llvm-project/llvm/lib/Fuzzer/FuzzerTracePC.h

258 lines
7.6 KiB
C++

//===- FuzzerTracePC.h - Internal header for the Fuzzer ---------*- C++ -* ===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// fuzzer::TracePC
//===----------------------------------------------------------------------===//
#ifndef LLVM_FUZZER_TRACE_PC
#define LLVM_FUZZER_TRACE_PC
#include "FuzzerDefs.h"
#include "FuzzerDictionary.h"
#include "FuzzerValueBitMap.h"
#include <set>
namespace fuzzer {
// TableOfRecentCompares (TORC) remembers the most recently performed
// comparisons of type T.
// We record the arguments of CMP instructions in this table unconditionally
// because it seems cheaper this way than to compute some expensive
// conditions inside __sanitizer_cov_trace_cmp*.
// After the unit has been executed we may decide to use the contents of
// this table to populate a Dictionary.
template<class T, size_t kSizeT>
struct TableOfRecentCompares {
static const size_t kSize = kSizeT;
struct Pair {
T A, B;
};
ATTRIBUTE_NO_SANITIZE_ALL
void Insert(size_t Idx, const T &Arg1, const T &Arg2) {
Idx = Idx % kSize;
Table[Idx].A = Arg1;
Table[Idx].B = Arg2;
}
Pair Get(size_t I) { return Table[I % kSize]; }
Pair Table[kSize];
};
template <size_t kSizeT>
struct MemMemTable {
static const size_t kSize = kSizeT;
Word MemMemWords[kSize];
Word EmptyWord;
void Add(const uint8_t *Data, size_t Size) {
if (Size <= 2) return;
Size = std::min(Size, Word::GetMaxSize());
size_t Idx = SimpleFastHash(Data, Size) % kSize;
MemMemWords[Idx].Set(Data, Size);
}
const Word &Get(size_t Idx) {
for (size_t i = 0; i < kSize; i++) {
const Word &W = MemMemWords[(Idx + i) % kSize];
if (W.size()) return W;
}
EmptyWord.Set(nullptr, 0);
return EmptyWord;
}
};
class TracePC {
public:
static const size_t kNumPCs = 1 << 21;
// How many bits of PC are used from __sanitizer_cov_trace_pc.
static const size_t kTracePcBits = 18;
void HandleInit(uint32_t *Start, uint32_t *Stop);
void HandleInline8bitCountersInit(uint8_t *Start, uint8_t *Stop);
void HandlePCsInit(const uint8_t *Start, const uint8_t *Stop);
void HandleCallerCallee(uintptr_t Caller, uintptr_t Callee);
template <class T> void HandleCmp(uintptr_t PC, T Arg1, T Arg2);
size_t GetTotalPCCoverage();
void SetUseCounters(bool UC) { UseCounters = UC; }
void SetUseValueProfile(bool VP) { UseValueProfile = VP; }
void SetPrintNewPCs(bool P) { DoPrintNewPCs = P; }
void UpdateObservedPCs();
template <class Callback> void CollectFeatures(Callback CB) const;
void ResetMaps() {
ValueProfileMap.Reset();
if (NumModules)
memset(Counters(), 0, GetNumPCs());
ClearExtraCounters();
ClearInlineCounters();
ClearClangCounters();
}
void ClearInlineCounters();
void UpdateFeatureSet(size_t CurrentElementIdx, size_t CurrentElementSize);
void PrintFeatureSet();
void PrintModuleInfo();
void PrintCoverage();
void DumpCoverage();
void AddValueForMemcmp(void *caller_pc, const void *s1, const void *s2,
size_t n, bool StopAtZero);
TableOfRecentCompares<uint32_t, 32> TORC4;
TableOfRecentCompares<uint64_t, 32> TORC8;
TableOfRecentCompares<Word, 32> TORCW;
MemMemTable<1024> MMT;
size_t GetNumPCs() const {
return NumGuards == 0 ? (1 << kTracePcBits) : Min(kNumPCs, NumGuards + 1);
}
uintptr_t GetPC(size_t Idx) {
assert(Idx < GetNumPCs());
return PCs()[Idx];
}
void RecordInitialStack();
uintptr_t GetMaxStackOffset() const;
template<class CallBack>
void ForEachObservedPC(CallBack CB) {
for (auto PC : ObservedPCs)
CB(PC);
}
private:
bool UseCounters = false;
bool UseValueProfile = false;
bool DoPrintNewPCs = false;
struct Module {
uint32_t *Start, *Stop;
};
Module Modules[4096];
size_t NumModules; // linker-initialized.
size_t NumGuards; // linker-initialized.
struct { uint8_t *Start, *Stop; } ModuleCounters[4096];
size_t NumModulesWithInline8bitCounters; // linker-initialized.
size_t NumInline8bitCounters;
struct { const uintptr_t *Start, *Stop; } ModulePCTable[4096];
size_t NumPCTables;
size_t NumPCsInPCTables;
uint8_t *Counters() const;
uintptr_t *PCs() const;
std::set<uintptr_t> ObservedPCs;
ValueBitMap ValueProfileMap;
uintptr_t InitialStack;
};
template <class Callback>
// void Callback(size_t FirstFeature, size_t Idx, uint8_t Value);
ATTRIBUTE_NO_SANITIZE_ALL
void ForEachNonZeroByte(const uint8_t *Begin, const uint8_t *End,
size_t FirstFeature, Callback Handle8bitCounter) {
typedef uintptr_t LargeType;
const size_t Step = sizeof(LargeType) / sizeof(uint8_t);
const size_t StepMask = Step - 1;
auto P = Begin;
// Iterate by 1 byte until either the alignment boundary or the end.
for (; reinterpret_cast<uintptr_t>(P) & StepMask && P < End; P++)
if (uint8_t V = *P)
Handle8bitCounter(FirstFeature, P - Begin, V);
// Iterate by Step bytes at a time.
for (; P < End; P += Step)
if (LargeType Bundle = *reinterpret_cast<const LargeType *>(P))
for (size_t I = 0; I < Step; I++, Bundle >>= 8)
if (uint8_t V = Bundle & 0xff)
Handle8bitCounter(FirstFeature, P - Begin + I, V);
// Iterate by 1 byte until the end.
for (; P < End; P++)
if (uint8_t V = *P)
Handle8bitCounter(FirstFeature, P - Begin, V);
}
// Given a non-zero Counters returns a number in [0,7].
template<class T>
unsigned CounterToFeature(T Counter) {
assert(Counter);
unsigned Bit = 0;
/**/ if (Counter >= 128) Bit = 7;
else if (Counter >= 32) Bit = 6;
else if (Counter >= 16) Bit = 5;
else if (Counter >= 8) Bit = 4;
else if (Counter >= 4) Bit = 3;
else if (Counter >= 3) Bit = 2;
else if (Counter >= 2) Bit = 1;
return Bit;
}
template <class Callback> // bool Callback(size_t Feature)
ATTRIBUTE_NO_SANITIZE_ADDRESS
__attribute__((noinline))
void TracePC::CollectFeatures(Callback HandleFeature) const {
uint8_t *Counters = this->Counters();
size_t N = GetNumPCs();
auto Handle8bitCounter = [&](size_t FirstFeature,
size_t Idx, uint8_t Counter) {
HandleFeature(FirstFeature + Idx * 8 + CounterToFeature(Counter));
};
size_t FirstFeature = 0;
if (!NumInline8bitCounters) {
ForEachNonZeroByte(Counters, Counters + N, FirstFeature, Handle8bitCounter);
FirstFeature += N * 8;
}
if (NumInline8bitCounters) {
for (size_t i = 0; i < NumModulesWithInline8bitCounters; i++) {
ForEachNonZeroByte(ModuleCounters[i].Start, ModuleCounters[i].Stop,
FirstFeature, Handle8bitCounter);
FirstFeature += 8 * (ModuleCounters[i].Stop - ModuleCounters[i].Start);
}
}
if (size_t NumClangCounters = ClangCountersEnd() - ClangCountersBegin()) {
auto P = ClangCountersBegin();
for (size_t Idx = 0; Idx < NumClangCounters; Idx++)
if (auto Cnt = P[Idx])
HandleFeature(FirstFeature + Idx * 8 + CounterToFeature(Cnt));
FirstFeature += NumClangCounters;
}
ForEachNonZeroByte(ExtraCountersBegin(), ExtraCountersEnd(), FirstFeature,
Handle8bitCounter);
FirstFeature += (ExtraCountersEnd() - ExtraCountersBegin()) * 8;
if (UseValueProfile) {
ValueProfileMap.ForEach([&](size_t Idx) {
HandleFeature(FirstFeature + Idx);
});
FirstFeature += ValueProfileMap.SizeInBits();
}
if (auto MaxStackOffset = GetMaxStackOffset())
HandleFeature(FirstFeature + MaxStackOffset);
}
extern TracePC TPC;
} // namespace fuzzer
#endif // LLVM_FUZZER_TRACE_PC