llvm-project/clang-tools-extra/clang-tidy/modernize/UseNullptrCheck.cpp

495 lines
18 KiB
C++

//===--- UseNullptrCheck.cpp - clang-tidy----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "UseNullptrCheck.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/Lex/Lexer.h"
using namespace clang;
using namespace clang::ast_matchers;
using namespace llvm;
namespace clang {
namespace tidy {
namespace modernize {
namespace {
const char CastSequence[] = "sequence";
AST_MATCHER(Type, sugaredNullptrType) {
const Type *DesugaredType = Node.getUnqualifiedDesugaredType();
if (const auto *BT = dyn_cast<BuiltinType>(DesugaredType))
return BT->getKind() == BuiltinType::NullPtr;
return false;
}
/// Create a matcher that finds implicit casts as well as the head of a
/// sequence of zero or more nested explicit casts that have an implicit cast
/// to null within.
/// Finding sequences of explicit casts is necessary so that an entire sequence
/// can be replaced instead of just the inner-most implicit cast.
StatementMatcher makeCastSequenceMatcher() {
StatementMatcher ImplicitCastToNull = implicitCastExpr(
anyOf(hasCastKind(CK_NullToPointer), hasCastKind(CK_NullToMemberPointer)),
unless(hasImplicitDestinationType(qualType(substTemplateTypeParmType()))),
unless(hasSourceExpression(hasType(sugaredNullptrType()))));
return traverse(
ast_type_traits::TK_AsIs,
castExpr(anyOf(ImplicitCastToNull,
explicitCastExpr(hasDescendant(ImplicitCastToNull))),
unless(hasAncestor(explicitCastExpr())))
.bind(CastSequence));
}
bool isReplaceableRange(SourceLocation StartLoc, SourceLocation EndLoc,
const SourceManager &SM) {
return SM.isWrittenInSameFile(StartLoc, EndLoc);
}
/// Replaces the provided range with the text "nullptr", but only if
/// the start and end location are both in main file.
/// Returns true if and only if a replacement was made.
void replaceWithNullptr(ClangTidyCheck &Check, SourceManager &SM,
SourceLocation StartLoc, SourceLocation EndLoc) {
CharSourceRange Range(SourceRange(StartLoc, EndLoc), true);
// Add a space if nullptr follows an alphanumeric character. This happens
// whenever there is an c-style explicit cast to nullptr not surrounded by
// parentheses and right beside a return statement.
SourceLocation PreviousLocation = StartLoc.getLocWithOffset(-1);
bool NeedsSpace = isAlphanumeric(*SM.getCharacterData(PreviousLocation));
Check.diag(Range.getBegin(), "use nullptr") << FixItHint::CreateReplacement(
Range, NeedsSpace ? " nullptr" : "nullptr");
}
/// Returns the name of the outermost macro.
///
/// Given
/// \code
/// #define MY_NULL NULL
/// \endcode
/// If \p Loc points to NULL, this function will return the name MY_NULL.
StringRef getOutermostMacroName(SourceLocation Loc, const SourceManager &SM,
const LangOptions &LO) {
assert(Loc.isMacroID());
SourceLocation OutermostMacroLoc;
while (Loc.isMacroID()) {
OutermostMacroLoc = Loc;
Loc = SM.getImmediateMacroCallerLoc(Loc);
}
return Lexer::getImmediateMacroName(OutermostMacroLoc, SM, LO);
}
/// RecursiveASTVisitor for ensuring all nodes rooted at a given AST
/// subtree that have file-level source locations corresponding to a macro
/// argument have implicit NullTo(Member)Pointer nodes as ancestors.
class MacroArgUsageVisitor : public RecursiveASTVisitor<MacroArgUsageVisitor> {
public:
MacroArgUsageVisitor(SourceLocation CastLoc, const SourceManager &SM)
: CastLoc(CastLoc), SM(SM), Visited(false), CastFound(false),
InvalidFound(false) {
assert(CastLoc.isFileID());
}
bool TraverseStmt(Stmt *S) {
bool VisitedPreviously = Visited;
if (!RecursiveASTVisitor<MacroArgUsageVisitor>::TraverseStmt(S))
return false;
// The point at which VisitedPreviously is false and Visited is true is the
// root of a subtree containing nodes whose locations match CastLoc. It's
// at this point we test that the Implicit NullTo(Member)Pointer cast was
// found or not.
if (!VisitedPreviously) {
if (Visited && !CastFound) {
// Found nodes with matching SourceLocations but didn't come across a
// cast. This is an invalid macro arg use. Can stop traversal
// completely now.
InvalidFound = true;
return false;
}
// Reset state as we unwind back up the tree.
CastFound = false;
Visited = false;
}
return true;
}
bool VisitStmt(Stmt *S) {
if (SM.getFileLoc(S->getBeginLoc()) != CastLoc)
return true;
Visited = true;
const ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(S);
if (Cast && (Cast->getCastKind() == CK_NullToPointer ||
Cast->getCastKind() == CK_NullToMemberPointer))
CastFound = true;
return true;
}
bool TraverseInitListExpr(InitListExpr *S) {
// Only go through the semantic form of the InitListExpr, because
// ImplicitCast might not appear in the syntactic form, and this results in
// finding usages of the macro argument that don't have a ImplicitCast as an
// ancestor (thus invalidating the replacement) when they actually have.
return RecursiveASTVisitor<MacroArgUsageVisitor>::
TraverseSynOrSemInitListExpr(
S->isSemanticForm() ? S : S->getSemanticForm());
}
bool foundInvalid() const { return InvalidFound; }
private:
SourceLocation CastLoc;
const SourceManager &SM;
bool Visited;
bool CastFound;
bool InvalidFound;
};
/// Looks for implicit casts as well as sequences of 0 or more explicit
/// casts with an implicit null-to-pointer cast within.
///
/// The matcher this visitor is used with will find a single implicit cast or a
/// top-most explicit cast (i.e. it has no explicit casts as an ancestor) where
/// an implicit cast is nested within. However, there is no guarantee that only
/// explicit casts exist between the found top-most explicit cast and the
/// possibly more than one nested implicit cast. This visitor finds all cast
/// sequences with an implicit cast to null within and creates a replacement
/// leaving the outermost explicit cast unchanged to avoid introducing
/// ambiguities.
class CastSequenceVisitor : public RecursiveASTVisitor<CastSequenceVisitor> {
public:
CastSequenceVisitor(ASTContext &Context, ArrayRef<StringRef> NullMacros,
ClangTidyCheck &check)
: SM(Context.getSourceManager()), Context(Context),
NullMacros(NullMacros), Check(check), FirstSubExpr(nullptr),
PruneSubtree(false) {}
bool TraverseStmt(Stmt *S) {
// Stop traversing down the tree if requested.
if (PruneSubtree) {
PruneSubtree = false;
return true;
}
return RecursiveASTVisitor<CastSequenceVisitor>::TraverseStmt(S);
}
// Only VisitStmt is overridden as we shouldn't find other base AST types
// within a cast expression.
bool VisitStmt(Stmt *S) {
auto *C = dyn_cast<CastExpr>(S);
// Catch the castExpr inside cxxDefaultArgExpr.
if (auto *E = dyn_cast<CXXDefaultArgExpr>(S)) {
C = dyn_cast<CastExpr>(E->getExpr());
FirstSubExpr = nullptr;
}
if (!C) {
FirstSubExpr = nullptr;
return true;
}
auto* CastSubExpr = C->getSubExpr()->IgnoreParens();
// Ignore cast expressions which cast nullptr literal.
if (isa<CXXNullPtrLiteralExpr>(CastSubExpr)) {
return true;
}
if (!FirstSubExpr)
FirstSubExpr = CastSubExpr;
if (C->getCastKind() != CK_NullToPointer &&
C->getCastKind() != CK_NullToMemberPointer) {
return true;
}
SourceLocation StartLoc = FirstSubExpr->getBeginLoc();
SourceLocation EndLoc = FirstSubExpr->getEndLoc();
// If the location comes from a macro arg expansion, *all* uses of that
// arg must be checked to result in NullTo(Member)Pointer casts.
//
// If the location comes from a macro body expansion, check to see if its
// coming from one of the allowed 'NULL' macros.
if (SM.isMacroArgExpansion(StartLoc) && SM.isMacroArgExpansion(EndLoc)) {
SourceLocation FileLocStart = SM.getFileLoc(StartLoc),
FileLocEnd = SM.getFileLoc(EndLoc);
SourceLocation ImmediateMacroArgLoc, MacroLoc;
// Skip NULL macros used in macro.
if (!getMacroAndArgLocations(StartLoc, ImmediateMacroArgLoc, MacroLoc) ||
ImmediateMacroArgLoc != FileLocStart)
return skipSubTree();
if (isReplaceableRange(FileLocStart, FileLocEnd, SM) &&
allArgUsesValid(C)) {
replaceWithNullptr(Check, SM, FileLocStart, FileLocEnd);
}
return true;
}
if (SM.isMacroBodyExpansion(StartLoc) && SM.isMacroBodyExpansion(EndLoc)) {
StringRef OutermostMacroName =
getOutermostMacroName(StartLoc, SM, Context.getLangOpts());
// Check to see if the user wants to replace the macro being expanded.
if (!llvm::is_contained(NullMacros, OutermostMacroName))
return skipSubTree();
StartLoc = SM.getFileLoc(StartLoc);
EndLoc = SM.getFileLoc(EndLoc);
}
if (!isReplaceableRange(StartLoc, EndLoc, SM)) {
return skipSubTree();
}
replaceWithNullptr(Check, SM, StartLoc, EndLoc);
return true;
}
private:
bool skipSubTree() {
PruneSubtree = true;
return true;
}
/// Tests that all expansions of a macro arg, one of which expands to
/// result in \p CE, yield NullTo(Member)Pointer casts.
bool allArgUsesValid(const CastExpr *CE) {
SourceLocation CastLoc = CE->getBeginLoc();
// Step 1: Get location of macro arg and location of the macro the arg was
// provided to.
SourceLocation ArgLoc, MacroLoc;
if (!getMacroAndArgLocations(CastLoc, ArgLoc, MacroLoc))
return false;
// Step 2: Find the first ancestor that doesn't expand from this macro.
ast_type_traits::DynTypedNode ContainingAncestor;
if (!findContainingAncestor(
ast_type_traits::DynTypedNode::create<Stmt>(*CE), MacroLoc,
ContainingAncestor))
return false;
// Step 3:
// Visit children of this containing parent looking for the least-descended
// nodes of the containing parent which are macro arg expansions that expand
// from the given arg location.
// Visitor needs: arg loc.
MacroArgUsageVisitor ArgUsageVisitor(SM.getFileLoc(CastLoc), SM);
if (const auto *D = ContainingAncestor.get<Decl>())
ArgUsageVisitor.TraverseDecl(const_cast<Decl *>(D));
else if (const auto *S = ContainingAncestor.get<Stmt>())
ArgUsageVisitor.TraverseStmt(const_cast<Stmt *>(S));
else
llvm_unreachable("Unhandled ContainingAncestor node type");
return !ArgUsageVisitor.foundInvalid();
}
/// Given the SourceLocation for a macro arg expansion, finds the
/// non-macro SourceLocation of the macro the arg was passed to and the
/// non-macro SourceLocation of the argument in the arg list to that macro.
/// These results are returned via \c MacroLoc and \c ArgLoc respectively.
/// These values are undefined if the return value is false.
///
/// \returns false if one of the returned SourceLocations would be a
/// SourceLocation pointing within the definition of another macro.
bool getMacroAndArgLocations(SourceLocation Loc, SourceLocation &ArgLoc,
SourceLocation &MacroLoc) {
assert(Loc.isMacroID() && "Only reasonable to call this on macros");
ArgLoc = Loc;
// Find the location of the immediate macro expansion.
while (true) {
std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(ArgLoc);
const SrcMgr::SLocEntry *E = &SM.getSLocEntry(LocInfo.first);
const SrcMgr::ExpansionInfo &Expansion = E->getExpansion();
SourceLocation OldArgLoc = ArgLoc;
ArgLoc = Expansion.getExpansionLocStart();
if (!Expansion.isMacroArgExpansion()) {
if (!MacroLoc.isFileID())
return false;
StringRef Name =
Lexer::getImmediateMacroName(OldArgLoc, SM, Context.getLangOpts());
return llvm::is_contained(NullMacros, Name);
}
MacroLoc = SM.getExpansionRange(ArgLoc).getBegin();
ArgLoc = Expansion.getSpellingLoc().getLocWithOffset(LocInfo.second);
if (ArgLoc.isFileID())
return true;
// If spelling location resides in the same FileID as macro expansion
// location, it means there is no inner macro.
FileID MacroFID = SM.getFileID(MacroLoc);
if (SM.isInFileID(ArgLoc, MacroFID)) {
// Don't transform this case. If the characters that caused the
// null-conversion come from within a macro, they can't be changed.
return false;
}
}
llvm_unreachable("getMacroAndArgLocations");
}
/// Tests if TestMacroLoc is found while recursively unravelling
/// expansions starting at TestLoc. TestMacroLoc.isFileID() must be true.
/// Implementation is very similar to getMacroAndArgLocations() except in this
/// case, it's not assumed that TestLoc is expanded from a macro argument.
/// While unravelling expansions macro arguments are handled as with
/// getMacroAndArgLocations() but in this function macro body expansions are
/// also handled.
///
/// False means either:
/// - TestLoc is not from a macro expansion.
/// - TestLoc is from a different macro expansion.
bool expandsFrom(SourceLocation TestLoc, SourceLocation TestMacroLoc) {
if (TestLoc.isFileID()) {
return false;
}
SourceLocation Loc = TestLoc, MacroLoc;
while (true) {
std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
const SrcMgr::SLocEntry *E = &SM.getSLocEntry(LocInfo.first);
const SrcMgr::ExpansionInfo &Expansion = E->getExpansion();
Loc = Expansion.getExpansionLocStart();
if (!Expansion.isMacroArgExpansion()) {
if (Loc.isFileID()) {
return Loc == TestMacroLoc;
}
// Since Loc is still a macro ID and it's not an argument expansion, we
// don't need to do the work of handling an argument expansion. Simply
// keep recursively expanding until we hit a FileID or a macro arg
// expansion or a macro arg expansion.
continue;
}
MacroLoc = SM.getImmediateExpansionRange(Loc).getBegin();
if (MacroLoc.isFileID() && MacroLoc == TestMacroLoc) {
// Match made.
return true;
}
Loc = Expansion.getSpellingLoc().getLocWithOffset(LocInfo.second);
if (Loc.isFileID()) {
// If we made it this far without finding a match, there is no match to
// be made.
return false;
}
}
llvm_unreachable("expandsFrom");
}
/// Given a starting point \c Start in the AST, find an ancestor that
/// doesn't expand from the macro called at file location \c MacroLoc.
///
/// \pre MacroLoc.isFileID()
/// \returns true if such an ancestor was found, false otherwise.
bool findContainingAncestor(ast_type_traits::DynTypedNode Start,
SourceLocation MacroLoc,
ast_type_traits::DynTypedNode &Result) {
// Below we're only following the first parent back up the AST. This should
// be fine since for the statements we care about there should only be one
// parent, except for the case specified below.
assert(MacroLoc.isFileID());
while (true) {
const auto &Parents = Context.getParents(Start);
if (Parents.empty())
return false;
if (Parents.size() > 1) {
// If there are more than one parents, don't do the replacement unless
// they are InitListsExpr (semantic and syntactic form). In this case we
// can choose any one here, and the ASTVisitor will take care of
// traversing the right one.
for (const auto &Parent : Parents) {
if (!Parent.get<InitListExpr>())
return false;
}
}
const ast_type_traits::DynTypedNode &Parent = Parents[0];
SourceLocation Loc;
if (const auto *D = Parent.get<Decl>())
Loc = D->getBeginLoc();
else if (const auto *S = Parent.get<Stmt>())
Loc = S->getBeginLoc();
// TypeLoc and NestedNameSpecifierLoc are members of the parent map. Skip
// them and keep going up.
if (Loc.isValid()) {
if (!expandsFrom(Loc, MacroLoc)) {
Result = Parent;
return true;
}
}
Start = Parent;
}
llvm_unreachable("findContainingAncestor");
}
private:
SourceManager &SM;
ASTContext &Context;
ArrayRef<StringRef> NullMacros;
ClangTidyCheck &Check;
Expr *FirstSubExpr;
bool PruneSubtree;
};
} // namespace
UseNullptrCheck::UseNullptrCheck(StringRef Name, ClangTidyContext *Context)
: ClangTidyCheck(Name, Context),
NullMacrosStr(Options.get("NullMacros", "")) {
StringRef(NullMacrosStr).split(NullMacros, ",");
}
void UseNullptrCheck::storeOptions(ClangTidyOptions::OptionMap &Opts) {
Options.store(Opts, "NullMacros", NullMacrosStr);
}
void UseNullptrCheck::registerMatchers(MatchFinder *Finder) {
Finder->addMatcher(makeCastSequenceMatcher(), this);
}
void UseNullptrCheck::check(const MatchFinder::MatchResult &Result) {
const auto *NullCast = Result.Nodes.getNodeAs<CastExpr>(CastSequence);
assert(NullCast && "Bad Callback. No node provided");
// Given an implicit null-ptr cast or an explicit cast with an implicit
// null-to-pointer cast within use CastSequenceVisitor to identify sequences
// of explicit casts that can be converted into 'nullptr'.
CastSequenceVisitor(*Result.Context, NullMacros, *this)
.TraverseStmt(const_cast<CastExpr *>(NullCast));
}
} // namespace modernize
} // namespace tidy
} // namespace clang