llvm-project/llvm/lib/Target/NVPTX/NVPTXISelDAGToDAG.cpp

3098 lines
87 KiB
C++

//===-- NVPTXISelDAGToDAG.cpp - A dag to dag inst selector for NVPTX ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines an instruction selector for the NVPTX target.
//
//===----------------------------------------------------------------------===//
#include "NVPTXISelDAGToDAG.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetIntrinsicInfo.h"
#undef DEBUG_TYPE
#define DEBUG_TYPE "nvptx-isel"
using namespace llvm;
static cl::opt<int>
FMAContractLevel("nvptx-fma-level", cl::ZeroOrMore, cl::Hidden,
cl::desc("NVPTX Specific: FMA contraction (0: don't do it"
" 1: do it 2: do it aggressively"),
cl::init(2));
static cl::opt<int> UsePrecDivF32(
"nvptx-prec-divf32", cl::ZeroOrMore, cl::Hidden,
cl::desc("NVPTX Specifies: 0 use div.approx, 1 use div.full, 2 use"
" IEEE Compliant F32 div.rnd if avaiable."),
cl::init(2));
static cl::opt<bool>
UsePrecSqrtF32("nvptx-prec-sqrtf32", cl::Hidden,
cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."),
cl::init(true));
static cl::opt<bool>
FtzEnabled("nvptx-f32ftz", cl::ZeroOrMore, cl::Hidden,
cl::desc("NVPTX Specific: Flush f32 subnormals to sign-preserving zero."),
cl::init(false));
/// createNVPTXISelDag - This pass converts a legalized DAG into a
/// NVPTX-specific DAG, ready for instruction scheduling.
FunctionPass *llvm::createNVPTXISelDag(NVPTXTargetMachine &TM,
llvm::CodeGenOpt::Level OptLevel) {
return new NVPTXDAGToDAGISel(TM, OptLevel);
}
NVPTXDAGToDAGISel::NVPTXDAGToDAGISel(NVPTXTargetMachine &tm,
CodeGenOpt::Level OptLevel)
: SelectionDAGISel(tm, OptLevel),
Subtarget(tm.getSubtarget<NVPTXSubtarget>()) {
doFMAF32 = (OptLevel > 0) && Subtarget.hasFMAF32() && (FMAContractLevel >= 1);
doFMAF64 = (OptLevel > 0) && Subtarget.hasFMAF64() && (FMAContractLevel >= 1);
doFMAF32AGG =
(OptLevel > 0) && Subtarget.hasFMAF32() && (FMAContractLevel == 2);
doFMAF64AGG =
(OptLevel > 0) && Subtarget.hasFMAF64() && (FMAContractLevel == 2);
allowFMA = (FMAContractLevel >= 1);
doMulWide = (OptLevel > 0);
}
int NVPTXDAGToDAGISel::getDivF32Level() const {
if (UsePrecDivF32.getNumOccurrences() > 0) {
// If nvptx-prec-div32=N is used on the command-line, always honor it
return UsePrecDivF32;
} else {
// Otherwise, use div.approx if fast math is enabled
if (TM.Options.UnsafeFPMath)
return 0;
else
return 2;
}
}
bool NVPTXDAGToDAGISel::usePrecSqrtF32() const {
if (UsePrecSqrtF32.getNumOccurrences() > 0) {
// If nvptx-prec-sqrtf32 is used on the command-line, always honor it
return UsePrecSqrtF32;
} else {
// Otherwise, use sqrt.approx if fast math is enabled
if (TM.Options.UnsafeFPMath)
return false;
else
return true;
}
}
bool NVPTXDAGToDAGISel::useF32FTZ() const {
if (FtzEnabled.getNumOccurrences() > 0) {
// If nvptx-f32ftz is used on the command-line, always honor it
return FtzEnabled;
} else {
const Function *F = MF->getFunction();
// Otherwise, check for an nvptx-f32ftz attribute on the function
if (F->hasFnAttribute("nvptx-f32ftz"))
return (F->getAttributes().getAttribute(AttributeSet::FunctionIndex,
"nvptx-f32ftz")
.getValueAsString() == "true");
else
return false;
}
}
/// Select - Select instructions not customized! Used for
/// expanded, promoted and normal instructions.
SDNode *NVPTXDAGToDAGISel::Select(SDNode *N) {
if (N->isMachineOpcode()) {
N->setNodeId(-1);
return NULL; // Already selected.
}
SDNode *ResNode = NULL;
switch (N->getOpcode()) {
case ISD::LOAD:
ResNode = SelectLoad(N);
break;
case ISD::STORE:
ResNode = SelectStore(N);
break;
case NVPTXISD::LoadV2:
case NVPTXISD::LoadV4:
ResNode = SelectLoadVector(N);
break;
case NVPTXISD::LDGV2:
case NVPTXISD::LDGV4:
case NVPTXISD::LDUV2:
case NVPTXISD::LDUV4:
ResNode = SelectLDGLDUVector(N);
break;
case NVPTXISD::StoreV2:
case NVPTXISD::StoreV4:
ResNode = SelectStoreVector(N);
break;
case NVPTXISD::LoadParam:
case NVPTXISD::LoadParamV2:
case NVPTXISD::LoadParamV4:
ResNode = SelectLoadParam(N);
break;
case NVPTXISD::StoreRetval:
case NVPTXISD::StoreRetvalV2:
case NVPTXISD::StoreRetvalV4:
ResNode = SelectStoreRetval(N);
break;
case NVPTXISD::StoreParam:
case NVPTXISD::StoreParamV2:
case NVPTXISD::StoreParamV4:
case NVPTXISD::StoreParamS32:
case NVPTXISD::StoreParamU32:
ResNode = SelectStoreParam(N);
break;
case ISD::INTRINSIC_WO_CHAIN:
ResNode = SelectIntrinsicNoChain(N);
break;
case NVPTXISD::Tex1DFloatI32:
case NVPTXISD::Tex1DFloatFloat:
case NVPTXISD::Tex1DFloatFloatLevel:
case NVPTXISD::Tex1DFloatFloatGrad:
case NVPTXISD::Tex1DI32I32:
case NVPTXISD::Tex1DI32Float:
case NVPTXISD::Tex1DI32FloatLevel:
case NVPTXISD::Tex1DI32FloatGrad:
case NVPTXISD::Tex1DArrayFloatI32:
case NVPTXISD::Tex1DArrayFloatFloat:
case NVPTXISD::Tex1DArrayFloatFloatLevel:
case NVPTXISD::Tex1DArrayFloatFloatGrad:
case NVPTXISD::Tex1DArrayI32I32:
case NVPTXISD::Tex1DArrayI32Float:
case NVPTXISD::Tex1DArrayI32FloatLevel:
case NVPTXISD::Tex1DArrayI32FloatGrad:
case NVPTXISD::Tex2DFloatI32:
case NVPTXISD::Tex2DFloatFloat:
case NVPTXISD::Tex2DFloatFloatLevel:
case NVPTXISD::Tex2DFloatFloatGrad:
case NVPTXISD::Tex2DI32I32:
case NVPTXISD::Tex2DI32Float:
case NVPTXISD::Tex2DI32FloatLevel:
case NVPTXISD::Tex2DI32FloatGrad:
case NVPTXISD::Tex2DArrayFloatI32:
case NVPTXISD::Tex2DArrayFloatFloat:
case NVPTXISD::Tex2DArrayFloatFloatLevel:
case NVPTXISD::Tex2DArrayFloatFloatGrad:
case NVPTXISD::Tex2DArrayI32I32:
case NVPTXISD::Tex2DArrayI32Float:
case NVPTXISD::Tex2DArrayI32FloatLevel:
case NVPTXISD::Tex2DArrayI32FloatGrad:
case NVPTXISD::Tex3DFloatI32:
case NVPTXISD::Tex3DFloatFloat:
case NVPTXISD::Tex3DFloatFloatLevel:
case NVPTXISD::Tex3DFloatFloatGrad:
case NVPTXISD::Tex3DI32I32:
case NVPTXISD::Tex3DI32Float:
case NVPTXISD::Tex3DI32FloatLevel:
case NVPTXISD::Tex3DI32FloatGrad:
ResNode = SelectTextureIntrinsic(N);
break;
case NVPTXISD::Suld1DI8Trap:
case NVPTXISD::Suld1DI16Trap:
case NVPTXISD::Suld1DI32Trap:
case NVPTXISD::Suld1DV2I8Trap:
case NVPTXISD::Suld1DV2I16Trap:
case NVPTXISD::Suld1DV2I32Trap:
case NVPTXISD::Suld1DV4I8Trap:
case NVPTXISD::Suld1DV4I16Trap:
case NVPTXISD::Suld1DV4I32Trap:
case NVPTXISD::Suld1DArrayI8Trap:
case NVPTXISD::Suld1DArrayI16Trap:
case NVPTXISD::Suld1DArrayI32Trap:
case NVPTXISD::Suld1DArrayV2I8Trap:
case NVPTXISD::Suld1DArrayV2I16Trap:
case NVPTXISD::Suld1DArrayV2I32Trap:
case NVPTXISD::Suld1DArrayV4I8Trap:
case NVPTXISD::Suld1DArrayV4I16Trap:
case NVPTXISD::Suld1DArrayV4I32Trap:
case NVPTXISD::Suld2DI8Trap:
case NVPTXISD::Suld2DI16Trap:
case NVPTXISD::Suld2DI32Trap:
case NVPTXISD::Suld2DV2I8Trap:
case NVPTXISD::Suld2DV2I16Trap:
case NVPTXISD::Suld2DV2I32Trap:
case NVPTXISD::Suld2DV4I8Trap:
case NVPTXISD::Suld2DV4I16Trap:
case NVPTXISD::Suld2DV4I32Trap:
case NVPTXISD::Suld2DArrayI8Trap:
case NVPTXISD::Suld2DArrayI16Trap:
case NVPTXISD::Suld2DArrayI32Trap:
case NVPTXISD::Suld2DArrayV2I8Trap:
case NVPTXISD::Suld2DArrayV2I16Trap:
case NVPTXISD::Suld2DArrayV2I32Trap:
case NVPTXISD::Suld2DArrayV4I8Trap:
case NVPTXISD::Suld2DArrayV4I16Trap:
case NVPTXISD::Suld2DArrayV4I32Trap:
case NVPTXISD::Suld3DI8Trap:
case NVPTXISD::Suld3DI16Trap:
case NVPTXISD::Suld3DI32Trap:
case NVPTXISD::Suld3DV2I8Trap:
case NVPTXISD::Suld3DV2I16Trap:
case NVPTXISD::Suld3DV2I32Trap:
case NVPTXISD::Suld3DV4I8Trap:
case NVPTXISD::Suld3DV4I16Trap:
case NVPTXISD::Suld3DV4I32Trap:
ResNode = SelectSurfaceIntrinsic(N);
break;
case ISD::ADDRSPACECAST:
ResNode = SelectAddrSpaceCast(N);
break;
default:
break;
}
if (ResNode)
return ResNode;
return SelectCode(N);
}
static unsigned int getCodeAddrSpace(MemSDNode *N,
const NVPTXSubtarget &Subtarget) {
const Value *Src = N->getSrcValue();
if (!Src)
return NVPTX::PTXLdStInstCode::GENERIC;
if (const PointerType *PT = dyn_cast<PointerType>(Src->getType())) {
switch (PT->getAddressSpace()) {
case llvm::ADDRESS_SPACE_LOCAL: return NVPTX::PTXLdStInstCode::LOCAL;
case llvm::ADDRESS_SPACE_GLOBAL: return NVPTX::PTXLdStInstCode::GLOBAL;
case llvm::ADDRESS_SPACE_SHARED: return NVPTX::PTXLdStInstCode::SHARED;
case llvm::ADDRESS_SPACE_GENERIC: return NVPTX::PTXLdStInstCode::GENERIC;
case llvm::ADDRESS_SPACE_PARAM: return NVPTX::PTXLdStInstCode::PARAM;
case llvm::ADDRESS_SPACE_CONST: return NVPTX::PTXLdStInstCode::CONSTANT;
default: break;
}
}
return NVPTX::PTXLdStInstCode::GENERIC;
}
SDNode *NVPTXDAGToDAGISel::SelectIntrinsicNoChain(SDNode *N) {
unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
switch (IID) {
default:
return NULL;
case Intrinsic::nvvm_texsurf_handle_internal:
return SelectTexSurfHandle(N);
}
}
SDNode *NVPTXDAGToDAGISel::SelectTexSurfHandle(SDNode *N) {
// Op 0 is the intrinsic ID
SDValue Wrapper = N->getOperand(1);
SDValue GlobalVal = Wrapper.getOperand(0);
return CurDAG->getMachineNode(NVPTX::texsurf_handles, SDLoc(N), MVT::i64,
GlobalVal);
}
SDNode *NVPTXDAGToDAGISel::SelectAddrSpaceCast(SDNode *N) {
SDValue Src = N->getOperand(0);
AddrSpaceCastSDNode *CastN = cast<AddrSpaceCastSDNode>(N);
unsigned SrcAddrSpace = CastN->getSrcAddressSpace();
unsigned DstAddrSpace = CastN->getDestAddressSpace();
assert(SrcAddrSpace != DstAddrSpace &&
"addrspacecast must be between different address spaces");
if (DstAddrSpace == ADDRESS_SPACE_GENERIC) {
// Specific to generic
unsigned Opc;
switch (SrcAddrSpace) {
default: report_fatal_error("Bad address space in addrspacecast");
case ADDRESS_SPACE_GLOBAL:
Opc = Subtarget.is64Bit() ? NVPTX::cvta_global_yes_64
: NVPTX::cvta_global_yes;
break;
case ADDRESS_SPACE_SHARED:
Opc = Subtarget.is64Bit() ? NVPTX::cvta_shared_yes_64
: NVPTX::cvta_shared_yes;
break;
case ADDRESS_SPACE_CONST:
Opc = Subtarget.is64Bit() ? NVPTX::cvta_const_yes_64
: NVPTX::cvta_const_yes;
break;
case ADDRESS_SPACE_LOCAL:
Opc = Subtarget.is64Bit() ? NVPTX::cvta_local_yes_64
: NVPTX::cvta_local_yes;
break;
}
return CurDAG->getMachineNode(Opc, SDLoc(N), N->getValueType(0), Src);
} else {
// Generic to specific
if (SrcAddrSpace != 0)
report_fatal_error("Cannot cast between two non-generic address spaces");
unsigned Opc;
switch (DstAddrSpace) {
default: report_fatal_error("Bad address space in addrspacecast");
case ADDRESS_SPACE_GLOBAL:
Opc = Subtarget.is64Bit() ? NVPTX::cvta_to_global_yes_64
: NVPTX::cvta_to_global_yes;
break;
case ADDRESS_SPACE_SHARED:
Opc = Subtarget.is64Bit() ? NVPTX::cvta_to_shared_yes_64
: NVPTX::cvta_to_shared_yes;
break;
case ADDRESS_SPACE_CONST:
Opc = Subtarget.is64Bit() ? NVPTX::cvta_to_const_yes_64
: NVPTX::cvta_to_const_yes;
break;
case ADDRESS_SPACE_LOCAL:
Opc = Subtarget.is64Bit() ? NVPTX::cvta_to_local_yes_64
: NVPTX::cvta_to_local_yes;
break;
}
return CurDAG->getMachineNode(Opc, SDLoc(N), N->getValueType(0), Src);
}
}
SDNode *NVPTXDAGToDAGISel::SelectLoad(SDNode *N) {
SDLoc dl(N);
LoadSDNode *LD = cast<LoadSDNode>(N);
EVT LoadedVT = LD->getMemoryVT();
SDNode *NVPTXLD = NULL;
// do not support pre/post inc/dec
if (LD->isIndexed())
return NULL;
if (!LoadedVT.isSimple())
return NULL;
// Address Space Setting
unsigned int codeAddrSpace = getCodeAddrSpace(LD, Subtarget);
// Volatile Setting
// - .volatile is only availalble for .global and .shared
bool isVolatile = LD->isVolatile();
if (codeAddrSpace != NVPTX::PTXLdStInstCode::GLOBAL &&
codeAddrSpace != NVPTX::PTXLdStInstCode::SHARED &&
codeAddrSpace != NVPTX::PTXLdStInstCode::GENERIC)
isVolatile = false;
// Vector Setting
MVT SimpleVT = LoadedVT.getSimpleVT();
unsigned vecType = NVPTX::PTXLdStInstCode::Scalar;
if (SimpleVT.isVector()) {
unsigned num = SimpleVT.getVectorNumElements();
if (num == 2)
vecType = NVPTX::PTXLdStInstCode::V2;
else if (num == 4)
vecType = NVPTX::PTXLdStInstCode::V4;
else
return NULL;
}
// Type Setting: fromType + fromTypeWidth
//
// Sign : ISD::SEXTLOAD
// Unsign : ISD::ZEXTLOAD, ISD::NON_EXTLOAD or ISD::EXTLOAD and the
// type is integer
// Float : ISD::NON_EXTLOAD or ISD::EXTLOAD and the type is float
MVT ScalarVT = SimpleVT.getScalarType();
// Read at least 8 bits (predicates are stored as 8-bit values)
unsigned fromTypeWidth = std::max(8U, ScalarVT.getSizeInBits());
unsigned int fromType;
if ((LD->getExtensionType() == ISD::SEXTLOAD))
fromType = NVPTX::PTXLdStInstCode::Signed;
else if (ScalarVT.isFloatingPoint())
fromType = NVPTX::PTXLdStInstCode::Float;
else
fromType = NVPTX::PTXLdStInstCode::Unsigned;
// Create the machine instruction DAG
SDValue Chain = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue Addr;
SDValue Offset, Base;
unsigned Opcode;
MVT::SimpleValueType TargetVT = LD->getSimpleValueType(0).SimpleTy;
if (SelectDirectAddr(N1, Addr)) {
switch (TargetVT) {
case MVT::i8:
Opcode = NVPTX::LD_i8_avar;
break;
case MVT::i16:
Opcode = NVPTX::LD_i16_avar;
break;
case MVT::i32:
Opcode = NVPTX::LD_i32_avar;
break;
case MVT::i64:
Opcode = NVPTX::LD_i64_avar;
break;
case MVT::f32:
Opcode = NVPTX::LD_f32_avar;
break;
case MVT::f64:
Opcode = NVPTX::LD_f64_avar;
break;
default:
return NULL;
}
SDValue Ops[] = { getI32Imm(isVolatile), getI32Imm(codeAddrSpace),
getI32Imm(vecType), getI32Imm(fromType),
getI32Imm(fromTypeWidth), Addr, Chain };
NVPTXLD = CurDAG->getMachineNode(Opcode, dl, TargetVT, MVT::Other, Ops);
} else if (Subtarget.is64Bit()
? SelectADDRsi64(N1.getNode(), N1, Base, Offset)
: SelectADDRsi(N1.getNode(), N1, Base, Offset)) {
switch (TargetVT) {
case MVT::i8:
Opcode = NVPTX::LD_i8_asi;
break;
case MVT::i16:
Opcode = NVPTX::LD_i16_asi;
break;
case MVT::i32:
Opcode = NVPTX::LD_i32_asi;
break;
case MVT::i64:
Opcode = NVPTX::LD_i64_asi;
break;
case MVT::f32:
Opcode = NVPTX::LD_f32_asi;
break;
case MVT::f64:
Opcode = NVPTX::LD_f64_asi;
break;
default:
return NULL;
}
SDValue Ops[] = { getI32Imm(isVolatile), getI32Imm(codeAddrSpace),
getI32Imm(vecType), getI32Imm(fromType),
getI32Imm(fromTypeWidth), Base, Offset, Chain };
NVPTXLD = CurDAG->getMachineNode(Opcode, dl, TargetVT, MVT::Other, Ops);
} else if (Subtarget.is64Bit()
? SelectADDRri64(N1.getNode(), N1, Base, Offset)
: SelectADDRri(N1.getNode(), N1, Base, Offset)) {
if (Subtarget.is64Bit()) {
switch (TargetVT) {
case MVT::i8:
Opcode = NVPTX::LD_i8_ari_64;
break;
case MVT::i16:
Opcode = NVPTX::LD_i16_ari_64;
break;
case MVT::i32:
Opcode = NVPTX::LD_i32_ari_64;
break;
case MVT::i64:
Opcode = NVPTX::LD_i64_ari_64;
break;
case MVT::f32:
Opcode = NVPTX::LD_f32_ari_64;
break;
case MVT::f64:
Opcode = NVPTX::LD_f64_ari_64;
break;
default:
return NULL;
}
} else {
switch (TargetVT) {
case MVT::i8:
Opcode = NVPTX::LD_i8_ari;
break;
case MVT::i16:
Opcode = NVPTX::LD_i16_ari;
break;
case MVT::i32:
Opcode = NVPTX::LD_i32_ari;
break;
case MVT::i64:
Opcode = NVPTX::LD_i64_ari;
break;
case MVT::f32:
Opcode = NVPTX::LD_f32_ari;
break;
case MVT::f64:
Opcode = NVPTX::LD_f64_ari;
break;
default:
return NULL;
}
}
SDValue Ops[] = { getI32Imm(isVolatile), getI32Imm(codeAddrSpace),
getI32Imm(vecType), getI32Imm(fromType),
getI32Imm(fromTypeWidth), Base, Offset, Chain };
NVPTXLD = CurDAG->getMachineNode(Opcode, dl, TargetVT, MVT::Other, Ops);
} else {
if (Subtarget.is64Bit()) {
switch (TargetVT) {
case MVT::i8:
Opcode = NVPTX::LD_i8_areg_64;
break;
case MVT::i16:
Opcode = NVPTX::LD_i16_areg_64;
break;
case MVT::i32:
Opcode = NVPTX::LD_i32_areg_64;
break;
case MVT::i64:
Opcode = NVPTX::LD_i64_areg_64;
break;
case MVT::f32:
Opcode = NVPTX::LD_f32_areg_64;
break;
case MVT::f64:
Opcode = NVPTX::LD_f64_areg_64;
break;
default:
return NULL;
}
} else {
switch (TargetVT) {
case MVT::i8:
Opcode = NVPTX::LD_i8_areg;
break;
case MVT::i16:
Opcode = NVPTX::LD_i16_areg;
break;
case MVT::i32:
Opcode = NVPTX::LD_i32_areg;
break;
case MVT::i64:
Opcode = NVPTX::LD_i64_areg;
break;
case MVT::f32:
Opcode = NVPTX::LD_f32_areg;
break;
case MVT::f64:
Opcode = NVPTX::LD_f64_areg;
break;
default:
return NULL;
}
}
SDValue Ops[] = { getI32Imm(isVolatile), getI32Imm(codeAddrSpace),
getI32Imm(vecType), getI32Imm(fromType),
getI32Imm(fromTypeWidth), N1, Chain };
NVPTXLD = CurDAG->getMachineNode(Opcode, dl, TargetVT, MVT::Other, Ops);
}
if (NVPTXLD != NULL) {
MachineSDNode::mmo_iterator MemRefs0 = MF->allocateMemRefsArray(1);
MemRefs0[0] = cast<MemSDNode>(N)->getMemOperand();
cast<MachineSDNode>(NVPTXLD)->setMemRefs(MemRefs0, MemRefs0 + 1);
}
return NVPTXLD;
}
SDNode *NVPTXDAGToDAGISel::SelectLoadVector(SDNode *N) {
SDValue Chain = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
SDValue Addr, Offset, Base;
unsigned Opcode;
SDLoc DL(N);
SDNode *LD;
MemSDNode *MemSD = cast<MemSDNode>(N);
EVT LoadedVT = MemSD->getMemoryVT();
if (!LoadedVT.isSimple())
return NULL;
// Address Space Setting
unsigned int CodeAddrSpace = getCodeAddrSpace(MemSD, Subtarget);
// Volatile Setting
// - .volatile is only availalble for .global and .shared
bool IsVolatile = MemSD->isVolatile();
if (CodeAddrSpace != NVPTX::PTXLdStInstCode::GLOBAL &&
CodeAddrSpace != NVPTX::PTXLdStInstCode::SHARED &&
CodeAddrSpace != NVPTX::PTXLdStInstCode::GENERIC)
IsVolatile = false;
// Vector Setting
MVT SimpleVT = LoadedVT.getSimpleVT();
// Type Setting: fromType + fromTypeWidth
//
// Sign : ISD::SEXTLOAD
// Unsign : ISD::ZEXTLOAD, ISD::NON_EXTLOAD or ISD::EXTLOAD and the
// type is integer
// Float : ISD::NON_EXTLOAD or ISD::EXTLOAD and the type is float
MVT ScalarVT = SimpleVT.getScalarType();
// Read at least 8 bits (predicates are stored as 8-bit values)
unsigned FromTypeWidth = std::max(8U, ScalarVT.getSizeInBits());
unsigned int FromType;
// The last operand holds the original LoadSDNode::getExtensionType() value
unsigned ExtensionType = cast<ConstantSDNode>(
N->getOperand(N->getNumOperands() - 1))->getZExtValue();
if (ExtensionType == ISD::SEXTLOAD)
FromType = NVPTX::PTXLdStInstCode::Signed;
else if (ScalarVT.isFloatingPoint())
FromType = NVPTX::PTXLdStInstCode::Float;
else
FromType = NVPTX::PTXLdStInstCode::Unsigned;
unsigned VecType;
switch (N->getOpcode()) {
case NVPTXISD::LoadV2:
VecType = NVPTX::PTXLdStInstCode::V2;
break;
case NVPTXISD::LoadV4:
VecType = NVPTX::PTXLdStInstCode::V4;
break;
default:
return NULL;
}
EVT EltVT = N->getValueType(0);
if (SelectDirectAddr(Op1, Addr)) {
switch (N->getOpcode()) {
default:
return NULL;
case NVPTXISD::LoadV2:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::LDV_i8_v2_avar;
break;
case MVT::i16:
Opcode = NVPTX::LDV_i16_v2_avar;
break;
case MVT::i32:
Opcode = NVPTX::LDV_i32_v2_avar;
break;
case MVT::i64:
Opcode = NVPTX::LDV_i64_v2_avar;
break;
case MVT::f32:
Opcode = NVPTX::LDV_f32_v2_avar;
break;
case MVT::f64:
Opcode = NVPTX::LDV_f64_v2_avar;
break;
}
break;
case NVPTXISD::LoadV4:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::LDV_i8_v4_avar;
break;
case MVT::i16:
Opcode = NVPTX::LDV_i16_v4_avar;
break;
case MVT::i32:
Opcode = NVPTX::LDV_i32_v4_avar;
break;
case MVT::f32:
Opcode = NVPTX::LDV_f32_v4_avar;
break;
}
break;
}
SDValue Ops[] = { getI32Imm(IsVolatile), getI32Imm(CodeAddrSpace),
getI32Imm(VecType), getI32Imm(FromType),
getI32Imm(FromTypeWidth), Addr, Chain };
LD = CurDAG->getMachineNode(Opcode, DL, N->getVTList(), Ops);
} else if (Subtarget.is64Bit()
? SelectADDRsi64(Op1.getNode(), Op1, Base, Offset)
: SelectADDRsi(Op1.getNode(), Op1, Base, Offset)) {
switch (N->getOpcode()) {
default:
return NULL;
case NVPTXISD::LoadV2:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::LDV_i8_v2_asi;
break;
case MVT::i16:
Opcode = NVPTX::LDV_i16_v2_asi;
break;
case MVT::i32:
Opcode = NVPTX::LDV_i32_v2_asi;
break;
case MVT::i64:
Opcode = NVPTX::LDV_i64_v2_asi;
break;
case MVT::f32:
Opcode = NVPTX::LDV_f32_v2_asi;
break;
case MVT::f64:
Opcode = NVPTX::LDV_f64_v2_asi;
break;
}
break;
case NVPTXISD::LoadV4:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::LDV_i8_v4_asi;
break;
case MVT::i16:
Opcode = NVPTX::LDV_i16_v4_asi;
break;
case MVT::i32:
Opcode = NVPTX::LDV_i32_v4_asi;
break;
case MVT::f32:
Opcode = NVPTX::LDV_f32_v4_asi;
break;
}
break;
}
SDValue Ops[] = { getI32Imm(IsVolatile), getI32Imm(CodeAddrSpace),
getI32Imm(VecType), getI32Imm(FromType),
getI32Imm(FromTypeWidth), Base, Offset, Chain };
LD = CurDAG->getMachineNode(Opcode, DL, N->getVTList(), Ops);
} else if (Subtarget.is64Bit()
? SelectADDRri64(Op1.getNode(), Op1, Base, Offset)
: SelectADDRri(Op1.getNode(), Op1, Base, Offset)) {
if (Subtarget.is64Bit()) {
switch (N->getOpcode()) {
default:
return NULL;
case NVPTXISD::LoadV2:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::LDV_i8_v2_ari_64;
break;
case MVT::i16:
Opcode = NVPTX::LDV_i16_v2_ari_64;
break;
case MVT::i32:
Opcode = NVPTX::LDV_i32_v2_ari_64;
break;
case MVT::i64:
Opcode = NVPTX::LDV_i64_v2_ari_64;
break;
case MVT::f32:
Opcode = NVPTX::LDV_f32_v2_ari_64;
break;
case MVT::f64:
Opcode = NVPTX::LDV_f64_v2_ari_64;
break;
}
break;
case NVPTXISD::LoadV4:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::LDV_i8_v4_ari_64;
break;
case MVT::i16:
Opcode = NVPTX::LDV_i16_v4_ari_64;
break;
case MVT::i32:
Opcode = NVPTX::LDV_i32_v4_ari_64;
break;
case MVT::f32:
Opcode = NVPTX::LDV_f32_v4_ari_64;
break;
}
break;
}
} else {
switch (N->getOpcode()) {
default:
return NULL;
case NVPTXISD::LoadV2:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::LDV_i8_v2_ari;
break;
case MVT::i16:
Opcode = NVPTX::LDV_i16_v2_ari;
break;
case MVT::i32:
Opcode = NVPTX::LDV_i32_v2_ari;
break;
case MVT::i64:
Opcode = NVPTX::LDV_i64_v2_ari;
break;
case MVT::f32:
Opcode = NVPTX::LDV_f32_v2_ari;
break;
case MVT::f64:
Opcode = NVPTX::LDV_f64_v2_ari;
break;
}
break;
case NVPTXISD::LoadV4:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::LDV_i8_v4_ari;
break;
case MVT::i16:
Opcode = NVPTX::LDV_i16_v4_ari;
break;
case MVT::i32:
Opcode = NVPTX::LDV_i32_v4_ari;
break;
case MVT::f32:
Opcode = NVPTX::LDV_f32_v4_ari;
break;
}
break;
}
}
SDValue Ops[] = { getI32Imm(IsVolatile), getI32Imm(CodeAddrSpace),
getI32Imm(VecType), getI32Imm(FromType),
getI32Imm(FromTypeWidth), Base, Offset, Chain };
LD = CurDAG->getMachineNode(Opcode, DL, N->getVTList(), Ops);
} else {
if (Subtarget.is64Bit()) {
switch (N->getOpcode()) {
default:
return NULL;
case NVPTXISD::LoadV2:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::LDV_i8_v2_areg_64;
break;
case MVT::i16:
Opcode = NVPTX::LDV_i16_v2_areg_64;
break;
case MVT::i32:
Opcode = NVPTX::LDV_i32_v2_areg_64;
break;
case MVT::i64:
Opcode = NVPTX::LDV_i64_v2_areg_64;
break;
case MVT::f32:
Opcode = NVPTX::LDV_f32_v2_areg_64;
break;
case MVT::f64:
Opcode = NVPTX::LDV_f64_v2_areg_64;
break;
}
break;
case NVPTXISD::LoadV4:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::LDV_i8_v4_areg_64;
break;
case MVT::i16:
Opcode = NVPTX::LDV_i16_v4_areg_64;
break;
case MVT::i32:
Opcode = NVPTX::LDV_i32_v4_areg_64;
break;
case MVT::f32:
Opcode = NVPTX::LDV_f32_v4_areg_64;
break;
}
break;
}
} else {
switch (N->getOpcode()) {
default:
return NULL;
case NVPTXISD::LoadV2:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::LDV_i8_v2_areg;
break;
case MVT::i16:
Opcode = NVPTX::LDV_i16_v2_areg;
break;
case MVT::i32:
Opcode = NVPTX::LDV_i32_v2_areg;
break;
case MVT::i64:
Opcode = NVPTX::LDV_i64_v2_areg;
break;
case MVT::f32:
Opcode = NVPTX::LDV_f32_v2_areg;
break;
case MVT::f64:
Opcode = NVPTX::LDV_f64_v2_areg;
break;
}
break;
case NVPTXISD::LoadV4:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::LDV_i8_v4_areg;
break;
case MVT::i16:
Opcode = NVPTX::LDV_i16_v4_areg;
break;
case MVT::i32:
Opcode = NVPTX::LDV_i32_v4_areg;
break;
case MVT::f32:
Opcode = NVPTX::LDV_f32_v4_areg;
break;
}
break;
}
}
SDValue Ops[] = { getI32Imm(IsVolatile), getI32Imm(CodeAddrSpace),
getI32Imm(VecType), getI32Imm(FromType),
getI32Imm(FromTypeWidth), Op1, Chain };
LD = CurDAG->getMachineNode(Opcode, DL, N->getVTList(), Ops);
}
MachineSDNode::mmo_iterator MemRefs0 = MF->allocateMemRefsArray(1);
MemRefs0[0] = cast<MemSDNode>(N)->getMemOperand();
cast<MachineSDNode>(LD)->setMemRefs(MemRefs0, MemRefs0 + 1);
return LD;
}
SDNode *NVPTXDAGToDAGISel::SelectLDGLDUVector(SDNode *N) {
SDValue Chain = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
unsigned Opcode;
SDLoc DL(N);
SDNode *LD;
MemSDNode *Mem = cast<MemSDNode>(N);
SDValue Base, Offset, Addr;
EVT EltVT = Mem->getMemoryVT().getVectorElementType();
if (SelectDirectAddr(Op1, Addr)) {
switch (N->getOpcode()) {
default:
return NULL;
case NVPTXISD::LDGV2:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::INT_PTX_LDG_G_v2i8_ELE_avar;
break;
case MVT::i16:
Opcode = NVPTX::INT_PTX_LDG_G_v2i16_ELE_avar;
break;
case MVT::i32:
Opcode = NVPTX::INT_PTX_LDG_G_v2i32_ELE_avar;
break;
case MVT::i64:
Opcode = NVPTX::INT_PTX_LDG_G_v2i64_ELE_avar;
break;
case MVT::f32:
Opcode = NVPTX::INT_PTX_LDG_G_v2f32_ELE_avar;
break;
case MVT::f64:
Opcode = NVPTX::INT_PTX_LDG_G_v2f64_ELE_avar;
break;
}
break;
case NVPTXISD::LDUV2:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::INT_PTX_LDU_G_v2i8_ELE_avar;
break;
case MVT::i16:
Opcode = NVPTX::INT_PTX_LDU_G_v2i16_ELE_avar;
break;
case MVT::i32:
Opcode = NVPTX::INT_PTX_LDU_G_v2i32_ELE_avar;
break;
case MVT::i64:
Opcode = NVPTX::INT_PTX_LDU_G_v2i64_ELE_avar;
break;
case MVT::f32:
Opcode = NVPTX::INT_PTX_LDU_G_v2f32_ELE_avar;
break;
case MVT::f64:
Opcode = NVPTX::INT_PTX_LDU_G_v2f64_ELE_avar;
break;
}
break;
case NVPTXISD::LDGV4:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::INT_PTX_LDG_G_v4i8_ELE_avar;
break;
case MVT::i16:
Opcode = NVPTX::INT_PTX_LDG_G_v4i16_ELE_avar;
break;
case MVT::i32:
Opcode = NVPTX::INT_PTX_LDG_G_v4i32_ELE_avar;
break;
case MVT::f32:
Opcode = NVPTX::INT_PTX_LDG_G_v4f32_ELE_avar;
break;
}
break;
case NVPTXISD::LDUV4:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::INT_PTX_LDU_G_v4i8_ELE_avar;
break;
case MVT::i16:
Opcode = NVPTX::INT_PTX_LDU_G_v4i16_ELE_avar;
break;
case MVT::i32:
Opcode = NVPTX::INT_PTX_LDU_G_v4i32_ELE_avar;
break;
case MVT::f32:
Opcode = NVPTX::INT_PTX_LDU_G_v4f32_ELE_avar;
break;
}
break;
}
SDValue Ops[] = { Addr, Chain };
LD = CurDAG->getMachineNode(Opcode, DL, N->getVTList(),
ArrayRef<SDValue>(Ops, 2));
} else if (Subtarget.is64Bit()
? SelectADDRri64(Op1.getNode(), Op1, Base, Offset)
: SelectADDRri(Op1.getNode(), Op1, Base, Offset)) {
if (Subtarget.is64Bit()) {
switch (N->getOpcode()) {
default:
return NULL;
case NVPTXISD::LDGV2:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::INT_PTX_LDG_G_v2i8_ELE_ari64;
break;
case MVT::i16:
Opcode = NVPTX::INT_PTX_LDG_G_v2i16_ELE_ari64;
break;
case MVT::i32:
Opcode = NVPTX::INT_PTX_LDG_G_v2i32_ELE_ari64;
break;
case MVT::i64:
Opcode = NVPTX::INT_PTX_LDG_G_v2i64_ELE_ari64;
break;
case MVT::f32:
Opcode = NVPTX::INT_PTX_LDG_G_v2f32_ELE_ari64;
break;
case MVT::f64:
Opcode = NVPTX::INT_PTX_LDG_G_v2f64_ELE_ari64;
break;
}
break;
case NVPTXISD::LDUV2:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::INT_PTX_LDU_G_v2i8_ELE_ari64;
break;
case MVT::i16:
Opcode = NVPTX::INT_PTX_LDU_G_v2i16_ELE_ari64;
break;
case MVT::i32:
Opcode = NVPTX::INT_PTX_LDU_G_v2i32_ELE_ari64;
break;
case MVT::i64:
Opcode = NVPTX::INT_PTX_LDU_G_v2i64_ELE_ari64;
break;
case MVT::f32:
Opcode = NVPTX::INT_PTX_LDU_G_v2f32_ELE_ari64;
break;
case MVT::f64:
Opcode = NVPTX::INT_PTX_LDU_G_v2f64_ELE_ari64;
break;
}
break;
case NVPTXISD::LDGV4:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::INT_PTX_LDG_G_v4i8_ELE_ari64;
break;
case MVT::i16:
Opcode = NVPTX::INT_PTX_LDG_G_v4i16_ELE_ari64;
break;
case MVT::i32:
Opcode = NVPTX::INT_PTX_LDG_G_v4i32_ELE_ari64;
break;
case MVT::f32:
Opcode = NVPTX::INT_PTX_LDG_G_v4f32_ELE_ari64;
break;
}
break;
case NVPTXISD::LDUV4:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::INT_PTX_LDU_G_v4i8_ELE_ari64;
break;
case MVT::i16:
Opcode = NVPTX::INT_PTX_LDU_G_v4i16_ELE_ari64;
break;
case MVT::i32:
Opcode = NVPTX::INT_PTX_LDU_G_v4i32_ELE_ari64;
break;
case MVT::f32:
Opcode = NVPTX::INT_PTX_LDU_G_v4f32_ELE_ari64;
break;
}
break;
}
} else {
switch (N->getOpcode()) {
default:
return NULL;
case NVPTXISD::LDGV2:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::INT_PTX_LDG_G_v2i8_ELE_ari32;
break;
case MVT::i16:
Opcode = NVPTX::INT_PTX_LDG_G_v2i16_ELE_ari32;
break;
case MVT::i32:
Opcode = NVPTX::INT_PTX_LDG_G_v2i32_ELE_ari32;
break;
case MVT::i64:
Opcode = NVPTX::INT_PTX_LDG_G_v2i64_ELE_ari32;
break;
case MVT::f32:
Opcode = NVPTX::INT_PTX_LDG_G_v2f32_ELE_ari32;
break;
case MVT::f64:
Opcode = NVPTX::INT_PTX_LDG_G_v2f64_ELE_ari32;
break;
}
break;
case NVPTXISD::LDUV2:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::INT_PTX_LDU_G_v2i8_ELE_ari32;
break;
case MVT::i16:
Opcode = NVPTX::INT_PTX_LDU_G_v2i16_ELE_ari32;
break;
case MVT::i32:
Opcode = NVPTX::INT_PTX_LDU_G_v2i32_ELE_ari32;
break;
case MVT::i64:
Opcode = NVPTX::INT_PTX_LDU_G_v2i64_ELE_ari32;
break;
case MVT::f32:
Opcode = NVPTX::INT_PTX_LDU_G_v2f32_ELE_ari32;
break;
case MVT::f64:
Opcode = NVPTX::INT_PTX_LDU_G_v2f64_ELE_ari32;
break;
}
break;
case NVPTXISD::LDGV4:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::INT_PTX_LDG_G_v4i8_ELE_ari32;
break;
case MVT::i16:
Opcode = NVPTX::INT_PTX_LDG_G_v4i16_ELE_ari32;
break;
case MVT::i32:
Opcode = NVPTX::INT_PTX_LDG_G_v4i32_ELE_ari32;
break;
case MVT::f32:
Opcode = NVPTX::INT_PTX_LDG_G_v4f32_ELE_ari32;
break;
}
break;
case NVPTXISD::LDUV4:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::INT_PTX_LDU_G_v4i8_ELE_ari32;
break;
case MVT::i16:
Opcode = NVPTX::INT_PTX_LDU_G_v4i16_ELE_ari32;
break;
case MVT::i32:
Opcode = NVPTX::INT_PTX_LDU_G_v4i32_ELE_ari32;
break;
case MVT::f32:
Opcode = NVPTX::INT_PTX_LDU_G_v4f32_ELE_ari32;
break;
}
break;
}
}
SDValue Ops[] = { Base, Offset, Chain };
LD = CurDAG->getMachineNode(Opcode, DL, N->getVTList(),
ArrayRef<SDValue>(Ops, 3));
} else {
if (Subtarget.is64Bit()) {
switch (N->getOpcode()) {
default:
return NULL;
case NVPTXISD::LDGV2:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::INT_PTX_LDG_G_v2i8_ELE_areg64;
break;
case MVT::i16:
Opcode = NVPTX::INT_PTX_LDG_G_v2i16_ELE_areg64;
break;
case MVT::i32:
Opcode = NVPTX::INT_PTX_LDG_G_v2i32_ELE_areg64;
break;
case MVT::i64:
Opcode = NVPTX::INT_PTX_LDG_G_v2i64_ELE_areg64;
break;
case MVT::f32:
Opcode = NVPTX::INT_PTX_LDG_G_v2f32_ELE_areg64;
break;
case MVT::f64:
Opcode = NVPTX::INT_PTX_LDG_G_v2f64_ELE_areg64;
break;
}
break;
case NVPTXISD::LDUV2:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::INT_PTX_LDU_G_v2i8_ELE_areg64;
break;
case MVT::i16:
Opcode = NVPTX::INT_PTX_LDU_G_v2i16_ELE_areg64;
break;
case MVT::i32:
Opcode = NVPTX::INT_PTX_LDU_G_v2i32_ELE_areg64;
break;
case MVT::i64:
Opcode = NVPTX::INT_PTX_LDU_G_v2i64_ELE_areg64;
break;
case MVT::f32:
Opcode = NVPTX::INT_PTX_LDU_G_v2f32_ELE_areg64;
break;
case MVT::f64:
Opcode = NVPTX::INT_PTX_LDU_G_v2f64_ELE_areg64;
break;
}
break;
case NVPTXISD::LDGV4:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::INT_PTX_LDG_G_v4i8_ELE_areg64;
break;
case MVT::i16:
Opcode = NVPTX::INT_PTX_LDG_G_v4i16_ELE_areg64;
break;
case MVT::i32:
Opcode = NVPTX::INT_PTX_LDG_G_v4i32_ELE_areg64;
break;
case MVT::f32:
Opcode = NVPTX::INT_PTX_LDG_G_v4f32_ELE_areg64;
break;
}
break;
case NVPTXISD::LDUV4:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::INT_PTX_LDU_G_v4i8_ELE_areg64;
break;
case MVT::i16:
Opcode = NVPTX::INT_PTX_LDU_G_v4i16_ELE_areg64;
break;
case MVT::i32:
Opcode = NVPTX::INT_PTX_LDU_G_v4i32_ELE_areg64;
break;
case MVT::f32:
Opcode = NVPTX::INT_PTX_LDU_G_v4f32_ELE_areg64;
break;
}
break;
}
} else {
switch (N->getOpcode()) {
default:
return NULL;
case NVPTXISD::LDGV2:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::INT_PTX_LDG_G_v2i8_ELE_areg32;
break;
case MVT::i16:
Opcode = NVPTX::INT_PTX_LDG_G_v2i16_ELE_areg32;
break;
case MVT::i32:
Opcode = NVPTX::INT_PTX_LDG_G_v2i32_ELE_areg32;
break;
case MVT::i64:
Opcode = NVPTX::INT_PTX_LDG_G_v2i64_ELE_areg32;
break;
case MVT::f32:
Opcode = NVPTX::INT_PTX_LDG_G_v2f32_ELE_areg32;
break;
case MVT::f64:
Opcode = NVPTX::INT_PTX_LDG_G_v2f64_ELE_areg32;
break;
}
break;
case NVPTXISD::LDUV2:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::INT_PTX_LDU_G_v2i8_ELE_areg32;
break;
case MVT::i16:
Opcode = NVPTX::INT_PTX_LDU_G_v2i16_ELE_areg32;
break;
case MVT::i32:
Opcode = NVPTX::INT_PTX_LDU_G_v2i32_ELE_areg32;
break;
case MVT::i64:
Opcode = NVPTX::INT_PTX_LDU_G_v2i64_ELE_areg32;
break;
case MVT::f32:
Opcode = NVPTX::INT_PTX_LDU_G_v2f32_ELE_areg32;
break;
case MVT::f64:
Opcode = NVPTX::INT_PTX_LDU_G_v2f64_ELE_areg32;
break;
}
break;
case NVPTXISD::LDGV4:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::INT_PTX_LDG_G_v4i8_ELE_areg32;
break;
case MVT::i16:
Opcode = NVPTX::INT_PTX_LDG_G_v4i16_ELE_areg32;
break;
case MVT::i32:
Opcode = NVPTX::INT_PTX_LDG_G_v4i32_ELE_areg32;
break;
case MVT::f32:
Opcode = NVPTX::INT_PTX_LDG_G_v4f32_ELE_areg32;
break;
}
break;
case NVPTXISD::LDUV4:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::INT_PTX_LDU_G_v4i8_ELE_areg32;
break;
case MVT::i16:
Opcode = NVPTX::INT_PTX_LDU_G_v4i16_ELE_areg32;
break;
case MVT::i32:
Opcode = NVPTX::INT_PTX_LDU_G_v4i32_ELE_areg32;
break;
case MVT::f32:
Opcode = NVPTX::INT_PTX_LDU_G_v4f32_ELE_areg32;
break;
}
break;
}
}
SDValue Ops[] = { Op1, Chain };
LD = CurDAG->getMachineNode(Opcode, DL, N->getVTList(),
ArrayRef<SDValue>(Ops, 2));
}
MachineSDNode::mmo_iterator MemRefs0 = MF->allocateMemRefsArray(1);
MemRefs0[0] = cast<MemSDNode>(N)->getMemOperand();
cast<MachineSDNode>(LD)->setMemRefs(MemRefs0, MemRefs0 + 1);
return LD;
}
SDNode *NVPTXDAGToDAGISel::SelectStore(SDNode *N) {
SDLoc dl(N);
StoreSDNode *ST = cast<StoreSDNode>(N);
EVT StoreVT = ST->getMemoryVT();
SDNode *NVPTXST = NULL;
// do not support pre/post inc/dec
if (ST->isIndexed())
return NULL;
if (!StoreVT.isSimple())
return NULL;
// Address Space Setting
unsigned int codeAddrSpace = getCodeAddrSpace(ST, Subtarget);
// Volatile Setting
// - .volatile is only availalble for .global and .shared
bool isVolatile = ST->isVolatile();
if (codeAddrSpace != NVPTX::PTXLdStInstCode::GLOBAL &&
codeAddrSpace != NVPTX::PTXLdStInstCode::SHARED &&
codeAddrSpace != NVPTX::PTXLdStInstCode::GENERIC)
isVolatile = false;
// Vector Setting
MVT SimpleVT = StoreVT.getSimpleVT();
unsigned vecType = NVPTX::PTXLdStInstCode::Scalar;
if (SimpleVT.isVector()) {
unsigned num = SimpleVT.getVectorNumElements();
if (num == 2)
vecType = NVPTX::PTXLdStInstCode::V2;
else if (num == 4)
vecType = NVPTX::PTXLdStInstCode::V4;
else
return NULL;
}
// Type Setting: toType + toTypeWidth
// - for integer type, always use 'u'
//
MVT ScalarVT = SimpleVT.getScalarType();
unsigned toTypeWidth = ScalarVT.getSizeInBits();
unsigned int toType;
if (ScalarVT.isFloatingPoint())
toType = NVPTX::PTXLdStInstCode::Float;
else
toType = NVPTX::PTXLdStInstCode::Unsigned;
// Create the machine instruction DAG
SDValue Chain = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue N2 = N->getOperand(2);
SDValue Addr;
SDValue Offset, Base;
unsigned Opcode;
MVT::SimpleValueType SourceVT = N1.getNode()->getSimpleValueType(0).SimpleTy;
if (SelectDirectAddr(N2, Addr)) {
switch (SourceVT) {
case MVT::i8:
Opcode = NVPTX::ST_i8_avar;
break;
case MVT::i16:
Opcode = NVPTX::ST_i16_avar;
break;
case MVT::i32:
Opcode = NVPTX::ST_i32_avar;
break;
case MVT::i64:
Opcode = NVPTX::ST_i64_avar;
break;
case MVT::f32:
Opcode = NVPTX::ST_f32_avar;
break;
case MVT::f64:
Opcode = NVPTX::ST_f64_avar;
break;
default:
return NULL;
}
SDValue Ops[] = { N1, getI32Imm(isVolatile), getI32Imm(codeAddrSpace),
getI32Imm(vecType), getI32Imm(toType),
getI32Imm(toTypeWidth), Addr, Chain };
NVPTXST = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops);
} else if (Subtarget.is64Bit()
? SelectADDRsi64(N2.getNode(), N2, Base, Offset)
: SelectADDRsi(N2.getNode(), N2, Base, Offset)) {
switch (SourceVT) {
case MVT::i8:
Opcode = NVPTX::ST_i8_asi;
break;
case MVT::i16:
Opcode = NVPTX::ST_i16_asi;
break;
case MVT::i32:
Opcode = NVPTX::ST_i32_asi;
break;
case MVT::i64:
Opcode = NVPTX::ST_i64_asi;
break;
case MVT::f32:
Opcode = NVPTX::ST_f32_asi;
break;
case MVT::f64:
Opcode = NVPTX::ST_f64_asi;
break;
default:
return NULL;
}
SDValue Ops[] = { N1, getI32Imm(isVolatile), getI32Imm(codeAddrSpace),
getI32Imm(vecType), getI32Imm(toType),
getI32Imm(toTypeWidth), Base, Offset, Chain };
NVPTXST = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops);
} else if (Subtarget.is64Bit()
? SelectADDRri64(N2.getNode(), N2, Base, Offset)
: SelectADDRri(N2.getNode(), N2, Base, Offset)) {
if (Subtarget.is64Bit()) {
switch (SourceVT) {
case MVT::i8:
Opcode = NVPTX::ST_i8_ari_64;
break;
case MVT::i16:
Opcode = NVPTX::ST_i16_ari_64;
break;
case MVT::i32:
Opcode = NVPTX::ST_i32_ari_64;
break;
case MVT::i64:
Opcode = NVPTX::ST_i64_ari_64;
break;
case MVT::f32:
Opcode = NVPTX::ST_f32_ari_64;
break;
case MVT::f64:
Opcode = NVPTX::ST_f64_ari_64;
break;
default:
return NULL;
}
} else {
switch (SourceVT) {
case MVT::i8:
Opcode = NVPTX::ST_i8_ari;
break;
case MVT::i16:
Opcode = NVPTX::ST_i16_ari;
break;
case MVT::i32:
Opcode = NVPTX::ST_i32_ari;
break;
case MVT::i64:
Opcode = NVPTX::ST_i64_ari;
break;
case MVT::f32:
Opcode = NVPTX::ST_f32_ari;
break;
case MVT::f64:
Opcode = NVPTX::ST_f64_ari;
break;
default:
return NULL;
}
}
SDValue Ops[] = { N1, getI32Imm(isVolatile), getI32Imm(codeAddrSpace),
getI32Imm(vecType), getI32Imm(toType),
getI32Imm(toTypeWidth), Base, Offset, Chain };
NVPTXST = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops);
} else {
if (Subtarget.is64Bit()) {
switch (SourceVT) {
case MVT::i8:
Opcode = NVPTX::ST_i8_areg_64;
break;
case MVT::i16:
Opcode = NVPTX::ST_i16_areg_64;
break;
case MVT::i32:
Opcode = NVPTX::ST_i32_areg_64;
break;
case MVT::i64:
Opcode = NVPTX::ST_i64_areg_64;
break;
case MVT::f32:
Opcode = NVPTX::ST_f32_areg_64;
break;
case MVT::f64:
Opcode = NVPTX::ST_f64_areg_64;
break;
default:
return NULL;
}
} else {
switch (SourceVT) {
case MVT::i8:
Opcode = NVPTX::ST_i8_areg;
break;
case MVT::i16:
Opcode = NVPTX::ST_i16_areg;
break;
case MVT::i32:
Opcode = NVPTX::ST_i32_areg;
break;
case MVT::i64:
Opcode = NVPTX::ST_i64_areg;
break;
case MVT::f32:
Opcode = NVPTX::ST_f32_areg;
break;
case MVT::f64:
Opcode = NVPTX::ST_f64_areg;
break;
default:
return NULL;
}
}
SDValue Ops[] = { N1, getI32Imm(isVolatile), getI32Imm(codeAddrSpace),
getI32Imm(vecType), getI32Imm(toType),
getI32Imm(toTypeWidth), N2, Chain };
NVPTXST = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops);
}
if (NVPTXST != NULL) {
MachineSDNode::mmo_iterator MemRefs0 = MF->allocateMemRefsArray(1);
MemRefs0[0] = cast<MemSDNode>(N)->getMemOperand();
cast<MachineSDNode>(NVPTXST)->setMemRefs(MemRefs0, MemRefs0 + 1);
}
return NVPTXST;
}
SDNode *NVPTXDAGToDAGISel::SelectStoreVector(SDNode *N) {
SDValue Chain = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
SDValue Addr, Offset, Base;
unsigned Opcode;
SDLoc DL(N);
SDNode *ST;
EVT EltVT = Op1.getValueType();
MemSDNode *MemSD = cast<MemSDNode>(N);
EVT StoreVT = MemSD->getMemoryVT();
// Address Space Setting
unsigned CodeAddrSpace = getCodeAddrSpace(MemSD, Subtarget);
if (CodeAddrSpace == NVPTX::PTXLdStInstCode::CONSTANT) {
report_fatal_error("Cannot store to pointer that points to constant "
"memory space");
}
// Volatile Setting
// - .volatile is only availalble for .global and .shared
bool IsVolatile = MemSD->isVolatile();
if (CodeAddrSpace != NVPTX::PTXLdStInstCode::GLOBAL &&
CodeAddrSpace != NVPTX::PTXLdStInstCode::SHARED &&
CodeAddrSpace != NVPTX::PTXLdStInstCode::GENERIC)
IsVolatile = false;
// Type Setting: toType + toTypeWidth
// - for integer type, always use 'u'
assert(StoreVT.isSimple() && "Store value is not simple");
MVT ScalarVT = StoreVT.getSimpleVT().getScalarType();
unsigned ToTypeWidth = ScalarVT.getSizeInBits();
unsigned ToType;
if (ScalarVT.isFloatingPoint())
ToType = NVPTX::PTXLdStInstCode::Float;
else
ToType = NVPTX::PTXLdStInstCode::Unsigned;
SmallVector<SDValue, 12> StOps;
SDValue N2;
unsigned VecType;
switch (N->getOpcode()) {
case NVPTXISD::StoreV2:
VecType = NVPTX::PTXLdStInstCode::V2;
StOps.push_back(N->getOperand(1));
StOps.push_back(N->getOperand(2));
N2 = N->getOperand(3);
break;
case NVPTXISD::StoreV4:
VecType = NVPTX::PTXLdStInstCode::V4;
StOps.push_back(N->getOperand(1));
StOps.push_back(N->getOperand(2));
StOps.push_back(N->getOperand(3));
StOps.push_back(N->getOperand(4));
N2 = N->getOperand(5);
break;
default:
return NULL;
}
StOps.push_back(getI32Imm(IsVolatile));
StOps.push_back(getI32Imm(CodeAddrSpace));
StOps.push_back(getI32Imm(VecType));
StOps.push_back(getI32Imm(ToType));
StOps.push_back(getI32Imm(ToTypeWidth));
if (SelectDirectAddr(N2, Addr)) {
switch (N->getOpcode()) {
default:
return NULL;
case NVPTXISD::StoreV2:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::STV_i8_v2_avar;
break;
case MVT::i16:
Opcode = NVPTX::STV_i16_v2_avar;
break;
case MVT::i32:
Opcode = NVPTX::STV_i32_v2_avar;
break;
case MVT::i64:
Opcode = NVPTX::STV_i64_v2_avar;
break;
case MVT::f32:
Opcode = NVPTX::STV_f32_v2_avar;
break;
case MVT::f64:
Opcode = NVPTX::STV_f64_v2_avar;
break;
}
break;
case NVPTXISD::StoreV4:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::STV_i8_v4_avar;
break;
case MVT::i16:
Opcode = NVPTX::STV_i16_v4_avar;
break;
case MVT::i32:
Opcode = NVPTX::STV_i32_v4_avar;
break;
case MVT::f32:
Opcode = NVPTX::STV_f32_v4_avar;
break;
}
break;
}
StOps.push_back(Addr);
} else if (Subtarget.is64Bit()
? SelectADDRsi64(N2.getNode(), N2, Base, Offset)
: SelectADDRsi(N2.getNode(), N2, Base, Offset)) {
switch (N->getOpcode()) {
default:
return NULL;
case NVPTXISD::StoreV2:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::STV_i8_v2_asi;
break;
case MVT::i16:
Opcode = NVPTX::STV_i16_v2_asi;
break;
case MVT::i32:
Opcode = NVPTX::STV_i32_v2_asi;
break;
case MVT::i64:
Opcode = NVPTX::STV_i64_v2_asi;
break;
case MVT::f32:
Opcode = NVPTX::STV_f32_v2_asi;
break;
case MVT::f64:
Opcode = NVPTX::STV_f64_v2_asi;
break;
}
break;
case NVPTXISD::StoreV4:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::STV_i8_v4_asi;
break;
case MVT::i16:
Opcode = NVPTX::STV_i16_v4_asi;
break;
case MVT::i32:
Opcode = NVPTX::STV_i32_v4_asi;
break;
case MVT::f32:
Opcode = NVPTX::STV_f32_v4_asi;
break;
}
break;
}
StOps.push_back(Base);
StOps.push_back(Offset);
} else if (Subtarget.is64Bit()
? SelectADDRri64(N2.getNode(), N2, Base, Offset)
: SelectADDRri(N2.getNode(), N2, Base, Offset)) {
if (Subtarget.is64Bit()) {
switch (N->getOpcode()) {
default:
return NULL;
case NVPTXISD::StoreV2:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::STV_i8_v2_ari_64;
break;
case MVT::i16:
Opcode = NVPTX::STV_i16_v2_ari_64;
break;
case MVT::i32:
Opcode = NVPTX::STV_i32_v2_ari_64;
break;
case MVT::i64:
Opcode = NVPTX::STV_i64_v2_ari_64;
break;
case MVT::f32:
Opcode = NVPTX::STV_f32_v2_ari_64;
break;
case MVT::f64:
Opcode = NVPTX::STV_f64_v2_ari_64;
break;
}
break;
case NVPTXISD::StoreV4:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::STV_i8_v4_ari_64;
break;
case MVT::i16:
Opcode = NVPTX::STV_i16_v4_ari_64;
break;
case MVT::i32:
Opcode = NVPTX::STV_i32_v4_ari_64;
break;
case MVT::f32:
Opcode = NVPTX::STV_f32_v4_ari_64;
break;
}
break;
}
} else {
switch (N->getOpcode()) {
default:
return NULL;
case NVPTXISD::StoreV2:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::STV_i8_v2_ari;
break;
case MVT::i16:
Opcode = NVPTX::STV_i16_v2_ari;
break;
case MVT::i32:
Opcode = NVPTX::STV_i32_v2_ari;
break;
case MVT::i64:
Opcode = NVPTX::STV_i64_v2_ari;
break;
case MVT::f32:
Opcode = NVPTX::STV_f32_v2_ari;
break;
case MVT::f64:
Opcode = NVPTX::STV_f64_v2_ari;
break;
}
break;
case NVPTXISD::StoreV4:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::STV_i8_v4_ari;
break;
case MVT::i16:
Opcode = NVPTX::STV_i16_v4_ari;
break;
case MVT::i32:
Opcode = NVPTX::STV_i32_v4_ari;
break;
case MVT::f32:
Opcode = NVPTX::STV_f32_v4_ari;
break;
}
break;
}
}
StOps.push_back(Base);
StOps.push_back(Offset);
} else {
if (Subtarget.is64Bit()) {
switch (N->getOpcode()) {
default:
return NULL;
case NVPTXISD::StoreV2:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::STV_i8_v2_areg_64;
break;
case MVT::i16:
Opcode = NVPTX::STV_i16_v2_areg_64;
break;
case MVT::i32:
Opcode = NVPTX::STV_i32_v2_areg_64;
break;
case MVT::i64:
Opcode = NVPTX::STV_i64_v2_areg_64;
break;
case MVT::f32:
Opcode = NVPTX::STV_f32_v2_areg_64;
break;
case MVT::f64:
Opcode = NVPTX::STV_f64_v2_areg_64;
break;
}
break;
case NVPTXISD::StoreV4:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::STV_i8_v4_areg_64;
break;
case MVT::i16:
Opcode = NVPTX::STV_i16_v4_areg_64;
break;
case MVT::i32:
Opcode = NVPTX::STV_i32_v4_areg_64;
break;
case MVT::f32:
Opcode = NVPTX::STV_f32_v4_areg_64;
break;
}
break;
}
} else {
switch (N->getOpcode()) {
default:
return NULL;
case NVPTXISD::StoreV2:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::STV_i8_v2_areg;
break;
case MVT::i16:
Opcode = NVPTX::STV_i16_v2_areg;
break;
case MVT::i32:
Opcode = NVPTX::STV_i32_v2_areg;
break;
case MVT::i64:
Opcode = NVPTX::STV_i64_v2_areg;
break;
case MVT::f32:
Opcode = NVPTX::STV_f32_v2_areg;
break;
case MVT::f64:
Opcode = NVPTX::STV_f64_v2_areg;
break;
}
break;
case NVPTXISD::StoreV4:
switch (EltVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i8:
Opcode = NVPTX::STV_i8_v4_areg;
break;
case MVT::i16:
Opcode = NVPTX::STV_i16_v4_areg;
break;
case MVT::i32:
Opcode = NVPTX::STV_i32_v4_areg;
break;
case MVT::f32:
Opcode = NVPTX::STV_f32_v4_areg;
break;
}
break;
}
}
StOps.push_back(N2);
}
StOps.push_back(Chain);
ST = CurDAG->getMachineNode(Opcode, DL, MVT::Other, StOps);
MachineSDNode::mmo_iterator MemRefs0 = MF->allocateMemRefsArray(1);
MemRefs0[0] = cast<MemSDNode>(N)->getMemOperand();
cast<MachineSDNode>(ST)->setMemRefs(MemRefs0, MemRefs0 + 1);
return ST;
}
SDNode *NVPTXDAGToDAGISel::SelectLoadParam(SDNode *Node) {
SDValue Chain = Node->getOperand(0);
SDValue Offset = Node->getOperand(2);
SDValue Flag = Node->getOperand(3);
SDLoc DL(Node);
MemSDNode *Mem = cast<MemSDNode>(Node);
unsigned VecSize;
switch (Node->getOpcode()) {
default:
return NULL;
case NVPTXISD::LoadParam:
VecSize = 1;
break;
case NVPTXISD::LoadParamV2:
VecSize = 2;
break;
case NVPTXISD::LoadParamV4:
VecSize = 4;
break;
}
EVT EltVT = Node->getValueType(0);
EVT MemVT = Mem->getMemoryVT();
unsigned Opc = 0;
switch (VecSize) {
default:
return NULL;
case 1:
switch (MemVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i1:
Opc = NVPTX::LoadParamMemI8;
break;
case MVT::i8:
Opc = NVPTX::LoadParamMemI8;
break;
case MVT::i16:
Opc = NVPTX::LoadParamMemI16;
break;
case MVT::i32:
Opc = NVPTX::LoadParamMemI32;
break;
case MVT::i64:
Opc = NVPTX::LoadParamMemI64;
break;
case MVT::f32:
Opc = NVPTX::LoadParamMemF32;
break;
case MVT::f64:
Opc = NVPTX::LoadParamMemF64;
break;
}
break;
case 2:
switch (MemVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i1:
Opc = NVPTX::LoadParamMemV2I8;
break;
case MVT::i8:
Opc = NVPTX::LoadParamMemV2I8;
break;
case MVT::i16:
Opc = NVPTX::LoadParamMemV2I16;
break;
case MVT::i32:
Opc = NVPTX::LoadParamMemV2I32;
break;
case MVT::i64:
Opc = NVPTX::LoadParamMemV2I64;
break;
case MVT::f32:
Opc = NVPTX::LoadParamMemV2F32;
break;
case MVT::f64:
Opc = NVPTX::LoadParamMemV2F64;
break;
}
break;
case 4:
switch (MemVT.getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i1:
Opc = NVPTX::LoadParamMemV4I8;
break;
case MVT::i8:
Opc = NVPTX::LoadParamMemV4I8;
break;
case MVT::i16:
Opc = NVPTX::LoadParamMemV4I16;
break;
case MVT::i32:
Opc = NVPTX::LoadParamMemV4I32;
break;
case MVT::f32:
Opc = NVPTX::LoadParamMemV4F32;
break;
}
break;
}
SDVTList VTs;
if (VecSize == 1) {
VTs = CurDAG->getVTList(EltVT, MVT::Other, MVT::Glue);
} else if (VecSize == 2) {
VTs = CurDAG->getVTList(EltVT, EltVT, MVT::Other, MVT::Glue);
} else {
EVT EVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other, MVT::Glue };
VTs = CurDAG->getVTList(&EVTs[0], array_lengthof(EVTs));
}
unsigned OffsetVal = cast<ConstantSDNode>(Offset)->getZExtValue();
SmallVector<SDValue, 2> Ops;
Ops.push_back(CurDAG->getTargetConstant(OffsetVal, MVT::i32));
Ops.push_back(Chain);
Ops.push_back(Flag);
SDNode *Ret =
CurDAG->getMachineNode(Opc, DL, VTs, Ops);
return Ret;
}
SDNode *NVPTXDAGToDAGISel::SelectStoreRetval(SDNode *N) {
SDLoc DL(N);
SDValue Chain = N->getOperand(0);
SDValue Offset = N->getOperand(1);
unsigned OffsetVal = cast<ConstantSDNode>(Offset)->getZExtValue();
MemSDNode *Mem = cast<MemSDNode>(N);
// How many elements do we have?
unsigned NumElts = 1;
switch (N->getOpcode()) {
default:
return NULL;
case NVPTXISD::StoreRetval:
NumElts = 1;
break;
case NVPTXISD::StoreRetvalV2:
NumElts = 2;
break;
case NVPTXISD::StoreRetvalV4:
NumElts = 4;
break;
}
// Build vector of operands
SmallVector<SDValue, 6> Ops;
for (unsigned i = 0; i < NumElts; ++i)
Ops.push_back(N->getOperand(i + 2));
Ops.push_back(CurDAG->getTargetConstant(OffsetVal, MVT::i32));
Ops.push_back(Chain);
// Determine target opcode
// If we have an i1, use an 8-bit store. The lowering code in
// NVPTXISelLowering will have already emitted an upcast.
unsigned Opcode = 0;
switch (NumElts) {
default:
return NULL;
case 1:
switch (Mem->getMemoryVT().getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i1:
Opcode = NVPTX::StoreRetvalI8;
break;
case MVT::i8:
Opcode = NVPTX::StoreRetvalI8;
break;
case MVT::i16:
Opcode = NVPTX::StoreRetvalI16;
break;
case MVT::i32:
Opcode = NVPTX::StoreRetvalI32;
break;
case MVT::i64:
Opcode = NVPTX::StoreRetvalI64;
break;
case MVT::f32:
Opcode = NVPTX::StoreRetvalF32;
break;
case MVT::f64:
Opcode = NVPTX::StoreRetvalF64;
break;
}
break;
case 2:
switch (Mem->getMemoryVT().getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i1:
Opcode = NVPTX::StoreRetvalV2I8;
break;
case MVT::i8:
Opcode = NVPTX::StoreRetvalV2I8;
break;
case MVT::i16:
Opcode = NVPTX::StoreRetvalV2I16;
break;
case MVT::i32:
Opcode = NVPTX::StoreRetvalV2I32;
break;
case MVT::i64:
Opcode = NVPTX::StoreRetvalV2I64;
break;
case MVT::f32:
Opcode = NVPTX::StoreRetvalV2F32;
break;
case MVT::f64:
Opcode = NVPTX::StoreRetvalV2F64;
break;
}
break;
case 4:
switch (Mem->getMemoryVT().getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i1:
Opcode = NVPTX::StoreRetvalV4I8;
break;
case MVT::i8:
Opcode = NVPTX::StoreRetvalV4I8;
break;
case MVT::i16:
Opcode = NVPTX::StoreRetvalV4I16;
break;
case MVT::i32:
Opcode = NVPTX::StoreRetvalV4I32;
break;
case MVT::f32:
Opcode = NVPTX::StoreRetvalV4F32;
break;
}
break;
}
SDNode *Ret =
CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops);
MachineSDNode::mmo_iterator MemRefs0 = MF->allocateMemRefsArray(1);
MemRefs0[0] = cast<MemSDNode>(N)->getMemOperand();
cast<MachineSDNode>(Ret)->setMemRefs(MemRefs0, MemRefs0 + 1);
return Ret;
}
SDNode *NVPTXDAGToDAGISel::SelectStoreParam(SDNode *N) {
SDLoc DL(N);
SDValue Chain = N->getOperand(0);
SDValue Param = N->getOperand(1);
unsigned ParamVal = cast<ConstantSDNode>(Param)->getZExtValue();
SDValue Offset = N->getOperand(2);
unsigned OffsetVal = cast<ConstantSDNode>(Offset)->getZExtValue();
MemSDNode *Mem = cast<MemSDNode>(N);
SDValue Flag = N->getOperand(N->getNumOperands() - 1);
// How many elements do we have?
unsigned NumElts = 1;
switch (N->getOpcode()) {
default:
return NULL;
case NVPTXISD::StoreParamU32:
case NVPTXISD::StoreParamS32:
case NVPTXISD::StoreParam:
NumElts = 1;
break;
case NVPTXISD::StoreParamV2:
NumElts = 2;
break;
case NVPTXISD::StoreParamV4:
NumElts = 4;
break;
}
// Build vector of operands
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0; i < NumElts; ++i)
Ops.push_back(N->getOperand(i + 3));
Ops.push_back(CurDAG->getTargetConstant(ParamVal, MVT::i32));
Ops.push_back(CurDAG->getTargetConstant(OffsetVal, MVT::i32));
Ops.push_back(Chain);
Ops.push_back(Flag);
// Determine target opcode
// If we have an i1, use an 8-bit store. The lowering code in
// NVPTXISelLowering will have already emitted an upcast.
unsigned Opcode = 0;
switch (N->getOpcode()) {
default:
switch (NumElts) {
default:
return NULL;
case 1:
switch (Mem->getMemoryVT().getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i1:
Opcode = NVPTX::StoreParamI8;
break;
case MVT::i8:
Opcode = NVPTX::StoreParamI8;
break;
case MVT::i16:
Opcode = NVPTX::StoreParamI16;
break;
case MVT::i32:
Opcode = NVPTX::StoreParamI32;
break;
case MVT::i64:
Opcode = NVPTX::StoreParamI64;
break;
case MVT::f32:
Opcode = NVPTX::StoreParamF32;
break;
case MVT::f64:
Opcode = NVPTX::StoreParamF64;
break;
}
break;
case 2:
switch (Mem->getMemoryVT().getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i1:
Opcode = NVPTX::StoreParamV2I8;
break;
case MVT::i8:
Opcode = NVPTX::StoreParamV2I8;
break;
case MVT::i16:
Opcode = NVPTX::StoreParamV2I16;
break;
case MVT::i32:
Opcode = NVPTX::StoreParamV2I32;
break;
case MVT::i64:
Opcode = NVPTX::StoreParamV2I64;
break;
case MVT::f32:
Opcode = NVPTX::StoreParamV2F32;
break;
case MVT::f64:
Opcode = NVPTX::StoreParamV2F64;
break;
}
break;
case 4:
switch (Mem->getMemoryVT().getSimpleVT().SimpleTy) {
default:
return NULL;
case MVT::i1:
Opcode = NVPTX::StoreParamV4I8;
break;
case MVT::i8:
Opcode = NVPTX::StoreParamV4I8;
break;
case MVT::i16:
Opcode = NVPTX::StoreParamV4I16;
break;
case MVT::i32:
Opcode = NVPTX::StoreParamV4I32;
break;
case MVT::f32:
Opcode = NVPTX::StoreParamV4F32;
break;
}
break;
}
break;
// Special case: if we have a sign-extend/zero-extend node, insert the
// conversion instruction first, and use that as the value operand to
// the selected StoreParam node.
case NVPTXISD::StoreParamU32: {
Opcode = NVPTX::StoreParamI32;
SDValue CvtNone = CurDAG->getTargetConstant(NVPTX::PTXCvtMode::NONE,
MVT::i32);
SDNode *Cvt = CurDAG->getMachineNode(NVPTX::CVT_u32_u16, DL,
MVT::i32, Ops[0], CvtNone);
Ops[0] = SDValue(Cvt, 0);
break;
}
case NVPTXISD::StoreParamS32: {
Opcode = NVPTX::StoreParamI32;
SDValue CvtNone = CurDAG->getTargetConstant(NVPTX::PTXCvtMode::NONE,
MVT::i32);
SDNode *Cvt = CurDAG->getMachineNode(NVPTX::CVT_s32_s16, DL,
MVT::i32, Ops[0], CvtNone);
Ops[0] = SDValue(Cvt, 0);
break;
}
}
SDVTList RetVTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
SDNode *Ret =
CurDAG->getMachineNode(Opcode, DL, RetVTs, Ops);
MachineSDNode::mmo_iterator MemRefs0 = MF->allocateMemRefsArray(1);
MemRefs0[0] = cast<MemSDNode>(N)->getMemOperand();
cast<MachineSDNode>(Ret)->setMemRefs(MemRefs0, MemRefs0 + 1);
return Ret;
}
SDNode *NVPTXDAGToDAGISel::SelectTextureIntrinsic(SDNode *N) {
SDValue Chain = N->getOperand(0);
SDValue TexRef = N->getOperand(1);
SDValue SampRef = N->getOperand(2);
SDNode *Ret = NULL;
unsigned Opc = 0;
SmallVector<SDValue, 8> Ops;
switch (N->getOpcode()) {
default: return NULL;
case NVPTXISD::Tex1DFloatI32:
Opc = NVPTX::TEX_1D_F32_I32;
break;
case NVPTXISD::Tex1DFloatFloat:
Opc = NVPTX::TEX_1D_F32_F32;
break;
case NVPTXISD::Tex1DFloatFloatLevel:
Opc = NVPTX::TEX_1D_F32_F32_LEVEL;
break;
case NVPTXISD::Tex1DFloatFloatGrad:
Opc = NVPTX::TEX_1D_F32_F32_GRAD;
break;
case NVPTXISD::Tex1DI32I32:
Opc = NVPTX::TEX_1D_I32_I32;
break;
case NVPTXISD::Tex1DI32Float:
Opc = NVPTX::TEX_1D_I32_F32;
break;
case NVPTXISD::Tex1DI32FloatLevel:
Opc = NVPTX::TEX_1D_I32_F32_LEVEL;
break;
case NVPTXISD::Tex1DI32FloatGrad:
Opc = NVPTX::TEX_1D_I32_F32_GRAD;
break;
case NVPTXISD::Tex1DArrayFloatI32:
Opc = NVPTX::TEX_1D_ARRAY_F32_I32;
break;
case NVPTXISD::Tex1DArrayFloatFloat:
Opc = NVPTX::TEX_1D_ARRAY_F32_F32;
break;
case NVPTXISD::Tex1DArrayFloatFloatLevel:
Opc = NVPTX::TEX_1D_ARRAY_F32_F32_LEVEL;
break;
case NVPTXISD::Tex1DArrayFloatFloatGrad:
Opc = NVPTX::TEX_1D_ARRAY_F32_F32_GRAD;
break;
case NVPTXISD::Tex1DArrayI32I32:
Opc = NVPTX::TEX_1D_ARRAY_I32_I32;
break;
case NVPTXISD::Tex1DArrayI32Float:
Opc = NVPTX::TEX_1D_ARRAY_I32_F32;
break;
case NVPTXISD::Tex1DArrayI32FloatLevel:
Opc = NVPTX::TEX_1D_ARRAY_I32_F32_LEVEL;
break;
case NVPTXISD::Tex1DArrayI32FloatGrad:
Opc = NVPTX::TEX_1D_ARRAY_I32_F32_GRAD;
break;
case NVPTXISD::Tex2DFloatI32:
Opc = NVPTX::TEX_2D_F32_I32;
break;
case NVPTXISD::Tex2DFloatFloat:
Opc = NVPTX::TEX_2D_F32_F32;
break;
case NVPTXISD::Tex2DFloatFloatLevel:
Opc = NVPTX::TEX_2D_F32_F32_LEVEL;
break;
case NVPTXISD::Tex2DFloatFloatGrad:
Opc = NVPTX::TEX_2D_F32_F32_GRAD;
break;
case NVPTXISD::Tex2DI32I32:
Opc = NVPTX::TEX_2D_I32_I32;
break;
case NVPTXISD::Tex2DI32Float:
Opc = NVPTX::TEX_2D_I32_F32;
break;
case NVPTXISD::Tex2DI32FloatLevel:
Opc = NVPTX::TEX_2D_I32_F32_LEVEL;
break;
case NVPTXISD::Tex2DI32FloatGrad:
Opc = NVPTX::TEX_2D_I32_F32_GRAD;
break;
case NVPTXISD::Tex2DArrayFloatI32:
Opc = NVPTX::TEX_2D_ARRAY_F32_I32;
break;
case NVPTXISD::Tex2DArrayFloatFloat:
Opc = NVPTX::TEX_2D_ARRAY_F32_F32;
break;
case NVPTXISD::Tex2DArrayFloatFloatLevel:
Opc = NVPTX::TEX_2D_ARRAY_F32_F32_LEVEL;
break;
case NVPTXISD::Tex2DArrayFloatFloatGrad:
Opc = NVPTX::TEX_2D_ARRAY_F32_F32_GRAD;
break;
case NVPTXISD::Tex2DArrayI32I32:
Opc = NVPTX::TEX_2D_ARRAY_I32_I32;
break;
case NVPTXISD::Tex2DArrayI32Float:
Opc = NVPTX::TEX_2D_ARRAY_I32_F32;
break;
case NVPTXISD::Tex2DArrayI32FloatLevel:
Opc = NVPTX::TEX_2D_ARRAY_I32_F32_LEVEL;
break;
case NVPTXISD::Tex2DArrayI32FloatGrad:
Opc = NVPTX::TEX_2D_ARRAY_I32_F32_GRAD;
break;
case NVPTXISD::Tex3DFloatI32:
Opc = NVPTX::TEX_3D_F32_I32;
break;
case NVPTXISD::Tex3DFloatFloat:
Opc = NVPTX::TEX_3D_F32_F32;
break;
case NVPTXISD::Tex3DFloatFloatLevel:
Opc = NVPTX::TEX_3D_F32_F32_LEVEL;
break;
case NVPTXISD::Tex3DFloatFloatGrad:
Opc = NVPTX::TEX_3D_F32_F32_GRAD;
break;
case NVPTXISD::Tex3DI32I32:
Opc = NVPTX::TEX_3D_I32_I32;
break;
case NVPTXISD::Tex3DI32Float:
Opc = NVPTX::TEX_3D_I32_F32;
break;
case NVPTXISD::Tex3DI32FloatLevel:
Opc = NVPTX::TEX_3D_I32_F32_LEVEL;
break;
case NVPTXISD::Tex3DI32FloatGrad:
Opc = NVPTX::TEX_3D_I32_F32_GRAD;
break;
}
Ops.push_back(TexRef);
Ops.push_back(SampRef);
// Copy over indices
for (unsigned i = 3; i < N->getNumOperands(); ++i) {
Ops.push_back(N->getOperand(i));
}
Ops.push_back(Chain);
Ret = CurDAG->getMachineNode(Opc, SDLoc(N), N->getVTList(), Ops);
return Ret;
}
SDNode *NVPTXDAGToDAGISel::SelectSurfaceIntrinsic(SDNode *N) {
SDValue Chain = N->getOperand(0);
SDValue TexHandle = N->getOperand(1);
SDNode *Ret = NULL;
unsigned Opc = 0;
SmallVector<SDValue, 8> Ops;
switch (N->getOpcode()) {
default: return NULL;
case NVPTXISD::Suld1DI8Trap:
Opc = NVPTX::SULD_1D_I8_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld1DI16Trap:
Opc = NVPTX::SULD_1D_I16_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld1DI32Trap:
Opc = NVPTX::SULD_1D_I32_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld1DV2I8Trap:
Opc = NVPTX::SULD_1D_V2I8_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld1DV2I16Trap:
Opc = NVPTX::SULD_1D_V2I16_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld1DV2I32Trap:
Opc = NVPTX::SULD_1D_V2I32_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld1DV4I8Trap:
Opc = NVPTX::SULD_1D_V4I8_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld1DV4I16Trap:
Opc = NVPTX::SULD_1D_V4I16_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld1DV4I32Trap:
Opc = NVPTX::SULD_1D_V4I32_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld1DArrayI8Trap:
Opc = NVPTX::SULD_1D_ARRAY_I8_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld1DArrayI16Trap:
Opc = NVPTX::SULD_1D_ARRAY_I16_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld1DArrayI32Trap:
Opc = NVPTX::SULD_1D_ARRAY_I32_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld1DArrayV2I8Trap:
Opc = NVPTX::SULD_1D_ARRAY_V2I8_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld1DArrayV2I16Trap:
Opc = NVPTX::SULD_1D_ARRAY_V2I16_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld1DArrayV2I32Trap:
Opc = NVPTX::SULD_1D_ARRAY_V2I32_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld1DArrayV4I8Trap:
Opc = NVPTX::SULD_1D_ARRAY_V4I8_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld1DArrayV4I16Trap:
Opc = NVPTX::SULD_1D_ARRAY_V4I16_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld1DArrayV4I32Trap:
Opc = NVPTX::SULD_1D_ARRAY_V4I32_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld2DI8Trap:
Opc = NVPTX::SULD_2D_I8_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld2DI16Trap:
Opc = NVPTX::SULD_2D_I16_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld2DI32Trap:
Opc = NVPTX::SULD_2D_I32_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld2DV2I8Trap:
Opc = NVPTX::SULD_2D_V2I8_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld2DV2I16Trap:
Opc = NVPTX::SULD_2D_V2I16_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld2DV2I32Trap:
Opc = NVPTX::SULD_2D_V2I32_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld2DV4I8Trap:
Opc = NVPTX::SULD_2D_V4I8_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld2DV4I16Trap:
Opc = NVPTX::SULD_2D_V4I16_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld2DV4I32Trap:
Opc = NVPTX::SULD_2D_V4I32_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld2DArrayI8Trap:
Opc = NVPTX::SULD_2D_ARRAY_I8_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(N->getOperand(4));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld2DArrayI16Trap:
Opc = NVPTX::SULD_2D_ARRAY_I16_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(N->getOperand(4));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld2DArrayI32Trap:
Opc = NVPTX::SULD_2D_ARRAY_I32_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(N->getOperand(4));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld2DArrayV2I8Trap:
Opc = NVPTX::SULD_2D_ARRAY_V2I8_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(N->getOperand(4));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld2DArrayV2I16Trap:
Opc = NVPTX::SULD_2D_ARRAY_V2I16_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(N->getOperand(4));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld2DArrayV2I32Trap:
Opc = NVPTX::SULD_2D_ARRAY_V2I32_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(N->getOperand(4));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld2DArrayV4I8Trap:
Opc = NVPTX::SULD_2D_ARRAY_V4I8_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(N->getOperand(4));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld2DArrayV4I16Trap:
Opc = NVPTX::SULD_2D_ARRAY_V4I16_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(N->getOperand(4));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld2DArrayV4I32Trap:
Opc = NVPTX::SULD_2D_ARRAY_V4I32_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(N->getOperand(4));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld3DI8Trap:
Opc = NVPTX::SULD_3D_I8_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(N->getOperand(4));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld3DI16Trap:
Opc = NVPTX::SULD_3D_I16_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(N->getOperand(4));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld3DI32Trap:
Opc = NVPTX::SULD_3D_I32_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(N->getOperand(4));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld3DV2I8Trap:
Opc = NVPTX::SULD_3D_V2I8_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(N->getOperand(4));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld3DV2I16Trap:
Opc = NVPTX::SULD_3D_V2I16_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(N->getOperand(4));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld3DV2I32Trap:
Opc = NVPTX::SULD_3D_V2I32_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(N->getOperand(4));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld3DV4I8Trap:
Opc = NVPTX::SULD_3D_V4I8_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(N->getOperand(4));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld3DV4I16Trap:
Opc = NVPTX::SULD_3D_V4I16_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(N->getOperand(4));
Ops.push_back(Chain);
break;
case NVPTXISD::Suld3DV4I32Trap:
Opc = NVPTX::SULD_3D_V4I32_TRAP;
Ops.push_back(TexHandle);
Ops.push_back(N->getOperand(2));
Ops.push_back(N->getOperand(3));
Ops.push_back(N->getOperand(4));
Ops.push_back(Chain);
break;
}
Ret = CurDAG->getMachineNode(Opc, SDLoc(N), N->getVTList(), Ops);
return Ret;
}
// SelectDirectAddr - Match a direct address for DAG.
// A direct address could be a globaladdress or externalsymbol.
bool NVPTXDAGToDAGISel::SelectDirectAddr(SDValue N, SDValue &Address) {
// Return true if TGA or ES.
if (N.getOpcode() == ISD::TargetGlobalAddress ||
N.getOpcode() == ISD::TargetExternalSymbol) {
Address = N;
return true;
}
if (N.getOpcode() == NVPTXISD::Wrapper) {
Address = N.getOperand(0);
return true;
}
if (N.getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
unsigned IID = cast<ConstantSDNode>(N.getOperand(0))->getZExtValue();
if (IID == Intrinsic::nvvm_ptr_gen_to_param)
if (N.getOperand(1).getOpcode() == NVPTXISD::MoveParam)
return (SelectDirectAddr(N.getOperand(1).getOperand(0), Address));
}
return false;
}
// symbol+offset
bool NVPTXDAGToDAGISel::SelectADDRsi_imp(
SDNode *OpNode, SDValue Addr, SDValue &Base, SDValue &Offset, MVT mvt) {
if (Addr.getOpcode() == ISD::ADD) {
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1))) {
SDValue base = Addr.getOperand(0);
if (SelectDirectAddr(base, Base)) {
Offset = CurDAG->getTargetConstant(CN->getZExtValue(), mvt);
return true;
}
}
}
return false;
}
// symbol+offset
bool NVPTXDAGToDAGISel::SelectADDRsi(SDNode *OpNode, SDValue Addr,
SDValue &Base, SDValue &Offset) {
return SelectADDRsi_imp(OpNode, Addr, Base, Offset, MVT::i32);
}
// symbol+offset
bool NVPTXDAGToDAGISel::SelectADDRsi64(SDNode *OpNode, SDValue Addr,
SDValue &Base, SDValue &Offset) {
return SelectADDRsi_imp(OpNode, Addr, Base, Offset, MVT::i64);
}
// register+offset
bool NVPTXDAGToDAGISel::SelectADDRri_imp(
SDNode *OpNode, SDValue Addr, SDValue &Base, SDValue &Offset, MVT mvt) {
if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), mvt);
Offset = CurDAG->getTargetConstant(0, mvt);
return true;
}
if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
Addr.getOpcode() == ISD::TargetGlobalAddress)
return false; // direct calls.
if (Addr.getOpcode() == ISD::ADD) {
if (SelectDirectAddr(Addr.getOperand(0), Addr)) {
return false;
}
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1))) {
if (FrameIndexSDNode *FIN =
dyn_cast<FrameIndexSDNode>(Addr.getOperand(0)))
// Constant offset from frame ref.
Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), mvt);
else
Base = Addr.getOperand(0);
Offset = CurDAG->getTargetConstant(CN->getZExtValue(), mvt);
return true;
}
}
return false;
}
// register+offset
bool NVPTXDAGToDAGISel::SelectADDRri(SDNode *OpNode, SDValue Addr,
SDValue &Base, SDValue &Offset) {
return SelectADDRri_imp(OpNode, Addr, Base, Offset, MVT::i32);
}
// register+offset
bool NVPTXDAGToDAGISel::SelectADDRri64(SDNode *OpNode, SDValue Addr,
SDValue &Base, SDValue &Offset) {
return SelectADDRri_imp(OpNode, Addr, Base, Offset, MVT::i64);
}
bool NVPTXDAGToDAGISel::ChkMemSDNodeAddressSpace(SDNode *N,
unsigned int spN) const {
const Value *Src = NULL;
// Even though MemIntrinsicSDNode is a subclas of MemSDNode,
// the classof() for MemSDNode does not include MemIntrinsicSDNode
// (See SelectionDAGNodes.h). So we need to check for both.
if (MemSDNode *mN = dyn_cast<MemSDNode>(N)) {
Src = mN->getSrcValue();
} else if (MemSDNode *mN = dyn_cast<MemIntrinsicSDNode>(N)) {
Src = mN->getSrcValue();
}
if (!Src)
return false;
if (const PointerType *PT = dyn_cast<PointerType>(Src->getType()))
return (PT->getAddressSpace() == spN);
return false;
}
/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
/// inline asm expressions.
bool NVPTXDAGToDAGISel::SelectInlineAsmMemoryOperand(
const SDValue &Op, char ConstraintCode, std::vector<SDValue> &OutOps) {
SDValue Op0, Op1;
switch (ConstraintCode) {
default:
return true;
case 'm': // memory
if (SelectDirectAddr(Op, Op0)) {
OutOps.push_back(Op0);
OutOps.push_back(CurDAG->getTargetConstant(0, MVT::i32));
return false;
}
if (SelectADDRri(Op.getNode(), Op, Op0, Op1)) {
OutOps.push_back(Op0);
OutOps.push_back(Op1);
return false;
}
break;
}
return true;
}