llvm-project/llvm/lib/Target/NVPTX/NVPTXAsmPrinter.cpp

2479 lines
76 KiB
C++

//===-- NVPTXAsmPrinter.cpp - NVPTX LLVM assembly writer ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to NVPTX assembly language.
//
//===----------------------------------------------------------------------===//
#include "NVPTXAsmPrinter.h"
#include "InstPrinter/NVPTXInstPrinter.h"
#include "MCTargetDesc/NVPTXMCAsmInfo.h"
#include "NVPTX.h"
#include "NVPTXInstrInfo.h"
#include "NVPTXMachineFunctionInfo.h"
#include "NVPTXMCExpr.h"
#include "NVPTXRegisterInfo.h"
#include "NVPTXTargetMachine.h"
#include "NVPTXUtilities.h"
#include "cl_common_defines.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TimeValue.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include <sstream>
using namespace llvm;
#define DEPOTNAME "__local_depot"
static cl::opt<bool>
EmitLineNumbers("nvptx-emit-line-numbers", cl::Hidden,
cl::desc("NVPTX Specific: Emit Line numbers even without -G"),
cl::init(true));
static cl::opt<bool>
InterleaveSrc("nvptx-emit-src", cl::ZeroOrMore, cl::Hidden,
cl::desc("NVPTX Specific: Emit source line in ptx file"),
cl::init(false));
namespace {
/// DiscoverDependentGlobals - Return a set of GlobalVariables on which \p V
/// depends.
void DiscoverDependentGlobals(const Value *V,
DenseSet<const GlobalVariable *> &Globals) {
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
Globals.insert(GV);
else {
if (const User *U = dyn_cast<User>(V)) {
for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i) {
DiscoverDependentGlobals(U->getOperand(i), Globals);
}
}
}
}
/// VisitGlobalVariableForEmission - Add \p GV to the list of GlobalVariable
/// instances to be emitted, but only after any dependents have been added
/// first.
void VisitGlobalVariableForEmission(
const GlobalVariable *GV, SmallVectorImpl<const GlobalVariable *> &Order,
DenseSet<const GlobalVariable *> &Visited,
DenseSet<const GlobalVariable *> &Visiting) {
// Have we already visited this one?
if (Visited.count(GV))
return;
// Do we have a circular dependency?
if (Visiting.count(GV))
report_fatal_error("Circular dependency found in global variable set");
// Start visiting this global
Visiting.insert(GV);
// Make sure we visit all dependents first
DenseSet<const GlobalVariable *> Others;
for (unsigned i = 0, e = GV->getNumOperands(); i != e; ++i)
DiscoverDependentGlobals(GV->getOperand(i), Others);
for (DenseSet<const GlobalVariable *>::iterator I = Others.begin(),
E = Others.end();
I != E; ++I)
VisitGlobalVariableForEmission(*I, Order, Visited, Visiting);
// Now we can visit ourself
Order.push_back(GV);
Visited.insert(GV);
Visiting.erase(GV);
}
}
// @TODO: This is a copy from AsmPrinter.cpp. The function is static, so we
// cannot just link to the existing version.
/// LowerConstant - Lower the specified LLVM Constant to an MCExpr.
///
using namespace nvptx;
const MCExpr *nvptx::LowerConstant(const Constant *CV, AsmPrinter &AP) {
MCContext &Ctx = AP.OutContext;
if (CV->isNullValue() || isa<UndefValue>(CV))
return MCConstantExpr::Create(0, Ctx);
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
return MCSymbolRefExpr::Create(AP.getSymbol(GV), Ctx);
if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
if (CE == 0)
llvm_unreachable("Unknown constant value to lower!");
switch (CE->getOpcode()) {
default:
// If the code isn't optimized, there may be outstanding folding
// opportunities. Attempt to fold the expression using DataLayout as a
// last resort before giving up.
if (Constant *C = ConstantFoldConstantExpression(CE, AP.TM.getDataLayout()))
if (C != CE)
return LowerConstant(C, AP);
// Otherwise report the problem to the user.
{
std::string S;
raw_string_ostream OS(S);
OS << "Unsupported expression in static initializer: ";
CE->printAsOperand(OS, /*PrintType=*/ false,
!AP.MF ? 0 : AP.MF->getFunction()->getParent());
report_fatal_error(OS.str());
}
case Instruction::AddrSpaceCast: {
// Strip any addrspace(1)->addrspace(0) addrspace casts. These will be
// handled by the generic() logic in the MCExpr printer
PointerType *DstTy = cast<PointerType>(CE->getType());
PointerType *SrcTy = cast<PointerType>(CE->getOperand(0)->getType());
if (SrcTy->getAddressSpace() == 1 && DstTy->getAddressSpace() == 0) {
return LowerConstant(cast<const Constant>(CE->getOperand(0)), AP);
}
std::string S;
raw_string_ostream OS(S);
OS << "Unsupported expression in static initializer: ";
CE->printAsOperand(OS, /*PrintType=*/ false,
!AP.MF ? 0 : AP.MF->getFunction()->getParent());
report_fatal_error(OS.str());
}
case Instruction::GetElementPtr: {
const DataLayout &TD = *AP.TM.getDataLayout();
// Generate a symbolic expression for the byte address
APInt OffsetAI(TD.getPointerSizeInBits(), 0);
cast<GEPOperator>(CE)->accumulateConstantOffset(TD, OffsetAI);
const MCExpr *Base = LowerConstant(CE->getOperand(0), AP);
if (!OffsetAI)
return Base;
int64_t Offset = OffsetAI.getSExtValue();
return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
Ctx);
}
case Instruction::Trunc:
// We emit the value and depend on the assembler to truncate the generated
// expression properly. This is important for differences between
// blockaddress labels. Since the two labels are in the same function, it
// is reasonable to treat their delta as a 32-bit value.
// FALL THROUGH.
case Instruction::BitCast:
return LowerConstant(CE->getOperand(0), AP);
case Instruction::IntToPtr: {
const DataLayout &TD = *AP.TM.getDataLayout();
// Handle casts to pointers by changing them into casts to the appropriate
// integer type. This promotes constant folding and simplifies this code.
Constant *Op = CE->getOperand(0);
Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
false /*ZExt*/);
return LowerConstant(Op, AP);
}
case Instruction::PtrToInt: {
const DataLayout &TD = *AP.TM.getDataLayout();
// Support only foldable casts to/from pointers that can be eliminated by
// changing the pointer to the appropriately sized integer type.
Constant *Op = CE->getOperand(0);
Type *Ty = CE->getType();
const MCExpr *OpExpr = LowerConstant(Op, AP);
// We can emit the pointer value into this slot if the slot is an
// integer slot equal to the size of the pointer.
if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
return OpExpr;
// Otherwise the pointer is smaller than the resultant integer, mask off
// the high bits so we are sure to get a proper truncation if the input is
// a constant expr.
unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
const MCExpr *MaskExpr =
MCConstantExpr::Create(~0ULL >> (64 - InBits), Ctx);
return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
}
// The MC library also has a right-shift operator, but it isn't consistently
// signed or unsigned between different targets.
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::SDiv:
case Instruction::SRem:
case Instruction::Shl:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP);
const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP);
switch (CE->getOpcode()) {
default:
llvm_unreachable("Unknown binary operator constant cast expr");
case Instruction::Add:
return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
case Instruction::Sub:
return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
case Instruction::Mul:
return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
case Instruction::SDiv:
return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
case Instruction::SRem:
return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
case Instruction::Shl:
return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
case Instruction::And:
return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
case Instruction::Or:
return MCBinaryExpr::CreateOr(LHS, RHS, Ctx);
case Instruction::Xor:
return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
}
}
}
}
void NVPTXAsmPrinter::emitLineNumberAsDotLoc(const MachineInstr &MI) {
if (!EmitLineNumbers)
return;
if (ignoreLoc(MI))
return;
DebugLoc curLoc = MI.getDebugLoc();
if (prevDebugLoc.isUnknown() && curLoc.isUnknown())
return;
if (prevDebugLoc == curLoc)
return;
prevDebugLoc = curLoc;
if (curLoc.isUnknown())
return;
const MachineFunction *MF = MI.getParent()->getParent();
//const TargetMachine &TM = MF->getTarget();
const LLVMContext &ctx = MF->getFunction()->getContext();
DIScope Scope(curLoc.getScope(ctx));
assert((!Scope || Scope.isScope()) &&
"Scope of a DebugLoc should be null or a DIScope.");
if (!Scope)
return;
StringRef fileName(Scope.getFilename());
StringRef dirName(Scope.getDirectory());
SmallString<128> FullPathName = dirName;
if (!dirName.empty() && !sys::path::is_absolute(fileName)) {
sys::path::append(FullPathName, fileName);
fileName = FullPathName.str();
}
if (filenameMap.find(fileName.str()) == filenameMap.end())
return;
// Emit the line from the source file.
if (InterleaveSrc)
this->emitSrcInText(fileName.str(), curLoc.getLine());
std::stringstream temp;
temp << "\t.loc " << filenameMap[fileName.str()] << " " << curLoc.getLine()
<< " " << curLoc.getCol();
OutStreamer.EmitRawText(Twine(temp.str().c_str()));
}
void NVPTXAsmPrinter::EmitInstruction(const MachineInstr *MI) {
SmallString<128> Str;
raw_svector_ostream OS(Str);
if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)
emitLineNumberAsDotLoc(*MI);
MCInst Inst;
lowerToMCInst(MI, Inst);
EmitToStreamer(OutStreamer, Inst);
}
// Handle symbol backtracking for targets that do not support image handles
bool NVPTXAsmPrinter::lowerImageHandleOperand(const MachineInstr *MI,
unsigned OpNo, MCOperand &MCOp) {
const MachineOperand &MO = MI->getOperand(OpNo);
switch (MI->getOpcode()) {
default: return false;
case NVPTX::TEX_1D_F32_I32:
case NVPTX::TEX_1D_F32_F32:
case NVPTX::TEX_1D_F32_F32_LEVEL:
case NVPTX::TEX_1D_F32_F32_GRAD:
case NVPTX::TEX_1D_I32_I32:
case NVPTX::TEX_1D_I32_F32:
case NVPTX::TEX_1D_I32_F32_LEVEL:
case NVPTX::TEX_1D_I32_F32_GRAD:
case NVPTX::TEX_1D_ARRAY_F32_I32:
case NVPTX::TEX_1D_ARRAY_F32_F32:
case NVPTX::TEX_1D_ARRAY_F32_F32_LEVEL:
case NVPTX::TEX_1D_ARRAY_F32_F32_GRAD:
case NVPTX::TEX_1D_ARRAY_I32_I32:
case NVPTX::TEX_1D_ARRAY_I32_F32:
case NVPTX::TEX_1D_ARRAY_I32_F32_LEVEL:
case NVPTX::TEX_1D_ARRAY_I32_F32_GRAD:
case NVPTX::TEX_2D_F32_I32:
case NVPTX::TEX_2D_F32_F32:
case NVPTX::TEX_2D_F32_F32_LEVEL:
case NVPTX::TEX_2D_F32_F32_GRAD:
case NVPTX::TEX_2D_I32_I32:
case NVPTX::TEX_2D_I32_F32:
case NVPTX::TEX_2D_I32_F32_LEVEL:
case NVPTX::TEX_2D_I32_F32_GRAD:
case NVPTX::TEX_2D_ARRAY_F32_I32:
case NVPTX::TEX_2D_ARRAY_F32_F32:
case NVPTX::TEX_2D_ARRAY_F32_F32_LEVEL:
case NVPTX::TEX_2D_ARRAY_F32_F32_GRAD:
case NVPTX::TEX_2D_ARRAY_I32_I32:
case NVPTX::TEX_2D_ARRAY_I32_F32:
case NVPTX::TEX_2D_ARRAY_I32_F32_LEVEL:
case NVPTX::TEX_2D_ARRAY_I32_F32_GRAD:
case NVPTX::TEX_3D_F32_I32:
case NVPTX::TEX_3D_F32_F32:
case NVPTX::TEX_3D_F32_F32_LEVEL:
case NVPTX::TEX_3D_F32_F32_GRAD:
case NVPTX::TEX_3D_I32_I32:
case NVPTX::TEX_3D_I32_F32:
case NVPTX::TEX_3D_I32_F32_LEVEL:
case NVPTX::TEX_3D_I32_F32_GRAD:
{
// This is a texture fetch, so operand 4 is a texref and operand 5 is
// a samplerref
if (OpNo == 4) {
lowerImageHandleSymbol(MO.getImm(), MCOp);
return true;
}
if (OpNo == 5) {
lowerImageHandleSymbol(MO.getImm(), MCOp);
return true;
}
return false;
}
case NVPTX::SULD_1D_I8_TRAP:
case NVPTX::SULD_1D_I16_TRAP:
case NVPTX::SULD_1D_I32_TRAP:
case NVPTX::SULD_1D_ARRAY_I8_TRAP:
case NVPTX::SULD_1D_ARRAY_I16_TRAP:
case NVPTX::SULD_1D_ARRAY_I32_TRAP:
case NVPTX::SULD_2D_I8_TRAP:
case NVPTX::SULD_2D_I16_TRAP:
case NVPTX::SULD_2D_I32_TRAP:
case NVPTX::SULD_2D_ARRAY_I8_TRAP:
case NVPTX::SULD_2D_ARRAY_I16_TRAP:
case NVPTX::SULD_2D_ARRAY_I32_TRAP:
case NVPTX::SULD_3D_I8_TRAP:
case NVPTX::SULD_3D_I16_TRAP:
case NVPTX::SULD_3D_I32_TRAP: {
// This is a V1 surface load, so operand 1 is a surfref
if (OpNo == 1) {
lowerImageHandleSymbol(MO.getImm(), MCOp);
return true;
}
return false;
}
case NVPTX::SULD_1D_V2I8_TRAP:
case NVPTX::SULD_1D_V2I16_TRAP:
case NVPTX::SULD_1D_V2I32_TRAP:
case NVPTX::SULD_1D_ARRAY_V2I8_TRAP:
case NVPTX::SULD_1D_ARRAY_V2I16_TRAP:
case NVPTX::SULD_1D_ARRAY_V2I32_TRAP:
case NVPTX::SULD_2D_V2I8_TRAP:
case NVPTX::SULD_2D_V2I16_TRAP:
case NVPTX::SULD_2D_V2I32_TRAP:
case NVPTX::SULD_2D_ARRAY_V2I8_TRAP:
case NVPTX::SULD_2D_ARRAY_V2I16_TRAP:
case NVPTX::SULD_2D_ARRAY_V2I32_TRAP:
case NVPTX::SULD_3D_V2I8_TRAP:
case NVPTX::SULD_3D_V2I16_TRAP:
case NVPTX::SULD_3D_V2I32_TRAP: {
// This is a V2 surface load, so operand 2 is a surfref
if (OpNo == 2) {
lowerImageHandleSymbol(MO.getImm(), MCOp);
return true;
}
return false;
}
case NVPTX::SULD_1D_V4I8_TRAP:
case NVPTX::SULD_1D_V4I16_TRAP:
case NVPTX::SULD_1D_V4I32_TRAP:
case NVPTX::SULD_1D_ARRAY_V4I8_TRAP:
case NVPTX::SULD_1D_ARRAY_V4I16_TRAP:
case NVPTX::SULD_1D_ARRAY_V4I32_TRAP:
case NVPTX::SULD_2D_V4I8_TRAP:
case NVPTX::SULD_2D_V4I16_TRAP:
case NVPTX::SULD_2D_V4I32_TRAP:
case NVPTX::SULD_2D_ARRAY_V4I8_TRAP:
case NVPTX::SULD_2D_ARRAY_V4I16_TRAP:
case NVPTX::SULD_2D_ARRAY_V4I32_TRAP:
case NVPTX::SULD_3D_V4I8_TRAP:
case NVPTX::SULD_3D_V4I16_TRAP:
case NVPTX::SULD_3D_V4I32_TRAP: {
// This is a V4 surface load, so operand 4 is a surfref
if (OpNo == 4) {
lowerImageHandleSymbol(MO.getImm(), MCOp);
return true;
}
return false;
}
case NVPTX::SUST_B_1D_B8_TRAP:
case NVPTX::SUST_B_1D_B16_TRAP:
case NVPTX::SUST_B_1D_B32_TRAP:
case NVPTX::SUST_B_1D_V2B8_TRAP:
case NVPTX::SUST_B_1D_V2B16_TRAP:
case NVPTX::SUST_B_1D_V2B32_TRAP:
case NVPTX::SUST_B_1D_V4B8_TRAP:
case NVPTX::SUST_B_1D_V4B16_TRAP:
case NVPTX::SUST_B_1D_V4B32_TRAP:
case NVPTX::SUST_B_1D_ARRAY_B8_TRAP:
case NVPTX::SUST_B_1D_ARRAY_B16_TRAP:
case NVPTX::SUST_B_1D_ARRAY_B32_TRAP:
case NVPTX::SUST_B_1D_ARRAY_V2B8_TRAP:
case NVPTX::SUST_B_1D_ARRAY_V2B16_TRAP:
case NVPTX::SUST_B_1D_ARRAY_V2B32_TRAP:
case NVPTX::SUST_B_1D_ARRAY_V4B8_TRAP:
case NVPTX::SUST_B_1D_ARRAY_V4B16_TRAP:
case NVPTX::SUST_B_1D_ARRAY_V4B32_TRAP:
case NVPTX::SUST_B_2D_B8_TRAP:
case NVPTX::SUST_B_2D_B16_TRAP:
case NVPTX::SUST_B_2D_B32_TRAP:
case NVPTX::SUST_B_2D_V2B8_TRAP:
case NVPTX::SUST_B_2D_V2B16_TRAP:
case NVPTX::SUST_B_2D_V2B32_TRAP:
case NVPTX::SUST_B_2D_V4B8_TRAP:
case NVPTX::SUST_B_2D_V4B16_TRAP:
case NVPTX::SUST_B_2D_V4B32_TRAP:
case NVPTX::SUST_B_2D_ARRAY_B8_TRAP:
case NVPTX::SUST_B_2D_ARRAY_B16_TRAP:
case NVPTX::SUST_B_2D_ARRAY_B32_TRAP:
case NVPTX::SUST_B_2D_ARRAY_V2B8_TRAP:
case NVPTX::SUST_B_2D_ARRAY_V2B16_TRAP:
case NVPTX::SUST_B_2D_ARRAY_V2B32_TRAP:
case NVPTX::SUST_B_2D_ARRAY_V4B8_TRAP:
case NVPTX::SUST_B_2D_ARRAY_V4B16_TRAP:
case NVPTX::SUST_B_2D_ARRAY_V4B32_TRAP:
case NVPTX::SUST_B_3D_B8_TRAP:
case NVPTX::SUST_B_3D_B16_TRAP:
case NVPTX::SUST_B_3D_B32_TRAP:
case NVPTX::SUST_B_3D_V2B8_TRAP:
case NVPTX::SUST_B_3D_V2B16_TRAP:
case NVPTX::SUST_B_3D_V2B32_TRAP:
case NVPTX::SUST_B_3D_V4B8_TRAP:
case NVPTX::SUST_B_3D_V4B16_TRAP:
case NVPTX::SUST_B_3D_V4B32_TRAP:
case NVPTX::SUST_P_1D_B8_TRAP:
case NVPTX::SUST_P_1D_B16_TRAP:
case NVPTX::SUST_P_1D_B32_TRAP:
case NVPTX::SUST_P_1D_V2B8_TRAP:
case NVPTX::SUST_P_1D_V2B16_TRAP:
case NVPTX::SUST_P_1D_V2B32_TRAP:
case NVPTX::SUST_P_1D_V4B8_TRAP:
case NVPTX::SUST_P_1D_V4B16_TRAP:
case NVPTX::SUST_P_1D_V4B32_TRAP:
case NVPTX::SUST_P_1D_ARRAY_B8_TRAP:
case NVPTX::SUST_P_1D_ARRAY_B16_TRAP:
case NVPTX::SUST_P_1D_ARRAY_B32_TRAP:
case NVPTX::SUST_P_1D_ARRAY_V2B8_TRAP:
case NVPTX::SUST_P_1D_ARRAY_V2B16_TRAP:
case NVPTX::SUST_P_1D_ARRAY_V2B32_TRAP:
case NVPTX::SUST_P_1D_ARRAY_V4B8_TRAP:
case NVPTX::SUST_P_1D_ARRAY_V4B16_TRAP:
case NVPTX::SUST_P_1D_ARRAY_V4B32_TRAP:
case NVPTX::SUST_P_2D_B8_TRAP:
case NVPTX::SUST_P_2D_B16_TRAP:
case NVPTX::SUST_P_2D_B32_TRAP:
case NVPTX::SUST_P_2D_V2B8_TRAP:
case NVPTX::SUST_P_2D_V2B16_TRAP:
case NVPTX::SUST_P_2D_V2B32_TRAP:
case NVPTX::SUST_P_2D_V4B8_TRAP:
case NVPTX::SUST_P_2D_V4B16_TRAP:
case NVPTX::SUST_P_2D_V4B32_TRAP:
case NVPTX::SUST_P_2D_ARRAY_B8_TRAP:
case NVPTX::SUST_P_2D_ARRAY_B16_TRAP:
case NVPTX::SUST_P_2D_ARRAY_B32_TRAP:
case NVPTX::SUST_P_2D_ARRAY_V2B8_TRAP:
case NVPTX::SUST_P_2D_ARRAY_V2B16_TRAP:
case NVPTX::SUST_P_2D_ARRAY_V2B32_TRAP:
case NVPTX::SUST_P_2D_ARRAY_V4B8_TRAP:
case NVPTX::SUST_P_2D_ARRAY_V4B16_TRAP:
case NVPTX::SUST_P_2D_ARRAY_V4B32_TRAP:
case NVPTX::SUST_P_3D_B8_TRAP:
case NVPTX::SUST_P_3D_B16_TRAP:
case NVPTX::SUST_P_3D_B32_TRAP:
case NVPTX::SUST_P_3D_V2B8_TRAP:
case NVPTX::SUST_P_3D_V2B16_TRAP:
case NVPTX::SUST_P_3D_V2B32_TRAP:
case NVPTX::SUST_P_3D_V4B8_TRAP:
case NVPTX::SUST_P_3D_V4B16_TRAP:
case NVPTX::SUST_P_3D_V4B32_TRAP: {
// This is a surface store, so operand 0 is a surfref
if (OpNo == 0) {
lowerImageHandleSymbol(MO.getImm(), MCOp);
return true;
}
return false;
}
case NVPTX::TXQ_CHANNEL_ORDER:
case NVPTX::TXQ_CHANNEL_DATA_TYPE:
case NVPTX::TXQ_WIDTH:
case NVPTX::TXQ_HEIGHT:
case NVPTX::TXQ_DEPTH:
case NVPTX::TXQ_ARRAY_SIZE:
case NVPTX::TXQ_NUM_SAMPLES:
case NVPTX::TXQ_NUM_MIPMAP_LEVELS:
case NVPTX::SUQ_CHANNEL_ORDER:
case NVPTX::SUQ_CHANNEL_DATA_TYPE:
case NVPTX::SUQ_WIDTH:
case NVPTX::SUQ_HEIGHT:
case NVPTX::SUQ_DEPTH:
case NVPTX::SUQ_ARRAY_SIZE: {
// This is a query, so operand 1 is a surfref/texref
if (OpNo == 1) {
lowerImageHandleSymbol(MO.getImm(), MCOp);
return true;
}
return false;
}
}
}
void NVPTXAsmPrinter::lowerImageHandleSymbol(unsigned Index, MCOperand &MCOp) {
// Ewwww
TargetMachine &TM = const_cast<TargetMachine&>(MF->getTarget());
NVPTXTargetMachine &nvTM = static_cast<NVPTXTargetMachine&>(TM);
const NVPTXMachineFunctionInfo *MFI = MF->getInfo<NVPTXMachineFunctionInfo>();
const char *Sym = MFI->getImageHandleSymbol(Index);
std::string *SymNamePtr =
nvTM.getManagedStrPool()->getManagedString(Sym);
MCOp = GetSymbolRef(OutContext.GetOrCreateSymbol(
StringRef(SymNamePtr->c_str())));
}
void NVPTXAsmPrinter::lowerToMCInst(const MachineInstr *MI, MCInst &OutMI) {
OutMI.setOpcode(MI->getOpcode());
const NVPTXSubtarget &ST = TM.getSubtarget<NVPTXSubtarget>();
// Special: Do not mangle symbol operand of CALL_PROTOTYPE
if (MI->getOpcode() == NVPTX::CALL_PROTOTYPE) {
const MachineOperand &MO = MI->getOperand(0);
OutMI.addOperand(GetSymbolRef(
OutContext.GetOrCreateSymbol(Twine(MO.getSymbolName()))));
return;
}
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
MCOperand MCOp;
if (!ST.hasImageHandles()) {
if (lowerImageHandleOperand(MI, i, MCOp)) {
OutMI.addOperand(MCOp);
continue;
}
}
if (lowerOperand(MO, MCOp))
OutMI.addOperand(MCOp);
}
}
bool NVPTXAsmPrinter::lowerOperand(const MachineOperand &MO,
MCOperand &MCOp) {
switch (MO.getType()) {
default: llvm_unreachable("unknown operand type");
case MachineOperand::MO_Register:
MCOp = MCOperand::CreateReg(encodeVirtualRegister(MO.getReg()));
break;
case MachineOperand::MO_Immediate:
MCOp = MCOperand::CreateImm(MO.getImm());
break;
case MachineOperand::MO_MachineBasicBlock:
MCOp = MCOperand::CreateExpr(MCSymbolRefExpr::Create(
MO.getMBB()->getSymbol(), OutContext));
break;
case MachineOperand::MO_ExternalSymbol:
MCOp = GetSymbolRef(GetExternalSymbolSymbol(MO.getSymbolName()));
break;
case MachineOperand::MO_GlobalAddress:
MCOp = GetSymbolRef(getSymbol(MO.getGlobal()));
break;
case MachineOperand::MO_FPImmediate: {
const ConstantFP *Cnt = MO.getFPImm();
APFloat Val = Cnt->getValueAPF();
switch (Cnt->getType()->getTypeID()) {
default: report_fatal_error("Unsupported FP type"); break;
case Type::FloatTyID:
MCOp = MCOperand::CreateExpr(
NVPTXFloatMCExpr::CreateConstantFPSingle(Val, OutContext));
break;
case Type::DoubleTyID:
MCOp = MCOperand::CreateExpr(
NVPTXFloatMCExpr::CreateConstantFPDouble(Val, OutContext));
break;
}
break;
}
}
return true;
}
unsigned NVPTXAsmPrinter::encodeVirtualRegister(unsigned Reg) {
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
const TargetRegisterClass *RC = MRI->getRegClass(Reg);
DenseMap<unsigned, unsigned> &RegMap = VRegMapping[RC];
unsigned RegNum = RegMap[Reg];
// Encode the register class in the upper 4 bits
// Must be kept in sync with NVPTXInstPrinter::printRegName
unsigned Ret = 0;
if (RC == &NVPTX::Int1RegsRegClass) {
Ret = (1 << 28);
} else if (RC == &NVPTX::Int16RegsRegClass) {
Ret = (2 << 28);
} else if (RC == &NVPTX::Int32RegsRegClass) {
Ret = (3 << 28);
} else if (RC == &NVPTX::Int64RegsRegClass) {
Ret = (4 << 28);
} else if (RC == &NVPTX::Float32RegsRegClass) {
Ret = (5 << 28);
} else if (RC == &NVPTX::Float64RegsRegClass) {
Ret = (6 << 28);
} else {
report_fatal_error("Bad register class");
}
// Insert the vreg number
Ret |= (RegNum & 0x0FFFFFFF);
return Ret;
} else {
// Some special-use registers are actually physical registers.
// Encode this as the register class ID of 0 and the real register ID.
return Reg & 0x0FFFFFFF;
}
}
MCOperand NVPTXAsmPrinter::GetSymbolRef(const MCSymbol *Symbol) {
const MCExpr *Expr;
Expr = MCSymbolRefExpr::Create(Symbol, MCSymbolRefExpr::VK_None,
OutContext);
return MCOperand::CreateExpr(Expr);
}
void NVPTXAsmPrinter::printReturnValStr(const Function *F, raw_ostream &O) {
const DataLayout *TD = TM.getDataLayout();
const TargetLowering *TLI = TM.getTargetLowering();
Type *Ty = F->getReturnType();
bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
if (Ty->getTypeID() == Type::VoidTyID)
return;
O << " (";
if (isABI) {
if (Ty->isFloatingPointTy() || Ty->isIntegerTy()) {
unsigned size = 0;
if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty)) {
size = ITy->getBitWidth();
if (size < 32)
size = 32;
} else {
assert(Ty->isFloatingPointTy() && "Floating point type expected here");
size = Ty->getPrimitiveSizeInBits();
}
O << ".param .b" << size << " func_retval0";
} else if (isa<PointerType>(Ty)) {
O << ".param .b" << TLI->getPointerTy().getSizeInBits()
<< " func_retval0";
} else {
if ((Ty->getTypeID() == Type::StructTyID) || isa<VectorType>(Ty)) {
SmallVector<EVT, 16> vtparts;
ComputeValueVTs(*TLI, Ty, vtparts);
unsigned totalsz = 0;
for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
unsigned elems = 1;
EVT elemtype = vtparts[i];
if (vtparts[i].isVector()) {
elems = vtparts[i].getVectorNumElements();
elemtype = vtparts[i].getVectorElementType();
}
for (unsigned j = 0, je = elems; j != je; ++j) {
unsigned sz = elemtype.getSizeInBits();
if (elemtype.isInteger() && (sz < 8))
sz = 8;
totalsz += sz / 8;
}
}
unsigned retAlignment = 0;
if (!llvm::getAlign(*F, 0, retAlignment))
retAlignment = TD->getABITypeAlignment(Ty);
O << ".param .align " << retAlignment << " .b8 func_retval0[" << totalsz
<< "]";
} else
assert(false && "Unknown return type");
}
} else {
SmallVector<EVT, 16> vtparts;
ComputeValueVTs(*TLI, Ty, vtparts);
unsigned idx = 0;
for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
unsigned elems = 1;
EVT elemtype = vtparts[i];
if (vtparts[i].isVector()) {
elems = vtparts[i].getVectorNumElements();
elemtype = vtparts[i].getVectorElementType();
}
for (unsigned j = 0, je = elems; j != je; ++j) {
unsigned sz = elemtype.getSizeInBits();
if (elemtype.isInteger() && (sz < 32))
sz = 32;
O << ".reg .b" << sz << " func_retval" << idx;
if (j < je - 1)
O << ", ";
++idx;
}
if (i < e - 1)
O << ", ";
}
}
O << ") ";
return;
}
void NVPTXAsmPrinter::printReturnValStr(const MachineFunction &MF,
raw_ostream &O) {
const Function *F = MF.getFunction();
printReturnValStr(F, O);
}
void NVPTXAsmPrinter::EmitFunctionEntryLabel() {
SmallString<128> Str;
raw_svector_ostream O(Str);
if (!GlobalsEmitted) {
emitGlobals(*MF->getFunction()->getParent());
GlobalsEmitted = true;
}
// Set up
MRI = &MF->getRegInfo();
F = MF->getFunction();
emitLinkageDirective(F, O);
if (llvm::isKernelFunction(*F))
O << ".entry ";
else {
O << ".func ";
printReturnValStr(*MF, O);
}
O << *CurrentFnSym;
emitFunctionParamList(*MF, O);
if (llvm::isKernelFunction(*F))
emitKernelFunctionDirectives(*F, O);
OutStreamer.EmitRawText(O.str());
prevDebugLoc = DebugLoc();
}
void NVPTXAsmPrinter::EmitFunctionBodyStart() {
VRegMapping.clear();
OutStreamer.EmitRawText(StringRef("{\n"));
setAndEmitFunctionVirtualRegisters(*MF);
SmallString<128> Str;
raw_svector_ostream O(Str);
emitDemotedVars(MF->getFunction(), O);
OutStreamer.EmitRawText(O.str());
}
void NVPTXAsmPrinter::EmitFunctionBodyEnd() {
OutStreamer.EmitRawText(StringRef("}\n"));
VRegMapping.clear();
}
void NVPTXAsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
unsigned RegNo = MI->getOperand(0).getReg();
const TargetRegisterInfo *TRI = TM.getRegisterInfo();
if (TRI->isVirtualRegister(RegNo)) {
OutStreamer.AddComment(Twine("implicit-def: ") +
getVirtualRegisterName(RegNo));
} else {
OutStreamer.AddComment(Twine("implicit-def: ") +
TM.getRegisterInfo()->getName(RegNo));
}
OutStreamer.AddBlankLine();
}
void NVPTXAsmPrinter::emitKernelFunctionDirectives(const Function &F,
raw_ostream &O) const {
// If the NVVM IR has some of reqntid* specified, then output
// the reqntid directive, and set the unspecified ones to 1.
// If none of reqntid* is specified, don't output reqntid directive.
unsigned reqntidx, reqntidy, reqntidz;
bool specified = false;
if (llvm::getReqNTIDx(F, reqntidx) == false)
reqntidx = 1;
else
specified = true;
if (llvm::getReqNTIDy(F, reqntidy) == false)
reqntidy = 1;
else
specified = true;
if (llvm::getReqNTIDz(F, reqntidz) == false)
reqntidz = 1;
else
specified = true;
if (specified)
O << ".reqntid " << reqntidx << ", " << reqntidy << ", " << reqntidz
<< "\n";
// If the NVVM IR has some of maxntid* specified, then output
// the maxntid directive, and set the unspecified ones to 1.
// If none of maxntid* is specified, don't output maxntid directive.
unsigned maxntidx, maxntidy, maxntidz;
specified = false;
if (llvm::getMaxNTIDx(F, maxntidx) == false)
maxntidx = 1;
else
specified = true;
if (llvm::getMaxNTIDy(F, maxntidy) == false)
maxntidy = 1;
else
specified = true;
if (llvm::getMaxNTIDz(F, maxntidz) == false)
maxntidz = 1;
else
specified = true;
if (specified)
O << ".maxntid " << maxntidx << ", " << maxntidy << ", " << maxntidz
<< "\n";
unsigned mincta;
if (llvm::getMinCTASm(F, mincta))
O << ".minnctapersm " << mincta << "\n";
}
std::string
NVPTXAsmPrinter::getVirtualRegisterName(unsigned Reg) const {
const TargetRegisterClass *RC = MRI->getRegClass(Reg);
std::string Name;
raw_string_ostream NameStr(Name);
VRegRCMap::const_iterator I = VRegMapping.find(RC);
assert(I != VRegMapping.end() && "Bad register class");
const DenseMap<unsigned, unsigned> &RegMap = I->second;
VRegMap::const_iterator VI = RegMap.find(Reg);
assert(VI != RegMap.end() && "Bad virtual register");
unsigned MappedVR = VI->second;
NameStr << getNVPTXRegClassStr(RC) << MappedVR;
NameStr.flush();
return Name;
}
void NVPTXAsmPrinter::emitVirtualRegister(unsigned int vr,
raw_ostream &O) {
O << getVirtualRegisterName(vr);
}
void NVPTXAsmPrinter::printVecModifiedImmediate(
const MachineOperand &MO, const char *Modifier, raw_ostream &O) {
static const char vecelem[] = { '0', '1', '2', '3', '0', '1', '2', '3' };
int Imm = (int) MO.getImm();
if (0 == strcmp(Modifier, "vecelem"))
O << "_" << vecelem[Imm];
else if (0 == strcmp(Modifier, "vecv4comm1")) {
if ((Imm < 0) || (Imm > 3))
O << "//";
} else if (0 == strcmp(Modifier, "vecv4comm2")) {
if ((Imm < 4) || (Imm > 7))
O << "//";
} else if (0 == strcmp(Modifier, "vecv4pos")) {
if (Imm < 0)
Imm = 0;
O << "_" << vecelem[Imm % 4];
} else if (0 == strcmp(Modifier, "vecv2comm1")) {
if ((Imm < 0) || (Imm > 1))
O << "//";
} else if (0 == strcmp(Modifier, "vecv2comm2")) {
if ((Imm < 2) || (Imm > 3))
O << "//";
} else if (0 == strcmp(Modifier, "vecv2pos")) {
if (Imm < 0)
Imm = 0;
O << "_" << vecelem[Imm % 2];
} else
llvm_unreachable("Unknown Modifier on immediate operand");
}
void NVPTXAsmPrinter::emitDeclaration(const Function *F, raw_ostream &O) {
emitLinkageDirective(F, O);
if (llvm::isKernelFunction(*F))
O << ".entry ";
else
O << ".func ";
printReturnValStr(F, O);
O << *getSymbol(F) << "\n";
emitFunctionParamList(F, O);
O << ";\n";
}
static bool usedInGlobalVarDef(const Constant *C) {
if (!C)
return false;
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
if (GV->getName().str() == "llvm.used")
return false;
return true;
}
for (const User *U : C->users())
if (const Constant *C = dyn_cast<Constant>(U))
if (usedInGlobalVarDef(C))
return true;
return false;
}
static bool usedInOneFunc(const User *U, Function const *&oneFunc) {
if (const GlobalVariable *othergv = dyn_cast<GlobalVariable>(U)) {
if (othergv->getName().str() == "llvm.used")
return true;
}
if (const Instruction *instr = dyn_cast<Instruction>(U)) {
if (instr->getParent() && instr->getParent()->getParent()) {
const Function *curFunc = instr->getParent()->getParent();
if (oneFunc && (curFunc != oneFunc))
return false;
oneFunc = curFunc;
return true;
} else
return false;
}
if (const MDNode *md = dyn_cast<MDNode>(U))
if (md->hasName() && ((md->getName().str() == "llvm.dbg.gv") ||
(md->getName().str() == "llvm.dbg.sp")))
return true;
for (const User *UU : U->users())
if (usedInOneFunc(UU, oneFunc) == false)
return false;
return true;
}
/* Find out if a global variable can be demoted to local scope.
* Currently, this is valid for CUDA shared variables, which have local
* scope and global lifetime. So the conditions to check are :
* 1. Is the global variable in shared address space?
* 2. Does it have internal linkage?
* 3. Is the global variable referenced only in one function?
*/
static bool canDemoteGlobalVar(const GlobalVariable *gv, Function const *&f) {
if (gv->hasInternalLinkage() == false)
return false;
const PointerType *Pty = gv->getType();
if (Pty->getAddressSpace() != llvm::ADDRESS_SPACE_SHARED)
return false;
const Function *oneFunc = 0;
bool flag = usedInOneFunc(gv, oneFunc);
if (flag == false)
return false;
if (!oneFunc)
return false;
f = oneFunc;
return true;
}
static bool useFuncSeen(const Constant *C,
llvm::DenseMap<const Function *, bool> &seenMap) {
for (const User *U : C->users()) {
if (const Constant *cu = dyn_cast<Constant>(U)) {
if (useFuncSeen(cu, seenMap))
return true;
} else if (const Instruction *I = dyn_cast<Instruction>(U)) {
const BasicBlock *bb = I->getParent();
if (!bb)
continue;
const Function *caller = bb->getParent();
if (!caller)
continue;
if (seenMap.find(caller) != seenMap.end())
return true;
}
}
return false;
}
void NVPTXAsmPrinter::emitDeclarations(const Module &M, raw_ostream &O) {
llvm::DenseMap<const Function *, bool> seenMap;
for (Module::const_iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI) {
const Function *F = FI;
if (F->isDeclaration()) {
if (F->use_empty())
continue;
if (F->getIntrinsicID())
continue;
emitDeclaration(F, O);
continue;
}
for (const User *U : F->users()) {
if (const Constant *C = dyn_cast<Constant>(U)) {
if (usedInGlobalVarDef(C)) {
// The use is in the initialization of a global variable
// that is a function pointer, so print a declaration
// for the original function
emitDeclaration(F, O);
break;
}
// Emit a declaration of this function if the function that
// uses this constant expr has already been seen.
if (useFuncSeen(C, seenMap)) {
emitDeclaration(F, O);
break;
}
}
if (!isa<Instruction>(U))
continue;
const Instruction *instr = cast<Instruction>(U);
const BasicBlock *bb = instr->getParent();
if (!bb)
continue;
const Function *caller = bb->getParent();
if (!caller)
continue;
// If a caller has already been seen, then the caller is
// appearing in the module before the callee. so print out
// a declaration for the callee.
if (seenMap.find(caller) != seenMap.end()) {
emitDeclaration(F, O);
break;
}
}
seenMap[F] = true;
}
}
void NVPTXAsmPrinter::recordAndEmitFilenames(Module &M) {
DebugInfoFinder DbgFinder;
DbgFinder.processModule(M);
unsigned i = 1;
for (DICompileUnit DIUnit : DbgFinder.compile_units()) {
StringRef Filename(DIUnit.getFilename());
StringRef Dirname(DIUnit.getDirectory());
SmallString<128> FullPathName = Dirname;
if (!Dirname.empty() && !sys::path::is_absolute(Filename)) {
sys::path::append(FullPathName, Filename);
Filename = FullPathName.str();
}
if (filenameMap.find(Filename.str()) != filenameMap.end())
continue;
filenameMap[Filename.str()] = i;
OutStreamer.EmitDwarfFileDirective(i, "", Filename.str());
++i;
}
for (DISubprogram SP : DbgFinder.subprograms()) {
StringRef Filename(SP.getFilename());
StringRef Dirname(SP.getDirectory());
SmallString<128> FullPathName = Dirname;
if (!Dirname.empty() && !sys::path::is_absolute(Filename)) {
sys::path::append(FullPathName, Filename);
Filename = FullPathName.str();
}
if (filenameMap.find(Filename.str()) != filenameMap.end())
continue;
filenameMap[Filename.str()] = i;
++i;
}
}
bool NVPTXAsmPrinter::doInitialization(Module &M) {
SmallString<128> Str1;
raw_svector_ostream OS1(Str1);
MMI = getAnalysisIfAvailable<MachineModuleInfo>();
MMI->AnalyzeModule(M);
// We need to call the parent's one explicitly.
//bool Result = AsmPrinter::doInitialization(M);
// Initialize TargetLoweringObjectFile.
const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
.Initialize(OutContext, TM);
Mang = new Mangler(TM.getDataLayout());
// Emit header before any dwarf directives are emitted below.
emitHeader(M, OS1);
OutStreamer.EmitRawText(OS1.str());
// Already commented out
//bool Result = AsmPrinter::doInitialization(M);
// Emit module-level inline asm if it exists.
if (!M.getModuleInlineAsm().empty()) {
OutStreamer.AddComment("Start of file scope inline assembly");
OutStreamer.AddBlankLine();
OutStreamer.EmitRawText(StringRef(M.getModuleInlineAsm()));
OutStreamer.AddBlankLine();
OutStreamer.AddComment("End of file scope inline assembly");
OutStreamer.AddBlankLine();
}
if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)
recordAndEmitFilenames(M);
GlobalsEmitted = false;
return false; // success
}
void NVPTXAsmPrinter::emitGlobals(const Module &M) {
SmallString<128> Str2;
raw_svector_ostream OS2(Str2);
emitDeclarations(M, OS2);
// As ptxas does not support forward references of globals, we need to first
// sort the list of module-level globals in def-use order. We visit each
// global variable in order, and ensure that we emit it *after* its dependent
// globals. We use a little extra memory maintaining both a set and a list to
// have fast searches while maintaining a strict ordering.
SmallVector<const GlobalVariable *, 8> Globals;
DenseSet<const GlobalVariable *> GVVisited;
DenseSet<const GlobalVariable *> GVVisiting;
// Visit each global variable, in order
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
VisitGlobalVariableForEmission(I, Globals, GVVisited, GVVisiting);
assert(GVVisited.size() == M.getGlobalList().size() &&
"Missed a global variable");
assert(GVVisiting.size() == 0 && "Did not fully process a global variable");
// Print out module-level global variables in proper order
for (unsigned i = 0, e = Globals.size(); i != e; ++i)
printModuleLevelGV(Globals[i], OS2);
OS2 << '\n';
OutStreamer.EmitRawText(OS2.str());
}
void NVPTXAsmPrinter::emitHeader(Module &M, raw_ostream &O) {
O << "//\n";
O << "// Generated by LLVM NVPTX Back-End\n";
O << "//\n";
O << "\n";
unsigned PTXVersion = nvptxSubtarget.getPTXVersion();
O << ".version " << (PTXVersion / 10) << "." << (PTXVersion % 10) << "\n";
O << ".target ";
O << nvptxSubtarget.getTargetName();
if (nvptxSubtarget.getDrvInterface() == NVPTX::NVCL)
O << ", texmode_independent";
if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA) {
if (!nvptxSubtarget.hasDouble())
O << ", map_f64_to_f32";
}
if (MAI->doesSupportDebugInformation())
O << ", debug";
O << "\n";
O << ".address_size ";
if (nvptxSubtarget.is64Bit())
O << "64";
else
O << "32";
O << "\n";
O << "\n";
}
bool NVPTXAsmPrinter::doFinalization(Module &M) {
// If we did not emit any functions, then the global declarations have not
// yet been emitted.
if (!GlobalsEmitted) {
emitGlobals(M);
GlobalsEmitted = true;
}
// XXX Temproarily remove global variables so that doFinalization() will not
// emit them again (global variables are emitted at beginning).
Module::GlobalListType &global_list = M.getGlobalList();
int i, n = global_list.size();
GlobalVariable **gv_array = new GlobalVariable *[n];
// first, back-up GlobalVariable in gv_array
i = 0;
for (Module::global_iterator I = global_list.begin(), E = global_list.end();
I != E; ++I)
gv_array[i++] = &*I;
// second, empty global_list
while (!global_list.empty())
global_list.remove(global_list.begin());
// call doFinalization
bool ret = AsmPrinter::doFinalization(M);
// now we restore global variables
for (i = 0; i < n; i++)
global_list.insert(global_list.end(), gv_array[i]);
clearAnnotationCache(&M);
delete[] gv_array;
return ret;
//bool Result = AsmPrinter::doFinalization(M);
// Instead of calling the parents doFinalization, we may
// clone parents doFinalization and customize here.
// Currently, we if NVISA out the EmitGlobals() in
// parent's doFinalization, which is too intrusive.
//
// Same for the doInitialization.
//return Result;
}
// This function emits appropriate linkage directives for
// functions and global variables.
//
// extern function declaration -> .extern
// extern function definition -> .visible
// external global variable with init -> .visible
// external without init -> .extern
// appending -> not allowed, assert.
void NVPTXAsmPrinter::emitLinkageDirective(const GlobalValue *V,
raw_ostream &O) {
if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA) {
if (V->hasExternalLinkage()) {
if (isa<GlobalVariable>(V)) {
const GlobalVariable *GVar = cast<GlobalVariable>(V);
if (GVar) {
if (GVar->hasInitializer())
O << ".visible ";
else
O << ".extern ";
}
} else if (V->isDeclaration())
O << ".extern ";
else
O << ".visible ";
} else if (V->hasAppendingLinkage()) {
std::string msg;
msg.append("Error: ");
msg.append("Symbol ");
if (V->hasName())
msg.append(V->getName().str());
msg.append("has unsupported appending linkage type");
llvm_unreachable(msg.c_str());
}
}
}
void NVPTXAsmPrinter::printModuleLevelGV(const GlobalVariable *GVar,
raw_ostream &O,
bool processDemoted) {
// Skip meta data
if (GVar->hasSection()) {
if (GVar->getSection() == "llvm.metadata")
return;
}
const DataLayout *TD = TM.getDataLayout();
// GlobalVariables are always constant pointers themselves.
const PointerType *PTy = GVar->getType();
Type *ETy = PTy->getElementType();
if (GVar->hasExternalLinkage()) {
if (GVar->hasInitializer())
O << ".visible ";
else
O << ".extern ";
}
if (llvm::isTexture(*GVar)) {
O << ".global .texref " << llvm::getTextureName(*GVar) << ";\n";
return;
}
if (llvm::isSurface(*GVar)) {
O << ".global .surfref " << llvm::getSurfaceName(*GVar) << ";\n";
return;
}
if (GVar->isDeclaration()) {
// (extern) declarations, no definition or initializer
// Currently the only known declaration is for an automatic __local
// (.shared) promoted to global.
emitPTXGlobalVariable(GVar, O);
O << ";\n";
return;
}
if (llvm::isSampler(*GVar)) {
O << ".global .samplerref " << llvm::getSamplerName(*GVar);
const Constant *Initializer = NULL;
if (GVar->hasInitializer())
Initializer = GVar->getInitializer();
const ConstantInt *CI = NULL;
if (Initializer)
CI = dyn_cast<ConstantInt>(Initializer);
if (CI) {
unsigned sample = CI->getZExtValue();
O << " = { ";
for (int i = 0,
addr = ((sample & __CLK_ADDRESS_MASK) >> __CLK_ADDRESS_BASE);
i < 3; i++) {
O << "addr_mode_" << i << " = ";
switch (addr) {
case 0:
O << "wrap";
break;
case 1:
O << "clamp_to_border";
break;
case 2:
O << "clamp_to_edge";
break;
case 3:
O << "wrap";
break;
case 4:
O << "mirror";
break;
}
O << ", ";
}
O << "filter_mode = ";
switch ((sample & __CLK_FILTER_MASK) >> __CLK_FILTER_BASE) {
case 0:
O << "nearest";
break;
case 1:
O << "linear";
break;
case 2:
assert(0 && "Anisotropic filtering is not supported");
default:
O << "nearest";
break;
}
if (!((sample & __CLK_NORMALIZED_MASK) >> __CLK_NORMALIZED_BASE)) {
O << ", force_unnormalized_coords = 1";
}
O << " }";
}
O << ";\n";
return;
}
if (GVar->hasPrivateLinkage()) {
if (!strncmp(GVar->getName().data(), "unrollpragma", 12))
return;
// FIXME - need better way (e.g. Metadata) to avoid generating this global
if (!strncmp(GVar->getName().data(), "filename", 8))
return;
if (GVar->use_empty())
return;
}
const Function *demotedFunc = 0;
if (!processDemoted && canDemoteGlobalVar(GVar, demotedFunc)) {
O << "// " << GVar->getName().str() << " has been demoted\n";
if (localDecls.find(demotedFunc) != localDecls.end())
localDecls[demotedFunc].push_back(GVar);
else {
std::vector<const GlobalVariable *> temp;
temp.push_back(GVar);
localDecls[demotedFunc] = temp;
}
return;
}
O << ".";
emitPTXAddressSpace(PTy->getAddressSpace(), O);
if (GVar->getAlignment() == 0)
O << " .align " << (int) TD->getPrefTypeAlignment(ETy);
else
O << " .align " << GVar->getAlignment();
if (ETy->isSingleValueType()) {
O << " .";
// Special case: ABI requires that we use .u8 for predicates
if (ETy->isIntegerTy(1))
O << "u8";
else
O << getPTXFundamentalTypeStr(ETy, false);
O << " ";
O << *getSymbol(GVar);
// Ptx allows variable initilization only for constant and global state
// spaces.
if (((PTy->getAddressSpace() == llvm::ADDRESS_SPACE_GLOBAL) ||
(PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST)) &&
GVar->hasInitializer()) {
const Constant *Initializer = GVar->getInitializer();
if (!Initializer->isNullValue()) {
O << " = ";
printScalarConstant(Initializer, O);
}
}
} else {
unsigned int ElementSize = 0;
// Although PTX has direct support for struct type and array type and
// LLVM IR is very similar to PTX, the LLVM CodeGen does not support for
// targets that support these high level field accesses. Structs, arrays
// and vectors are lowered into arrays of bytes.
switch (ETy->getTypeID()) {
case Type::StructTyID:
case Type::ArrayTyID:
case Type::VectorTyID:
ElementSize = TD->getTypeStoreSize(ETy);
// Ptx allows variable initilization only for constant and
// global state spaces.
if (((PTy->getAddressSpace() == llvm::ADDRESS_SPACE_GLOBAL) ||
(PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST)) &&
GVar->hasInitializer()) {
const Constant *Initializer = GVar->getInitializer();
if (!isa<UndefValue>(Initializer) && !Initializer->isNullValue()) {
AggBuffer aggBuffer(ElementSize, O, *this);
bufferAggregateConstant(Initializer, &aggBuffer);
if (aggBuffer.numSymbols) {
if (nvptxSubtarget.is64Bit()) {
O << " .u64 " << *getSymbol(GVar) << "[";
O << ElementSize / 8;
} else {
O << " .u32 " << *getSymbol(GVar) << "[";
O << ElementSize / 4;
}
O << "]";
} else {
O << " .b8 " << *getSymbol(GVar) << "[";
O << ElementSize;
O << "]";
}
O << " = {";
aggBuffer.print();
O << "}";
} else {
O << " .b8 " << *getSymbol(GVar);
if (ElementSize) {
O << "[";
O << ElementSize;
O << "]";
}
}
} else {
O << " .b8 " << *getSymbol(GVar);
if (ElementSize) {
O << "[";
O << ElementSize;
O << "]";
}
}
break;
default:
assert(0 && "type not supported yet");
}
}
O << ";\n";
}
void NVPTXAsmPrinter::emitDemotedVars(const Function *f, raw_ostream &O) {
if (localDecls.find(f) == localDecls.end())
return;
std::vector<const GlobalVariable *> &gvars = localDecls[f];
for (unsigned i = 0, e = gvars.size(); i != e; ++i) {
O << "\t// demoted variable\n\t";
printModuleLevelGV(gvars[i], O, true);
}
}
void NVPTXAsmPrinter::emitPTXAddressSpace(unsigned int AddressSpace,
raw_ostream &O) const {
switch (AddressSpace) {
case llvm::ADDRESS_SPACE_LOCAL:
O << "local";
break;
case llvm::ADDRESS_SPACE_GLOBAL:
O << "global";
break;
case llvm::ADDRESS_SPACE_CONST:
O << "const";
break;
case llvm::ADDRESS_SPACE_SHARED:
O << "shared";
break;
default:
report_fatal_error("Bad address space found while emitting PTX");
break;
}
}
std::string
NVPTXAsmPrinter::getPTXFundamentalTypeStr(const Type *Ty, bool useB4PTR) const {
switch (Ty->getTypeID()) {
default:
llvm_unreachable("unexpected type");
break;
case Type::IntegerTyID: {
unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
if (NumBits == 1)
return "pred";
else if (NumBits <= 64) {
std::string name = "u";
return name + utostr(NumBits);
} else {
llvm_unreachable("Integer too large");
break;
}
break;
}
case Type::FloatTyID:
return "f32";
case Type::DoubleTyID:
return "f64";
case Type::PointerTyID:
if (nvptxSubtarget.is64Bit())
if (useB4PTR)
return "b64";
else
return "u64";
else if (useB4PTR)
return "b32";
else
return "u32";
}
llvm_unreachable("unexpected type");
return NULL;
}
void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable *GVar,
raw_ostream &O) {
const DataLayout *TD = TM.getDataLayout();
// GlobalVariables are always constant pointers themselves.
const PointerType *PTy = GVar->getType();
Type *ETy = PTy->getElementType();
O << ".";
emitPTXAddressSpace(PTy->getAddressSpace(), O);
if (GVar->getAlignment() == 0)
O << " .align " << (int) TD->getPrefTypeAlignment(ETy);
else
O << " .align " << GVar->getAlignment();
if (ETy->isSingleValueType()) {
O << " .";
O << getPTXFundamentalTypeStr(ETy);
O << " ";
O << *getSymbol(GVar);
return;
}
int64_t ElementSize = 0;
// Although PTX has direct support for struct type and array type and LLVM IR
// is very similar to PTX, the LLVM CodeGen does not support for targets that
// support these high level field accesses. Structs and arrays are lowered
// into arrays of bytes.
switch (ETy->getTypeID()) {
case Type::StructTyID:
case Type::ArrayTyID:
case Type::VectorTyID:
ElementSize = TD->getTypeStoreSize(ETy);
O << " .b8 " << *getSymbol(GVar) << "[";
if (ElementSize) {
O << itostr(ElementSize);
}
O << "]";
break;
default:
assert(0 && "type not supported yet");
}
return;
}
static unsigned int getOpenCLAlignment(const DataLayout *TD, Type *Ty) {
if (Ty->isSingleValueType())
return TD->getPrefTypeAlignment(Ty);
const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
if (ATy)
return getOpenCLAlignment(TD, ATy->getElementType());
const VectorType *VTy = dyn_cast<VectorType>(Ty);
if (VTy) {
Type *ETy = VTy->getElementType();
unsigned int numE = VTy->getNumElements();
unsigned int alignE = TD->getPrefTypeAlignment(ETy);
if (numE == 3)
return 4 * alignE;
else
return numE * alignE;
}
const StructType *STy = dyn_cast<StructType>(Ty);
if (STy) {
unsigned int alignStruct = 1;
// Go through each element of the struct and find the
// largest alignment.
for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
Type *ETy = STy->getElementType(i);
unsigned int align = getOpenCLAlignment(TD, ETy);
if (align > alignStruct)
alignStruct = align;
}
return alignStruct;
}
const FunctionType *FTy = dyn_cast<FunctionType>(Ty);
if (FTy)
return TD->getPointerPrefAlignment();
return TD->getPrefTypeAlignment(Ty);
}
void NVPTXAsmPrinter::printParamName(Function::const_arg_iterator I,
int paramIndex, raw_ostream &O) {
if ((nvptxSubtarget.getDrvInterface() == NVPTX::NVCL) ||
(nvptxSubtarget.getDrvInterface() == NVPTX::CUDA))
O << *getSymbol(I->getParent()) << "_param_" << paramIndex;
else {
std::string argName = I->getName();
const char *p = argName.c_str();
while (*p) {
if (*p == '.')
O << "_";
else
O << *p;
p++;
}
}
}
void NVPTXAsmPrinter::printParamName(int paramIndex, raw_ostream &O) {
Function::const_arg_iterator I, E;
int i = 0;
if ((nvptxSubtarget.getDrvInterface() == NVPTX::NVCL) ||
(nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)) {
O << *CurrentFnSym << "_param_" << paramIndex;
return;
}
for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, i++) {
if (i == paramIndex) {
printParamName(I, paramIndex, O);
return;
}
}
llvm_unreachable("paramIndex out of bound");
}
void NVPTXAsmPrinter::emitFunctionParamList(const Function *F, raw_ostream &O) {
const DataLayout *TD = TM.getDataLayout();
const AttributeSet &PAL = F->getAttributes();
const TargetLowering *TLI = TM.getTargetLowering();
Function::const_arg_iterator I, E;
unsigned paramIndex = 0;
bool first = true;
bool isKernelFunc = llvm::isKernelFunction(*F);
bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
MVT thePointerTy = TLI->getPointerTy();
O << "(\n";
for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, paramIndex++) {
Type *Ty = I->getType();
if (!first)
O << ",\n";
first = false;
// Handle image/sampler parameters
if (isKernelFunction(*F)) {
if (isSampler(*I) || isImage(*I)) {
if (isImage(*I)) {
std::string sname = I->getName();
if (isImageWriteOnly(*I) || isImageReadWrite(*I)) {
if (nvptxSubtarget.hasImageHandles())
O << "\t.param .u64 .ptr .surfref ";
else
O << "\t.param .surfref ";
O << *CurrentFnSym << "_param_" << paramIndex;
}
else { // Default image is read_only
if (nvptxSubtarget.hasImageHandles())
O << "\t.param .u64 .ptr .texref ";
else
O << "\t.param .texref ";
O << *CurrentFnSym << "_param_" << paramIndex;
}
} else {
if (nvptxSubtarget.hasImageHandles())
O << "\t.param .u64 .ptr .samplerref ";
else
O << "\t.param .samplerref ";
O << *CurrentFnSym << "_param_" << paramIndex;
}
continue;
}
}
if (PAL.hasAttribute(paramIndex + 1, Attribute::ByVal) == false) {
if (Ty->isAggregateType() || Ty->isVectorTy()) {
// Just print .param .align <a> .b8 .param[size];
// <a> = PAL.getparamalignment
// size = typeallocsize of element type
unsigned align = PAL.getParamAlignment(paramIndex + 1);
if (align == 0)
align = TD->getABITypeAlignment(Ty);
unsigned sz = TD->getTypeAllocSize(Ty);
O << "\t.param .align " << align << " .b8 ";
printParamName(I, paramIndex, O);
O << "[" << sz << "]";
continue;
}
// Just a scalar
const PointerType *PTy = dyn_cast<PointerType>(Ty);
if (isKernelFunc) {
if (PTy) {
// Special handling for pointer arguments to kernel
O << "\t.param .u" << thePointerTy.getSizeInBits() << " ";
if (nvptxSubtarget.getDrvInterface() != NVPTX::CUDA) {
Type *ETy = PTy->getElementType();
int addrSpace = PTy->getAddressSpace();
switch (addrSpace) {
default:
O << ".ptr ";
break;
case llvm::ADDRESS_SPACE_CONST:
O << ".ptr .const ";
break;
case llvm::ADDRESS_SPACE_SHARED:
O << ".ptr .shared ";
break;
case llvm::ADDRESS_SPACE_GLOBAL:
O << ".ptr .global ";
break;
}
O << ".align " << (int) getOpenCLAlignment(TD, ETy) << " ";
}
printParamName(I, paramIndex, O);
continue;
}
// non-pointer scalar to kernel func
O << "\t.param .";
// Special case: predicate operands become .u8 types
if (Ty->isIntegerTy(1))
O << "u8";
else
O << getPTXFundamentalTypeStr(Ty);
O << " ";
printParamName(I, paramIndex, O);
continue;
}
// Non-kernel function, just print .param .b<size> for ABI
// and .reg .b<size> for non-ABI
unsigned sz = 0;
if (isa<IntegerType>(Ty)) {
sz = cast<IntegerType>(Ty)->getBitWidth();
if (sz < 32)
sz = 32;
} else if (isa<PointerType>(Ty))
sz = thePointerTy.getSizeInBits();
else
sz = Ty->getPrimitiveSizeInBits();
if (isABI)
O << "\t.param .b" << sz << " ";
else
O << "\t.reg .b" << sz << " ";
printParamName(I, paramIndex, O);
continue;
}
// param has byVal attribute. So should be a pointer
const PointerType *PTy = dyn_cast<PointerType>(Ty);
assert(PTy && "Param with byval attribute should be a pointer type");
Type *ETy = PTy->getElementType();
if (isABI || isKernelFunc) {
// Just print .param .align <a> .b8 .param[size];
// <a> = PAL.getparamalignment
// size = typeallocsize of element type
unsigned align = PAL.getParamAlignment(paramIndex + 1);
if (align == 0)
align = TD->getABITypeAlignment(ETy);
unsigned sz = TD->getTypeAllocSize(ETy);
O << "\t.param .align " << align << " .b8 ";
printParamName(I, paramIndex, O);
O << "[" << sz << "]";
continue;
} else {
// Split the ETy into constituent parts and
// print .param .b<size> <name> for each part.
// Further, if a part is vector, print the above for
// each vector element.
SmallVector<EVT, 16> vtparts;
ComputeValueVTs(*TLI, ETy, vtparts);
for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
unsigned elems = 1;
EVT elemtype = vtparts[i];
if (vtparts[i].isVector()) {
elems = vtparts[i].getVectorNumElements();
elemtype = vtparts[i].getVectorElementType();
}
for (unsigned j = 0, je = elems; j != je; ++j) {
unsigned sz = elemtype.getSizeInBits();
if (elemtype.isInteger() && (sz < 32))
sz = 32;
O << "\t.reg .b" << sz << " ";
printParamName(I, paramIndex, O);
if (j < je - 1)
O << ",\n";
++paramIndex;
}
if (i < e - 1)
O << ",\n";
}
--paramIndex;
continue;
}
}
O << "\n)\n";
}
void NVPTXAsmPrinter::emitFunctionParamList(const MachineFunction &MF,
raw_ostream &O) {
const Function *F = MF.getFunction();
emitFunctionParamList(F, O);
}
void NVPTXAsmPrinter::setAndEmitFunctionVirtualRegisters(
const MachineFunction &MF) {
SmallString<128> Str;
raw_svector_ostream O(Str);
// Map the global virtual register number to a register class specific
// virtual register number starting from 1 with that class.
const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
//unsigned numRegClasses = TRI->getNumRegClasses();
// Emit the Fake Stack Object
const MachineFrameInfo *MFI = MF.getFrameInfo();
int NumBytes = (int) MFI->getStackSize();
if (NumBytes) {
O << "\t.local .align " << MFI->getMaxAlignment() << " .b8 \t" << DEPOTNAME
<< getFunctionNumber() << "[" << NumBytes << "];\n";
if (nvptxSubtarget.is64Bit()) {
O << "\t.reg .b64 \t%SP;\n";
O << "\t.reg .b64 \t%SPL;\n";
} else {
O << "\t.reg .b32 \t%SP;\n";
O << "\t.reg .b32 \t%SPL;\n";
}
}
// Go through all virtual registers to establish the mapping between the
// global virtual
// register number and the per class virtual register number.
// We use the per class virtual register number in the ptx output.
unsigned int numVRs = MRI->getNumVirtRegs();
for (unsigned i = 0; i < numVRs; i++) {
unsigned int vr = TRI->index2VirtReg(i);
const TargetRegisterClass *RC = MRI->getRegClass(vr);
DenseMap<unsigned, unsigned> &regmap = VRegMapping[RC];
int n = regmap.size();
regmap.insert(std::make_pair(vr, n + 1));
}
// Emit register declarations
// @TODO: Extract out the real register usage
// O << "\t.reg .pred %p<" << NVPTXNumRegisters << ">;\n";
// O << "\t.reg .s16 %rc<" << NVPTXNumRegisters << ">;\n";
// O << "\t.reg .s16 %rs<" << NVPTXNumRegisters << ">;\n";
// O << "\t.reg .s32 %r<" << NVPTXNumRegisters << ">;\n";
// O << "\t.reg .s64 %rl<" << NVPTXNumRegisters << ">;\n";
// O << "\t.reg .f32 %f<" << NVPTXNumRegisters << ">;\n";
// O << "\t.reg .f64 %fl<" << NVPTXNumRegisters << ">;\n";
// Emit declaration of the virtual registers or 'physical' registers for
// each register class
for (unsigned i=0; i< TRI->getNumRegClasses(); i++) {
const TargetRegisterClass *RC = TRI->getRegClass(i);
DenseMap<unsigned, unsigned> &regmap = VRegMapping[RC];
std::string rcname = getNVPTXRegClassName(RC);
std::string rcStr = getNVPTXRegClassStr(RC);
int n = regmap.size();
// Only declare those registers that may be used.
if (n) {
O << "\t.reg " << rcname << " \t" << rcStr << "<" << (n+1)
<< ">;\n";
}
}
OutStreamer.EmitRawText(O.str());
}
void NVPTXAsmPrinter::printFPConstant(const ConstantFP *Fp, raw_ostream &O) {
APFloat APF = APFloat(Fp->getValueAPF()); // make a copy
bool ignored;
unsigned int numHex;
const char *lead;
if (Fp->getType()->getTypeID() == Type::FloatTyID) {
numHex = 8;
lead = "0f";
APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &ignored);
} else if (Fp->getType()->getTypeID() == Type::DoubleTyID) {
numHex = 16;
lead = "0d";
APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
} else
llvm_unreachable("unsupported fp type");
APInt API = APF.bitcastToAPInt();
std::string hexstr(utohexstr(API.getZExtValue()));
O << lead;
if (hexstr.length() < numHex)
O << std::string(numHex - hexstr.length(), '0');
O << utohexstr(API.getZExtValue());
}
void NVPTXAsmPrinter::printScalarConstant(const Constant *CPV, raw_ostream &O) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
O << CI->getValue();
return;
}
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CPV)) {
printFPConstant(CFP, O);
return;
}
if (isa<ConstantPointerNull>(CPV)) {
O << "0";
return;
}
if (const GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
PointerType *PTy = dyn_cast<PointerType>(GVar->getType());
bool IsNonGenericPointer = false;
if (PTy && PTy->getAddressSpace() != 0) {
IsNonGenericPointer = true;
}
if (EmitGeneric && !isa<Function>(CPV) && !IsNonGenericPointer) {
O << "generic(";
O << *getSymbol(GVar);
O << ")";
} else {
O << *getSymbol(GVar);
}
return;
}
if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
const Value *v = Cexpr->stripPointerCasts();
PointerType *PTy = dyn_cast<PointerType>(Cexpr->getType());
bool IsNonGenericPointer = false;
if (PTy && PTy->getAddressSpace() != 0) {
IsNonGenericPointer = true;
}
if (const GlobalValue *GVar = dyn_cast<GlobalValue>(v)) {
if (EmitGeneric && !isa<Function>(v) && !IsNonGenericPointer) {
O << "generic(";
O << *getSymbol(GVar);
O << ")";
} else {
O << *getSymbol(GVar);
}
return;
} else {
O << *LowerConstant(CPV, *this);
return;
}
}
llvm_unreachable("Not scalar type found in printScalarConstant()");
}
void NVPTXAsmPrinter::bufferLEByte(const Constant *CPV, int Bytes,
AggBuffer *aggBuffer) {
const DataLayout *TD = TM.getDataLayout();
if (isa<UndefValue>(CPV) || CPV->isNullValue()) {
int s = TD->getTypeAllocSize(CPV->getType());
if (s < Bytes)
s = Bytes;
aggBuffer->addZeros(s);
return;
}
unsigned char *ptr;
switch (CPV->getType()->getTypeID()) {
case Type::IntegerTyID: {
const Type *ETy = CPV->getType();
if (ETy == Type::getInt8Ty(CPV->getContext())) {
unsigned char c =
(unsigned char)(dyn_cast<ConstantInt>(CPV))->getZExtValue();
ptr = &c;
aggBuffer->addBytes(ptr, 1, Bytes);
} else if (ETy == Type::getInt16Ty(CPV->getContext())) {
short int16 = (short)(dyn_cast<ConstantInt>(CPV))->getZExtValue();
ptr = (unsigned char *)&int16;
aggBuffer->addBytes(ptr, 2, Bytes);
} else if (ETy == Type::getInt32Ty(CPV->getContext())) {
if (const ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
int int32 = (int)(constInt->getZExtValue());
ptr = (unsigned char *)&int32;
aggBuffer->addBytes(ptr, 4, Bytes);
break;
} else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
if (const ConstantInt *constInt = dyn_cast<ConstantInt>(
ConstantFoldConstantExpression(Cexpr, TD))) {
int int32 = (int)(constInt->getZExtValue());
ptr = (unsigned char *)&int32;
aggBuffer->addBytes(ptr, 4, Bytes);
break;
}
if (Cexpr->getOpcode() == Instruction::PtrToInt) {
Value *v = Cexpr->getOperand(0)->stripPointerCasts();
aggBuffer->addSymbol(v);
aggBuffer->addZeros(4);
break;
}
}
llvm_unreachable("unsupported integer const type");
} else if (ETy == Type::getInt64Ty(CPV->getContext())) {
if (const ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
long long int64 = (long long)(constInt->getZExtValue());
ptr = (unsigned char *)&int64;
aggBuffer->addBytes(ptr, 8, Bytes);
break;
} else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
if (const ConstantInt *constInt = dyn_cast<ConstantInt>(
ConstantFoldConstantExpression(Cexpr, TD))) {
long long int64 = (long long)(constInt->getZExtValue());
ptr = (unsigned char *)&int64;
aggBuffer->addBytes(ptr, 8, Bytes);
break;
}
if (Cexpr->getOpcode() == Instruction::PtrToInt) {
Value *v = Cexpr->getOperand(0)->stripPointerCasts();
aggBuffer->addSymbol(v);
aggBuffer->addZeros(8);
break;
}
}
llvm_unreachable("unsupported integer const type");
} else
llvm_unreachable("unsupported integer const type");
break;
}
case Type::FloatTyID:
case Type::DoubleTyID: {
const ConstantFP *CFP = dyn_cast<ConstantFP>(CPV);
const Type *Ty = CFP->getType();
if (Ty == Type::getFloatTy(CPV->getContext())) {
float float32 = (float) CFP->getValueAPF().convertToFloat();
ptr = (unsigned char *)&float32;
aggBuffer->addBytes(ptr, 4, Bytes);
} else if (Ty == Type::getDoubleTy(CPV->getContext())) {
double float64 = CFP->getValueAPF().convertToDouble();
ptr = (unsigned char *)&float64;
aggBuffer->addBytes(ptr, 8, Bytes);
} else {
llvm_unreachable("unsupported fp const type");
}
break;
}
case Type::PointerTyID: {
if (const GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
aggBuffer->addSymbol(GVar);
} else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
const Value *v = Cexpr->stripPointerCasts();
aggBuffer->addSymbol(v);
}
unsigned int s = TD->getTypeAllocSize(CPV->getType());
aggBuffer->addZeros(s);
break;
}
case Type::ArrayTyID:
case Type::VectorTyID:
case Type::StructTyID: {
if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV) ||
isa<ConstantStruct>(CPV) || isa<ConstantDataSequential>(CPV)) {
int ElementSize = TD->getTypeAllocSize(CPV->getType());
bufferAggregateConstant(CPV, aggBuffer);
if (Bytes > ElementSize)
aggBuffer->addZeros(Bytes - ElementSize);
} else if (isa<ConstantAggregateZero>(CPV))
aggBuffer->addZeros(Bytes);
else
llvm_unreachable("Unexpected Constant type");
break;
}
default:
llvm_unreachable("unsupported type");
}
}
void NVPTXAsmPrinter::bufferAggregateConstant(const Constant *CPV,
AggBuffer *aggBuffer) {
const DataLayout *TD = TM.getDataLayout();
int Bytes;
// Old constants
if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV)) {
if (CPV->getNumOperands())
for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i)
bufferLEByte(cast<Constant>(CPV->getOperand(i)), 0, aggBuffer);
return;
}
if (const ConstantDataSequential *CDS =
dyn_cast<ConstantDataSequential>(CPV)) {
if (CDS->getNumElements())
for (unsigned i = 0; i < CDS->getNumElements(); ++i)
bufferLEByte(cast<Constant>(CDS->getElementAsConstant(i)), 0,
aggBuffer);
return;
}
if (isa<ConstantStruct>(CPV)) {
if (CPV->getNumOperands()) {
StructType *ST = cast<StructType>(CPV->getType());
for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i) {
if (i == (e - 1))
Bytes = TD->getStructLayout(ST)->getElementOffset(0) +
TD->getTypeAllocSize(ST) -
TD->getStructLayout(ST)->getElementOffset(i);
else
Bytes = TD->getStructLayout(ST)->getElementOffset(i + 1) -
TD->getStructLayout(ST)->getElementOffset(i);
bufferLEByte(cast<Constant>(CPV->getOperand(i)), Bytes, aggBuffer);
}
}
return;
}
llvm_unreachable("unsupported constant type in printAggregateConstant()");
}
// buildTypeNameMap - Run through symbol table looking for type names.
//
bool NVPTXAsmPrinter::isImageType(const Type *Ty) {
std::map<const Type *, std::string>::iterator PI = TypeNameMap.find(Ty);
if (PI != TypeNameMap.end() && (!PI->second.compare("struct._image1d_t") ||
!PI->second.compare("struct._image2d_t") ||
!PI->second.compare("struct._image3d_t")))
return true;
return false;
}
bool NVPTXAsmPrinter::ignoreLoc(const MachineInstr &MI) {
switch (MI.getOpcode()) {
default:
return false;
case NVPTX::CallArgBeginInst:
case NVPTX::CallArgEndInst0:
case NVPTX::CallArgEndInst1:
case NVPTX::CallArgF32:
case NVPTX::CallArgF64:
case NVPTX::CallArgI16:
case NVPTX::CallArgI32:
case NVPTX::CallArgI32imm:
case NVPTX::CallArgI64:
case NVPTX::CallArgParam:
case NVPTX::CallVoidInst:
case NVPTX::CallVoidInstReg:
case NVPTX::Callseq_End:
case NVPTX::CallVoidInstReg64:
case NVPTX::DeclareParamInst:
case NVPTX::DeclareRetMemInst:
case NVPTX::DeclareRetRegInst:
case NVPTX::DeclareRetScalarInst:
case NVPTX::DeclareScalarParamInst:
case NVPTX::DeclareScalarRegInst:
case NVPTX::StoreParamF32:
case NVPTX::StoreParamF64:
case NVPTX::StoreParamI16:
case NVPTX::StoreParamI32:
case NVPTX::StoreParamI64:
case NVPTX::StoreParamI8:
case NVPTX::StoreRetvalF32:
case NVPTX::StoreRetvalF64:
case NVPTX::StoreRetvalI16:
case NVPTX::StoreRetvalI32:
case NVPTX::StoreRetvalI64:
case NVPTX::StoreRetvalI8:
case NVPTX::LastCallArgF32:
case NVPTX::LastCallArgF64:
case NVPTX::LastCallArgI16:
case NVPTX::LastCallArgI32:
case NVPTX::LastCallArgI32imm:
case NVPTX::LastCallArgI64:
case NVPTX::LastCallArgParam:
case NVPTX::LoadParamMemF32:
case NVPTX::LoadParamMemF64:
case NVPTX::LoadParamMemI16:
case NVPTX::LoadParamMemI32:
case NVPTX::LoadParamMemI64:
case NVPTX::LoadParamMemI8:
case NVPTX::PrototypeInst:
case NVPTX::DBG_VALUE:
return true;
}
return false;
}
/// PrintAsmOperand - Print out an operand for an inline asm expression.
///
bool NVPTXAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode, raw_ostream &O) {
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0)
return true; // Unknown modifier.
switch (ExtraCode[0]) {
default:
// See if this is a generic print operand
return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O);
case 'r':
break;
}
}
printOperand(MI, OpNo, O);
return false;
}
bool NVPTXAsmPrinter::PrintAsmMemoryOperand(
const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant,
const char *ExtraCode, raw_ostream &O) {
if (ExtraCode && ExtraCode[0])
return true; // Unknown modifier
O << '[';
printMemOperand(MI, OpNo, O);
O << ']';
return false;
}
void NVPTXAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
raw_ostream &O, const char *Modifier) {
const MachineOperand &MO = MI->getOperand(opNum);
switch (MO.getType()) {
case MachineOperand::MO_Register:
if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
if (MO.getReg() == NVPTX::VRDepot)
O << DEPOTNAME << getFunctionNumber();
else
O << NVPTXInstPrinter::getRegisterName(MO.getReg());
} else {
emitVirtualRegister(MO.getReg(), O);
}
return;
case MachineOperand::MO_Immediate:
if (!Modifier)
O << MO.getImm();
else if (strstr(Modifier, "vec") == Modifier)
printVecModifiedImmediate(MO, Modifier, O);
else
llvm_unreachable(
"Don't know how to handle modifier on immediate operand");
return;
case MachineOperand::MO_FPImmediate:
printFPConstant(MO.getFPImm(), O);
break;
case MachineOperand::MO_GlobalAddress:
O << *getSymbol(MO.getGlobal());
break;
case MachineOperand::MO_MachineBasicBlock:
O << *MO.getMBB()->getSymbol();
return;
default:
llvm_unreachable("Operand type not supported.");
}
}
void NVPTXAsmPrinter::printMemOperand(const MachineInstr *MI, int opNum,
raw_ostream &O, const char *Modifier) {
printOperand(MI, opNum, O);
if (Modifier && !strcmp(Modifier, "add")) {
O << ", ";
printOperand(MI, opNum + 1, O);
} else {
if (MI->getOperand(opNum + 1).isImm() &&
MI->getOperand(opNum + 1).getImm() == 0)
return; // don't print ',0' or '+0'
O << "+";
printOperand(MI, opNum + 1, O);
}
}
// Force static initialization.
extern "C" void LLVMInitializeNVPTXBackendAsmPrinter() {
RegisterAsmPrinter<NVPTXAsmPrinter> X(TheNVPTXTarget32);
RegisterAsmPrinter<NVPTXAsmPrinter> Y(TheNVPTXTarget64);
}
void NVPTXAsmPrinter::emitSrcInText(StringRef filename, unsigned line) {
std::stringstream temp;
LineReader *reader = this->getReader(filename.str());
temp << "\n//";
temp << filename.str();
temp << ":";
temp << line;
temp << " ";
temp << reader->readLine(line);
temp << "\n";
this->OutStreamer.EmitRawText(Twine(temp.str()));
}
LineReader *NVPTXAsmPrinter::getReader(std::string filename) {
if (reader == NULL) {
reader = new LineReader(filename);
}
if (reader->fileName() != filename) {
delete reader;
reader = new LineReader(filename);
}
return reader;
}
std::string LineReader::readLine(unsigned lineNum) {
if (lineNum < theCurLine) {
theCurLine = 0;
fstr.seekg(0, std::ios::beg);
}
while (theCurLine < lineNum) {
fstr.getline(buff, 500);
theCurLine++;
}
return buff;
}
// Force static initialization.
extern "C" void LLVMInitializeNVPTXAsmPrinter() {
RegisterAsmPrinter<NVPTXAsmPrinter> X(TheNVPTXTarget32);
RegisterAsmPrinter<NVPTXAsmPrinter> Y(TheNVPTXTarget64);
}