
|
|
// If an 'id' is provided, insert it; otherwise use None.
|
|
if (id) {
|
|
ids.insert(ids.begin() + absolutePos, id);
|
|
} else {
|
|
ids.insert(ids.begin() + absolutePos, None);
|
|
}
|
|
assert(ids.size() == getNumIds());
|
|
}
|
|
|
|
// This routine may add additional local variables if the flattened expression
|
|
// corresponding to the map has such variables due to the presence of
|
|
// mod's, ceildiv's, and floordiv's.
|
|
bool FlatAffineConstraints::composeMap(AffineValueMap *vMap) {
|
|
// Assert if the map and this constraint set aren't associated with the same
|
|
// identifiers in the same order.
|
|
assert(vMap->getNumDims() <= getNumDimIds());
|
|
assert(vMap->getNumSymbols() <= getNumSymbolIds());
|
|
for (unsigned i = 0, e = vMap->getNumDims(); i < e; i++) {
|
|
assert(ids[i].hasValue());
|
|
assert(vMap->getOperand(i) == ids[i].getValue());
|
|
}
|
|
for (unsigned i = 0, e = vMap->getNumSymbols(); i < e; i++) {
|
|
assert(ids[numDims + i].hasValue());
|
|
assert(vMap->getOperand(vMap->getNumDims() + i) ==
|
|
ids[numDims + i].getValue());
|
|
}
|
|
|
|
std::vector<SmallVector<int64_t, 8>> flatExprs;
|
|
FlatAffineConstraints cst;
|
|
if (!getFlattenedAffineExprs(vMap->getAffineMap(), &flatExprs, &cst)) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "composition unimplemented for semi-affine maps");
|
|
return false;
|
|
}
|
|
assert(flatExprs.size() == vMap->getNumResults());
|
|
|
|
// Make the value map and the flat affine cst dimensions compatible.
|
|
// A lot of this code will be refactored/cleaned up.
|
|
// TODO(bondhugula): the next ~20 lines of code is pretty UGLY. This needs
|
|
// to be factored out into an FlatAffineConstraints::alignAndMerge().
|
|
for (unsigned l = 0, e = cst.getNumLocalIds(); l < e; l++) {
|
|
addLocalId(0);
|
|
}
|
|
|
|
for (unsigned t = 0, e = vMap->getNumResults(); t < e; t++) {
|
|
// TODO: Consider using a batched version to add a range of IDs.
|
|
addDimId(0);
|
|
cst.addDimId(0);
|
|
}
|
|
|
|
assert(cst.getNumDimIds() <= getNumDimIds());
|
|
for (unsigned t = 0, e = getNumDimIds() - cst.getNumDimIds(); t < e; t++) {
|
|
// Dimensions that are in 'this' but not in vMap/cst are added at the end.
|
|
cst.addDimId(cst.getNumDimIds());
|
|
}
|
|
assert(cst.getNumSymbolIds() <= getNumSymbolIds());
|
|
for (unsigned t = 0, e = getNumSymbolIds() - cst.getNumSymbolIds(); t < e;
|
|
t++) {
|
|
// Dimensions that are in 'this' but not in vMap/cst are added at the end.
|
|
cst.addSymbolId(cst.getNumSymbolIds());
|
|
}
|
|
assert(cst.getNumLocalIds() <= getNumLocalIds());
|
|
for (unsigned t = 0, e = getNumLocalIds() - cst.getNumLocalIds(); t < e;
|
|
t++) {
|
|
cst.addLocalId(cst.getNumLocalIds());
|
|
}
|
|
/// Finally, append cst to this constraint set.
|
|
append(cst);
|
|
|
|
// We add one equality for each result connecting the result dim of the map to
|
|
// the other identifiers.
|
|
// For eg: if the expression is 16*i0 + i1, and this is the r^th
|
|
// iteration/result of the value map, we are adding the equality:
|
|
// d_r - 16*i0 - i1 = 0. Hence, when flattening say (i0 + 1, i0 + 8*i2), we
|
|
// add two equalities overall: d_0 - i0 - 1 == 0, d1 - i0 - 8*i2 == 0.
|
|
for (unsigned r = 0, e = flatExprs.size(); r < e; r++) {
|
|
const auto &flatExpr = flatExprs[r];
|
|
// eqToAdd is the equality corresponding to the flattened affine expression.
|
|
SmallVector<int64_t, 8> eqToAdd(getNumCols(), 0);
|
|
// Set the coefficient for this result to one.
|
|
eqToAdd[r] = 1;
|
|
|
|
assert(flatExpr.size() >= vMap->getNumOperands() + 1);
|
|
|
|
// Dims and symbols.
|
|
for (unsigned i = 0, e = vMap->getNumOperands(); i < e; i++) {
|
|
unsigned loc;
|
|
bool ret = findId(*vMap->getOperand(i), &loc);
|
|
assert(ret && "value map's id can't be found");
|
|
(void)ret;
|
|
// We need to negate 'eq[r]' since the newly added dimension is going to
|
|
// be set to this one.
|
|
eqToAdd[loc] = -flatExpr[i];
|
|
}
|
|
// Local vars common to eq and cst are at the beginning.
|
|
int j = getNumDimIds() + getNumSymbolIds();
|
|
int end = flatExpr.size() - 1;
|
|
for (int i = vMap->getNumOperands(); i < end; i++, j++) {
|
|
eqToAdd[j] = -flatExpr[i];
|
|
}
|
|
|
|
// Constant term.
|
|
eqToAdd[getNumCols() - 1] = -flatExpr[flatExpr.size() - 1];
|
|
|
|
// Add the equality connecting the result of the map to this constraint set.
|
|
addEquality(eqToAdd);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Searches for a constraint with a non-zero coefficient at 'colIdx' in
|
|
// equality (isEq=true) or inequality (isEq=false) constraints.
|
|
// Returns true and sets row found in search in 'rowIdx'.
|
|
// Returns false otherwise.
|
|
static bool
|
|
findConstraintWithNonZeroAt(const FlatAffineConstraints &constraints,
|
|
unsigned colIdx, bool isEq, unsigned *rowIdx) {
|
|
auto at = [&](unsigned rowIdx) -> int64_t {
|
|
return isEq ? constraints.atEq(rowIdx, colIdx)
|
|
: constraints.atIneq(rowIdx, colIdx);
|
|
};
|
|
unsigned e =
|
|
isEq ? constraints.getNumEqualities() : constraints.getNumInequalities();
|
|
for (*rowIdx = 0; *rowIdx < e; ++(*rowIdx)) {
|
|
if (at(*rowIdx) != 0) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Normalizes the coefficient values across all columns in 'rowIDx' by their
|
|
// GCD in equality or inequality contraints as specified by 'isEq'.
|
|
template <bool isEq>
|
|
static void normalizeConstraintByGCD(FlatAffineConstraints *constraints,
|
|
unsigned rowIdx) {
|
|
auto at = [&](unsigned colIdx) -> int64_t {
|
|
return isEq ? constraints->atEq(rowIdx, colIdx)
|
|
: constraints->atIneq(rowIdx, colIdx);
|
|
};
|
|
uint64_t gcd = std::abs(at(0));
|
|
for (unsigned j = 1, e = constraints->getNumCols(); j < e; ++j) {
|
|
gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(at(j)));
|
|
}
|
|
if (gcd > 0 && gcd != 1) {
|
|
for (unsigned j = 0, e = constraints->getNumCols(); j < e; ++j) {
|
|
int64_t v = at(j) / static_cast<int64_t>(gcd);
|
|
isEq ? constraints->atEq(rowIdx, j) = v
|
|
: constraints->atIneq(rowIdx, j) = v;
|
|
}
|
|
}
|
|
}
|
|
|
|
void FlatAffineConstraints::normalizeConstraintsByGCD() {
|
|
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
|
|
normalizeConstraintByGCD</*isEq=*/true>(this, i);
|
|
}
|
|
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
|
|
normalizeConstraintByGCD</*isEq=*/false>(this, i);
|
|
}
|
|
}
|
|
|
|
bool FlatAffineConstraints::hasConsistentState() const {
|
|
if (inequalities.size() != getNumInequalities() * numReservedCols)
|
|
return false;
|
|
if (equalities.size() != getNumEqualities() * numReservedCols)
|
|
return false;
|
|
if (ids.size() != getNumIds())
|
|
return false;
|
|
|
|
// Catches errors where numDims, numSymbols, numIds aren't consistent.
|
|
if (numDims > numIds || numSymbols > numIds || numDims + numSymbols > numIds)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Checks all rows of equality/inequality constraints for trivial
|
|
/// contradictions (for example: 1 == 0, 0 >= 1), which may have surfaced
|
|
/// after elimination. Returns 'true' if an invalid constraint is found;
|
|
/// 'false' otherwise.
|
|
bool FlatAffineConstraints::hasInvalidConstraint() const {
|
|
assert(hasConsistentState());
|
|
auto check = [&](bool isEq) -> bool {
|
|
unsigned numCols = getNumCols();
|
|
unsigned numRows = isEq ? getNumEqualities() : getNumInequalities();
|
|
for (unsigned i = 0, e = numRows; i < e; ++i) {
|
|
unsigned j;
|
|
for (j = 0; j < numCols - 1; ++j) {
|
|
int64_t v = isEq ? atEq(i, j) : atIneq(i, j);
|
|
// Skip rows with non-zero variable coefficients.
|
|
if (v != 0)
|
|
break;
|
|
}
|
|
if (j < numCols - 1) {
|
|
continue;
|
|
}
|
|
// Check validity of constant term at 'numCols - 1' w.r.t 'isEq'.
|
|
// Example invalid constraints include: '1 == 0' or '-1 >= 0'
|
|
int64_t v = isEq ? atEq(i, numCols - 1) : atIneq(i, numCols - 1);
|
|
if ((isEq && v != 0) || (!isEq && v < 0)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
};
|
|
if (check(/*isEq=*/true))
|
|
return true;
|
|
return check(/*isEq=*/false);
|
|
}
|
|
|
|
// Eliminate identifier from constraint at 'rowIdx' based on coefficient at
|
|
// pivotRow, pivotCol. Columns in range [elimColStart, pivotCol) will not be
|
|
// updated as they have already been eliminated.
|
|
static void eliminateFromConstraint(FlatAffineConstraints *constraints,
|
|
unsigned rowIdx, unsigned pivotRow,
|
|
unsigned pivotCol, unsigned elimColStart,
|
|
bool isEq) {
|
|
// Skip if equality 'rowIdx' if same as 'pivotRow'.
|
|
if (isEq && rowIdx == pivotRow)
|
|
return;
|
|
auto at = [&](unsigned i, unsigned j) -> int64_t {
|
|
return isEq ? constraints->atEq(i, j) : constraints->atIneq(i, j);
|
|
};
|
|
int64_t leadCoeff = at(rowIdx, pivotCol);
|
|
// Skip if leading coefficient at 'rowIdx' is already zero.
|
|
if (leadCoeff == 0)
|
|
return;
|
|
int64_t pivotCoeff = constraints->atEq(pivotRow, pivotCol);
|
|
int64_t sign = (leadCoeff * pivotCoeff > 0) ? -1 : 1;
|
|
int64_t lcm = mlir::lcm(pivotCoeff, leadCoeff);
|
|
int64_t pivotMultiplier = sign * (lcm / std::abs(pivotCoeff));
|
|
int64_t rowMultiplier = lcm / std::abs(leadCoeff);
|
|
|
|
unsigned numCols = constraints->getNumCols();
|
|
for (unsigned j = 0; j < numCols; ++j) {
|
|
// Skip updating column 'j' if it was just eliminated.
|
|
if (j >= elimColStart && j < pivotCol)
|
|
continue;
|
|
int64_t v = pivotMultiplier * constraints->atEq(pivotRow, j) +
|
|
rowMultiplier * at(rowIdx, j);
|
|
isEq ? constraints->atEq(rowIdx, j) = v
|
|
: constraints->atIneq(rowIdx, j) = v;
|
|
}
|
|
}
|
|
|
|
// Remove coefficients in column range [colStart, colLimit) in place.
|
|
// This removes in data in the specified column range, and copies any
|
|
// remaining valid data into place.
|
|
static void shiftColumnsToLeft(FlatAffineConstraints *constraints,
|
|
unsigned colStart, unsigned colLimit,
|
|
bool isEq) {
|
|
assert(colStart >= 0 && colLimit <= constraints->getNumIds());
|
|
if (colLimit <= colStart)
|
|
return;
|
|
|
|
unsigned numCols = constraints->getNumCols();
|
|
unsigned numRows = isEq ? constraints->getNumEqualities()
|
|
: constraints->getNumInequalities();
|
|
unsigned numToEliminate = colLimit - colStart;
|
|
for (unsigned r = 0, e = numRows; r < e; ++r) {
|
|
for (unsigned c = colLimit; c < numCols; ++c) {
|
|
if (isEq) {
|
|
constraints->atEq(r, c - numToEliminate) = constraints->atEq(r, c);
|
|
} else {
|
|
constraints->atIneq(r, c - numToEliminate) = constraints->atIneq(r, c);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Removes identifiers in column range [idStart, idLimit), and copies any
|
|
// remaining valid data into place, and updates member variables.
|
|
void FlatAffineConstraints::removeIdRange(unsigned idStart, unsigned idLimit) {
|
|
assert(idLimit < getNumCols());
|
|
// TODO(andydavis) Make 'removeIdRange' a lambda called from here.
|
|
// Remove eliminated identifiers from equalities.
|
|
shiftColumnsToLeft(this, idStart, idLimit, /*isEq=*/true);
|
|
// Remove eliminated identifiers from inequalities.
|
|
shiftColumnsToLeft(this, idStart, idLimit, /*isEq=*/false);
|
|
// Update members numDims, numSymbols and numIds.
|
|
unsigned numDimsEliminated = 0;
|
|
if (idStart < numDims) {
|
|
numDimsEliminated = std::min(numDims, idLimit) - idStart;
|
|
}
|
|
unsigned numColsEliminated = idLimit - idStart;
|
|
unsigned numSymbolsEliminated =
|
|
std::min(numSymbols, numColsEliminated - numDimsEliminated);
|
|
numDims -= numDimsEliminated;
|
|
numSymbols -= numSymbolsEliminated;
|
|
numIds = numIds - numColsEliminated;
|
|
ids.erase(ids.begin() + idStart, ids.begin() + idLimit);
|
|
|
|
// No resize necessary. numReservedCols remains the same.
|
|
}
|
|
|
|
/// Returns the position of the identifier that has the minimum <number of lower
|
|
/// bounds> times <number of upper bounds> from the specified range of
|
|
/// identifiers [start, end). It is often best to eliminate in the increasing
|
|
/// order of these counts when doing Fourier-Motzkin elimination since FM adds
|
|
/// that many new constraints.
|
|
static unsigned getBestIdToEliminate(const FlatAffineConstraints &cst,
|
|
unsigned start, unsigned end) {
|
|
assert(start < cst.getNumIds() && end < cst.getNumIds() + 1);
|
|
|
|
auto getProductOfNumLowerUpperBounds = [&](unsigned pos) {
|
|
unsigned numLb = 0;
|
|
unsigned numUb = 0;
|
|
for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) {
|
|
if (cst.atIneq(r, pos) > 0) {
|
|
++numLb;
|
|
} else if (cst.atIneq(r, pos) < 0) {
|
|
++numUb;
|
|
}
|
|
}
|
|
return numLb * numUb;
|
|
};
|
|
|
|
unsigned minLoc = start;
|
|
unsigned min = getProductOfNumLowerUpperBounds(start);
|
|
for (unsigned c = start + 1; c < end; c++) {
|
|
unsigned numLbUbProduct = getProductOfNumLowerUpperBounds(c);
|
|
if (numLbUbProduct < min) {
|
|
min = numLbUbProduct;
|
|
minLoc = c;
|
|
}
|
|
}
|
|
return minLoc;
|
|
}
|
|
|
|
// Checks for emptiness of the set by eliminating identifiers successively and
|
|
// using the GCD test (on all equality constraints) and checking for trivially
|
|
// invalid constraints. Returns 'true' if the constraint system is found to be
|
|
// empty; false otherwise.
|
|
bool FlatAffineConstraints::isEmpty() const {
|
|
if (isEmptyByGCDTest() || hasInvalidConstraint())
|
|
return true;
|
|
|
|
// First, eliminate as many identifiers as possible using Gaussian
|
|
// elimination.
|
|
FlatAffineConstraints tmpCst(*this);
|
|
unsigned currentPos = 0;
|
|
while (currentPos < tmpCst.getNumIds()) {
|
|
tmpCst.gaussianEliminateIds(currentPos, tmpCst.getNumIds());
|
|
++currentPos;
|
|
// We check emptiness through trivial checks after eliminating each ID to
|
|
// detect emptiness early. Since the checks isEmptyByGCDTest() and
|
|
// hasInvalidConstraint() are linear time and single sweep on the constraint
|
|
// buffer, this appears reasonable - but can optimize in the future.
|
|
if (tmpCst.hasInvalidConstraint() || tmpCst.isEmptyByGCDTest())
|
|
return true;
|
|
}
|
|
|
|
// Eliminate the remaining using FM.
|
|
for (unsigned i = 0, e = tmpCst.getNumIds(); i < e; i++) {
|
|
tmpCst.FourierMotzkinEliminate(
|
|
getBestIdToEliminate(tmpCst, 0, tmpCst.getNumIds()));
|
|
// Check for a constraint explosion. This rarely happens in practice, but
|
|
// this check exists as a safeguard against improperly constructed
|
|
// constraint systems or artifically created arbitrarily complex systems
|
|
// that aren't the intended use case for FlatAffineConstraints. This is
|
|
// needed since FM has a worst case exponential complexity in theory.
|
|
if (tmpCst.getNumConstraints() >= kExplosionFactor * getNumIds()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "FM constraint explosion detected");
|
|
return false;
|
|
}
|
|
|
|
// FM wouldn't have modified the equalities in any way. So no need to again
|
|
// run GCD test. Check for trivial invalid constraints.
|
|
if (tmpCst.hasInvalidConstraint())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Runs the GCD test on all equality constraints. Returns 'true' if this test
|
|
// fails on any equality. Returns 'false' otherwise.
|
|
// This test can be used to disprove the existence of a solution. If it returns
|
|
// true, no integer solution to the equality constraints can exist.
|
|
//
|
|
// GCD test definition:
|
|
//
|
|
// The equality constraint:
|
|
//
|
|
// c_1*x_1 + c_2*x_2 + ... + c_n*x_n = c_0
|
|
//
|
|
// has an integer solution iff:
|
|
//
|
|
// GCD of c_1, c_2, ..., c_n divides c_0.
|
|
//
|
|
bool FlatAffineConstraints::isEmptyByGCDTest() const {
|
|
assert(hasConsistentState());
|
|
unsigned numCols = getNumCols();
|
|
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
|
|
uint64_t gcd = std::abs(atEq(i, 0));
|
|
for (unsigned j = 1; j < numCols - 1; ++j) {
|
|
gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(atEq(i, j)));
|
|
}
|
|
int64_t v = std::abs(atEq(i, numCols - 1));
|
|
if (gcd > 0 && (v % gcd != 0)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Tightens inequalities given that we are dealing with integer spaces. This is
|
|
/// analogous to the GCD test but applied to inequalities. The constant term can
|
|
/// be reduced to the preceding multiple of the GCD of the coefficients, i.e.,
|
|
/// 64*i - 100 >= 0 => 64*i - 128 >= 0 (since 'i' is an integer). This is a
|
|
/// fast method - linear in the number of coefficients.
|
|
// Example on how this affects practical cases: consider the scenario:
|
|
// 64*i >= 100, j = 64*i; without a tightening, elimination of i would yield
|
|
// j >= 100 instead of the tighter (exact) j >= 128.
|
|
void FlatAffineConstraints::GCDTightenInequalities() {
|
|
unsigned numCols = getNumCols();
|
|
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
|
|
uint64_t gcd = std::abs(atIneq(i, 0));
|
|
for (unsigned j = 1; j < numCols - 1; ++j) {
|
|
gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(atIneq(i, j)));
|
|
}
|
|
if (gcd > 0) {
|
|
int64_t gcdI = static_cast<int64_t>(gcd);
|
|
atIneq(i, numCols - 1) =
|
|
gcdI * mlir::floorDiv(atIneq(i, numCols - 1), gcdI);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Eliminates all identifer variables in column range [posStart, posLimit).
|
|
// Returns the number of variables eliminated.
|
|
unsigned FlatAffineConstraints::gaussianEliminateIds(unsigned posStart,
|
|
unsigned posLimit) {
|
|
// Return if identifier positions to eliminate are out of range.
|
|
assert(posLimit <= numIds);
|
|
assert(hasConsistentState());
|
|
|
|
if (posStart >= posLimit)
|
|
return 0;
|
|
|
|
GCDTightenInequalities();
|
|
|
|
unsigned pivotCol = 0;
|
|
for (pivotCol = posStart; pivotCol < posLimit; ++pivotCol) {
|
|
// Find a row which has a non-zero coefficient in column 'j'.
|
|
unsigned pivotRow;
|
|
if (!findConstraintWithNonZeroAt(*this, pivotCol, /*isEq=*/true,
|
|
&pivotRow)) {
|
|
// No pivot row in equalities with non-zero at 'pivotCol'.
|
|
if (!findConstraintWithNonZeroAt(*this, pivotCol, /*isEq=*/false,
|
|
&pivotRow)) {
|
|
// If inequalities are also non-zero in 'pivotCol', it can be
|
|
// eliminated.
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Eliminate identifier at 'pivotCol' from each equality row.
|
|
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
|
|
eliminateFromConstraint(this, i, pivotRow, pivotCol, posStart,
|
|
/*isEq=*/true);
|
|
normalizeConstraintByGCD</*isEq=*/true>(this, i);
|
|
}
|
|
|
|
// Eliminate identifier at 'pivotCol' from each inequality row.
|
|
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
|
|
eliminateFromConstraint(this, i, pivotRow, pivotCol, posStart,
|
|
/*isEq=*/false);
|
|
normalizeConstraintByGCD</*isEq=*/false>(this, i);
|
|
}
|
|
removeEquality(pivotRow);
|
|
}
|
|
// Update position limit based on number eliminated.
|
|
posLimit = pivotCol;
|
|
// Remove eliminated columns from all constraints.
|
|
removeIdRange(posStart, posLimit);
|
|
return posLimit - posStart;
|
|
}
|
|
|
|
// Detect the identifier at 'pos' (say id_r) as modulo of another identifier
|
|
// (say id_n) w.r.t a constant. When this happens, another identifier (say id_q)
|
|
// could be detected as the floordiv of n. For eg:
|
|
// id_n - 4*id_q - id_r = 0, 0 <= id_r <= 3 <=>
|
|
// id_r = id_n mod 4, id_q = id_n floordiv 4.
|
|
// lbConst and ubConst are the constant lower and upper bounds for 'pos' -
|
|
// pre-detected at the caller.
|
|
static bool detectAsMod(const FlatAffineConstraints &cst, unsigned pos,
|
|
int64_t lbConst, int64_t ubConst,
|
|
SmallVectorImpl<AffineExpr> *memo) {
|
|
assert(pos < cst.getNumIds() && "invalid position");
|
|
|
|
// Check if 0 <= id_r <= divisor - 1 and if id_r is equal to
|
|
// id_n - divisor * id_q. If these are true, then id_n becomes the dividend
|
|
// and id_q the quotient when dividing id_n by the divisor.
|
|
|
|
if (lbConst != 0 || ubConst < 1)
|
|
return false;
|
|
|
|
int64_t divisor = ubConst + 1;
|
|
|
|
// Now check for: id_r = id_n - divisor * id_q. As an example, we
|
|
// are looking r = d - 4q, i.e., either r - d + 4q = 0 or -r + d - 4q = 0.
|
|
unsigned seenQuotient = 0, seenDividend = 0;
|
|
int quotientPos = -1, dividendPos = -1;
|
|
for (unsigned r = 0, e = cst.getNumEqualities(); r < e; r++) {
|
|
// id_n should have coeff 1 or -1.
|
|
if (std::abs(cst.atEq(r, pos)) != 1)
|
|
continue;
|
|
for (unsigned c = 0, f = cst.getNumDimAndSymbolIds(); c < f; c++) {
|
|
// The coeff of the quotient should be -divisor if the coefficient of
|
|
// the pos^th identifier is -1, and divisor if the latter is -1.
|
|
if (cst.atEq(r, c) * cst.atEq(r, pos) == divisor) {
|
|
seenQuotient++;
|
|
quotientPos = c;
|
|
} else if (cst.atEq(r, c) * cst.atEq(r, pos) == -1) {
|
|
seenDividend++;
|
|
dividendPos = c;
|
|
}
|
|
}
|
|
// We are looking for exactly one identifier as part of the dividend.
|
|
// TODO(bondhugula): could be extended to cover multiple ones in the
|
|
// dividend to detect mod of an affine function of identifiers.
|
|
if (seenDividend == 1 && seenQuotient >= 1) {
|
|
if (!(*memo)[dividendPos])
|
|
return false;
|
|
// Successfully detected a mod.
|
|
(*memo)[pos] = (*memo)[dividendPos] % divisor;
|
|
if (seenQuotient == 1 && !(*memo)[quotientPos])
|
|
// Successfully detected a floordiv as well.
|
|
(*memo)[quotientPos] = (*memo)[dividendPos].floorDiv(divisor);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Check if the pos^th identifier can be expressed as a floordiv of an affine
|
|
// function of other identifiers (where the divisor is a positive constant).
|
|
// For eg: 4q <= i + j <= 4q + 3 <=> q = (i + j) floordiv 4.
|
|
bool detectAsFloorDiv(const FlatAffineConstraints &cst, unsigned pos,
|
|
SmallVectorImpl<AffineExpr> *memo, MLIRContext *context) {
|
|
assert(pos < cst.getNumIds() && "invalid position");
|
|
SmallVector<unsigned, 4> lbIndices, ubIndices;
|
|
|
|
// Gather all lower bounds and upper bound constraints of this identifier.
|
|
// Since the canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint
|
|
// is a lower bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
|
|
for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) {
|
|
if (cst.atIneq(r, pos) >= 1)
|
|
// Lower bound.
|
|
lbIndices.push_back(r);
|
|
else if (cst.atIneq(r, pos) <= -1)
|
|
// Upper bound.
|
|
ubIndices.push_back(r);
|
|
}
|
|
|
|
// Check if any lower bound, upper bound pair is of the form:
|
|
// divisor * id >= expr - (divisor - 1) <-- Lower bound for 'id'
|
|
// divisor * id <= expr <-- Upper bound for 'id'
|
|
// Then, 'id' is equivalent to 'expr floordiv divisor'. (where divisor > 1).
|
|
//
|
|
// For example, if -32*k + 16*i + j >= 0
|
|
// 32*k - 16*i - j + 31 >= 0 <=>
|
|
// k = ( 16*i + j ) floordiv 32
|
|
unsigned seenDividends = 0;
|
|
for (auto ubPos : ubIndices) {
|
|
for (auto lbPos : lbIndices) {
|
|
// Check if lower bound's constant term is 'divisor - 1'. The 'divisor'
|
|
// here is cst.atIneq(lbPos, pos) and we already know that it's positive
|
|
// (since cst.Ineq(lbPos, ...) is a lower bound expression for 'pos'.
|
|
if (cst.atIneq(lbPos, cst.getNumCols() - 1) != cst.atIneq(lbPos, pos) - 1)
|
|
continue;
|
|
// Check if upper bound's constant term is 0.
|
|
if (cst.atIneq(ubPos, cst.getNumCols() - 1) != 0)
|
|
continue;
|
|
// For the remaining part, check if the lower bound expr's coeff's are
|
|
// negations of corresponding upper bound ones'.
|
|
unsigned c, f;
|
|
for (c = 0, f = cst.getNumCols() - 1; c < f; c++) {
|
|
if (cst.atIneq(lbPos, c) != -cst.atIneq(ubPos, c))
|
|
break;
|
|
if (c != pos && cst.atIneq(lbPos, c) != 0)
|
|
seenDividends++;
|
|
}
|
|
// Lb coeff's aren't negative of ub coeff's (for the non constant term
|
|
// part).
|
|
if (c < f)
|
|
continue;
|
|
if (seenDividends >= 1) {
|
|
// The divisor is the constant term of the lower bound expression.
|
|
// We already know that cst.atIneq(lbPos, pos) > 0.
|
|
int64_t divisor = cst.atIneq(lbPos, pos);
|
|
// Construct the dividend expression.
|
|
auto dividendExpr = getAffineConstantExpr(0, context);
|
|
unsigned c, f;
|
|
for (c = 0, f = cst.getNumCols() - 1; c < f; c++) {
|
|
if (c == pos)
|
|
continue;
|
|
int64_t ubVal = cst.atIneq(ubPos, c);
|
|
if (ubVal == 0)
|
|
continue;
|
|
if (!(*memo)[c])
|
|
break;
|
|
dividendExpr = dividendExpr + ubVal * (*memo)[c];
|
|
}
|
|
// Expression can't be constructed as it depends on a yet unknown
|
|
// identifier.
|
|
// TODO(mlir-team): Visit/compute the identifiers in an order so that
|
|
// this doesn't happen. More complex but much more efficient.
|
|
if (c < f)
|
|
continue;
|
|
// Successfully detected the floordiv.
|
|
(*memo)[pos] = dividendExpr.floorDiv(divisor);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Computes the lower and upper bounds of the first 'num' dimensional
|
|
/// identifiers as affine maps of the remaining identifiers (dimensional and
|
|
/// symbolic identifiers). Local identifiers are themselves explicitly computed
|
|
/// as affine functions of other identifiers in this process if needed.
|
|
void FlatAffineConstraints::getSliceBounds(unsigned num, MLIRContext *context,
|
|
SmallVectorImpl<AffineMap> *lbMaps,
|
|
SmallVectorImpl<AffineMap> *ubMaps) {
|
|
assert(num < getNumDimIds() && "invalid range");
|
|
|
|
// Basic simplification.
|
|
normalizeConstraintsByGCD();
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "getSliceBounds on:\n");
|
|
LLVM_DEBUG(dump());
|
|
|
|
// Record computed/detected identifiers.
|
|
SmallVector<AffineExpr, 8> memo(getNumIds(), AffineExpr::Null());
|
|
// Initialize dimensional and symbolic identifiers.
|
|
for (unsigned i = num, e = getNumDimIds(); i < e; i++)
|
|
memo[i] = getAffineDimExpr(i - num, context);
|
|
for (unsigned i = getNumDimIds(), e = getNumDimAndSymbolIds(); i < e; i++)
|
|
memo[i] = getAffineSymbolExpr(i - getNumDimIds(), context);
|
|
|
|
bool changed;
|
|
do {
|
|
changed = false;
|
|
// Identify yet unknown identifiers as constants or mod's / floordiv's of
|
|
// other identifiers if possible.
|
|
for (unsigned pos = 0; pos < getNumIds(); pos++) {
|
|
if (memo[pos])
|
|
continue;
|
|
|
|
auto lbConst = getConstantLowerBound(pos);
|
|
auto ubConst = getConstantUpperBound(pos);
|
|
if (lbConst.hasValue() && ubConst.hasValue()) {
|
|
// Detect equality to a constant.
|
|
if (lbConst.getValue() == ubConst.getValue()) {
|
|
memo[pos] = getAffineConstantExpr(lbConst.getValue(), context);
|
|
changed = true;
|
|
continue;
|
|
}
|
|
|
|
// Detect an identifier as modulo of another identifier w.r.t a
|
|
// constant.
|
|
if (detectAsMod(*this, pos, lbConst.getValue(), ubConst.getValue(),
|
|
&memo)) {
|
|
changed = true;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Detect an identifier as floordiv of another identifier w.r.t a
|
|
// constant.
|
|
if (detectAsFloorDiv(*this, pos, &memo, context)) {
|
|
changed = true;
|
|
continue;
|
|
}
|
|
|
|
// Detect an identifier as an expression of other identifiers.
|
|
unsigned idx;
|
|
if (!findConstraintWithNonZeroAt(*this, pos, /*isEq=*/true, &idx)) {
|
|
continue;
|
|
}
|
|
|
|
// Build AffineExpr solving for identifier 'pos' in terms of all others.
|
|
auto expr = getAffineConstantExpr(0, context);
|
|
unsigned j, e;
|
|
for (j = 0, e = getNumIds(); j < e; ++j) {
|
|
if (j == pos)
|
|
continue;
|
|
int64_t c = atEq(idx, j);
|
|
if (c == 0)
|
|
continue;
|
|
// If any of the involved IDs hasn't been found yet, we can't proceed.
|
|
if (!memo[j])
|
|
break;
|
|
expr = expr + memo[j] * c;
|
|
}
|
|
if (j < e)
|
|
// Can't construct expression as it depends on a yet uncomputed
|
|
// identifier.
|
|
continue;
|
|
|
|
// Add constant term to AffineExpr.
|
|
expr = expr + atEq(idx, getNumIds());
|
|
int64_t vPos = atEq(idx, pos);
|
|
assert(vPos != 0 && "expected non-zero here");
|
|
if (vPos > 0)
|
|
expr = (-expr).floorDiv(vPos);
|
|
else
|
|
// vPos < 0.
|
|
expr = expr.floorDiv(-vPos);
|
|
// Successfully constructed expression.
|
|
memo[pos] = expr;
|
|
changed = true;
|
|
}
|
|
// This loop is guaranteed to reach a fixed point - since once an
|
|
// identifier's explicit form is computed (in memo[pos]), it's not updated
|
|
// again.
|
|
} while (changed);
|
|
|
|
// Set the lower and upper bound maps for all the identifiers that were
|
|
// computed as affine expressions of the rest as the "detected expr" and
|
|
// "detected expr + 1" respectively; set the undetected ones to Null().
|
|
for (unsigned pos = 0; pos < num; pos++) {
|
|
unsigned numMapDims = getNumDimIds() - num;
|
|
unsigned numMapSymbols = getNumSymbolIds();
|
|
AffineExpr expr = memo[pos];
|
|
if (expr)
|
|
expr = simplifyAffineExpr(expr, numMapDims, numMapSymbols);
|
|
|
|
if (expr) {
|
|
(*lbMaps)[pos] = AffineMap::get(numMapDims, numMapSymbols, expr, {});
|
|
(*ubMaps)[pos] = AffineMap::get(numMapDims, numMapSymbols, expr + 1, {});
|
|
} else {
|
|
(*lbMaps)[pos] = AffineMap::Null();
|
|
(*ubMaps)[pos] = AffineMap::Null();
|
|
}
|
|
LLVM_DEBUG(llvm::dbgs() << "lb map for pos = " << Twine(pos) << ", expr: ");
|
|
LLVM_DEBUG(expr.dump(););
|
|
}
|
|
}
|
|
|
|
void FlatAffineConstraints::addEquality(ArrayRef<int64_t> eq) {
|
|
assert(eq.size() == getNumCols());
|
|
unsigned offset = equalities.size();
|
|
equalities.resize(equalities.size() + numReservedCols);
|
|
std::copy(eq.begin(), eq.end(), equalities.begin() + offset);
|
|
}
|
|
|
|
void FlatAffineConstraints::addInequality(ArrayRef<int64_t> inEq) {
|
|
assert(inEq.size() == getNumCols());
|
|
unsigned offset = inequalities.size();
|
|
inequalities.resize(inequalities.size() + numReservedCols);
|
|
std::copy(inEq.begin(), inEq.end(), inequalities.begin() + offset);
|
|
}
|
|
|
|
void FlatAffineConstraints::addConstantLowerBound(unsigned pos, int64_t lb) {
|
|
assert(pos < getNumCols());
|
|
unsigned offset = inequalities.size();
|
|
inequalities.resize(inequalities.size() + numReservedCols);
|
|
std::fill(inequalities.begin() + offset,
|
|
inequalities.begin() + offset + getNumCols(), 0);
|
|
inequalities[offset + pos] = 1;
|
|
inequalities[offset + getNumCols() - 1] = -lb;
|
|
}
|
|
|
|
void FlatAffineConstraints::addConstantUpperBound(unsigned pos, int64_t ub) {
|
|
assert(pos < getNumCols());
|
|
unsigned offset = inequalities.size();
|
|
inequalities.resize(inequalities.size() + numReservedCols);
|
|
std::fill(inequalities.begin() + offset,
|
|
inequalities.begin() + offset + getNumCols(), 0);
|
|
inequalities[offset + pos] = -1;
|
|
inequalities[offset + getNumCols() - 1] = ub;
|
|
}
|
|
|
|
void FlatAffineConstraints::addConstantLowerBound(ArrayRef<int64_t> expr,
|
|
int64_t lb) {
|
|
assert(expr.size() == getNumCols());
|
|
unsigned offset = inequalities.size();
|
|
inequalities.resize(inequalities.size() + numReservedCols);
|
|
std::fill(inequalities.begin() + offset,
|
|
inequalities.begin() + offset + getNumCols(), 0);
|
|
std::copy(expr.begin(), expr.end(), inequalities.begin() + offset);
|
|
inequalities[offset + getNumCols() - 1] += -lb;
|
|
}
|
|
|
|
void FlatAffineConstraints::addConstantUpperBound(ArrayRef<int64_t> expr,
|
|
int64_t ub) {
|
|
assert(expr.size() == getNumCols());
|
|
unsigned offset = inequalities.size();
|
|
inequalities.resize(inequalities.size() + numReservedCols);
|
|
std::fill(inequalities.begin() + offset,
|
|
inequalities.begin() + offset + getNumCols(), 0);
|
|
for (unsigned i = 0, e = getNumCols(); i < e; i++) {
|
|
inequalities[offset + i] = -expr[i];
|
|
}
|
|
inequalities[offset + getNumCols() - 1] += ub;
|
|
}
|
|
|
|
/// Adds a new local identifier as the floordiv of an affine function of other
|
|
/// identifiers, the coefficients of which are provided in 'dividend' and with
|
|
/// respect to a positive constant 'divisor'. Two constraints are added to the
|
|
/// system to capture equivalence with the floordiv.
|
|
/// q = expr floordiv c <=> c*q <= expr <= c*q + c - 1.
|
|
void FlatAffineConstraints::addLocalFloorDiv(ArrayRef<int64_t> dividend,
|
|
int64_t divisor) {
|
|
assert(dividend.size() == getNumCols() && "incorrect dividend size");
|
|
assert(divisor > 0 && "positive divisor expected");
|
|
|
|
addLocalId(getNumLocalIds());
|
|
|
|
// Add two constraints for this new identifier 'q'.
|
|
SmallVector<int64_t, 8> bound(dividend.size() + 1);
|
|
|
|
// dividend - q * divisor >= 0
|
|
std::copy(dividend.begin(), dividend.begin() + dividend.size() - 1,
|
|
bound.begin());
|
|
bound.back() = dividend.back();
|
|
bound[getNumIds() - 1] = -divisor;
|
|
addInequality(bound);
|
|
|
|
// -dividend +qdivisor * q + divisor - 1 >= 0
|
|
std::transform(bound.begin(), bound.end(), bound.begin(),
|
|
std::negate<int64_t>());
|
|
bound[bound.size() - 1] += divisor - 1;
|
|
addInequality(bound);
|
|
}
|
|
|
|
bool FlatAffineConstraints::findId(const Value &id, unsigned *pos) const {
|
|
unsigned i = 0;
|
|
for (const auto &mayBeId : ids) {
|
|
if (mayBeId.hasValue() && mayBeId.getValue() == &id) {
|
|
*pos = i;
|
|
return true;
|
|
}
|
|
i++;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void FlatAffineConstraints::setDimSymbolSeparation(unsigned newSymbolCount) {
|
|
assert(newSymbolCount <= numDims + numSymbols &&
|
|
"invalid separation position");
|
|
numDims = numDims + numSymbols - newSymbolCount;
|
|
numSymbols = newSymbolCount;
|
|
}
|
|
|
|
bool FlatAffineConstraints::addForInstDomain(const ForInst &forInst) {
|
|
unsigned pos;
|
|
// Pre-condition for this method.
|
|
if (!findId(forInst, &pos)) {
|
|
assert(0 && "Value not found");
|
|
return false;
|
|
}
|
|
|
|
if (forInst.getStep() != 1)
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Domain conservative: non-unit stride not handled\n");
|
|
|
|
// Adds a lower or upper bound when the bounds aren't constant.
|
|
auto addLowerOrUpperBound = [&](bool lower) -> bool {
|
|
auto operands = lower ? forInst.getLowerBoundOperands()
|
|
: forInst.getUpperBoundOperands();
|
|
for (const auto &operand : operands) {
|
|
unsigned loc;
|
|
if (!findId(*operand, &loc)) {
|
|
if (operand->isValidSymbol()) {
|
|
addSymbolId(getNumSymbolIds(), const_cast<Value *>(operand));
|
|
loc = getNumDimIds() + getNumSymbolIds() - 1;
|
|
// Check if the symbol is a constant.
|
|
if (auto *opInst = operand->getDefiningInst()) {
|
|
if (auto constOp = opInst->dyn_cast<ConstantIndexOp>()) {
|
|
setIdToConstant(*operand, constOp->getValue());
|
|
}
|
|
}
|
|
} else {
|
|
addDimId(getNumDimIds(), const_cast<Value *>(operand));
|
|
loc = getNumDimIds() - 1;
|
|
}
|
|
}
|
|
}
|
|
// Record positions of the operands in the constraint system.
|
|
SmallVector<unsigned, 8> positions;
|
|
for (const auto &operand : operands) {
|
|
unsigned loc;
|
|
if (!findId(*operand, &loc))
|
|
assert(0 && "expected to be found");
|
|
positions.push_back(loc);
|
|
}
|
|
|
|
auto boundMap =
|
|
lower ? forInst.getLowerBoundMap() : forInst.getUpperBoundMap();
|
|
|
|
FlatAffineConstraints localVarCst;
|
|
std::vector<SmallVector<int64_t, 8>> flatExprs;
|
|
if (!getFlattenedAffineExprs(boundMap, &flatExprs, &localVarCst)) {
|
|
LLVM_DEBUG(llvm::dbgs() << "semi-affine expressions not yet supported\n");
|
|
return false;
|
|
}
|
|
if (localVarCst.getNumLocalIds() > 0) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "loop bounds with mod/floordiv expr's not yet supported\n");
|
|
return false;
|
|
}
|
|
|
|
for (const auto &flatExpr : flatExprs) {
|
|
SmallVector<int64_t, 4> ineq(getNumCols(), 0);
|
|
ineq[pos] = lower ? 1 : -1;
|
|
for (unsigned j = 0, e = boundMap.getNumInputs(); j < e; j++) {
|
|
ineq[positions[j]] = lower ? -flatExpr[j] : flatExpr[j];
|
|
}
|
|
// Constant term.
|
|
ineq[getNumCols() - 1] =
|
|
lower ? -flatExpr[flatExpr.size() - 1]
|
|
// Upper bound in flattenedExpr is an exclusive one.
|
|
: flatExpr[flatExpr.size() - 1] - 1;
|
|
addInequality(ineq);
|
|
}
|
|
return true;
|
|
};
|
|
|
|
if (forInst.hasConstantLowerBound()) {
|
|
addConstantLowerBound(pos, forInst.getConstantLowerBound());
|
|
} else {
|
|
// Non-constant lower bound case.
|
|
if (!addLowerOrUpperBound(/*lower=*/true))
|
|
return false;
|
|
}
|
|
|
|
if (forInst.hasConstantUpperBound()) {
|
|
addConstantUpperBound(pos, forInst.getConstantUpperBound() - 1);
|
|
return true;
|
|
}
|
|
// Non-constant upper bound case.
|
|
return addLowerOrUpperBound(/*lower=*/false);
|
|
}
|
|
|
|
/// Sets the specified identifer to a constant value.
|
|
void FlatAffineConstraints::setIdToConstant(unsigned pos, int64_t val) {
|
|
unsigned offset = equalities.size();
|
|
equalities.resize(equalities.size() + numReservedCols);
|
|
std::fill(equalities.begin() + offset,
|
|
equalities.begin() + offset + getNumCols(), 0);
|
|
equalities[offset + pos] = 1;
|
|
equalities[offset + getNumCols() - 1] = -val;
|
|
}
|
|
|
|
/// Sets the specified identifer to a constant value; asserts if the id is not
|
|
/// found.
|
|
void FlatAffineConstraints::setIdToConstant(const Value &id, int64_t val) {
|
|
unsigned pos;
|
|
if (!findId(id, &pos))
|
|
// This is a pre-condition for this method.
|
|
assert(0 && "id not found");
|
|
setIdToConstant(pos, val);
|
|
}
|
|
|
|
void FlatAffineConstraints::removeEquality(unsigned pos) {
|
|
unsigned numEqualities = getNumEqualities();
|
|
assert(pos < numEqualities);
|
|
unsigned outputIndex = pos * numReservedCols;
|
|
unsigned inputIndex = (pos + 1) * numReservedCols;
|
|
unsigned numElemsToCopy = (numEqualities - pos - 1) * numReservedCols;
|
|
std::copy(equalities.begin() + inputIndex,
|
|
equalities.begin() + inputIndex + numElemsToCopy,
|
|
equalities.begin() + outputIndex);
|
|
equalities.resize(equalities.size() - numReservedCols);
|
|
}
|
|
|
|
/// Finds an equality that equates the specified identifier to a constant.
|
|
/// Returns the position of the equality row. If 'symbolic' is set to true,
|
|
/// symbols are also treated like a constant, i.e., an affine function of the
|
|
/// symbols is also treated like a constant.
|
|
static int findEqualityToConstant(const FlatAffineConstraints &cst,
|
|
unsigned pos, bool symbolic = false) {
|
|
assert(pos < cst.getNumIds() && "invalid position");
|
|
for (unsigned r = 0, e = cst.getNumEqualities(); r < e; r++) {
|
|
int64_t v = cst.atEq(r, pos);
|
|
if (v * v != 1)
|
|
continue;
|
|
unsigned c;
|
|
unsigned f = symbolic ? cst.getNumDimIds() : cst.getNumIds();
|
|
// This checks for zeros in all positions other than 'pos' in [0, f)
|
|
for (c = 0; c < f; c++) {
|
|
if (c == pos)
|
|
continue;
|
|
if (cst.atEq(r, c) != 0) {
|
|
// Dependent on another identifier.
|
|
break;
|
|
}
|
|
}
|
|
if (c == f)
|
|
// Equality is free of other identifiers.
|
|
return r;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
void FlatAffineConstraints::setAndEliminate(unsigned pos, int64_t constVal) {
|
|
assert(pos < getNumIds() && "invalid position");
|
|
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
|
|
atIneq(r, getNumCols() - 1) += atIneq(r, pos) * constVal;
|
|
}
|
|
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
|
|
atEq(r, getNumCols() - 1) += atEq(r, pos) * constVal;
|
|
}
|
|
removeId(pos);
|
|
}
|
|
|
|
bool FlatAffineConstraints::constantFoldId(unsigned pos) {
|
|
assert(pos < getNumIds() && "invalid position");
|
|
int rowIdx;
|
|
if ((rowIdx = findEqualityToConstant(*this, pos)) == -1)
|
|
return false;
|
|
|
|
// atEq(rowIdx, pos) is either -1 or 1.
|
|
assert(atEq(rowIdx, pos) * atEq(rowIdx, pos) == 1);
|
|
int64_t constVal = -atEq(rowIdx, getNumCols() - 1) / atEq(rowIdx, pos);
|
|
setAndEliminate(pos, constVal);
|
|
return true;
|
|
}
|
|
|
|
void FlatAffineConstraints::constantFoldIdRange(unsigned pos, unsigned num) {
|
|
for (unsigned s = pos, t = pos, e = pos + num; s < e; s++) {
|
|
if (!constantFoldId(t))
|
|
t++;
|
|
}
|
|
}
|
|
|
|
/// Returns the extent (upper bound - lower bound) of the specified
|
|
/// identifier if it is found to be a constant; returns None if it's not a
|
|
/// constant. This methods treats symbolic identifiers specially, i.e.,
|
|
/// it looks for constant differences between affine expressions involving
|
|
/// only the symbolic identifiers. See comments at function definition for
|
|
/// example. 'lb', if provided, is set to the lower bound associated with the
|
|
/// constant difference. Note that 'lb' is purely symbolic and thus will contain
|
|
/// the coefficients of the symbolic identifiers and the constant coefficient.
|
|
// Egs: 0 <= i <= 15, return 16.
|
|
// s0 + 2 <= i <= s0 + 17, returns 16. (s0 has to be a symbol)
|
|
// i + s0 + 16 <= d0 <= i + s0 + 31, returns 16.
|
|
Optional<int64_t> FlatAffineConstraints::getConstantBoundOnDimSize(
|
|
unsigned pos, SmallVectorImpl<int64_t> *lb) const {
|
|
assert(pos < getNumDimIds() && "Invalid identifier position");
|
|
assert(getNumLocalIds() == 0);
|
|
|
|
// TODO(bondhugula): eliminate all remaining dimensional identifiers (other
|
|
// than the one at 'pos' to make this more powerful. Not needed for
|
|
// hyper-rectangular spaces.
|
|
|
|
// Find an equality for 'pos'^th identifier that equates it to some function
|
|
// of the symbolic identifiers (+ constant).
|
|
int eqRow = findEqualityToConstant(*this, pos, /*symbolic=*/true);
|
|
if (eqRow != -1) {
|
|
// This identifier can only take a single value.
|
|
if (lb) {
|
|
// Set lb to the symbolic value.
|
|
lb->resize(getNumSymbolIds() + 1);
|
|
for (unsigned c = 0, f = getNumSymbolIds() + 1; c < f; c++) {
|
|
int64_t v = atEq(eqRow, pos);
|
|
// atEq(eqRow, pos) is either -1 or 1.
|
|
assert(v * v == 1);
|
|
(*lb)[c] = v < 0 ? atEq(eqRow, getNumDimIds() + c) / -v
|
|
: -atEq(eqRow, getNumDimIds() + c) / v;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
// Check if the identifier appears at all in any of the inequalities.
|
|
unsigned r, e;
|
|
for (r = 0, e = getNumInequalities(); r < e; r++) {
|
|
if (atIneq(r, pos) != 0)
|
|
break;
|
|
}
|
|
if (r == e)
|
|
// If it doesn't, there isn't a bound on it.
|
|
return None;
|
|
|
|
// Positions of constraints that are lower/upper bounds on the variable.
|
|
SmallVector<unsigned, 4> lbIndices, ubIndices;
|
|
|
|
// Gather all symbolic lower bounds and upper bounds of the variable. Since
|
|
// the canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a
|
|
// lower bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
|
|
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
|
|
unsigned c, f;
|
|
for (c = 0, f = getNumDimIds(); c < f; c++) {
|
|
if (c != pos && atIneq(r, c) != 0)
|
|
break;
|
|
}
|
|
if (c < getNumDimIds())
|
|
continue;
|
|
if (atIneq(r, pos) >= 1)
|
|
// Lower bound.
|
|
lbIndices.push_back(r);
|
|
else if (atIneq(r, pos) <= -1)
|
|
// Upper bound.
|
|
ubIndices.push_back(r);
|
|
}
|
|
|
|
// TODO(bondhugula): eliminate other dimensional identifiers to make this more
|
|
// powerful. Not needed for hyper-rectangular iteration spaces.
|
|
|
|
Optional<int64_t> minDiff = None;
|
|
unsigned minLbPosition;
|
|
for (auto ubPos : ubIndices) {
|
|
for (auto lbPos : lbIndices) {
|
|
// Look for a lower bound and an upper bound that only differ by a
|
|
// constant, i.e., pairs of the form 0 <= c_pos - f(c_i's) <= diffConst.
|
|
// For example, if ii is the pos^th variable, we are looking for
|
|
// constraints like ii >= i, ii <= ii + 50, 50 being the difference. The
|
|
// minimum among all such constant differences is kept since that's the
|
|
// constant bounding the extent of the pos^th variable.
|
|
unsigned j, e;
|
|
for (j = 0, e = getNumCols() - 1; j < e; j++)
|
|
if (atIneq(ubPos, j) != -atIneq(lbPos, j)) {
|
|
break;
|
|
}
|
|
if (j < getNumCols() - 1)
|
|
continue;
|
|
int64_t diff =
|
|
atIneq(ubPos, getNumCols() - 1) + atIneq(lbPos, getNumCols() - 1) + 1;
|
|
if (minDiff == None || diff < minDiff) {
|
|
minDiff = diff;
|
|
minLbPosition = lbPos;
|
|
}
|
|
}
|
|
}
|
|
if (lb && minDiff.hasValue()) {
|
|
// Set lb to the symbolic lower bound.
|
|
lb->resize(getNumSymbolIds() + 1);
|
|
for (unsigned c = 0, e = getNumSymbolIds() + 1; c < e; c++) {
|
|
(*lb)[c] = -atIneq(minLbPosition, getNumDimIds() + c);
|
|
}
|
|
}
|
|
return minDiff;
|
|
}
|
|
|
|
template <bool isLower>
|
|
Optional<int64_t>
|
|
FlatAffineConstraints::getConstantLowerOrUpperBound(unsigned pos) const {
|
|
// Check if there's an equality equating the 'pos'^th identifier to a
|
|
// constant.
|
|
int eqRowIdx = findEqualityToConstant(*this, pos, /*symbolic=*/false);
|
|
if (eqRowIdx != -1)
|
|
// atEq(rowIdx, pos) is either -1 or 1.
|
|
return -atEq(eqRowIdx, getNumCols() - 1) / atEq(eqRowIdx, pos);
|
|
|
|
// Check if the identifier appears at all in any of the inequalities.
|
|
unsigned r, e;
|
|
for (r = 0, e = getNumInequalities(); r < e; r++) {
|
|
if (atIneq(r, pos) != 0)
|
|
break;
|
|
}
|
|
if (r == e)
|
|
// If it doesn't, there isn't a bound on it.
|
|
return None;
|
|
|
|
Optional<int64_t> minOrMaxConst = None;
|
|
|
|
// Take the max across all const lower bounds (or min across all constant
|
|
// upper bounds).
|
|
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
|
|
if (isLower) {
|
|
if (atIneq(r, pos) <= 0)
|
|
// Not a lower bound.
|
|
continue;
|
|
} else if (atIneq(r, pos) >= 0) {
|
|
// Not an upper bound.
|
|
continue;
|
|
}
|
|
unsigned c, f;
|
|
for (c = 0, f = getNumCols() - 1; c < f; c++)
|
|
if (c != pos && atIneq(r, c) != 0)
|
|
break;
|
|
if (c < getNumCols() - 1)
|
|
// Not a constant bound.
|
|
continue;
|
|
|
|
int64_t boundConst =
|
|
isLower ? mlir::ceilDiv(-atIneq(r, getNumCols() - 1), atIneq(r, pos))
|
|
: mlir::floorDiv(atIneq(r, getNumCols() - 1), -atIneq(r, pos));
|
|
if (isLower) {
|
|
if (minOrMaxConst == None || boundConst > minOrMaxConst)
|
|
minOrMaxConst = boundConst;
|
|
} else {
|
|
if (minOrMaxConst == None || boundConst < minOrMaxConst)
|
|
minOrMaxConst = boundConst;
|
|
}
|
|
}
|
|
return minOrMaxConst;
|
|
}
|
|
|
|
Optional<int64_t>
|
|
FlatAffineConstraints::getConstantLowerBound(unsigned pos) const {
|
|
return getConstantLowerOrUpperBound</*isLower=*/true>(pos);
|
|
}
|
|
|
|
Optional<int64_t>
|
|
FlatAffineConstraints::getConstantUpperBound(unsigned pos) const {
|
|
return getConstantLowerOrUpperBound</*isLower=*/false>(pos);
|
|
}
|
|
|
|
// A simple (naive and conservative) check for hyper-rectangularlity.
|
|
bool FlatAffineConstraints::isHyperRectangular(unsigned pos,
|
|
unsigned num) const {
|
|
assert(pos < getNumCols() - 1);
|
|
// Check for two non-zero coefficients in the range [pos, pos + sum).
|
|
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
|
|
unsigned sum = 0;
|
|
for (unsigned c = pos; c < pos + num; c++) {
|
|
if (atIneq(r, c) != 0)
|
|
sum++;
|
|
}
|
|
if (sum > 1)
|
|
return false;
|
|
}
|
|
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
|
|
unsigned sum = 0;
|
|
for (unsigned c = pos; c < pos + num; c++) {
|
|
if (atEq(r, c) != 0)
|
|
sum++;
|
|
}
|
|
if (sum > 1)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void FlatAffineConstraints::print(raw_ostream &os) const {
|
|
assert(hasConsistentState());
|
|
os << "\nConstraints (" << getNumDimIds() << " dims, " << getNumSymbolIds()
|
|
<< " symbols, " << getNumLocalIds() << " locals), (" << getNumConstraints()
|
|
<< " constraints)\n";
|
|
os << "(";
|
|
for (unsigned i = 0, e = getNumIds(); i < e; i++) {
|
|
if (ids[i] == None)
|
|
os << "None ";
|
|
else
|
|
os << "Value ";
|
|
}
|
|
os << " const)\n";
|
|
for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
|
|
for (unsigned j = 0, f = getNumCols(); j < f; ++j) {
|
|
os << atEq(i, j) << " ";
|
|
}
|
|
os << "= 0\n";
|
|
}
|
|
for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
|
|
for (unsigned j = 0, f = getNumCols(); j < f; ++j) {
|
|
os << atIneq(i, j) << " ";
|
|
}
|
|
os << ">= 0\n";
|
|
}
|
|
os << '\n';
|
|
}
|
|
|
|
void FlatAffineConstraints::dump() const { print(llvm::errs()); }
|
|
|
|
/// Removes duplicate constraints and trivially true constraints: a constraint
|
|
/// of the form <non-negative constant> >= 0 is considered a trivially true
|
|
/// constraint.
|
|
// Uses a DenseSet to hash and detect duplicates followed by a linear scan to
|
|
// remove duplicates in place.
|
|
void FlatAffineConstraints::removeTrivialRedundancy() {
|
|
DenseSet<ArrayRef<int64_t>> rowSet;
|
|
|
|
// Check if constraint is of the form <non-negative-constant> >= 0.
|
|
auto isTriviallyValid = [&](unsigned r) -> bool {
|
|
for (unsigned c = 0, e = getNumCols() - 1; c < e; c++) {
|
|
if (atIneq(r, c) != 0)
|
|
return false;
|
|
}
|
|
return atIneq(r, getNumCols() - 1) >= 0;
|
|
};
|
|
|
|
// Detect and mark redundant constraints.
|
|
std::vector<bool> redunIneq(getNumInequalities(), false);
|
|
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
|
|
int64_t *rowStart = inequalities.data() + numReservedCols * r;
|
|
auto row = ArrayRef<int64_t>(rowStart, getNumCols());
|
|
if (isTriviallyValid(r) || !rowSet.insert(row).second) {
|
|
redunIneq[r] = true;
|
|
}
|
|
}
|
|
|
|
auto copyRow = [&](unsigned src, unsigned dest) {
|
|
if (src == dest)
|
|
return;
|
|
for (unsigned c = 0, e = getNumCols(); c < e; c++) {
|
|
atIneq(dest, c) = atIneq(src, c);
|
|
}
|
|
};
|
|
|
|
// Scan to get rid of all rows marked redundant, in-place.
|
|
unsigned pos = 0;
|
|
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
|
|
if (!redunIneq[r])
|
|
copyRow(r, pos++);
|
|
}
|
|
inequalities.resize(numReservedCols * pos);
|
|
|
|
// TODO(bondhugula): consider doing this for equalities as well, but probably
|
|
// not worth the savings.
|
|
}
|
|
|
|
void FlatAffineConstraints::clearAndCopyFrom(
|
|
const FlatAffineConstraints &other) {
|
|
FlatAffineConstraints copy(other);
|
|
std::swap(*this, copy);
|
|
assert(copy.getNumIds() == copy.getIds().size());
|
|
}
|
|
|
|
void FlatAffineConstraints::removeId(unsigned pos) {
|
|
removeIdRange(pos, pos + 1);
|
|
}
|
|
|
|
static std::pair<unsigned, unsigned>
|
|
getNewNumDimsSymbols(unsigned pos, const FlatAffineConstraints &cst) {
|
|
unsigned numDims = cst.getNumDimIds();
|
|
unsigned numSymbols = cst.getNumSymbolIds();
|
|
unsigned newNumDims, newNumSymbols;
|
|
if (pos < numDims) {
|
|
newNumDims = numDims - 1;
|
|
newNumSymbols = numSymbols;
|
|
} else if (pos < numDims + numSymbols) {
|
|
assert(numSymbols >= 1);
|
|
newNumDims = numDims;
|
|
newNumSymbols = numSymbols - 1;
|
|
} else {
|
|
newNumDims = numDims;
|
|
newNumSymbols = numSymbols;
|
|
}
|
|
return {newNumDims, newNumSymbols};
|
|
}
|
|
|
|
/// Eliminates identifier at the specified position using Fourier-Motzkin
|
|
/// variable elimination. This technique is exact for rational spaces but
|
|
/// conservative (in "rare" cases) for integer spaces. The operation corresponds
|
|
/// to a projection operation yielding the (convex) set of integer points
|
|
/// contained in the rational shadow of the set. An emptiness test that relies
|
|
/// on this method will guarantee emptiness, i.e., it disproves the existence of
|
|
/// a solution if it says it's empty.
|
|
/// If a non-null isResultIntegerExact is passed, it is set to true if the
|
|
/// result is also integer exact. If it's set to false, the obtained solution
|
|
/// *may* not be exact, i.e., it may contain integer points that do not have an
|
|
/// integer pre-image in the original set.
|
|
///
|
|
/// Eg:
|
|
/// j >= 0, j <= i + 1
|
|
/// i >= 0, i <= N + 1
|
|
/// Eliminating i yields,
|
|
/// j >= 0, 0 <= N + 1, j - 1 <= N + 1
|
|
///
|
|
/// If darkShadow = true, this method computes the dark shadow on elimination;
|
|
/// the dark shadow is a convex integer subset of the exact integer shadow. A
|
|
/// non-empty dark shadow proves the existence of an integer solution. The
|
|
/// elimination in such a case could however be an under-approximation, and thus
|
|
/// should not be used for scanning sets or used by itself for dependence
|
|
/// checking.
|
|
///
|
|
/// Eg: 2-d set, * represents grid points, 'o' represents a point in the set.
|
|
/// ^
|
|
/// |
|
|
/// | * * * * o o
|
|
/// i | * * o o o o
|
|
/// | o * * * * *
|
|
/// --------------->
|
|
/// j ->
|
|
///
|
|
/// Eliminating i from this system (projecting on the j dimension):
|
|
/// rational shadow / integer light shadow: 1 <= j <= 6
|
|
/// dark shadow: 3 <= j <= 6
|
|
/// exact integer shadow: j = 1 \union 3 <= j <= 6
|
|
/// holes/splinters: j = 2
|
|
///
|
|
/// darkShadow = false, isResultIntegerExact = nullptr are default values.
|
|
// TODO(bondhugula): a slight modification to yield dark shadow version of FM
|
|
// (tightened), which can prove the existence of a solution if there is one.
|
|
void FlatAffineConstraints::FourierMotzkinEliminate(
|
|
unsigned pos, bool darkShadow, bool *isResultIntegerExact) {
|
|
LLVM_DEBUG(llvm::dbgs() << "FM input (eliminate pos " << pos << "):\n");
|
|
LLVM_DEBUG(dump());
|
|
assert(pos < getNumIds() && "invalid position");
|
|
assert(hasConsistentState());
|
|
|
|
// Check if this identifier can be eliminated through a substitution.
|
|
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
|
|
if (atEq(r, pos) != 0) {
|
|
// Use Gaussian elimination here (since we have an equality).
|
|
bool ret = gaussianEliminateId(pos);
|
|
(void)ret;
|
|
assert(ret && "Gaussian elimination guaranteed to succeed");
|
|
LLVM_DEBUG(llvm::dbgs() << "FM output:\n");
|
|
LLVM_DEBUG(dump());
|
|
return;
|
|
}
|
|
}
|
|
|
|
// A fast linear time tightening.
|
|
GCDTightenInequalities();
|
|
|
|
// Check if the identifier appears at all in any of the inequalities.
|
|
unsigned r, e;
|
|
for (r = 0, e = getNumInequalities(); r < e; r++) {
|
|
if (atIneq(r, pos) != 0)
|
|
break;
|
|
}
|
|
if (r == getNumInequalities()) {
|
|
// If it doesn't appear, just remove the column and return.
|
|
// TODO(andydavis,bondhugula): refactor removeColumns to use it from here.
|
|
removeId(pos);
|
|
LLVM_DEBUG(llvm::dbgs() << "FM output:\n");
|
|
LLVM_DEBUG(dump());
|
|
return;
|
|
}
|
|
|
|
// Positions of constraints that are lower bounds on the variable.
|
|
SmallVector<unsigned, 4> lbIndices;
|
|
// Positions of constraints that are lower bounds on the variable.
|
|
SmallVector<unsigned, 4> ubIndices;
|
|
// Positions of constraints that do not involve the variable.
|
|
std::vector<unsigned> nbIndices;
|
|
nbIndices.reserve(getNumInequalities());
|
|
|
|
// Gather all lower bounds and upper bounds of the variable. Since the
|
|
// canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower
|
|
// bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
|
|
for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
|
|
if (atIneq(r, pos) == 0) {
|
|
// Id does not appear in bound.
|
|
nbIndices.push_back(r);
|
|
} else if (atIneq(r, pos) >= 1) {
|
|
// Lower bound.
|
|
lbIndices.push_back(r);
|
|
} else {
|
|
// Upper bound.
|
|
ubIndices.push_back(r);
|
|
}
|
|
}
|
|
|
|
// Set the number of dimensions, symbols in the resulting system.
|
|
const auto &dimsSymbols = getNewNumDimsSymbols(pos, *this);
|
|
unsigned newNumDims = dimsSymbols.first;
|
|
unsigned newNumSymbols = dimsSymbols.second;
|
|
|
|
SmallVector<Optional<Value *>, 8> newIds;
|
|
newIds.reserve(numIds - 1);
|
|
newIds.append(ids.begin(), ids.begin() + pos);
|
|
newIds.append(ids.begin() + pos + 1, ids.end());
|
|
|
|
/// Create the new system which has one identifier less.
|
|
FlatAffineConstraints newFac(
|
|
lbIndices.size() * ubIndices.size() + nbIndices.size(),
|
|
getNumEqualities(), getNumCols() - 1, newNumDims, newNumSymbols,
|
|
/*numLocals=*/getNumIds() - 1 - newNumDims - newNumSymbols, newIds);
|
|
|
|
assert(newFac.getIds().size() == newFac.getNumIds());
|
|
|
|
// This will be used to check if the elimination was integer exact.
|
|
unsigned lcmProducts = 1;
|
|
|
|
// Let x be the variable we are eliminating.
|
|
// For each lower bound, lb <= c_l*x, and each upper bound c_u*x <= ub, (note
|
|
// that c_l, c_u >= 1) we have:
|
|
// lb*lcm(c_l, c_u)/c_l <= lcm(c_l, c_u)*x <= ub*lcm(c_l, c_u)/c_u
|
|
// We thus generate a constraint:
|
|
// lcm(c_l, c_u)/c_l*lb <= lcm(c_l, c_u)/c_u*ub.
|
|
// Note if c_l = c_u = 1, all integer points captured by the resulting
|
|
// constraint correspond to integer points in the original system (i.e., they
|
|
// have integer pre-images). Hence, if the lcm's are all 1, the elimination is
|
|
// integer exact.
|
|
for (auto ubPos : ubIndices) {
|
|
for (auto lbPos : lbIndices) {
|
|
SmallVector<int64_t, 4> ineq;
|
|
ineq.reserve(newFac.getNumCols());
|
|
int64_t lbCoeff = atIneq(lbPos, pos);
|
|
// Note that in the comments above, ubCoeff is the negation of the
|
|
// coefficient in the canonical form as the view taken here is that of the
|
|
// term being moved to the other size of '>='.
|
|
int64_t ubCoeff = -atIneq(ubPos, pos);
|
|
// TODO(bondhugula): refactor this loop to avoid all branches inside.
|
|
for (unsigned l = 0, e = getNumCols(); l < e; l++) {
|
|
if (l == pos)
|
|
continue;
|
|
assert(lbCoeff >= 1 && ubCoeff >= 1 && "bounds wrongly identified");
|
|
int64_t lcm = mlir::lcm(lbCoeff, ubCoeff);
|
|
ineq.push_back(atIneq(ubPos, l) * (lcm / ubCoeff) +
|
|
atIneq(lbPos, l) * (lcm / lbCoeff));
|
|
lcmProducts *= lcm;
|
|
}
|
|
if (darkShadow) {
|
|
// The dark shadow is a convex subset of the exact integer shadow. If
|
|
// there is a point here, it proves the existence of a solution.
|
|
ineq[ineq.size() - 1] += lbCoeff * ubCoeff - lbCoeff - ubCoeff + 1;
|
|
}
|
|
// TODO: we need to have a way to add inequalities in-place in
|
|
// FlatAffineConstraints instead of creating and copying over.
|
|
newFac.addInequality(ineq);
|
|
}
|
|
}
|
|
|
|
if (lcmProducts == 1 && isResultIntegerExact)
|
|
*isResultIntegerExact = 1;
|
|
|
|
// Copy over the constraints not involving this variable.
|
|
for (auto nbPos : nbIndices) {
|
|
SmallVector<int64_t, 4> ineq;
|
|
ineq.reserve(getNumCols() - 1);
|
|
for (unsigned l = 0, e = getNumCols(); l < e; l++) {
|
|
if (l == pos)
|
|
continue;
|
|
ineq.push_back(atIneq(nbPos, l));
|
|
}
|
|
newFac.addInequality(ineq);
|
|
}
|
|
|
|
assert(newFac.getNumConstraints() ==
|
|
lbIndices.size() * ubIndices.size() + nbIndices.size());
|
|
|
|
// Copy over the equalities.
|
|
for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
|
|
SmallVector<int64_t, 4> eq;
|
|
eq.reserve(newFac.getNumCols());
|
|
for (unsigned l = 0, e = getNumCols(); l < e; l++) {
|
|
if (l == pos)
|
|
continue;
|
|
eq.push_back(atEq(r, l));
|
|
}
|
|
newFac.addEquality(eq);
|
|
}
|
|
|
|
newFac.removeTrivialRedundancy();
|
|
clearAndCopyFrom(newFac);
|
|
LLVM_DEBUG(llvm::dbgs() << "FM output:\n");
|
|
LLVM_DEBUG(dump());
|
|
}
|
|
|
|
void FlatAffineConstraints::projectOut(unsigned pos, unsigned num) {
|
|
if (num == 0)
|
|
return;
|
|
|
|
// 'pos' can be at most getNumCols() - 2 if num > 0.
|
|
assert(getNumCols() < 2 || pos <= getNumCols() - 2 && "invalid position");
|
|
assert(pos + num < getNumCols() && "invalid range");
|
|
|
|
// Eliminate as many identifiers as possible using Gaussian elimination.
|
|
unsigned currentPos = pos;
|
|
unsigned numToEliminate = num;
|
|
unsigned numGaussianEliminated = 0;
|
|
|
|
while (currentPos < getNumIds()) {
|
|
unsigned curNumEliminated =
|
|
gaussianEliminateIds(currentPos, currentPos + numToEliminate);
|
|
++currentPos;
|
|
numToEliminate -= curNumEliminated + 1;
|
|
numGaussianEliminated += curNumEliminated;
|
|
}
|
|
|
|
// Eliminate the remaining using Fourier-Motzkin.
|
|
for (unsigned i = 0; i < num - numGaussianEliminated; i++) {
|
|
unsigned numToEliminate = num - numGaussianEliminated - i;
|
|
FourierMotzkinEliminate(
|
|
getBestIdToEliminate(*this, pos, pos + numToEliminate));
|
|
}
|
|
|
|
// Fast/trivial simplifications.
|
|
GCDTightenInequalities();
|
|
// Normalize constraints after tightening since the latter impacts this, but
|
|
// not the other way round.
|
|
normalizeConstraintsByGCD();
|
|
}
|
|
|
|
void FlatAffineConstraints::projectOut(Value *id) {
|
|
unsigned pos;
|
|
bool ret = findId(*id, &pos);
|
|
assert(ret);
|
|
(void)ret;
|
|
FourierMotzkinEliminate(pos);
|
|
}
|
|
|
|
bool FlatAffineConstraints::isRangeOneToOne(unsigned start,
|
|
unsigned limit) const {
|
|
assert(start <= getNumIds() - 1 && "invalid start position");
|
|
assert(limit > start && limit <= getNumIds() && "invalid limit");
|
|
|
|
FlatAffineConstraints tmpCst(*this);
|
|
|
|
if (start != 0) {
|
|
// Move [start, limit) to the left.
|
|
for (unsigned r = 0, e = getNumInequalities(); r < e; ++r) {
|
|
for (unsigned c = 0, f = getNumCols(); c < f; ++c) {
|
|
if (c >= start && c < limit)
|
|
tmpCst.atIneq(r, c - start) = atIneq(r, c);
|
|
else if (c < start)
|
|
tmpCst.atIneq(r, c + limit - start) = atIneq(r, c);
|
|
else
|
|
tmpCst.atIneq(r, c) = atIneq(r, c);
|
|
}
|
|
}
|
|
for (unsigned r = 0, e = getNumEqualities(); r < e; ++r) {
|
|
for (unsigned c = 0, f = getNumCols(); c < f; ++c) {
|
|
if (c >= start && c < limit)
|
|
tmpCst.atEq(r, c - start) = atEq(r, c);
|
|
else if (c < start)
|
|
tmpCst.atEq(r, c + limit - start) = atEq(r, c);
|
|
else
|
|
tmpCst.atEq(r, c) = atEq(r, c);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Mark everything to the right as symbols so that we can check the extents in
|
|
// a symbolic way below.
|
|
tmpCst.setDimSymbolSeparation(getNumIds() - (limit - start));
|
|
|
|
// Check if the extents of all the specified dimensions are just one (when
|
|
// treating the rest as symbols).
|
|
for (unsigned pos = 0, e = tmpCst.getNumDimIds(); pos < e; ++pos) {
|
|
auto extent = tmpCst.getConstantBoundOnDimSize(pos);
|
|
if (!extent.hasValue() || extent.getValue() != 1)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|