forked from OSchip/llvm-project
10938 lines
417 KiB
C++
10938 lines
417 KiB
C++
//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
|
||
//
|
||
// The LLVM Compiler Infrastructure
|
||
//
|
||
// This file is distributed under the University of Illinois Open Source
|
||
// License. See LICENSE.TXT for details.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
//
|
||
// This file implements semantic analysis for expressions.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "clang/Sema/SemaInternal.h"
|
||
#include "clang/Sema/DelayedDiagnostic.h"
|
||
#include "clang/Sema/Initialization.h"
|
||
#include "clang/Sema/Lookup.h"
|
||
#include "clang/Sema/ScopeInfo.h"
|
||
#include "clang/Sema/AnalysisBasedWarnings.h"
|
||
#include "clang/AST/ASTContext.h"
|
||
#include "clang/AST/ASTConsumer.h"
|
||
#include "clang/AST/ASTMutationListener.h"
|
||
#include "clang/AST/CXXInheritance.h"
|
||
#include "clang/AST/DeclObjC.h"
|
||
#include "clang/AST/DeclTemplate.h"
|
||
#include "clang/AST/EvaluatedExprVisitor.h"
|
||
#include "clang/AST/Expr.h"
|
||
#include "clang/AST/ExprCXX.h"
|
||
#include "clang/AST/ExprObjC.h"
|
||
#include "clang/AST/RecursiveASTVisitor.h"
|
||
#include "clang/AST/TypeLoc.h"
|
||
#include "clang/Basic/PartialDiagnostic.h"
|
||
#include "clang/Basic/SourceManager.h"
|
||
#include "clang/Basic/TargetInfo.h"
|
||
#include "clang/Lex/LiteralSupport.h"
|
||
#include "clang/Lex/Preprocessor.h"
|
||
#include "clang/Sema/DeclSpec.h"
|
||
#include "clang/Sema/Designator.h"
|
||
#include "clang/Sema/Scope.h"
|
||
#include "clang/Sema/ScopeInfo.h"
|
||
#include "clang/Sema/ParsedTemplate.h"
|
||
#include "clang/Sema/SemaFixItUtils.h"
|
||
#include "clang/Sema/Template.h"
|
||
#include "TreeTransform.h"
|
||
using namespace clang;
|
||
using namespace sema;
|
||
|
||
/// \brief Determine whether the use of this declaration is valid, without
|
||
/// emitting diagnostics.
|
||
bool Sema::CanUseDecl(NamedDecl *D) {
|
||
// See if this is an auto-typed variable whose initializer we are parsing.
|
||
if (ParsingInitForAutoVars.count(D))
|
||
return false;
|
||
|
||
// See if this is a deleted function.
|
||
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
||
if (FD->isDeleted())
|
||
return false;
|
||
}
|
||
|
||
// See if this function is unavailable.
|
||
if (D->getAvailability() == AR_Unavailable &&
|
||
cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
static AvailabilityResult DiagnoseAvailabilityOfDecl(Sema &S,
|
||
NamedDecl *D, SourceLocation Loc,
|
||
const ObjCInterfaceDecl *UnknownObjCClass) {
|
||
// See if this declaration is unavailable or deprecated.
|
||
std::string Message;
|
||
AvailabilityResult Result = D->getAvailability(&Message);
|
||
if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
|
||
if (Result == AR_Available) {
|
||
const DeclContext *DC = ECD->getDeclContext();
|
||
if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
|
||
Result = TheEnumDecl->getAvailability(&Message);
|
||
}
|
||
|
||
switch (Result) {
|
||
case AR_Available:
|
||
case AR_NotYetIntroduced:
|
||
break;
|
||
|
||
case AR_Deprecated:
|
||
S.EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass);
|
||
break;
|
||
|
||
case AR_Unavailable:
|
||
if (S.getCurContextAvailability() != AR_Unavailable) {
|
||
if (Message.empty()) {
|
||
if (!UnknownObjCClass)
|
||
S.Diag(Loc, diag::err_unavailable) << D->getDeclName();
|
||
else
|
||
S.Diag(Loc, diag::warn_unavailable_fwdclass_message)
|
||
<< D->getDeclName();
|
||
}
|
||
else
|
||
S.Diag(Loc, diag::err_unavailable_message)
|
||
<< D->getDeclName() << Message;
|
||
S.Diag(D->getLocation(), diag::note_unavailable_here)
|
||
<< isa<FunctionDecl>(D) << false;
|
||
}
|
||
break;
|
||
}
|
||
return Result;
|
||
}
|
||
|
||
/// \brief Determine whether the use of this declaration is valid, and
|
||
/// emit any corresponding diagnostics.
|
||
///
|
||
/// This routine diagnoses various problems with referencing
|
||
/// declarations that can occur when using a declaration. For example,
|
||
/// it might warn if a deprecated or unavailable declaration is being
|
||
/// used, or produce an error (and return true) if a C++0x deleted
|
||
/// function is being used.
|
||
///
|
||
/// \returns true if there was an error (this declaration cannot be
|
||
/// referenced), false otherwise.
|
||
///
|
||
bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
|
||
const ObjCInterfaceDecl *UnknownObjCClass) {
|
||
if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
|
||
// If there were any diagnostics suppressed by template argument deduction,
|
||
// emit them now.
|
||
llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
|
||
Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
|
||
if (Pos != SuppressedDiagnostics.end()) {
|
||
SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
|
||
for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
|
||
Diag(Suppressed[I].first, Suppressed[I].second);
|
||
|
||
// Clear out the list of suppressed diagnostics, so that we don't emit
|
||
// them again for this specialization. However, we don't obsolete this
|
||
// entry from the table, because we want to avoid ever emitting these
|
||
// diagnostics again.
|
||
Suppressed.clear();
|
||
}
|
||
}
|
||
|
||
// See if this is an auto-typed variable whose initializer we are parsing.
|
||
if (ParsingInitForAutoVars.count(D)) {
|
||
Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
|
||
<< D->getDeclName();
|
||
return true;
|
||
}
|
||
|
||
// See if this is a deleted function.
|
||
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
||
if (FD->isDeleted()) {
|
||
Diag(Loc, diag::err_deleted_function_use);
|
||
Diag(D->getLocation(), diag::note_unavailable_here) << 1 << true;
|
||
return true;
|
||
}
|
||
}
|
||
DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass);
|
||
|
||
// Warn if this is used but marked unused.
|
||
if (D->hasAttr<UnusedAttr>())
|
||
Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
|
||
return false;
|
||
}
|
||
|
||
/// \brief Retrieve the message suffix that should be added to a
|
||
/// diagnostic complaining about the given function being deleted or
|
||
/// unavailable.
|
||
std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
|
||
// FIXME: C++0x implicitly-deleted special member functions could be
|
||
// detected here so that we could improve diagnostics to say, e.g.,
|
||
// "base class 'A' had a deleted copy constructor".
|
||
if (FD->isDeleted())
|
||
return std::string();
|
||
|
||
std::string Message;
|
||
if (FD->getAvailability(&Message))
|
||
return ": " + Message;
|
||
|
||
return std::string();
|
||
}
|
||
|
||
/// DiagnoseSentinelCalls - This routine checks whether a call or
|
||
/// message-send is to a declaration with the sentinel attribute, and
|
||
/// if so, it checks that the requirements of the sentinel are
|
||
/// satisfied.
|
||
void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
|
||
Expr **args, unsigned numArgs) {
|
||
const SentinelAttr *attr = D->getAttr<SentinelAttr>();
|
||
if (!attr)
|
||
return;
|
||
|
||
// The number of formal parameters of the declaration.
|
||
unsigned numFormalParams;
|
||
|
||
// The kind of declaration. This is also an index into a %select in
|
||
// the diagnostic.
|
||
enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
|
||
|
||
if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
|
||
numFormalParams = MD->param_size();
|
||
calleeType = CT_Method;
|
||
} else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
||
numFormalParams = FD->param_size();
|
||
calleeType = CT_Function;
|
||
} else if (isa<VarDecl>(D)) {
|
||
QualType type = cast<ValueDecl>(D)->getType();
|
||
const FunctionType *fn = 0;
|
||
if (const PointerType *ptr = type->getAs<PointerType>()) {
|
||
fn = ptr->getPointeeType()->getAs<FunctionType>();
|
||
if (!fn) return;
|
||
calleeType = CT_Function;
|
||
} else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
|
||
fn = ptr->getPointeeType()->castAs<FunctionType>();
|
||
calleeType = CT_Block;
|
||
} else {
|
||
return;
|
||
}
|
||
|
||
if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
|
||
numFormalParams = proto->getNumArgs();
|
||
} else {
|
||
numFormalParams = 0;
|
||
}
|
||
} else {
|
||
return;
|
||
}
|
||
|
||
// "nullPos" is the number of formal parameters at the end which
|
||
// effectively count as part of the variadic arguments. This is
|
||
// useful if you would prefer to not have *any* formal parameters,
|
||
// but the language forces you to have at least one.
|
||
unsigned nullPos = attr->getNullPos();
|
||
assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
|
||
numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
|
||
|
||
// The number of arguments which should follow the sentinel.
|
||
unsigned numArgsAfterSentinel = attr->getSentinel();
|
||
|
||
// If there aren't enough arguments for all the formal parameters,
|
||
// the sentinel, and the args after the sentinel, complain.
|
||
if (numArgs < numFormalParams + numArgsAfterSentinel + 1) {
|
||
Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
|
||
Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
|
||
return;
|
||
}
|
||
|
||
// Otherwise, find the sentinel expression.
|
||
Expr *sentinelExpr = args[numArgs - numArgsAfterSentinel - 1];
|
||
if (!sentinelExpr) return;
|
||
if (sentinelExpr->isValueDependent()) return;
|
||
if (Context.isSentinelNullExpr(sentinelExpr)) return;
|
||
|
||
// Pick a reasonable string to insert. Optimistically use 'nil' or
|
||
// 'NULL' if those are actually defined in the context. Only use
|
||
// 'nil' for ObjC methods, where it's much more likely that the
|
||
// variadic arguments form a list of object pointers.
|
||
SourceLocation MissingNilLoc
|
||
= PP.getLocForEndOfToken(sentinelExpr->getLocEnd());
|
||
std::string NullValue;
|
||
if (calleeType == CT_Method &&
|
||
PP.getIdentifierInfo("nil")->hasMacroDefinition())
|
||
NullValue = "nil";
|
||
else if (PP.getIdentifierInfo("NULL")->hasMacroDefinition())
|
||
NullValue = "NULL";
|
||
else
|
||
NullValue = "(void*) 0";
|
||
|
||
if (MissingNilLoc.isInvalid())
|
||
Diag(Loc, diag::warn_missing_sentinel) << calleeType;
|
||
else
|
||
Diag(MissingNilLoc, diag::warn_missing_sentinel)
|
||
<< calleeType
|
||
<< FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
|
||
Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
|
||
}
|
||
|
||
SourceRange Sema::getExprRange(Expr *E) const {
|
||
return E ? E->getSourceRange() : SourceRange();
|
||
}
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// Standard Promotions and Conversions
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
|
||
ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
|
||
// Handle any placeholder expressions which made it here.
|
||
if (E->getType()->isPlaceholderType()) {
|
||
ExprResult result = CheckPlaceholderExpr(E);
|
||
if (result.isInvalid()) return ExprError();
|
||
E = result.take();
|
||
}
|
||
|
||
QualType Ty = E->getType();
|
||
assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
|
||
|
||
if (Ty->isFunctionType())
|
||
E = ImpCastExprToType(E, Context.getPointerType(Ty),
|
||
CK_FunctionToPointerDecay).take();
|
||
else if (Ty->isArrayType()) {
|
||
// In C90 mode, arrays only promote to pointers if the array expression is
|
||
// an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
|
||
// type 'array of type' is converted to an expression that has type 'pointer
|
||
// to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
|
||
// that has type 'array of type' ...". The relevant change is "an lvalue"
|
||
// (C90) to "an expression" (C99).
|
||
//
|
||
// C++ 4.2p1:
|
||
// An lvalue or rvalue of type "array of N T" or "array of unknown bound of
|
||
// T" can be converted to an rvalue of type "pointer to T".
|
||
//
|
||
if (getLangOptions().C99 || getLangOptions().CPlusPlus || E->isLValue())
|
||
E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
|
||
CK_ArrayToPointerDecay).take();
|
||
}
|
||
return Owned(E);
|
||
}
|
||
|
||
static void CheckForNullPointerDereference(Sema &S, Expr *E) {
|
||
// Check to see if we are dereferencing a null pointer. If so,
|
||
// and if not volatile-qualified, this is undefined behavior that the
|
||
// optimizer will delete, so warn about it. People sometimes try to use this
|
||
// to get a deterministic trap and are surprised by clang's behavior. This
|
||
// only handles the pattern "*null", which is a very syntactic check.
|
||
if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
|
||
if (UO->getOpcode() == UO_Deref &&
|
||
UO->getSubExpr()->IgnoreParenCasts()->
|
||
isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
|
||
!UO->getType().isVolatileQualified()) {
|
||
S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
|
||
S.PDiag(diag::warn_indirection_through_null)
|
||
<< UO->getSubExpr()->getSourceRange());
|
||
S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
|
||
S.PDiag(diag::note_indirection_through_null));
|
||
}
|
||
}
|
||
|
||
ExprResult Sema::DefaultLvalueConversion(Expr *E) {
|
||
// Handle any placeholder expressions which made it here.
|
||
if (E->getType()->isPlaceholderType()) {
|
||
ExprResult result = CheckPlaceholderExpr(E);
|
||
if (result.isInvalid()) return ExprError();
|
||
E = result.take();
|
||
}
|
||
|
||
// C++ [conv.lval]p1:
|
||
// A glvalue of a non-function, non-array type T can be
|
||
// converted to a prvalue.
|
||
if (!E->isGLValue()) return Owned(E);
|
||
|
||
QualType T = E->getType();
|
||
assert(!T.isNull() && "r-value conversion on typeless expression?");
|
||
|
||
// We can't do lvalue-to-rvalue on atomics yet.
|
||
if (T->isAtomicType())
|
||
return Owned(E);
|
||
|
||
// We don't want to throw lvalue-to-rvalue casts on top of
|
||
// expressions of certain types in C++.
|
||
if (getLangOptions().CPlusPlus &&
|
||
(E->getType() == Context.OverloadTy ||
|
||
T->isDependentType() ||
|
||
T->isRecordType()))
|
||
return Owned(E);
|
||
|
||
// The C standard is actually really unclear on this point, and
|
||
// DR106 tells us what the result should be but not why. It's
|
||
// generally best to say that void types just doesn't undergo
|
||
// lvalue-to-rvalue at all. Note that expressions of unqualified
|
||
// 'void' type are never l-values, but qualified void can be.
|
||
if (T->isVoidType())
|
||
return Owned(E);
|
||
|
||
CheckForNullPointerDereference(*this, E);
|
||
|
||
// C++ [conv.lval]p1:
|
||
// [...] If T is a non-class type, the type of the prvalue is the
|
||
// cv-unqualified version of T. Otherwise, the type of the
|
||
// rvalue is T.
|
||
//
|
||
// C99 6.3.2.1p2:
|
||
// If the lvalue has qualified type, the value has the unqualified
|
||
// version of the type of the lvalue; otherwise, the value has the
|
||
// type of the lvalue.
|
||
if (T.hasQualifiers())
|
||
T = T.getUnqualifiedType();
|
||
|
||
UpdateMarkingForLValueToRValue(E);
|
||
|
||
ExprResult Res = Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
|
||
E, 0, VK_RValue));
|
||
|
||
return Res;
|
||
}
|
||
|
||
ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
|
||
ExprResult Res = DefaultFunctionArrayConversion(E);
|
||
if (Res.isInvalid())
|
||
return ExprError();
|
||
Res = DefaultLvalueConversion(Res.take());
|
||
if (Res.isInvalid())
|
||
return ExprError();
|
||
return move(Res);
|
||
}
|
||
|
||
|
||
/// UsualUnaryConversions - Performs various conversions that are common to most
|
||
/// operators (C99 6.3). The conversions of array and function types are
|
||
/// sometimes suppressed. For example, the array->pointer conversion doesn't
|
||
/// apply if the array is an argument to the sizeof or address (&) operators.
|
||
/// In these instances, this routine should *not* be called.
|
||
ExprResult Sema::UsualUnaryConversions(Expr *E) {
|
||
// First, convert to an r-value.
|
||
ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
|
||
if (Res.isInvalid())
|
||
return Owned(E);
|
||
E = Res.take();
|
||
|
||
QualType Ty = E->getType();
|
||
assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
|
||
|
||
// Half FP is a bit different: it's a storage-only type, meaning that any
|
||
// "use" of it should be promoted to float.
|
||
if (Ty->isHalfType())
|
||
return ImpCastExprToType(Res.take(), Context.FloatTy, CK_FloatingCast);
|
||
|
||
// Try to perform integral promotions if the object has a theoretically
|
||
// promotable type.
|
||
if (Ty->isIntegralOrUnscopedEnumerationType()) {
|
||
// C99 6.3.1.1p2:
|
||
//
|
||
// The following may be used in an expression wherever an int or
|
||
// unsigned int may be used:
|
||
// - an object or expression with an integer type whose integer
|
||
// conversion rank is less than or equal to the rank of int
|
||
// and unsigned int.
|
||
// - A bit-field of type _Bool, int, signed int, or unsigned int.
|
||
//
|
||
// If an int can represent all values of the original type, the
|
||
// value is converted to an int; otherwise, it is converted to an
|
||
// unsigned int. These are called the integer promotions. All
|
||
// other types are unchanged by the integer promotions.
|
||
|
||
QualType PTy = Context.isPromotableBitField(E);
|
||
if (!PTy.isNull()) {
|
||
E = ImpCastExprToType(E, PTy, CK_IntegralCast).take();
|
||
return Owned(E);
|
||
}
|
||
if (Ty->isPromotableIntegerType()) {
|
||
QualType PT = Context.getPromotedIntegerType(Ty);
|
||
E = ImpCastExprToType(E, PT, CK_IntegralCast).take();
|
||
return Owned(E);
|
||
}
|
||
}
|
||
return Owned(E);
|
||
}
|
||
|
||
/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
|
||
/// do not have a prototype. Arguments that have type float are promoted to
|
||
/// double. All other argument types are converted by UsualUnaryConversions().
|
||
ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
|
||
QualType Ty = E->getType();
|
||
assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
|
||
|
||
ExprResult Res = UsualUnaryConversions(E);
|
||
if (Res.isInvalid())
|
||
return Owned(E);
|
||
E = Res.take();
|
||
|
||
// If this is a 'float' (CVR qualified or typedef) promote to double.
|
||
if (Ty->isSpecificBuiltinType(BuiltinType::Float))
|
||
E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take();
|
||
|
||
// C++ performs lvalue-to-rvalue conversion as a default argument
|
||
// promotion, even on class types, but note:
|
||
// C++11 [conv.lval]p2:
|
||
// When an lvalue-to-rvalue conversion occurs in an unevaluated
|
||
// operand or a subexpression thereof the value contained in the
|
||
// referenced object is not accessed. Otherwise, if the glvalue
|
||
// has a class type, the conversion copy-initializes a temporary
|
||
// of type T from the glvalue and the result of the conversion
|
||
// is a prvalue for the temporary.
|
||
// FIXME: add some way to gate this entire thing for correctness in
|
||
// potentially potentially evaluated contexts.
|
||
if (getLangOptions().CPlusPlus && E->isGLValue() &&
|
||
ExprEvalContexts.back().Context != Unevaluated) {
|
||
ExprResult Temp = PerformCopyInitialization(
|
||
InitializedEntity::InitializeTemporary(E->getType()),
|
||
E->getExprLoc(),
|
||
Owned(E));
|
||
if (Temp.isInvalid())
|
||
return ExprError();
|
||
E = Temp.get();
|
||
}
|
||
|
||
return Owned(E);
|
||
}
|
||
|
||
/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
|
||
/// will warn if the resulting type is not a POD type, and rejects ObjC
|
||
/// interfaces passed by value.
|
||
ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
|
||
FunctionDecl *FDecl) {
|
||
if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
|
||
// Strip the unbridged-cast placeholder expression off, if applicable.
|
||
if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
|
||
(CT == VariadicMethod ||
|
||
(FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
|
||
E = stripARCUnbridgedCast(E);
|
||
|
||
// Otherwise, do normal placeholder checking.
|
||
} else {
|
||
ExprResult ExprRes = CheckPlaceholderExpr(E);
|
||
if (ExprRes.isInvalid())
|
||
return ExprError();
|
||
E = ExprRes.take();
|
||
}
|
||
}
|
||
|
||
ExprResult ExprRes = DefaultArgumentPromotion(E);
|
||
if (ExprRes.isInvalid())
|
||
return ExprError();
|
||
E = ExprRes.take();
|
||
|
||
// Don't allow one to pass an Objective-C interface to a vararg.
|
||
if (E->getType()->isObjCObjectType() &&
|
||
DiagRuntimeBehavior(E->getLocStart(), 0,
|
||
PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
|
||
<< E->getType() << CT))
|
||
return ExprError();
|
||
|
||
// Complain about passing non-POD types through varargs. However, don't
|
||
// perform this check for incomplete types, which we can get here when we're
|
||
// in an unevaluated context.
|
||
if (!E->getType()->isIncompleteType() && !E->getType().isPODType(Context)) {
|
||
// C++0x [expr.call]p7:
|
||
// Passing a potentially-evaluated argument of class type (Clause 9)
|
||
// having a non-trivial copy constructor, a non-trivial move constructor,
|
||
// or a non-trivial destructor, with no corresponding parameter,
|
||
// is conditionally-supported with implementation-defined semantics.
|
||
bool TrivialEnough = false;
|
||
if (getLangOptions().CPlusPlus0x && !E->getType()->isDependentType()) {
|
||
if (CXXRecordDecl *Record = E->getType()->getAsCXXRecordDecl()) {
|
||
if (Record->hasTrivialCopyConstructor() &&
|
||
Record->hasTrivialMoveConstructor() &&
|
||
Record->hasTrivialDestructor()) {
|
||
DiagRuntimeBehavior(E->getLocStart(), 0,
|
||
PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
|
||
<< E->getType() << CT);
|
||
TrivialEnough = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!TrivialEnough &&
|
||
getLangOptions().ObjCAutoRefCount &&
|
||
E->getType()->isObjCLifetimeType())
|
||
TrivialEnough = true;
|
||
|
||
if (TrivialEnough) {
|
||
// Nothing to diagnose. This is okay.
|
||
} else if (DiagRuntimeBehavior(E->getLocStart(), 0,
|
||
PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
|
||
<< getLangOptions().CPlusPlus0x << E->getType()
|
||
<< CT)) {
|
||
// Turn this into a trap.
|
||
CXXScopeSpec SS;
|
||
SourceLocation TemplateKWLoc;
|
||
UnqualifiedId Name;
|
||
Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
|
||
E->getLocStart());
|
||
ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
|
||
true, false);
|
||
if (TrapFn.isInvalid())
|
||
return ExprError();
|
||
|
||
ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(), E->getLocStart(),
|
||
MultiExprArg(), E->getLocEnd());
|
||
if (Call.isInvalid())
|
||
return ExprError();
|
||
|
||
ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
|
||
Call.get(), E);
|
||
if (Comma.isInvalid())
|
||
return ExprError();
|
||
E = Comma.get();
|
||
}
|
||
}
|
||
|
||
return Owned(E);
|
||
}
|
||
|
||
/// \brief Converts an integer to complex float type. Helper function of
|
||
/// UsualArithmeticConversions()
|
||
///
|
||
/// \return false if the integer expression is an integer type and is
|
||
/// successfully converted to the complex type.
|
||
static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
|
||
ExprResult &ComplexExpr,
|
||
QualType IntTy,
|
||
QualType ComplexTy,
|
||
bool SkipCast) {
|
||
if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
|
||
if (SkipCast) return false;
|
||
if (IntTy->isIntegerType()) {
|
||
QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
|
||
IntExpr = S.ImpCastExprToType(IntExpr.take(), fpTy, CK_IntegralToFloating);
|
||
IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
|
||
CK_FloatingRealToComplex);
|
||
} else {
|
||
assert(IntTy->isComplexIntegerType());
|
||
IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
|
||
CK_IntegralComplexToFloatingComplex);
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/// \brief Takes two complex float types and converts them to the same type.
|
||
/// Helper function of UsualArithmeticConversions()
|
||
static QualType
|
||
handleComplexFloatToComplexFloatConverstion(Sema &S, ExprResult &LHS,
|
||
ExprResult &RHS, QualType LHSType,
|
||
QualType RHSType,
|
||
bool IsCompAssign) {
|
||
int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
|
||
|
||
if (order < 0) {
|
||
// _Complex float -> _Complex double
|
||
if (!IsCompAssign)
|
||
LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingComplexCast);
|
||
return RHSType;
|
||
}
|
||
if (order > 0)
|
||
// _Complex float -> _Complex double
|
||
RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingComplexCast);
|
||
return LHSType;
|
||
}
|
||
|
||
/// \brief Converts otherExpr to complex float and promotes complexExpr if
|
||
/// necessary. Helper function of UsualArithmeticConversions()
|
||
static QualType handleOtherComplexFloatConversion(Sema &S,
|
||
ExprResult &ComplexExpr,
|
||
ExprResult &OtherExpr,
|
||
QualType ComplexTy,
|
||
QualType OtherTy,
|
||
bool ConvertComplexExpr,
|
||
bool ConvertOtherExpr) {
|
||
int order = S.Context.getFloatingTypeOrder(ComplexTy, OtherTy);
|
||
|
||
// If just the complexExpr is complex, the otherExpr needs to be converted,
|
||
// and the complexExpr might need to be promoted.
|
||
if (order > 0) { // complexExpr is wider
|
||
// float -> _Complex double
|
||
if (ConvertOtherExpr) {
|
||
QualType fp = cast<ComplexType>(ComplexTy)->getElementType();
|
||
OtherExpr = S.ImpCastExprToType(OtherExpr.take(), fp, CK_FloatingCast);
|
||
OtherExpr = S.ImpCastExprToType(OtherExpr.take(), ComplexTy,
|
||
CK_FloatingRealToComplex);
|
||
}
|
||
return ComplexTy;
|
||
}
|
||
|
||
// otherTy is at least as wide. Find its corresponding complex type.
|
||
QualType result = (order == 0 ? ComplexTy :
|
||
S.Context.getComplexType(OtherTy));
|
||
|
||
// double -> _Complex double
|
||
if (ConvertOtherExpr)
|
||
OtherExpr = S.ImpCastExprToType(OtherExpr.take(), result,
|
||
CK_FloatingRealToComplex);
|
||
|
||
// _Complex float -> _Complex double
|
||
if (ConvertComplexExpr && order < 0)
|
||
ComplexExpr = S.ImpCastExprToType(ComplexExpr.take(), result,
|
||
CK_FloatingComplexCast);
|
||
|
||
return result;
|
||
}
|
||
|
||
/// \brief Handle arithmetic conversion with complex types. Helper function of
|
||
/// UsualArithmeticConversions()
|
||
static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
|
||
ExprResult &RHS, QualType LHSType,
|
||
QualType RHSType,
|
||
bool IsCompAssign) {
|
||
// if we have an integer operand, the result is the complex type.
|
||
if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
|
||
/*skipCast*/false))
|
||
return LHSType;
|
||
if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
|
||
/*skipCast*/IsCompAssign))
|
||
return RHSType;
|
||
|
||
// This handles complex/complex, complex/float, or float/complex.
|
||
// When both operands are complex, the shorter operand is converted to the
|
||
// type of the longer, and that is the type of the result. This corresponds
|
||
// to what is done when combining two real floating-point operands.
|
||
// The fun begins when size promotion occur across type domains.
|
||
// From H&S 6.3.4: When one operand is complex and the other is a real
|
||
// floating-point type, the less precise type is converted, within it's
|
||
// real or complex domain, to the precision of the other type. For example,
|
||
// when combining a "long double" with a "double _Complex", the
|
||
// "double _Complex" is promoted to "long double _Complex".
|
||
|
||
bool LHSComplexFloat = LHSType->isComplexType();
|
||
bool RHSComplexFloat = RHSType->isComplexType();
|
||
|
||
// If both are complex, just cast to the more precise type.
|
||
if (LHSComplexFloat && RHSComplexFloat)
|
||
return handleComplexFloatToComplexFloatConverstion(S, LHS, RHS,
|
||
LHSType, RHSType,
|
||
IsCompAssign);
|
||
|
||
// If only one operand is complex, promote it if necessary and convert the
|
||
// other operand to complex.
|
||
if (LHSComplexFloat)
|
||
return handleOtherComplexFloatConversion(
|
||
S, LHS, RHS, LHSType, RHSType, /*convertComplexExpr*/!IsCompAssign,
|
||
/*convertOtherExpr*/ true);
|
||
|
||
assert(RHSComplexFloat);
|
||
return handleOtherComplexFloatConversion(
|
||
S, RHS, LHS, RHSType, LHSType, /*convertComplexExpr*/true,
|
||
/*convertOtherExpr*/ !IsCompAssign);
|
||
}
|
||
|
||
/// \brief Hande arithmetic conversion from integer to float. Helper function
|
||
/// of UsualArithmeticConversions()
|
||
static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
|
||
ExprResult &IntExpr,
|
||
QualType FloatTy, QualType IntTy,
|
||
bool ConvertFloat, bool ConvertInt) {
|
||
if (IntTy->isIntegerType()) {
|
||
if (ConvertInt)
|
||
// Convert intExpr to the lhs floating point type.
|
||
IntExpr = S.ImpCastExprToType(IntExpr.take(), FloatTy,
|
||
CK_IntegralToFloating);
|
||
return FloatTy;
|
||
}
|
||
|
||
// Convert both sides to the appropriate complex float.
|
||
assert(IntTy->isComplexIntegerType());
|
||
QualType result = S.Context.getComplexType(FloatTy);
|
||
|
||
// _Complex int -> _Complex float
|
||
if (ConvertInt)
|
||
IntExpr = S.ImpCastExprToType(IntExpr.take(), result,
|
||
CK_IntegralComplexToFloatingComplex);
|
||
|
||
// float -> _Complex float
|
||
if (ConvertFloat)
|
||
FloatExpr = S.ImpCastExprToType(FloatExpr.take(), result,
|
||
CK_FloatingRealToComplex);
|
||
|
||
return result;
|
||
}
|
||
|
||
/// \brief Handle arithmethic conversion with floating point types. Helper
|
||
/// function of UsualArithmeticConversions()
|
||
static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
|
||
ExprResult &RHS, QualType LHSType,
|
||
QualType RHSType, bool IsCompAssign) {
|
||
bool LHSFloat = LHSType->isRealFloatingType();
|
||
bool RHSFloat = RHSType->isRealFloatingType();
|
||
|
||
// If we have two real floating types, convert the smaller operand
|
||
// to the bigger result.
|
||
if (LHSFloat && RHSFloat) {
|
||
int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
|
||
if (order > 0) {
|
||
RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingCast);
|
||
return LHSType;
|
||
}
|
||
|
||
assert(order < 0 && "illegal float comparison");
|
||
if (!IsCompAssign)
|
||
LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingCast);
|
||
return RHSType;
|
||
}
|
||
|
||
if (LHSFloat)
|
||
return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
|
||
/*convertFloat=*/!IsCompAssign,
|
||
/*convertInt=*/ true);
|
||
assert(RHSFloat);
|
||
return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
|
||
/*convertInt=*/ true,
|
||
/*convertFloat=*/!IsCompAssign);
|
||
}
|
||
|
||
/// \brief Handle conversions with GCC complex int extension. Helper function
|
||
/// of UsualArithmeticConversions()
|
||
// FIXME: if the operands are (int, _Complex long), we currently
|
||
// don't promote the complex. Also, signedness?
|
||
static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
|
||
ExprResult &RHS, QualType LHSType,
|
||
QualType RHSType,
|
||
bool IsCompAssign) {
|
||
const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
|
||
const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
|
||
|
||
if (LHSComplexInt && RHSComplexInt) {
|
||
int order = S.Context.getIntegerTypeOrder(LHSComplexInt->getElementType(),
|
||
RHSComplexInt->getElementType());
|
||
assert(order && "inequal types with equal element ordering");
|
||
if (order > 0) {
|
||
// _Complex int -> _Complex long
|
||
RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralComplexCast);
|
||
return LHSType;
|
||
}
|
||
|
||
if (!IsCompAssign)
|
||
LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralComplexCast);
|
||
return RHSType;
|
||
}
|
||
|
||
if (LHSComplexInt) {
|
||
// int -> _Complex int
|
||
// FIXME: This needs to take integer ranks into account
|
||
RHS = S.ImpCastExprToType(RHS.take(), LHSComplexInt->getElementType(),
|
||
CK_IntegralCast);
|
||
RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralRealToComplex);
|
||
return LHSType;
|
||
}
|
||
|
||
assert(RHSComplexInt);
|
||
// int -> _Complex int
|
||
// FIXME: This needs to take integer ranks into account
|
||
if (!IsCompAssign) {
|
||
LHS = S.ImpCastExprToType(LHS.take(), RHSComplexInt->getElementType(),
|
||
CK_IntegralCast);
|
||
LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralRealToComplex);
|
||
}
|
||
return RHSType;
|
||
}
|
||
|
||
/// \brief Handle integer arithmetic conversions. Helper function of
|
||
/// UsualArithmeticConversions()
|
||
static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
|
||
ExprResult &RHS, QualType LHSType,
|
||
QualType RHSType, bool IsCompAssign) {
|
||
// The rules for this case are in C99 6.3.1.8
|
||
int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
|
||
bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
|
||
bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
|
||
if (LHSSigned == RHSSigned) {
|
||
// Same signedness; use the higher-ranked type
|
||
if (order >= 0) {
|
||
RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
|
||
return LHSType;
|
||
} else if (!IsCompAssign)
|
||
LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
|
||
return RHSType;
|
||
} else if (order != (LHSSigned ? 1 : -1)) {
|
||
// The unsigned type has greater than or equal rank to the
|
||
// signed type, so use the unsigned type
|
||
if (RHSSigned) {
|
||
RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
|
||
return LHSType;
|
||
} else if (!IsCompAssign)
|
||
LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
|
||
return RHSType;
|
||
} else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
|
||
// The two types are different widths; if we are here, that
|
||
// means the signed type is larger than the unsigned type, so
|
||
// use the signed type.
|
||
if (LHSSigned) {
|
||
RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
|
||
return LHSType;
|
||
} else if (!IsCompAssign)
|
||
LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
|
||
return RHSType;
|
||
} else {
|
||
// The signed type is higher-ranked than the unsigned type,
|
||
// but isn't actually any bigger (like unsigned int and long
|
||
// on most 32-bit systems). Use the unsigned type corresponding
|
||
// to the signed type.
|
||
QualType result =
|
||
S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
|
||
RHS = S.ImpCastExprToType(RHS.take(), result, CK_IntegralCast);
|
||
if (!IsCompAssign)
|
||
LHS = S.ImpCastExprToType(LHS.take(), result, CK_IntegralCast);
|
||
return result;
|
||
}
|
||
}
|
||
|
||
/// UsualArithmeticConversions - Performs various conversions that are common to
|
||
/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
|
||
/// routine returns the first non-arithmetic type found. The client is
|
||
/// responsible for emitting appropriate error diagnostics.
|
||
/// FIXME: verify the conversion rules for "complex int" are consistent with
|
||
/// GCC.
|
||
QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
|
||
bool IsCompAssign) {
|
||
if (!IsCompAssign) {
|
||
LHS = UsualUnaryConversions(LHS.take());
|
||
if (LHS.isInvalid())
|
||
return QualType();
|
||
}
|
||
|
||
RHS = UsualUnaryConversions(RHS.take());
|
||
if (RHS.isInvalid())
|
||
return QualType();
|
||
|
||
// For conversion purposes, we ignore any qualifiers.
|
||
// For example, "const float" and "float" are equivalent.
|
||
QualType LHSType =
|
||
Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
|
||
QualType RHSType =
|
||
Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
|
||
|
||
// If both types are identical, no conversion is needed.
|
||
if (LHSType == RHSType)
|
||
return LHSType;
|
||
|
||
// If either side is a non-arithmetic type (e.g. a pointer), we are done.
|
||
// The caller can deal with this (e.g. pointer + int).
|
||
if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
|
||
return LHSType;
|
||
|
||
// Apply unary and bitfield promotions to the LHS's type.
|
||
QualType LHSUnpromotedType = LHSType;
|
||
if (LHSType->isPromotableIntegerType())
|
||
LHSType = Context.getPromotedIntegerType(LHSType);
|
||
QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
|
||
if (!LHSBitfieldPromoteTy.isNull())
|
||
LHSType = LHSBitfieldPromoteTy;
|
||
if (LHSType != LHSUnpromotedType && !IsCompAssign)
|
||
LHS = ImpCastExprToType(LHS.take(), LHSType, CK_IntegralCast);
|
||
|
||
// If both types are identical, no conversion is needed.
|
||
if (LHSType == RHSType)
|
||
return LHSType;
|
||
|
||
// At this point, we have two different arithmetic types.
|
||
|
||
// Handle complex types first (C99 6.3.1.8p1).
|
||
if (LHSType->isComplexType() || RHSType->isComplexType())
|
||
return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
|
||
IsCompAssign);
|
||
|
||
// Now handle "real" floating types (i.e. float, double, long double).
|
||
if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
|
||
return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
|
||
IsCompAssign);
|
||
|
||
// Handle GCC complex int extension.
|
||
if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
|
||
return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
|
||
IsCompAssign);
|
||
|
||
// Finally, we have two differing integer types.
|
||
return handleIntegerConversion(*this, LHS, RHS, LHSType, RHSType,
|
||
IsCompAssign);
|
||
}
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// Semantic Analysis for various Expression Types
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
|
||
ExprResult
|
||
Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
|
||
SourceLocation DefaultLoc,
|
||
SourceLocation RParenLoc,
|
||
Expr *ControllingExpr,
|
||
MultiTypeArg ArgTypes,
|
||
MultiExprArg ArgExprs) {
|
||
unsigned NumAssocs = ArgTypes.size();
|
||
assert(NumAssocs == ArgExprs.size());
|
||
|
||
ParsedType *ParsedTypes = ArgTypes.release();
|
||
Expr **Exprs = ArgExprs.release();
|
||
|
||
TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
|
||
for (unsigned i = 0; i < NumAssocs; ++i) {
|
||
if (ParsedTypes[i])
|
||
(void) GetTypeFromParser(ParsedTypes[i], &Types[i]);
|
||
else
|
||
Types[i] = 0;
|
||
}
|
||
|
||
ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
|
||
ControllingExpr, Types, Exprs,
|
||
NumAssocs);
|
||
delete [] Types;
|
||
return ER;
|
||
}
|
||
|
||
ExprResult
|
||
Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
|
||
SourceLocation DefaultLoc,
|
||
SourceLocation RParenLoc,
|
||
Expr *ControllingExpr,
|
||
TypeSourceInfo **Types,
|
||
Expr **Exprs,
|
||
unsigned NumAssocs) {
|
||
bool TypeErrorFound = false,
|
||
IsResultDependent = ControllingExpr->isTypeDependent(),
|
||
ContainsUnexpandedParameterPack
|
||
= ControllingExpr->containsUnexpandedParameterPack();
|
||
|
||
for (unsigned i = 0; i < NumAssocs; ++i) {
|
||
if (Exprs[i]->containsUnexpandedParameterPack())
|
||
ContainsUnexpandedParameterPack = true;
|
||
|
||
if (Types[i]) {
|
||
if (Types[i]->getType()->containsUnexpandedParameterPack())
|
||
ContainsUnexpandedParameterPack = true;
|
||
|
||
if (Types[i]->getType()->isDependentType()) {
|
||
IsResultDependent = true;
|
||
} else {
|
||
// C11 6.5.1.1p2 "The type name in a generic association shall specify a
|
||
// complete object type other than a variably modified type."
|
||
unsigned D = 0;
|
||
if (Types[i]->getType()->isIncompleteType())
|
||
D = diag::err_assoc_type_incomplete;
|
||
else if (!Types[i]->getType()->isObjectType())
|
||
D = diag::err_assoc_type_nonobject;
|
||
else if (Types[i]->getType()->isVariablyModifiedType())
|
||
D = diag::err_assoc_type_variably_modified;
|
||
|
||
if (D != 0) {
|
||
Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
|
||
<< Types[i]->getTypeLoc().getSourceRange()
|
||
<< Types[i]->getType();
|
||
TypeErrorFound = true;
|
||
}
|
||
|
||
// C11 6.5.1.1p2 "No two generic associations in the same generic
|
||
// selection shall specify compatible types."
|
||
for (unsigned j = i+1; j < NumAssocs; ++j)
|
||
if (Types[j] && !Types[j]->getType()->isDependentType() &&
|
||
Context.typesAreCompatible(Types[i]->getType(),
|
||
Types[j]->getType())) {
|
||
Diag(Types[j]->getTypeLoc().getBeginLoc(),
|
||
diag::err_assoc_compatible_types)
|
||
<< Types[j]->getTypeLoc().getSourceRange()
|
||
<< Types[j]->getType()
|
||
<< Types[i]->getType();
|
||
Diag(Types[i]->getTypeLoc().getBeginLoc(),
|
||
diag::note_compat_assoc)
|
||
<< Types[i]->getTypeLoc().getSourceRange()
|
||
<< Types[i]->getType();
|
||
TypeErrorFound = true;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if (TypeErrorFound)
|
||
return ExprError();
|
||
|
||
// If we determined that the generic selection is result-dependent, don't
|
||
// try to compute the result expression.
|
||
if (IsResultDependent)
|
||
return Owned(new (Context) GenericSelectionExpr(
|
||
Context, KeyLoc, ControllingExpr,
|
||
Types, Exprs, NumAssocs, DefaultLoc,
|
||
RParenLoc, ContainsUnexpandedParameterPack));
|
||
|
||
SmallVector<unsigned, 1> CompatIndices;
|
||
unsigned DefaultIndex = -1U;
|
||
for (unsigned i = 0; i < NumAssocs; ++i) {
|
||
if (!Types[i])
|
||
DefaultIndex = i;
|
||
else if (Context.typesAreCompatible(ControllingExpr->getType(),
|
||
Types[i]->getType()))
|
||
CompatIndices.push_back(i);
|
||
}
|
||
|
||
// C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
|
||
// type compatible with at most one of the types named in its generic
|
||
// association list."
|
||
if (CompatIndices.size() > 1) {
|
||
// We strip parens here because the controlling expression is typically
|
||
// parenthesized in macro definitions.
|
||
ControllingExpr = ControllingExpr->IgnoreParens();
|
||
Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
|
||
<< ControllingExpr->getSourceRange() << ControllingExpr->getType()
|
||
<< (unsigned) CompatIndices.size();
|
||
for (SmallVector<unsigned, 1>::iterator I = CompatIndices.begin(),
|
||
E = CompatIndices.end(); I != E; ++I) {
|
||
Diag(Types[*I]->getTypeLoc().getBeginLoc(),
|
||
diag::note_compat_assoc)
|
||
<< Types[*I]->getTypeLoc().getSourceRange()
|
||
<< Types[*I]->getType();
|
||
}
|
||
return ExprError();
|
||
}
|
||
|
||
// C11 6.5.1.1p2 "If a generic selection has no default generic association,
|
||
// its controlling expression shall have type compatible with exactly one of
|
||
// the types named in its generic association list."
|
||
if (DefaultIndex == -1U && CompatIndices.size() == 0) {
|
||
// We strip parens here because the controlling expression is typically
|
||
// parenthesized in macro definitions.
|
||
ControllingExpr = ControllingExpr->IgnoreParens();
|
||
Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
|
||
<< ControllingExpr->getSourceRange() << ControllingExpr->getType();
|
||
return ExprError();
|
||
}
|
||
|
||
// C11 6.5.1.1p3 "If a generic selection has a generic association with a
|
||
// type name that is compatible with the type of the controlling expression,
|
||
// then the result expression of the generic selection is the expression
|
||
// in that generic association. Otherwise, the result expression of the
|
||
// generic selection is the expression in the default generic association."
|
||
unsigned ResultIndex =
|
||
CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
|
||
|
||
return Owned(new (Context) GenericSelectionExpr(
|
||
Context, KeyLoc, ControllingExpr,
|
||
Types, Exprs, NumAssocs, DefaultLoc,
|
||
RParenLoc, ContainsUnexpandedParameterPack,
|
||
ResultIndex));
|
||
}
|
||
|
||
/// ActOnStringLiteral - The specified tokens were lexed as pasted string
|
||
/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
|
||
/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
|
||
/// multiple tokens. However, the common case is that StringToks points to one
|
||
/// string.
|
||
///
|
||
ExprResult
|
||
Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
|
||
assert(NumStringToks && "Must have at least one string!");
|
||
|
||
StringLiteralParser Literal(StringToks, NumStringToks, PP);
|
||
if (Literal.hadError)
|
||
return ExprError();
|
||
|
||
SmallVector<SourceLocation, 4> StringTokLocs;
|
||
for (unsigned i = 0; i != NumStringToks; ++i)
|
||
StringTokLocs.push_back(StringToks[i].getLocation());
|
||
|
||
QualType StrTy = Context.CharTy;
|
||
if (Literal.isWide())
|
||
StrTy = Context.getWCharType();
|
||
else if (Literal.isUTF16())
|
||
StrTy = Context.Char16Ty;
|
||
else if (Literal.isUTF32())
|
||
StrTy = Context.Char32Ty;
|
||
else if (Literal.isPascal())
|
||
StrTy = Context.UnsignedCharTy;
|
||
|
||
StringLiteral::StringKind Kind = StringLiteral::Ascii;
|
||
if (Literal.isWide())
|
||
Kind = StringLiteral::Wide;
|
||
else if (Literal.isUTF8())
|
||
Kind = StringLiteral::UTF8;
|
||
else if (Literal.isUTF16())
|
||
Kind = StringLiteral::UTF16;
|
||
else if (Literal.isUTF32())
|
||
Kind = StringLiteral::UTF32;
|
||
|
||
// A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
|
||
if (getLangOptions().CPlusPlus || getLangOptions().ConstStrings)
|
||
StrTy.addConst();
|
||
|
||
// Get an array type for the string, according to C99 6.4.5. This includes
|
||
// the nul terminator character as well as the string length for pascal
|
||
// strings.
|
||
StrTy = Context.getConstantArrayType(StrTy,
|
||
llvm::APInt(32, Literal.GetNumStringChars()+1),
|
||
ArrayType::Normal, 0);
|
||
|
||
// Pass &StringTokLocs[0], StringTokLocs.size() to factory!
|
||
return Owned(StringLiteral::Create(Context, Literal.GetString(),
|
||
Kind, Literal.Pascal, StrTy,
|
||
&StringTokLocs[0],
|
||
StringTokLocs.size()));
|
||
}
|
||
|
||
ExprResult
|
||
Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
|
||
SourceLocation Loc,
|
||
const CXXScopeSpec *SS) {
|
||
DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
|
||
return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
|
||
}
|
||
|
||
/// BuildDeclRefExpr - Build an expression that references a
|
||
/// declaration that does not require a closure capture.
|
||
ExprResult
|
||
Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
|
||
const DeclarationNameInfo &NameInfo,
|
||
const CXXScopeSpec *SS) {
|
||
if (getLangOptions().CUDA)
|
||
if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
|
||
if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
|
||
CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller),
|
||
CalleeTarget = IdentifyCUDATarget(Callee);
|
||
if (CheckCUDATarget(CallerTarget, CalleeTarget)) {
|
||
Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
|
||
<< CalleeTarget << D->getIdentifier() << CallerTarget;
|
||
Diag(D->getLocation(), diag::note_previous_decl)
|
||
<< D->getIdentifier();
|
||
return ExprError();
|
||
}
|
||
}
|
||
|
||
DeclRefExpr *E = DeclRefExpr::Create(Context,
|
||
SS ? SS->getWithLocInContext(Context)
|
||
: NestedNameSpecifierLoc(),
|
||
SourceLocation(),
|
||
D, NameInfo, Ty, VK);
|
||
|
||
MarkDeclRefReferenced(E);
|
||
|
||
// Just in case we're building an illegal pointer-to-member.
|
||
FieldDecl *FD = dyn_cast<FieldDecl>(D);
|
||
if (FD && FD->isBitField())
|
||
E->setObjectKind(OK_BitField);
|
||
|
||
return Owned(E);
|
||
}
|
||
|
||
/// Decomposes the given name into a DeclarationNameInfo, its location, and
|
||
/// possibly a list of template arguments.
|
||
///
|
||
/// If this produces template arguments, it is permitted to call
|
||
/// DecomposeTemplateName.
|
||
///
|
||
/// This actually loses a lot of source location information for
|
||
/// non-standard name kinds; we should consider preserving that in
|
||
/// some way.
|
||
void
|
||
Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
|
||
TemplateArgumentListInfo &Buffer,
|
||
DeclarationNameInfo &NameInfo,
|
||
const TemplateArgumentListInfo *&TemplateArgs) {
|
||
if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
|
||
Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
|
||
Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
|
||
|
||
ASTTemplateArgsPtr TemplateArgsPtr(*this,
|
||
Id.TemplateId->getTemplateArgs(),
|
||
Id.TemplateId->NumArgs);
|
||
translateTemplateArguments(TemplateArgsPtr, Buffer);
|
||
TemplateArgsPtr.release();
|
||
|
||
TemplateName TName = Id.TemplateId->Template.get();
|
||
SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
|
||
NameInfo = Context.getNameForTemplate(TName, TNameLoc);
|
||
TemplateArgs = &Buffer;
|
||
} else {
|
||
NameInfo = GetNameFromUnqualifiedId(Id);
|
||
TemplateArgs = 0;
|
||
}
|
||
}
|
||
|
||
/// Diagnose an empty lookup.
|
||
///
|
||
/// \return false if new lookup candidates were found
|
||
bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
|
||
CorrectionCandidateCallback &CCC,
|
||
TemplateArgumentListInfo *ExplicitTemplateArgs,
|
||
llvm::ArrayRef<Expr *> Args) {
|
||
DeclarationName Name = R.getLookupName();
|
||
|
||
unsigned diagnostic = diag::err_undeclared_var_use;
|
||
unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
|
||
if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
|
||
Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
|
||
Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
|
||
diagnostic = diag::err_undeclared_use;
|
||
diagnostic_suggest = diag::err_undeclared_use_suggest;
|
||
}
|
||
|
||
// If the original lookup was an unqualified lookup, fake an
|
||
// unqualified lookup. This is useful when (for example) the
|
||
// original lookup would not have found something because it was a
|
||
// dependent name.
|
||
DeclContext *DC = SS.isEmpty() ? CurContext : 0;
|
||
while (DC) {
|
||
if (isa<CXXRecordDecl>(DC)) {
|
||
LookupQualifiedName(R, DC);
|
||
|
||
if (!R.empty()) {
|
||
// Don't give errors about ambiguities in this lookup.
|
||
R.suppressDiagnostics();
|
||
|
||
// During a default argument instantiation the CurContext points
|
||
// to a CXXMethodDecl; but we can't apply a this-> fixit inside a
|
||
// function parameter list, hence add an explicit check.
|
||
bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
|
||
ActiveTemplateInstantiations.back().Kind ==
|
||
ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
|
||
CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
|
||
bool isInstance = CurMethod &&
|
||
CurMethod->isInstance() &&
|
||
DC == CurMethod->getParent() && !isDefaultArgument;
|
||
|
||
|
||
// Give a code modification hint to insert 'this->'.
|
||
// TODO: fixit for inserting 'Base<T>::' in the other cases.
|
||
// Actually quite difficult!
|
||
if (isInstance) {
|
||
UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
|
||
CallsUndergoingInstantiation.back()->getCallee());
|
||
CXXMethodDecl *DepMethod = cast_or_null<CXXMethodDecl>(
|
||
CurMethod->getInstantiatedFromMemberFunction());
|
||
if (DepMethod) {
|
||
if (getLangOptions().MicrosoftMode)
|
||
diagnostic = diag::warn_found_via_dependent_bases_lookup;
|
||
Diag(R.getNameLoc(), diagnostic) << Name
|
||
<< FixItHint::CreateInsertion(R.getNameLoc(), "this->");
|
||
QualType DepThisType = DepMethod->getThisType(Context);
|
||
CheckCXXThisCapture(R.getNameLoc());
|
||
CXXThisExpr *DepThis = new (Context) CXXThisExpr(
|
||
R.getNameLoc(), DepThisType, false);
|
||
TemplateArgumentListInfo TList;
|
||
if (ULE->hasExplicitTemplateArgs())
|
||
ULE->copyTemplateArgumentsInto(TList);
|
||
|
||
CXXScopeSpec SS;
|
||
SS.Adopt(ULE->getQualifierLoc());
|
||
CXXDependentScopeMemberExpr *DepExpr =
|
||
CXXDependentScopeMemberExpr::Create(
|
||
Context, DepThis, DepThisType, true, SourceLocation(),
|
||
SS.getWithLocInContext(Context),
|
||
ULE->getTemplateKeywordLoc(), 0,
|
||
R.getLookupNameInfo(),
|
||
ULE->hasExplicitTemplateArgs() ? &TList : 0);
|
||
CallsUndergoingInstantiation.back()->setCallee(DepExpr);
|
||
} else {
|
||
// FIXME: we should be able to handle this case too. It is correct
|
||
// to add this-> here. This is a workaround for PR7947.
|
||
Diag(R.getNameLoc(), diagnostic) << Name;
|
||
}
|
||
} else {
|
||
if (getLangOptions().MicrosoftMode)
|
||
diagnostic = diag::warn_found_via_dependent_bases_lookup;
|
||
Diag(R.getNameLoc(), diagnostic) << Name;
|
||
}
|
||
|
||
// Do we really want to note all of these?
|
||
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
|
||
Diag((*I)->getLocation(), diag::note_dependent_var_use);
|
||
|
||
// Return true if we are inside a default argument instantiation
|
||
// and the found name refers to an instance member function, otherwise
|
||
// the function calling DiagnoseEmptyLookup will try to create an
|
||
// implicit member call and this is wrong for default argument.
|
||
if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
|
||
Diag(R.getNameLoc(), diag::err_member_call_without_object);
|
||
return true;
|
||
}
|
||
|
||
// Tell the callee to try to recover.
|
||
return false;
|
||
}
|
||
|
||
R.clear();
|
||
}
|
||
|
||
// In Microsoft mode, if we are performing lookup from within a friend
|
||
// function definition declared at class scope then we must set
|
||
// DC to the lexical parent to be able to search into the parent
|
||
// class.
|
||
if (getLangOptions().MicrosoftMode && isa<FunctionDecl>(DC) &&
|
||
cast<FunctionDecl>(DC)->getFriendObjectKind() &&
|
||
DC->getLexicalParent()->isRecord())
|
||
DC = DC->getLexicalParent();
|
||
else
|
||
DC = DC->getParent();
|
||
}
|
||
|
||
// We didn't find anything, so try to correct for a typo.
|
||
TypoCorrection Corrected;
|
||
if (S && (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
|
||
S, &SS, CCC))) {
|
||
std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
|
||
std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
|
||
R.setLookupName(Corrected.getCorrection());
|
||
|
||
if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
|
||
if (Corrected.isOverloaded()) {
|
||
OverloadCandidateSet OCS(R.getNameLoc());
|
||
OverloadCandidateSet::iterator Best;
|
||
for (TypoCorrection::decl_iterator CD = Corrected.begin(),
|
||
CDEnd = Corrected.end();
|
||
CD != CDEnd; ++CD) {
|
||
if (FunctionTemplateDecl *FTD =
|
||
dyn_cast<FunctionTemplateDecl>(*CD))
|
||
AddTemplateOverloadCandidate(
|
||
FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
|
||
Args, OCS);
|
||
else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
|
||
if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
|
||
AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
|
||
Args, OCS);
|
||
}
|
||
switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
|
||
case OR_Success:
|
||
ND = Best->Function;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
R.addDecl(ND);
|
||
if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
|
||
if (SS.isEmpty())
|
||
Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr
|
||
<< FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
|
||
else
|
||
Diag(R.getNameLoc(), diag::err_no_member_suggest)
|
||
<< Name << computeDeclContext(SS, false) << CorrectedQuotedStr
|
||
<< SS.getRange()
|
||
<< FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
|
||
if (ND)
|
||
Diag(ND->getLocation(), diag::note_previous_decl)
|
||
<< CorrectedQuotedStr;
|
||
|
||
// Tell the callee to try to recover.
|
||
return false;
|
||
}
|
||
|
||
if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) {
|
||
// FIXME: If we ended up with a typo for a type name or
|
||
// Objective-C class name, we're in trouble because the parser
|
||
// is in the wrong place to recover. Suggest the typo
|
||
// correction, but don't make it a fix-it since we're not going
|
||
// to recover well anyway.
|
||
if (SS.isEmpty())
|
||
Diag(R.getNameLoc(), diagnostic_suggest)
|
||
<< Name << CorrectedQuotedStr;
|
||
else
|
||
Diag(R.getNameLoc(), diag::err_no_member_suggest)
|
||
<< Name << computeDeclContext(SS, false) << CorrectedQuotedStr
|
||
<< SS.getRange();
|
||
|
||
// Don't try to recover; it won't work.
|
||
return true;
|
||
}
|
||
} else {
|
||
// FIXME: We found a keyword. Suggest it, but don't provide a fix-it
|
||
// because we aren't able to recover.
|
||
if (SS.isEmpty())
|
||
Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr;
|
||
else
|
||
Diag(R.getNameLoc(), diag::err_no_member_suggest)
|
||
<< Name << computeDeclContext(SS, false) << CorrectedQuotedStr
|
||
<< SS.getRange();
|
||
return true;
|
||
}
|
||
}
|
||
R.clear();
|
||
|
||
// Emit a special diagnostic for failed member lookups.
|
||
// FIXME: computing the declaration context might fail here (?)
|
||
if (!SS.isEmpty()) {
|
||
Diag(R.getNameLoc(), diag::err_no_member)
|
||
<< Name << computeDeclContext(SS, false)
|
||
<< SS.getRange();
|
||
return true;
|
||
}
|
||
|
||
// Give up, we can't recover.
|
||
Diag(R.getNameLoc(), diagnostic) << Name;
|
||
return true;
|
||
}
|
||
|
||
ExprResult Sema::ActOnIdExpression(Scope *S,
|
||
CXXScopeSpec &SS,
|
||
SourceLocation TemplateKWLoc,
|
||
UnqualifiedId &Id,
|
||
bool HasTrailingLParen,
|
||
bool IsAddressOfOperand,
|
||
CorrectionCandidateCallback *CCC) {
|
||
assert(!(IsAddressOfOperand && HasTrailingLParen) &&
|
||
"cannot be direct & operand and have a trailing lparen");
|
||
|
||
if (SS.isInvalid())
|
||
return ExprError();
|
||
|
||
TemplateArgumentListInfo TemplateArgsBuffer;
|
||
|
||
// Decompose the UnqualifiedId into the following data.
|
||
DeclarationNameInfo NameInfo;
|
||
const TemplateArgumentListInfo *TemplateArgs;
|
||
DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
|
||
|
||
DeclarationName Name = NameInfo.getName();
|
||
IdentifierInfo *II = Name.getAsIdentifierInfo();
|
||
SourceLocation NameLoc = NameInfo.getLoc();
|
||
|
||
// C++ [temp.dep.expr]p3:
|
||
// An id-expression is type-dependent if it contains:
|
||
// -- an identifier that was declared with a dependent type,
|
||
// (note: handled after lookup)
|
||
// -- a template-id that is dependent,
|
||
// (note: handled in BuildTemplateIdExpr)
|
||
// -- a conversion-function-id that specifies a dependent type,
|
||
// -- a nested-name-specifier that contains a class-name that
|
||
// names a dependent type.
|
||
// Determine whether this is a member of an unknown specialization;
|
||
// we need to handle these differently.
|
||
bool DependentID = false;
|
||
if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
|
||
Name.getCXXNameType()->isDependentType()) {
|
||
DependentID = true;
|
||
} else if (SS.isSet()) {
|
||
if (DeclContext *DC = computeDeclContext(SS, false)) {
|
||
if (RequireCompleteDeclContext(SS, DC))
|
||
return ExprError();
|
||
} else {
|
||
DependentID = true;
|
||
}
|
||
}
|
||
|
||
if (DependentID)
|
||
return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
|
||
IsAddressOfOperand, TemplateArgs);
|
||
|
||
// Perform the required lookup.
|
||
LookupResult R(*this, NameInfo,
|
||
(Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
|
||
? LookupObjCImplicitSelfParam : LookupOrdinaryName);
|
||
if (TemplateArgs) {
|
||
// Lookup the template name again to correctly establish the context in
|
||
// which it was found. This is really unfortunate as we already did the
|
||
// lookup to determine that it was a template name in the first place. If
|
||
// this becomes a performance hit, we can work harder to preserve those
|
||
// results until we get here but it's likely not worth it.
|
||
bool MemberOfUnknownSpecialization;
|
||
LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
|
||
MemberOfUnknownSpecialization);
|
||
|
||
if (MemberOfUnknownSpecialization ||
|
||
(R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
|
||
return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
|
||
IsAddressOfOperand, TemplateArgs);
|
||
} else {
|
||
bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
|
||
LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
|
||
|
||
// If the result might be in a dependent base class, this is a dependent
|
||
// id-expression.
|
||
if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
|
||
return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
|
||
IsAddressOfOperand, TemplateArgs);
|
||
|
||
// If this reference is in an Objective-C method, then we need to do
|
||
// some special Objective-C lookup, too.
|
||
if (IvarLookupFollowUp) {
|
||
ExprResult E(LookupInObjCMethod(R, S, II, true));
|
||
if (E.isInvalid())
|
||
return ExprError();
|
||
|
||
if (Expr *Ex = E.takeAs<Expr>())
|
||
return Owned(Ex);
|
||
}
|
||
}
|
||
|
||
if (R.isAmbiguous())
|
||
return ExprError();
|
||
|
||
// Determine whether this name might be a candidate for
|
||
// argument-dependent lookup.
|
||
bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
|
||
|
||
if (R.empty() && !ADL) {
|
||
// Otherwise, this could be an implicitly declared function reference (legal
|
||
// in C90, extension in C99, forbidden in C++).
|
||
if (HasTrailingLParen && II && !getLangOptions().CPlusPlus) {
|
||
NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
|
||
if (D) R.addDecl(D);
|
||
}
|
||
|
||
// If this name wasn't predeclared and if this is not a function
|
||
// call, diagnose the problem.
|
||
if (R.empty()) {
|
||
|
||
// In Microsoft mode, if we are inside a template class member function
|
||
// and we can't resolve an identifier then assume the identifier is type
|
||
// dependent. The goal is to postpone name lookup to instantiation time
|
||
// to be able to search into type dependent base classes.
|
||
if (getLangOptions().MicrosoftMode && CurContext->isDependentContext() &&
|
||
isa<CXXMethodDecl>(CurContext))
|
||
return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
|
||
IsAddressOfOperand, TemplateArgs);
|
||
|
||
CorrectionCandidateCallback DefaultValidator;
|
||
if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator))
|
||
return ExprError();
|
||
|
||
assert(!R.empty() &&
|
||
"DiagnoseEmptyLookup returned false but added no results");
|
||
|
||
// If we found an Objective-C instance variable, let
|
||
// LookupInObjCMethod build the appropriate expression to
|
||
// reference the ivar.
|
||
if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
|
||
R.clear();
|
||
ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
|
||
// In a hopelessly buggy code, Objective-C instance variable
|
||
// lookup fails and no expression will be built to reference it.
|
||
if (!E.isInvalid() && !E.get())
|
||
return ExprError();
|
||
return move(E);
|
||
}
|
||
}
|
||
}
|
||
|
||
// This is guaranteed from this point on.
|
||
assert(!R.empty() || ADL);
|
||
|
||
// Check whether this might be a C++ implicit instance member access.
|
||
// C++ [class.mfct.non-static]p3:
|
||
// When an id-expression that is not part of a class member access
|
||
// syntax and not used to form a pointer to member is used in the
|
||
// body of a non-static member function of class X, if name lookup
|
||
// resolves the name in the id-expression to a non-static non-type
|
||
// member of some class C, the id-expression is transformed into a
|
||
// class member access expression using (*this) as the
|
||
// postfix-expression to the left of the . operator.
|
||
//
|
||
// But we don't actually need to do this for '&' operands if R
|
||
// resolved to a function or overloaded function set, because the
|
||
// expression is ill-formed if it actually works out to be a
|
||
// non-static member function:
|
||
//
|
||
// C++ [expr.ref]p4:
|
||
// Otherwise, if E1.E2 refers to a non-static member function. . .
|
||
// [t]he expression can be used only as the left-hand operand of a
|
||
// member function call.
|
||
//
|
||
// There are other safeguards against such uses, but it's important
|
||
// to get this right here so that we don't end up making a
|
||
// spuriously dependent expression if we're inside a dependent
|
||
// instance method.
|
||
if (!R.empty() && (*R.begin())->isCXXClassMember()) {
|
||
bool MightBeImplicitMember;
|
||
if (!IsAddressOfOperand)
|
||
MightBeImplicitMember = true;
|
||
else if (!SS.isEmpty())
|
||
MightBeImplicitMember = false;
|
||
else if (R.isOverloadedResult())
|
||
MightBeImplicitMember = false;
|
||
else if (R.isUnresolvableResult())
|
||
MightBeImplicitMember = true;
|
||
else
|
||
MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
|
||
isa<IndirectFieldDecl>(R.getFoundDecl());
|
||
|
||
if (MightBeImplicitMember)
|
||
return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
|
||
R, TemplateArgs);
|
||
}
|
||
|
||
if (TemplateArgs || TemplateKWLoc.isValid())
|
||
return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
|
||
|
||
return BuildDeclarationNameExpr(SS, R, ADL);
|
||
}
|
||
|
||
/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
|
||
/// declaration name, generally during template instantiation.
|
||
/// There's a large number of things which don't need to be done along
|
||
/// this path.
|
||
ExprResult
|
||
Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
|
||
const DeclarationNameInfo &NameInfo) {
|
||
DeclContext *DC;
|
||
if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
|
||
return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
|
||
NameInfo, /*TemplateArgs=*/0);
|
||
|
||
if (RequireCompleteDeclContext(SS, DC))
|
||
return ExprError();
|
||
|
||
LookupResult R(*this, NameInfo, LookupOrdinaryName);
|
||
LookupQualifiedName(R, DC);
|
||
|
||
if (R.isAmbiguous())
|
||
return ExprError();
|
||
|
||
if (R.empty()) {
|
||
Diag(NameInfo.getLoc(), diag::err_no_member)
|
||
<< NameInfo.getName() << DC << SS.getRange();
|
||
return ExprError();
|
||
}
|
||
|
||
return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
|
||
}
|
||
|
||
/// LookupInObjCMethod - The parser has read a name in, and Sema has
|
||
/// detected that we're currently inside an ObjC method. Perform some
|
||
/// additional lookup.
|
||
///
|
||
/// Ideally, most of this would be done by lookup, but there's
|
||
/// actually quite a lot of extra work involved.
|
||
///
|
||
/// Returns a null sentinel to indicate trivial success.
|
||
ExprResult
|
||
Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
|
||
IdentifierInfo *II, bool AllowBuiltinCreation) {
|
||
SourceLocation Loc = Lookup.getNameLoc();
|
||
ObjCMethodDecl *CurMethod = getCurMethodDecl();
|
||
|
||
// There are two cases to handle here. 1) scoped lookup could have failed,
|
||
// in which case we should look for an ivar. 2) scoped lookup could have
|
||
// found a decl, but that decl is outside the current instance method (i.e.
|
||
// a global variable). In these two cases, we do a lookup for an ivar with
|
||
// this name, if the lookup sucedes, we replace it our current decl.
|
||
|
||
// If we're in a class method, we don't normally want to look for
|
||
// ivars. But if we don't find anything else, and there's an
|
||
// ivar, that's an error.
|
||
bool IsClassMethod = CurMethod->isClassMethod();
|
||
|
||
bool LookForIvars;
|
||
if (Lookup.empty())
|
||
LookForIvars = true;
|
||
else if (IsClassMethod)
|
||
LookForIvars = false;
|
||
else
|
||
LookForIvars = (Lookup.isSingleResult() &&
|
||
Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
|
||
ObjCInterfaceDecl *IFace = 0;
|
||
if (LookForIvars) {
|
||
IFace = CurMethod->getClassInterface();
|
||
ObjCInterfaceDecl *ClassDeclared;
|
||
ObjCIvarDecl *IV = 0;
|
||
if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
|
||
// Diagnose using an ivar in a class method.
|
||
if (IsClassMethod)
|
||
return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
|
||
<< IV->getDeclName());
|
||
|
||
// If we're referencing an invalid decl, just return this as a silent
|
||
// error node. The error diagnostic was already emitted on the decl.
|
||
if (IV->isInvalidDecl())
|
||
return ExprError();
|
||
|
||
// Check if referencing a field with __attribute__((deprecated)).
|
||
if (DiagnoseUseOfDecl(IV, Loc))
|
||
return ExprError();
|
||
|
||
// Diagnose the use of an ivar outside of the declaring class.
|
||
if (IV->getAccessControl() == ObjCIvarDecl::Private &&
|
||
!declaresSameEntity(ClassDeclared, IFace))
|
||
Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
|
||
|
||
// FIXME: This should use a new expr for a direct reference, don't
|
||
// turn this into Self->ivar, just return a BareIVarExpr or something.
|
||
IdentifierInfo &II = Context.Idents.get("self");
|
||
UnqualifiedId SelfName;
|
||
SelfName.setIdentifier(&II, SourceLocation());
|
||
SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
|
||
CXXScopeSpec SelfScopeSpec;
|
||
SourceLocation TemplateKWLoc;
|
||
ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
|
||
SelfName, false, false);
|
||
if (SelfExpr.isInvalid())
|
||
return ExprError();
|
||
|
||
SelfExpr = DefaultLvalueConversion(SelfExpr.take());
|
||
if (SelfExpr.isInvalid())
|
||
return ExprError();
|
||
|
||
MarkAnyDeclReferenced(Loc, IV);
|
||
return Owned(new (Context)
|
||
ObjCIvarRefExpr(IV, IV->getType(), Loc,
|
||
SelfExpr.take(), true, true));
|
||
}
|
||
} else if (CurMethod->isInstanceMethod()) {
|
||
// We should warn if a local variable hides an ivar.
|
||
if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
|
||
ObjCInterfaceDecl *ClassDeclared;
|
||
if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
|
||
if (IV->getAccessControl() != ObjCIvarDecl::Private ||
|
||
declaresSameEntity(IFace, ClassDeclared))
|
||
Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
|
||
}
|
||
}
|
||
} else if (Lookup.isSingleResult() &&
|
||
Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
|
||
// If accessing a stand-alone ivar in a class method, this is an error.
|
||
if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
|
||
return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
|
||
<< IV->getDeclName());
|
||
}
|
||
|
||
if (Lookup.empty() && II && AllowBuiltinCreation) {
|
||
// FIXME. Consolidate this with similar code in LookupName.
|
||
if (unsigned BuiltinID = II->getBuiltinID()) {
|
||
if (!(getLangOptions().CPlusPlus &&
|
||
Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
|
||
NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
|
||
S, Lookup.isForRedeclaration(),
|
||
Lookup.getNameLoc());
|
||
if (D) Lookup.addDecl(D);
|
||
}
|
||
}
|
||
}
|
||
// Sentinel value saying that we didn't do anything special.
|
||
return Owned((Expr*) 0);
|
||
}
|
||
|
||
/// \brief Cast a base object to a member's actual type.
|
||
///
|
||
/// Logically this happens in three phases:
|
||
///
|
||
/// * First we cast from the base type to the naming class.
|
||
/// The naming class is the class into which we were looking
|
||
/// when we found the member; it's the qualifier type if a
|
||
/// qualifier was provided, and otherwise it's the base type.
|
||
///
|
||
/// * Next we cast from the naming class to the declaring class.
|
||
/// If the member we found was brought into a class's scope by
|
||
/// a using declaration, this is that class; otherwise it's
|
||
/// the class declaring the member.
|
||
///
|
||
/// * Finally we cast from the declaring class to the "true"
|
||
/// declaring class of the member. This conversion does not
|
||
/// obey access control.
|
||
ExprResult
|
||
Sema::PerformObjectMemberConversion(Expr *From,
|
||
NestedNameSpecifier *Qualifier,
|
||
NamedDecl *FoundDecl,
|
||
NamedDecl *Member) {
|
||
CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
|
||
if (!RD)
|
||
return Owned(From);
|
||
|
||
QualType DestRecordType;
|
||
QualType DestType;
|
||
QualType FromRecordType;
|
||
QualType FromType = From->getType();
|
||
bool PointerConversions = false;
|
||
if (isa<FieldDecl>(Member)) {
|
||
DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
|
||
|
||
if (FromType->getAs<PointerType>()) {
|
||
DestType = Context.getPointerType(DestRecordType);
|
||
FromRecordType = FromType->getPointeeType();
|
||
PointerConversions = true;
|
||
} else {
|
||
DestType = DestRecordType;
|
||
FromRecordType = FromType;
|
||
}
|
||
} else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
|
||
if (Method->isStatic())
|
||
return Owned(From);
|
||
|
||
DestType = Method->getThisType(Context);
|
||
DestRecordType = DestType->getPointeeType();
|
||
|
||
if (FromType->getAs<PointerType>()) {
|
||
FromRecordType = FromType->getPointeeType();
|
||
PointerConversions = true;
|
||
} else {
|
||
FromRecordType = FromType;
|
||
DestType = DestRecordType;
|
||
}
|
||
} else {
|
||
// No conversion necessary.
|
||
return Owned(From);
|
||
}
|
||
|
||
if (DestType->isDependentType() || FromType->isDependentType())
|
||
return Owned(From);
|
||
|
||
// If the unqualified types are the same, no conversion is necessary.
|
||
if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
|
||
return Owned(From);
|
||
|
||
SourceRange FromRange = From->getSourceRange();
|
||
SourceLocation FromLoc = FromRange.getBegin();
|
||
|
||
ExprValueKind VK = From->getValueKind();
|
||
|
||
// C++ [class.member.lookup]p8:
|
||
// [...] Ambiguities can often be resolved by qualifying a name with its
|
||
// class name.
|
||
//
|
||
// If the member was a qualified name and the qualified referred to a
|
||
// specific base subobject type, we'll cast to that intermediate type
|
||
// first and then to the object in which the member is declared. That allows
|
||
// one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
|
||
//
|
||
// class Base { public: int x; };
|
||
// class Derived1 : public Base { };
|
||
// class Derived2 : public Base { };
|
||
// class VeryDerived : public Derived1, public Derived2 { void f(); };
|
||
//
|
||
// void VeryDerived::f() {
|
||
// x = 17; // error: ambiguous base subobjects
|
||
// Derived1::x = 17; // okay, pick the Base subobject of Derived1
|
||
// }
|
||
if (Qualifier) {
|
||
QualType QType = QualType(Qualifier->getAsType(), 0);
|
||
assert(!QType.isNull() && "lookup done with dependent qualifier?");
|
||
assert(QType->isRecordType() && "lookup done with non-record type");
|
||
|
||
QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
|
||
|
||
// In C++98, the qualifier type doesn't actually have to be a base
|
||
// type of the object type, in which case we just ignore it.
|
||
// Otherwise build the appropriate casts.
|
||
if (IsDerivedFrom(FromRecordType, QRecordType)) {
|
||
CXXCastPath BasePath;
|
||
if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
|
||
FromLoc, FromRange, &BasePath))
|
||
return ExprError();
|
||
|
||
if (PointerConversions)
|
||
QType = Context.getPointerType(QType);
|
||
From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
|
||
VK, &BasePath).take();
|
||
|
||
FromType = QType;
|
||
FromRecordType = QRecordType;
|
||
|
||
// If the qualifier type was the same as the destination type,
|
||
// we're done.
|
||
if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
|
||
return Owned(From);
|
||
}
|
||
}
|
||
|
||
bool IgnoreAccess = false;
|
||
|
||
// If we actually found the member through a using declaration, cast
|
||
// down to the using declaration's type.
|
||
//
|
||
// Pointer equality is fine here because only one declaration of a
|
||
// class ever has member declarations.
|
||
if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
|
||
assert(isa<UsingShadowDecl>(FoundDecl));
|
||
QualType URecordType = Context.getTypeDeclType(
|
||
cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
|
||
|
||
// We only need to do this if the naming-class to declaring-class
|
||
// conversion is non-trivial.
|
||
if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
|
||
assert(IsDerivedFrom(FromRecordType, URecordType));
|
||
CXXCastPath BasePath;
|
||
if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
|
||
FromLoc, FromRange, &BasePath))
|
||
return ExprError();
|
||
|
||
QualType UType = URecordType;
|
||
if (PointerConversions)
|
||
UType = Context.getPointerType(UType);
|
||
From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
|
||
VK, &BasePath).take();
|
||
FromType = UType;
|
||
FromRecordType = URecordType;
|
||
}
|
||
|
||
// We don't do access control for the conversion from the
|
||
// declaring class to the true declaring class.
|
||
IgnoreAccess = true;
|
||
}
|
||
|
||
CXXCastPath BasePath;
|
||
if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
|
||
FromLoc, FromRange, &BasePath,
|
||
IgnoreAccess))
|
||
return ExprError();
|
||
|
||
return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
|
||
VK, &BasePath);
|
||
}
|
||
|
||
bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
|
||
const LookupResult &R,
|
||
bool HasTrailingLParen) {
|
||
// Only when used directly as the postfix-expression of a call.
|
||
if (!HasTrailingLParen)
|
||
return false;
|
||
|
||
// Never if a scope specifier was provided.
|
||
if (SS.isSet())
|
||
return false;
|
||
|
||
// Only in C++ or ObjC++.
|
||
if (!getLangOptions().CPlusPlus)
|
||
return false;
|
||
|
||
// Turn off ADL when we find certain kinds of declarations during
|
||
// normal lookup:
|
||
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
|
||
NamedDecl *D = *I;
|
||
|
||
// C++0x [basic.lookup.argdep]p3:
|
||
// -- a declaration of a class member
|
||
// Since using decls preserve this property, we check this on the
|
||
// original decl.
|
||
if (D->isCXXClassMember())
|
||
return false;
|
||
|
||
// C++0x [basic.lookup.argdep]p3:
|
||
// -- a block-scope function declaration that is not a
|
||
// using-declaration
|
||
// NOTE: we also trigger this for function templates (in fact, we
|
||
// don't check the decl type at all, since all other decl types
|
||
// turn off ADL anyway).
|
||
if (isa<UsingShadowDecl>(D))
|
||
D = cast<UsingShadowDecl>(D)->getTargetDecl();
|
||
else if (D->getDeclContext()->isFunctionOrMethod())
|
||
return false;
|
||
|
||
// C++0x [basic.lookup.argdep]p3:
|
||
// -- a declaration that is neither a function or a function
|
||
// template
|
||
// And also for builtin functions.
|
||
if (isa<FunctionDecl>(D)) {
|
||
FunctionDecl *FDecl = cast<FunctionDecl>(D);
|
||
|
||
// But also builtin functions.
|
||
if (FDecl->getBuiltinID() && FDecl->isImplicit())
|
||
return false;
|
||
} else if (!isa<FunctionTemplateDecl>(D))
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
/// Diagnoses obvious problems with the use of the given declaration
|
||
/// as an expression. This is only actually called for lookups that
|
||
/// were not overloaded, and it doesn't promise that the declaration
|
||
/// will in fact be used.
|
||
static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
|
||
if (isa<TypedefNameDecl>(D)) {
|
||
S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
|
||
return true;
|
||
}
|
||
|
||
if (isa<ObjCInterfaceDecl>(D)) {
|
||
S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
|
||
return true;
|
||
}
|
||
|
||
if (isa<NamespaceDecl>(D)) {
|
||
S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
ExprResult
|
||
Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
|
||
LookupResult &R,
|
||
bool NeedsADL) {
|
||
// If this is a single, fully-resolved result and we don't need ADL,
|
||
// just build an ordinary singleton decl ref.
|
||
if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
|
||
return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
|
||
R.getFoundDecl());
|
||
|
||
// We only need to check the declaration if there's exactly one
|
||
// result, because in the overloaded case the results can only be
|
||
// functions and function templates.
|
||
if (R.isSingleResult() &&
|
||
CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
|
||
return ExprError();
|
||
|
||
// Otherwise, just build an unresolved lookup expression. Suppress
|
||
// any lookup-related diagnostics; we'll hash these out later, when
|
||
// we've picked a target.
|
||
R.suppressDiagnostics();
|
||
|
||
UnresolvedLookupExpr *ULE
|
||
= UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
|
||
SS.getWithLocInContext(Context),
|
||
R.getLookupNameInfo(),
|
||
NeedsADL, R.isOverloadedResult(),
|
||
R.begin(), R.end());
|
||
|
||
return Owned(ULE);
|
||
}
|
||
|
||
static bool shouldBuildBlockDeclRef(ValueDecl *D, Sema &S) {
|
||
// Check for a variable with local storage not from the current scope;
|
||
// we need to create BlockDeclRefExprs for these.
|
||
// FIXME: BlockDeclRefExpr shouldn't exist!
|
||
VarDecl *var = dyn_cast<VarDecl>(D);
|
||
if (!var)
|
||
return false;
|
||
if (var->getDeclContext() == S.CurContext)
|
||
return false;
|
||
if (!var->hasLocalStorage())
|
||
return false;
|
||
return S.getCurBlock() != 0;
|
||
}
|
||
|
||
static ExprResult BuildBlockDeclRefExpr(Sema &S, ValueDecl *VD,
|
||
const DeclarationNameInfo &NameInfo) {
|
||
VarDecl *var = cast<VarDecl>(VD);
|
||
QualType exprType = var->getType().getNonReferenceType();
|
||
|
||
bool HasBlockAttr = var->hasAttr<BlocksAttr>();
|
||
bool ConstAdded = false;
|
||
if (!HasBlockAttr) {
|
||
ConstAdded = !exprType.isConstQualified();
|
||
exprType.addConst();
|
||
}
|
||
|
||
BlockDeclRefExpr *BDRE =
|
||
new (S.Context) BlockDeclRefExpr(var, exprType, VK_LValue,
|
||
NameInfo.getLoc(), HasBlockAttr,
|
||
ConstAdded);
|
||
|
||
S.MarkBlockDeclRefReferenced(BDRE);
|
||
|
||
return S.Owned(BDRE);
|
||
}
|
||
|
||
/// \brief Complete semantic analysis for a reference to the given declaration.
|
||
ExprResult
|
||
Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
|
||
const DeclarationNameInfo &NameInfo,
|
||
NamedDecl *D) {
|
||
assert(D && "Cannot refer to a NULL declaration");
|
||
assert(!isa<FunctionTemplateDecl>(D) &&
|
||
"Cannot refer unambiguously to a function template");
|
||
|
||
SourceLocation Loc = NameInfo.getLoc();
|
||
if (CheckDeclInExpr(*this, Loc, D))
|
||
return ExprError();
|
||
|
||
if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
|
||
// Specifically diagnose references to class templates that are missing
|
||
// a template argument list.
|
||
Diag(Loc, diag::err_template_decl_ref)
|
||
<< Template << SS.getRange();
|
||
Diag(Template->getLocation(), diag::note_template_decl_here);
|
||
return ExprError();
|
||
}
|
||
|
||
// Make sure that we're referring to a value.
|
||
ValueDecl *VD = dyn_cast<ValueDecl>(D);
|
||
if (!VD) {
|
||
Diag(Loc, diag::err_ref_non_value)
|
||
<< D << SS.getRange();
|
||
Diag(D->getLocation(), diag::note_declared_at);
|
||
return ExprError();
|
||
}
|
||
|
||
// Check whether this declaration can be used. Note that we suppress
|
||
// this check when we're going to perform argument-dependent lookup
|
||
// on this function name, because this might not be the function
|
||
// that overload resolution actually selects.
|
||
if (DiagnoseUseOfDecl(VD, Loc))
|
||
return ExprError();
|
||
|
||
// Only create DeclRefExpr's for valid Decl's.
|
||
if (VD->isInvalidDecl())
|
||
return ExprError();
|
||
|
||
// Handle members of anonymous structs and unions. If we got here,
|
||
// and the reference is to a class member indirect field, then this
|
||
// must be the subject of a pointer-to-member expression.
|
||
if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
|
||
if (!indirectField->isCXXClassMember())
|
||
return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
|
||
indirectField);
|
||
|
||
{
|
||
QualType type = VD->getType();
|
||
ExprValueKind valueKind = VK_RValue;
|
||
|
||
switch (D->getKind()) {
|
||
// Ignore all the non-ValueDecl kinds.
|
||
#define ABSTRACT_DECL(kind)
|
||
#define VALUE(type, base)
|
||
#define DECL(type, base) \
|
||
case Decl::type:
|
||
#include "clang/AST/DeclNodes.inc"
|
||
llvm_unreachable("invalid value decl kind");
|
||
|
||
// These shouldn't make it here.
|
||
case Decl::ObjCAtDefsField:
|
||
case Decl::ObjCIvar:
|
||
llvm_unreachable("forming non-member reference to ivar?");
|
||
|
||
// Enum constants are always r-values and never references.
|
||
// Unresolved using declarations are dependent.
|
||
case Decl::EnumConstant:
|
||
case Decl::UnresolvedUsingValue:
|
||
valueKind = VK_RValue;
|
||
break;
|
||
|
||
// Fields and indirect fields that got here must be for
|
||
// pointer-to-member expressions; we just call them l-values for
|
||
// internal consistency, because this subexpression doesn't really
|
||
// exist in the high-level semantics.
|
||
case Decl::Field:
|
||
case Decl::IndirectField:
|
||
assert(getLangOptions().CPlusPlus &&
|
||
"building reference to field in C?");
|
||
|
||
// These can't have reference type in well-formed programs, but
|
||
// for internal consistency we do this anyway.
|
||
type = type.getNonReferenceType();
|
||
valueKind = VK_LValue;
|
||
break;
|
||
|
||
// Non-type template parameters are either l-values or r-values
|
||
// depending on the type.
|
||
case Decl::NonTypeTemplateParm: {
|
||
if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
|
||
type = reftype->getPointeeType();
|
||
valueKind = VK_LValue; // even if the parameter is an r-value reference
|
||
break;
|
||
}
|
||
|
||
// For non-references, we need to strip qualifiers just in case
|
||
// the template parameter was declared as 'const int' or whatever.
|
||
valueKind = VK_RValue;
|
||
type = type.getUnqualifiedType();
|
||
break;
|
||
}
|
||
|
||
case Decl::Var:
|
||
// In C, "extern void blah;" is valid and is an r-value.
|
||
if (!getLangOptions().CPlusPlus &&
|
||
!type.hasQualifiers() &&
|
||
type->isVoidType()) {
|
||
valueKind = VK_RValue;
|
||
break;
|
||
}
|
||
// fallthrough
|
||
|
||
case Decl::ImplicitParam:
|
||
case Decl::ParmVar: {
|
||
// These are always l-values.
|
||
valueKind = VK_LValue;
|
||
type = type.getNonReferenceType();
|
||
|
||
if (shouldBuildBlockDeclRef(VD, *this))
|
||
return BuildBlockDeclRefExpr(*this, VD, NameInfo);
|
||
|
||
// FIXME: Does the addition of const really only apply in
|
||
// potentially-evaluated contexts? Since the variable isn't actually
|
||
// captured in an unevaluated context, it seems that the answer is no.
|
||
if (ExprEvalContexts.back().Context != Sema::Unevaluated) {
|
||
QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
|
||
if (!CapturedType.isNull())
|
||
type = CapturedType;
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
case Decl::Function: {
|
||
const FunctionType *fty = type->castAs<FunctionType>();
|
||
|
||
// If we're referring to a function with an __unknown_anytype
|
||
// result type, make the entire expression __unknown_anytype.
|
||
if (fty->getResultType() == Context.UnknownAnyTy) {
|
||
type = Context.UnknownAnyTy;
|
||
valueKind = VK_RValue;
|
||
break;
|
||
}
|
||
|
||
// Functions are l-values in C++.
|
||
if (getLangOptions().CPlusPlus) {
|
||
valueKind = VK_LValue;
|
||
break;
|
||
}
|
||
|
||
// C99 DR 316 says that, if a function type comes from a
|
||
// function definition (without a prototype), that type is only
|
||
// used for checking compatibility. Therefore, when referencing
|
||
// the function, we pretend that we don't have the full function
|
||
// type.
|
||
if (!cast<FunctionDecl>(VD)->hasPrototype() &&
|
||
isa<FunctionProtoType>(fty))
|
||
type = Context.getFunctionNoProtoType(fty->getResultType(),
|
||
fty->getExtInfo());
|
||
|
||
// Functions are r-values in C.
|
||
valueKind = VK_RValue;
|
||
break;
|
||
}
|
||
|
||
case Decl::CXXMethod:
|
||
// If we're referring to a method with an __unknown_anytype
|
||
// result type, make the entire expression __unknown_anytype.
|
||
// This should only be possible with a type written directly.
|
||
if (const FunctionProtoType *proto
|
||
= dyn_cast<FunctionProtoType>(VD->getType()))
|
||
if (proto->getResultType() == Context.UnknownAnyTy) {
|
||
type = Context.UnknownAnyTy;
|
||
valueKind = VK_RValue;
|
||
break;
|
||
}
|
||
|
||
// C++ methods are l-values if static, r-values if non-static.
|
||
if (cast<CXXMethodDecl>(VD)->isStatic()) {
|
||
valueKind = VK_LValue;
|
||
break;
|
||
}
|
||
// fallthrough
|
||
|
||
case Decl::CXXConversion:
|
||
case Decl::CXXDestructor:
|
||
case Decl::CXXConstructor:
|
||
valueKind = VK_RValue;
|
||
break;
|
||
}
|
||
|
||
return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS);
|
||
}
|
||
}
|
||
|
||
ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
|
||
PredefinedExpr::IdentType IT;
|
||
|
||
switch (Kind) {
|
||
default: llvm_unreachable("Unknown simple primary expr!");
|
||
case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
|
||
case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
|
||
case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
|
||
}
|
||
|
||
// Pre-defined identifiers are of type char[x], where x is the length of the
|
||
// string.
|
||
|
||
Decl *currentDecl = getCurFunctionOrMethodDecl();
|
||
if (!currentDecl && getCurBlock())
|
||
currentDecl = getCurBlock()->TheDecl;
|
||
if (!currentDecl) {
|
||
Diag(Loc, diag::ext_predef_outside_function);
|
||
currentDecl = Context.getTranslationUnitDecl();
|
||
}
|
||
|
||
QualType ResTy;
|
||
if (cast<DeclContext>(currentDecl)->isDependentContext()) {
|
||
ResTy = Context.DependentTy;
|
||
} else {
|
||
unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
|
||
|
||
llvm::APInt LengthI(32, Length + 1);
|
||
ResTy = Context.CharTy.withConst();
|
||
ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
|
||
}
|
||
return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
|
||
}
|
||
|
||
ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
|
||
SmallString<16> CharBuffer;
|
||
bool Invalid = false;
|
||
StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
|
||
if (Invalid)
|
||
return ExprError();
|
||
|
||
CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
|
||
PP, Tok.getKind());
|
||
if (Literal.hadError())
|
||
return ExprError();
|
||
|
||
QualType Ty;
|
||
if (Literal.isWide())
|
||
Ty = Context.WCharTy; // L'x' -> wchar_t in C and C++.
|
||
else if (Literal.isUTF16())
|
||
Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
|
||
else if (Literal.isUTF32())
|
||
Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
|
||
else if (!getLangOptions().CPlusPlus || Literal.isMultiChar())
|
||
Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++.
|
||
else
|
||
Ty = Context.CharTy; // 'x' -> char in C++
|
||
|
||
CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
|
||
if (Literal.isWide())
|
||
Kind = CharacterLiteral::Wide;
|
||
else if (Literal.isUTF16())
|
||
Kind = CharacterLiteral::UTF16;
|
||
else if (Literal.isUTF32())
|
||
Kind = CharacterLiteral::UTF32;
|
||
|
||
return Owned(new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
|
||
Tok.getLocation()));
|
||
}
|
||
|
||
ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
|
||
// Fast path for a single digit (which is quite common). A single digit
|
||
// cannot have a trigraph, escaped newline, radix prefix, or type suffix.
|
||
if (Tok.getLength() == 1) {
|
||
const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
|
||
unsigned IntSize = Context.getTargetInfo().getIntWidth();
|
||
return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val-'0'),
|
||
Context.IntTy, Tok.getLocation()));
|
||
}
|
||
|
||
SmallString<512> IntegerBuffer;
|
||
// Add padding so that NumericLiteralParser can overread by one character.
|
||
IntegerBuffer.resize(Tok.getLength()+1);
|
||
const char *ThisTokBegin = &IntegerBuffer[0];
|
||
|
||
// Get the spelling of the token, which eliminates trigraphs, etc.
|
||
bool Invalid = false;
|
||
unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
|
||
if (Invalid)
|
||
return ExprError();
|
||
|
||
NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
|
||
Tok.getLocation(), PP);
|
||
if (Literal.hadError)
|
||
return ExprError();
|
||
|
||
Expr *Res;
|
||
|
||
if (Literal.isFloatingLiteral()) {
|
||
QualType Ty;
|
||
if (Literal.isFloat)
|
||
Ty = Context.FloatTy;
|
||
else if (!Literal.isLong)
|
||
Ty = Context.DoubleTy;
|
||
else
|
||
Ty = Context.LongDoubleTy;
|
||
|
||
const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
|
||
|
||
using llvm::APFloat;
|
||
APFloat Val(Format);
|
||
|
||
APFloat::opStatus result = Literal.GetFloatValue(Val);
|
||
|
||
// Overflow is always an error, but underflow is only an error if
|
||
// we underflowed to zero (APFloat reports denormals as underflow).
|
||
if ((result & APFloat::opOverflow) ||
|
||
((result & APFloat::opUnderflow) && Val.isZero())) {
|
||
unsigned diagnostic;
|
||
SmallString<20> buffer;
|
||
if (result & APFloat::opOverflow) {
|
||
diagnostic = diag::warn_float_overflow;
|
||
APFloat::getLargest(Format).toString(buffer);
|
||
} else {
|
||
diagnostic = diag::warn_float_underflow;
|
||
APFloat::getSmallest(Format).toString(buffer);
|
||
}
|
||
|
||
Diag(Tok.getLocation(), diagnostic)
|
||
<< Ty
|
||
<< StringRef(buffer.data(), buffer.size());
|
||
}
|
||
|
||
bool isExact = (result == APFloat::opOK);
|
||
Res = FloatingLiteral::Create(Context, Val, isExact, Ty, Tok.getLocation());
|
||
|
||
if (Ty == Context.DoubleTy) {
|
||
if (getLangOptions().SinglePrecisionConstants) {
|
||
Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
|
||
} else if (getLangOptions().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
|
||
Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
|
||
Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
|
||
}
|
||
}
|
||
} else if (!Literal.isIntegerLiteral()) {
|
||
return ExprError();
|
||
} else {
|
||
QualType Ty;
|
||
|
||
// long long is a C99 feature.
|
||
if (!getLangOptions().C99 && Literal.isLongLong)
|
||
Diag(Tok.getLocation(),
|
||
getLangOptions().CPlusPlus0x ?
|
||
diag::warn_cxx98_compat_longlong : diag::ext_longlong);
|
||
|
||
// Get the value in the widest-possible width.
|
||
llvm::APInt ResultVal(Context.getTargetInfo().getIntMaxTWidth(), 0);
|
||
|
||
if (Literal.GetIntegerValue(ResultVal)) {
|
||
// If this value didn't fit into uintmax_t, warn and force to ull.
|
||
Diag(Tok.getLocation(), diag::warn_integer_too_large);
|
||
Ty = Context.UnsignedLongLongTy;
|
||
assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
|
||
"long long is not intmax_t?");
|
||
} else {
|
||
// If this value fits into a ULL, try to figure out what else it fits into
|
||
// according to the rules of C99 6.4.4.1p5.
|
||
|
||
// Octal, Hexadecimal, and integers with a U suffix are allowed to
|
||
// be an unsigned int.
|
||
bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
|
||
|
||
// Check from smallest to largest, picking the smallest type we can.
|
||
unsigned Width = 0;
|
||
if (!Literal.isLong && !Literal.isLongLong) {
|
||
// Are int/unsigned possibilities?
|
||
unsigned IntSize = Context.getTargetInfo().getIntWidth();
|
||
|
||
// Does it fit in a unsigned int?
|
||
if (ResultVal.isIntN(IntSize)) {
|
||
// Does it fit in a signed int?
|
||
if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
|
||
Ty = Context.IntTy;
|
||
else if (AllowUnsigned)
|
||
Ty = Context.UnsignedIntTy;
|
||
Width = IntSize;
|
||
}
|
||
}
|
||
|
||
// Are long/unsigned long possibilities?
|
||
if (Ty.isNull() && !Literal.isLongLong) {
|
||
unsigned LongSize = Context.getTargetInfo().getLongWidth();
|
||
|
||
// Does it fit in a unsigned long?
|
||
if (ResultVal.isIntN(LongSize)) {
|
||
// Does it fit in a signed long?
|
||
if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
|
||
Ty = Context.LongTy;
|
||
else if (AllowUnsigned)
|
||
Ty = Context.UnsignedLongTy;
|
||
Width = LongSize;
|
||
}
|
||
}
|
||
|
||
// Finally, check long long if needed.
|
||
if (Ty.isNull()) {
|
||
unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
|
||
|
||
// Does it fit in a unsigned long long?
|
||
if (ResultVal.isIntN(LongLongSize)) {
|
||
// Does it fit in a signed long long?
|
||
// To be compatible with MSVC, hex integer literals ending with the
|
||
// LL or i64 suffix are always signed in Microsoft mode.
|
||
if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
|
||
(getLangOptions().MicrosoftExt && Literal.isLongLong)))
|
||
Ty = Context.LongLongTy;
|
||
else if (AllowUnsigned)
|
||
Ty = Context.UnsignedLongLongTy;
|
||
Width = LongLongSize;
|
||
}
|
||
}
|
||
|
||
// If we still couldn't decide a type, we probably have something that
|
||
// does not fit in a signed long long, but has no U suffix.
|
||
if (Ty.isNull()) {
|
||
Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
|
||
Ty = Context.UnsignedLongLongTy;
|
||
Width = Context.getTargetInfo().getLongLongWidth();
|
||
}
|
||
|
||
if (ResultVal.getBitWidth() != Width)
|
||
ResultVal = ResultVal.trunc(Width);
|
||
}
|
||
Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
|
||
}
|
||
|
||
// If this is an imaginary literal, create the ImaginaryLiteral wrapper.
|
||
if (Literal.isImaginary)
|
||
Res = new (Context) ImaginaryLiteral(Res,
|
||
Context.getComplexType(Res->getType()));
|
||
|
||
return Owned(Res);
|
||
}
|
||
|
||
ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
|
||
assert((E != 0) && "ActOnParenExpr() missing expr");
|
||
return Owned(new (Context) ParenExpr(L, R, E));
|
||
}
|
||
|
||
static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
|
||
SourceLocation Loc,
|
||
SourceRange ArgRange) {
|
||
// [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
|
||
// scalar or vector data type argument..."
|
||
// Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
|
||
// type (C99 6.2.5p18) or void.
|
||
if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
|
||
S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
|
||
<< T << ArgRange;
|
||
return true;
|
||
}
|
||
|
||
assert((T->isVoidType() || !T->isIncompleteType()) &&
|
||
"Scalar types should always be complete");
|
||
return false;
|
||
}
|
||
|
||
static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
|
||
SourceLocation Loc,
|
||
SourceRange ArgRange,
|
||
UnaryExprOrTypeTrait TraitKind) {
|
||
// C99 6.5.3.4p1:
|
||
if (T->isFunctionType()) {
|
||
// alignof(function) is allowed as an extension.
|
||
if (TraitKind == UETT_SizeOf)
|
||
S.Diag(Loc, diag::ext_sizeof_function_type) << ArgRange;
|
||
return false;
|
||
}
|
||
|
||
// Allow sizeof(void)/alignof(void) as an extension.
|
||
if (T->isVoidType()) {
|
||
S.Diag(Loc, diag::ext_sizeof_void_type) << TraitKind << ArgRange;
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
|
||
SourceLocation Loc,
|
||
SourceRange ArgRange,
|
||
UnaryExprOrTypeTrait TraitKind) {
|
||
// Reject sizeof(interface) and sizeof(interface<proto>) in 64-bit mode.
|
||
if (S.LangOpts.ObjCNonFragileABI && T->isObjCObjectType()) {
|
||
S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
|
||
<< T << (TraitKind == UETT_SizeOf)
|
||
<< ArgRange;
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/// \brief Check the constrains on expression operands to unary type expression
|
||
/// and type traits.
|
||
///
|
||
/// Completes any types necessary and validates the constraints on the operand
|
||
/// expression. The logic mostly mirrors the type-based overload, but may modify
|
||
/// the expression as it completes the type for that expression through template
|
||
/// instantiation, etc.
|
||
bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
|
||
UnaryExprOrTypeTrait ExprKind) {
|
||
QualType ExprTy = E->getType();
|
||
|
||
// C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
|
||
// the result is the size of the referenced type."
|
||
// C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
|
||
// result shall be the alignment of the referenced type."
|
||
if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
|
||
ExprTy = Ref->getPointeeType();
|
||
|
||
if (ExprKind == UETT_VecStep)
|
||
return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
|
||
E->getSourceRange());
|
||
|
||
// Whitelist some types as extensions
|
||
if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
|
||
E->getSourceRange(), ExprKind))
|
||
return false;
|
||
|
||
if (RequireCompleteExprType(E,
|
||
PDiag(diag::err_sizeof_alignof_incomplete_type)
|
||
<< ExprKind << E->getSourceRange(),
|
||
std::make_pair(SourceLocation(), PDiag(0))))
|
||
return true;
|
||
|
||
// Completeing the expression's type may have changed it.
|
||
ExprTy = E->getType();
|
||
if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
|
||
ExprTy = Ref->getPointeeType();
|
||
|
||
if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
|
||
E->getSourceRange(), ExprKind))
|
||
return true;
|
||
|
||
if (ExprKind == UETT_SizeOf) {
|
||
if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
|
||
if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
|
||
QualType OType = PVD->getOriginalType();
|
||
QualType Type = PVD->getType();
|
||
if (Type->isPointerType() && OType->isArrayType()) {
|
||
Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
|
||
<< Type << OType;
|
||
Diag(PVD->getLocation(), diag::note_declared_at);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/// \brief Check the constraints on operands to unary expression and type
|
||
/// traits.
|
||
///
|
||
/// This will complete any types necessary, and validate the various constraints
|
||
/// on those operands.
|
||
///
|
||
/// The UsualUnaryConversions() function is *not* called by this routine.
|
||
/// C99 6.3.2.1p[2-4] all state:
|
||
/// Except when it is the operand of the sizeof operator ...
|
||
///
|
||
/// C++ [expr.sizeof]p4
|
||
/// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
|
||
/// standard conversions are not applied to the operand of sizeof.
|
||
///
|
||
/// This policy is followed for all of the unary trait expressions.
|
||
bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
|
||
SourceLocation OpLoc,
|
||
SourceRange ExprRange,
|
||
UnaryExprOrTypeTrait ExprKind) {
|
||
if (ExprType->isDependentType())
|
||
return false;
|
||
|
||
// C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
|
||
// the result is the size of the referenced type."
|
||
// C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
|
||
// result shall be the alignment of the referenced type."
|
||
if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
|
||
ExprType = Ref->getPointeeType();
|
||
|
||
if (ExprKind == UETT_VecStep)
|
||
return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
|
||
|
||
// Whitelist some types as extensions
|
||
if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
|
||
ExprKind))
|
||
return false;
|
||
|
||
if (RequireCompleteType(OpLoc, ExprType,
|
||
PDiag(diag::err_sizeof_alignof_incomplete_type)
|
||
<< ExprKind << ExprRange))
|
||
return true;
|
||
|
||
if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
|
||
ExprKind))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
static bool CheckAlignOfExpr(Sema &S, Expr *E) {
|
||
E = E->IgnoreParens();
|
||
|
||
// alignof decl is always ok.
|
||
if (isa<DeclRefExpr>(E))
|
||
return false;
|
||
|
||
// Cannot know anything else if the expression is dependent.
|
||
if (E->isTypeDependent())
|
||
return false;
|
||
|
||
if (E->getBitField()) {
|
||
S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
|
||
<< 1 << E->getSourceRange();
|
||
return true;
|
||
}
|
||
|
||
// Alignment of a field access is always okay, so long as it isn't a
|
||
// bit-field.
|
||
if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
|
||
if (isa<FieldDecl>(ME->getMemberDecl()))
|
||
return false;
|
||
|
||
return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
|
||
}
|
||
|
||
bool Sema::CheckVecStepExpr(Expr *E) {
|
||
E = E->IgnoreParens();
|
||
|
||
// Cannot know anything else if the expression is dependent.
|
||
if (E->isTypeDependent())
|
||
return false;
|
||
|
||
return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
|
||
}
|
||
|
||
/// \brief Build a sizeof or alignof expression given a type operand.
|
||
ExprResult
|
||
Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
|
||
SourceLocation OpLoc,
|
||
UnaryExprOrTypeTrait ExprKind,
|
||
SourceRange R) {
|
||
if (!TInfo)
|
||
return ExprError();
|
||
|
||
QualType T = TInfo->getType();
|
||
|
||
if (!T->isDependentType() &&
|
||
CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
|
||
return ExprError();
|
||
|
||
// C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
|
||
return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo,
|
||
Context.getSizeType(),
|
||
OpLoc, R.getEnd()));
|
||
}
|
||
|
||
/// \brief Build a sizeof or alignof expression given an expression
|
||
/// operand.
|
||
ExprResult
|
||
Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
|
||
UnaryExprOrTypeTrait ExprKind) {
|
||
ExprResult PE = CheckPlaceholderExpr(E);
|
||
if (PE.isInvalid())
|
||
return ExprError();
|
||
|
||
E = PE.get();
|
||
|
||
// Verify that the operand is valid.
|
||
bool isInvalid = false;
|
||
if (E->isTypeDependent()) {
|
||
// Delay type-checking for type-dependent expressions.
|
||
} else if (ExprKind == UETT_AlignOf) {
|
||
isInvalid = CheckAlignOfExpr(*this, E);
|
||
} else if (ExprKind == UETT_VecStep) {
|
||
isInvalid = CheckVecStepExpr(E);
|
||
} else if (E->getBitField()) { // C99 6.5.3.4p1.
|
||
Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
|
||
isInvalid = true;
|
||
} else {
|
||
isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
|
||
}
|
||
|
||
if (isInvalid)
|
||
return ExprError();
|
||
|
||
if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
|
||
PE = TranformToPotentiallyEvaluated(E);
|
||
if (PE.isInvalid()) return ExprError();
|
||
E = PE.take();
|
||
}
|
||
|
||
// C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
|
||
return Owned(new (Context) UnaryExprOrTypeTraitExpr(
|
||
ExprKind, E, Context.getSizeType(), OpLoc,
|
||
E->getSourceRange().getEnd()));
|
||
}
|
||
|
||
/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
|
||
/// expr and the same for @c alignof and @c __alignof
|
||
/// Note that the ArgRange is invalid if isType is false.
|
||
ExprResult
|
||
Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
|
||
UnaryExprOrTypeTrait ExprKind, bool IsType,
|
||
void *TyOrEx, const SourceRange &ArgRange) {
|
||
// If error parsing type, ignore.
|
||
if (TyOrEx == 0) return ExprError();
|
||
|
||
if (IsType) {
|
||
TypeSourceInfo *TInfo;
|
||
(void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
|
||
return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
|
||
}
|
||
|
||
Expr *ArgEx = (Expr *)TyOrEx;
|
||
ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
|
||
return move(Result);
|
||
}
|
||
|
||
static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
|
||
bool IsReal) {
|
||
if (V.get()->isTypeDependent())
|
||
return S.Context.DependentTy;
|
||
|
||
// _Real and _Imag are only l-values for normal l-values.
|
||
if (V.get()->getObjectKind() != OK_Ordinary) {
|
||
V = S.DefaultLvalueConversion(V.take());
|
||
if (V.isInvalid())
|
||
return QualType();
|
||
}
|
||
|
||
// These operators return the element type of a complex type.
|
||
if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
|
||
return CT->getElementType();
|
||
|
||
// Otherwise they pass through real integer and floating point types here.
|
||
if (V.get()->getType()->isArithmeticType())
|
||
return V.get()->getType();
|
||
|
||
// Test for placeholders.
|
||
ExprResult PR = S.CheckPlaceholderExpr(V.get());
|
||
if (PR.isInvalid()) return QualType();
|
||
if (PR.get() != V.get()) {
|
||
V = move(PR);
|
||
return CheckRealImagOperand(S, V, Loc, IsReal);
|
||
}
|
||
|
||
// Reject anything else.
|
||
S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
|
||
<< (IsReal ? "__real" : "__imag");
|
||
return QualType();
|
||
}
|
||
|
||
|
||
|
||
ExprResult
|
||
Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
|
||
tok::TokenKind Kind, Expr *Input) {
|
||
UnaryOperatorKind Opc;
|
||
switch (Kind) {
|
||
default: llvm_unreachable("Unknown unary op!");
|
||
case tok::plusplus: Opc = UO_PostInc; break;
|
||
case tok::minusminus: Opc = UO_PostDec; break;
|
||
}
|
||
|
||
// Since this might is a postfix expression, get rid of ParenListExprs.
|
||
ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
|
||
if (Result.isInvalid()) return ExprError();
|
||
Input = Result.take();
|
||
|
||
return BuildUnaryOp(S, OpLoc, Opc, Input);
|
||
}
|
||
|
||
ExprResult
|
||
Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
|
||
Expr *Idx, SourceLocation RLoc) {
|
||
// Since this might be a postfix expression, get rid of ParenListExprs.
|
||
ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
|
||
if (Result.isInvalid()) return ExprError();
|
||
Base = Result.take();
|
||
|
||
Expr *LHSExp = Base, *RHSExp = Idx;
|
||
|
||
if (getLangOptions().CPlusPlus &&
|
||
(LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
|
||
return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
|
||
Context.DependentTy,
|
||
VK_LValue, OK_Ordinary,
|
||
RLoc));
|
||
}
|
||
|
||
if (getLangOptions().CPlusPlus &&
|
||
(LHSExp->getType()->isRecordType() ||
|
||
LHSExp->getType()->isEnumeralType() ||
|
||
RHSExp->getType()->isRecordType() ||
|
||
RHSExp->getType()->isEnumeralType())) {
|
||
return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx);
|
||
}
|
||
|
||
return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc);
|
||
}
|
||
|
||
|
||
ExprResult
|
||
Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
|
||
Expr *Idx, SourceLocation RLoc) {
|
||
Expr *LHSExp = Base;
|
||
Expr *RHSExp = Idx;
|
||
|
||
// Perform default conversions.
|
||
if (!LHSExp->getType()->getAs<VectorType>()) {
|
||
ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
|
||
if (Result.isInvalid())
|
||
return ExprError();
|
||
LHSExp = Result.take();
|
||
}
|
||
ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
|
||
if (Result.isInvalid())
|
||
return ExprError();
|
||
RHSExp = Result.take();
|
||
|
||
QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
|
||
ExprValueKind VK = VK_LValue;
|
||
ExprObjectKind OK = OK_Ordinary;
|
||
|
||
// C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
|
||
// to the expression *((e1)+(e2)). This means the array "Base" may actually be
|
||
// in the subscript position. As a result, we need to derive the array base
|
||
// and index from the expression types.
|
||
Expr *BaseExpr, *IndexExpr;
|
||
QualType ResultType;
|
||
if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
|
||
BaseExpr = LHSExp;
|
||
IndexExpr = RHSExp;
|
||
ResultType = Context.DependentTy;
|
||
} else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
|
||
BaseExpr = LHSExp;
|
||
IndexExpr = RHSExp;
|
||
ResultType = PTy->getPointeeType();
|
||
} else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
|
||
// Handle the uncommon case of "123[Ptr]".
|
||
BaseExpr = RHSExp;
|
||
IndexExpr = LHSExp;
|
||
ResultType = PTy->getPointeeType();
|
||
} else if (const ObjCObjectPointerType *PTy =
|
||
LHSTy->getAs<ObjCObjectPointerType>()) {
|
||
BaseExpr = LHSExp;
|
||
IndexExpr = RHSExp;
|
||
ResultType = PTy->getPointeeType();
|
||
} else if (const ObjCObjectPointerType *PTy =
|
||
RHSTy->getAs<ObjCObjectPointerType>()) {
|
||
// Handle the uncommon case of "123[Ptr]".
|
||
BaseExpr = RHSExp;
|
||
IndexExpr = LHSExp;
|
||
ResultType = PTy->getPointeeType();
|
||
} else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
|
||
BaseExpr = LHSExp; // vectors: V[123]
|
||
IndexExpr = RHSExp;
|
||
VK = LHSExp->getValueKind();
|
||
if (VK != VK_RValue)
|
||
OK = OK_VectorComponent;
|
||
|
||
// FIXME: need to deal with const...
|
||
ResultType = VTy->getElementType();
|
||
} else if (LHSTy->isArrayType()) {
|
||
// If we see an array that wasn't promoted by
|
||
// DefaultFunctionArrayLvalueConversion, it must be an array that
|
||
// wasn't promoted because of the C90 rule that doesn't
|
||
// allow promoting non-lvalue arrays. Warn, then
|
||
// force the promotion here.
|
||
Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
|
||
LHSExp->getSourceRange();
|
||
LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
|
||
CK_ArrayToPointerDecay).take();
|
||
LHSTy = LHSExp->getType();
|
||
|
||
BaseExpr = LHSExp;
|
||
IndexExpr = RHSExp;
|
||
ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
|
||
} else if (RHSTy->isArrayType()) {
|
||
// Same as previous, except for 123[f().a] case
|
||
Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
|
||
RHSExp->getSourceRange();
|
||
RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
|
||
CK_ArrayToPointerDecay).take();
|
||
RHSTy = RHSExp->getType();
|
||
|
||
BaseExpr = RHSExp;
|
||
IndexExpr = LHSExp;
|
||
ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
|
||
} else {
|
||
return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
|
||
<< LHSExp->getSourceRange() << RHSExp->getSourceRange());
|
||
}
|
||
// C99 6.5.2.1p1
|
||
if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
|
||
return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
|
||
<< IndexExpr->getSourceRange());
|
||
|
||
if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
|
||
IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
|
||
&& !IndexExpr->isTypeDependent())
|
||
Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
|
||
|
||
// C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
|
||
// C++ [expr.sub]p1: The type "T" shall be a completely-defined object
|
||
// type. Note that Functions are not objects, and that (in C99 parlance)
|
||
// incomplete types are not object types.
|
||
if (ResultType->isFunctionType()) {
|
||
Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
|
||
<< ResultType << BaseExpr->getSourceRange();
|
||
return ExprError();
|
||
}
|
||
|
||
if (ResultType->isVoidType() && !getLangOptions().CPlusPlus) {
|
||
// GNU extension: subscripting on pointer to void
|
||
Diag(LLoc, diag::ext_gnu_subscript_void_type)
|
||
<< BaseExpr->getSourceRange();
|
||
|
||
// C forbids expressions of unqualified void type from being l-values.
|
||
// See IsCForbiddenLValueType.
|
||
if (!ResultType.hasQualifiers()) VK = VK_RValue;
|
||
} else if (!ResultType->isDependentType() &&
|
||
RequireCompleteType(LLoc, ResultType,
|
||
PDiag(diag::err_subscript_incomplete_type)
|
||
<< BaseExpr->getSourceRange()))
|
||
return ExprError();
|
||
|
||
// Diagnose bad cases where we step over interface counts.
|
||
if (ResultType->isObjCObjectType() && LangOpts.ObjCNonFragileABI) {
|
||
Diag(LLoc, diag::err_subscript_nonfragile_interface)
|
||
<< ResultType << BaseExpr->getSourceRange();
|
||
return ExprError();
|
||
}
|
||
|
||
assert(VK == VK_RValue || LangOpts.CPlusPlus ||
|
||
!ResultType.isCForbiddenLValueType());
|
||
|
||
return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
|
||
ResultType, VK, OK, RLoc));
|
||
}
|
||
|
||
ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
|
||
FunctionDecl *FD,
|
||
ParmVarDecl *Param) {
|
||
if (Param->hasUnparsedDefaultArg()) {
|
||
Diag(CallLoc,
|
||
diag::err_use_of_default_argument_to_function_declared_later) <<
|
||
FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
|
||
Diag(UnparsedDefaultArgLocs[Param],
|
||
diag::note_default_argument_declared_here);
|
||
return ExprError();
|
||
}
|
||
|
||
if (Param->hasUninstantiatedDefaultArg()) {
|
||
Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
|
||
|
||
// Instantiate the expression.
|
||
MultiLevelTemplateArgumentList ArgList
|
||
= getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
|
||
|
||
std::pair<const TemplateArgument *, unsigned> Innermost
|
||
= ArgList.getInnermost();
|
||
InstantiatingTemplate Inst(*this, CallLoc, Param, Innermost.first,
|
||
Innermost.second);
|
||
|
||
ExprResult Result;
|
||
{
|
||
// C++ [dcl.fct.default]p5:
|
||
// The names in the [default argument] expression are bound, and
|
||
// the semantic constraints are checked, at the point where the
|
||
// default argument expression appears.
|
||
ContextRAII SavedContext(*this, FD);
|
||
LocalInstantiationScope Local(*this);
|
||
Result = SubstExpr(UninstExpr, ArgList);
|
||
}
|
||
if (Result.isInvalid())
|
||
return ExprError();
|
||
|
||
// Check the expression as an initializer for the parameter.
|
||
InitializedEntity Entity
|
||
= InitializedEntity::InitializeParameter(Context, Param);
|
||
InitializationKind Kind
|
||
= InitializationKind::CreateCopy(Param->getLocation(),
|
||
/*FIXME:EqualLoc*/UninstExpr->getSourceRange().getBegin());
|
||
Expr *ResultE = Result.takeAs<Expr>();
|
||
|
||
InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
|
||
Result = InitSeq.Perform(*this, Entity, Kind,
|
||
MultiExprArg(*this, &ResultE, 1));
|
||
if (Result.isInvalid())
|
||
return ExprError();
|
||
|
||
// Build the default argument expression.
|
||
return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param,
|
||
Result.takeAs<Expr>()));
|
||
}
|
||
|
||
// If the default expression creates temporaries, we need to
|
||
// push them to the current stack of expression temporaries so they'll
|
||
// be properly destroyed.
|
||
// FIXME: We should really be rebuilding the default argument with new
|
||
// bound temporaries; see the comment in PR5810.
|
||
// We don't need to do that with block decls, though, because
|
||
// blocks in default argument expression can never capture anything.
|
||
if (isa<ExprWithCleanups>(Param->getInit())) {
|
||
// Set the "needs cleanups" bit regardless of whether there are
|
||
// any explicit objects.
|
||
ExprNeedsCleanups = true;
|
||
|
||
// Append all the objects to the cleanup list. Right now, this
|
||
// should always be a no-op, because blocks in default argument
|
||
// expressions should never be able to capture anything.
|
||
assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() &&
|
||
"default argument expression has capturing blocks?");
|
||
}
|
||
|
||
// We already type-checked the argument, so we know it works.
|
||
// Just mark all of the declarations in this potentially-evaluated expression
|
||
// as being "referenced".
|
||
MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
|
||
/*SkipLocalVariables=*/true);
|
||
return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
|
||
}
|
||
|
||
/// ConvertArgumentsForCall - Converts the arguments specified in
|
||
/// Args/NumArgs to the parameter types of the function FDecl with
|
||
/// function prototype Proto. Call is the call expression itself, and
|
||
/// Fn is the function expression. For a C++ member function, this
|
||
/// routine does not attempt to convert the object argument. Returns
|
||
/// true if the call is ill-formed.
|
||
bool
|
||
Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
|
||
FunctionDecl *FDecl,
|
||
const FunctionProtoType *Proto,
|
||
Expr **Args, unsigned NumArgs,
|
||
SourceLocation RParenLoc,
|
||
bool IsExecConfig) {
|
||
// Bail out early if calling a builtin with custom typechecking.
|
||
// We don't need to do this in the
|
||
if (FDecl)
|
||
if (unsigned ID = FDecl->getBuiltinID())
|
||
if (Context.BuiltinInfo.hasCustomTypechecking(ID))
|
||
return false;
|
||
|
||
// C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
|
||
// assignment, to the types of the corresponding parameter, ...
|
||
unsigned NumArgsInProto = Proto->getNumArgs();
|
||
bool Invalid = false;
|
||
unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumArgsInProto;
|
||
unsigned FnKind = Fn->getType()->isBlockPointerType()
|
||
? 1 /* block */
|
||
: (IsExecConfig ? 3 /* kernel function (exec config) */
|
||
: 0 /* function */);
|
||
|
||
// If too few arguments are available (and we don't have default
|
||
// arguments for the remaining parameters), don't make the call.
|
||
if (NumArgs < NumArgsInProto) {
|
||
if (NumArgs < MinArgs) {
|
||
Diag(RParenLoc, MinArgs == NumArgsInProto
|
||
? diag::err_typecheck_call_too_few_args
|
||
: diag::err_typecheck_call_too_few_args_at_least)
|
||
<< FnKind
|
||
<< MinArgs << NumArgs << Fn->getSourceRange();
|
||
|
||
// Emit the location of the prototype.
|
||
if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
|
||
Diag(FDecl->getLocStart(), diag::note_callee_decl)
|
||
<< FDecl;
|
||
|
||
return true;
|
||
}
|
||
Call->setNumArgs(Context, NumArgsInProto);
|
||
}
|
||
|
||
// If too many are passed and not variadic, error on the extras and drop
|
||
// them.
|
||
if (NumArgs > NumArgsInProto) {
|
||
if (!Proto->isVariadic()) {
|
||
Diag(Args[NumArgsInProto]->getLocStart(),
|
||
MinArgs == NumArgsInProto
|
||
? diag::err_typecheck_call_too_many_args
|
||
: diag::err_typecheck_call_too_many_args_at_most)
|
||
<< FnKind
|
||
<< NumArgsInProto << NumArgs << Fn->getSourceRange()
|
||
<< SourceRange(Args[NumArgsInProto]->getLocStart(),
|
||
Args[NumArgs-1]->getLocEnd());
|
||
|
||
// Emit the location of the prototype.
|
||
if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
|
||
Diag(FDecl->getLocStart(), diag::note_callee_decl)
|
||
<< FDecl;
|
||
|
||
// This deletes the extra arguments.
|
||
Call->setNumArgs(Context, NumArgsInProto);
|
||
return true;
|
||
}
|
||
}
|
||
SmallVector<Expr *, 8> AllArgs;
|
||
VariadicCallType CallType =
|
||
Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
|
||
if (Fn->getType()->isBlockPointerType())
|
||
CallType = VariadicBlock; // Block
|
||
else if (isa<MemberExpr>(Fn))
|
||
CallType = VariadicMethod;
|
||
Invalid = GatherArgumentsForCall(Call->getSourceRange().getBegin(), FDecl,
|
||
Proto, 0, Args, NumArgs, AllArgs, CallType);
|
||
if (Invalid)
|
||
return true;
|
||
unsigned TotalNumArgs = AllArgs.size();
|
||
for (unsigned i = 0; i < TotalNumArgs; ++i)
|
||
Call->setArg(i, AllArgs[i]);
|
||
|
||
return false;
|
||
}
|
||
|
||
bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
|
||
FunctionDecl *FDecl,
|
||
const FunctionProtoType *Proto,
|
||
unsigned FirstProtoArg,
|
||
Expr **Args, unsigned NumArgs,
|
||
SmallVector<Expr *, 8> &AllArgs,
|
||
VariadicCallType CallType,
|
||
bool AllowExplicit) {
|
||
unsigned NumArgsInProto = Proto->getNumArgs();
|
||
unsigned NumArgsToCheck = NumArgs;
|
||
bool Invalid = false;
|
||
if (NumArgs != NumArgsInProto)
|
||
// Use default arguments for missing arguments
|
||
NumArgsToCheck = NumArgsInProto;
|
||
unsigned ArgIx = 0;
|
||
// Continue to check argument types (even if we have too few/many args).
|
||
for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
|
||
QualType ProtoArgType = Proto->getArgType(i);
|
||
|
||
Expr *Arg;
|
||
ParmVarDecl *Param;
|
||
if (ArgIx < NumArgs) {
|
||
Arg = Args[ArgIx++];
|
||
|
||
if (RequireCompleteType(Arg->getSourceRange().getBegin(),
|
||
ProtoArgType,
|
||
PDiag(diag::err_call_incomplete_argument)
|
||
<< Arg->getSourceRange()))
|
||
return true;
|
||
|
||
// Pass the argument
|
||
Param = 0;
|
||
if (FDecl && i < FDecl->getNumParams())
|
||
Param = FDecl->getParamDecl(i);
|
||
|
||
// Strip the unbridged-cast placeholder expression off, if applicable.
|
||
if (Arg->getType() == Context.ARCUnbridgedCastTy &&
|
||
FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
|
||
(!Param || !Param->hasAttr<CFConsumedAttr>()))
|
||
Arg = stripARCUnbridgedCast(Arg);
|
||
|
||
InitializedEntity Entity =
|
||
Param? InitializedEntity::InitializeParameter(Context, Param)
|
||
: InitializedEntity::InitializeParameter(Context, ProtoArgType,
|
||
Proto->isArgConsumed(i));
|
||
ExprResult ArgE = PerformCopyInitialization(Entity,
|
||
SourceLocation(),
|
||
Owned(Arg),
|
||
/*TopLevelOfInitList=*/false,
|
||
AllowExplicit);
|
||
if (ArgE.isInvalid())
|
||
return true;
|
||
|
||
Arg = ArgE.takeAs<Expr>();
|
||
} else {
|
||
Param = FDecl->getParamDecl(i);
|
||
|
||
ExprResult ArgExpr =
|
||
BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
|
||
if (ArgExpr.isInvalid())
|
||
return true;
|
||
|
||
Arg = ArgExpr.takeAs<Expr>();
|
||
}
|
||
|
||
// Check for array bounds violations for each argument to the call. This
|
||
// check only triggers warnings when the argument isn't a more complex Expr
|
||
// with its own checking, such as a BinaryOperator.
|
||
CheckArrayAccess(Arg);
|
||
|
||
// Check for violations of C99 static array rules (C99 6.7.5.3p7).
|
||
CheckStaticArrayArgument(CallLoc, Param, Arg);
|
||
|
||
AllArgs.push_back(Arg);
|
||
}
|
||
|
||
// If this is a variadic call, handle args passed through "...".
|
||
if (CallType != VariadicDoesNotApply) {
|
||
|
||
// Assume that extern "C" functions with variadic arguments that
|
||
// return __unknown_anytype aren't *really* variadic.
|
||
if (Proto->getResultType() == Context.UnknownAnyTy &&
|
||
FDecl && FDecl->isExternC()) {
|
||
for (unsigned i = ArgIx; i != NumArgs; ++i) {
|
||
ExprResult arg;
|
||
if (isa<ExplicitCastExpr>(Args[i]->IgnoreParens()))
|
||
arg = DefaultFunctionArrayLvalueConversion(Args[i]);
|
||
else
|
||
arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl);
|
||
Invalid |= arg.isInvalid();
|
||
AllArgs.push_back(arg.take());
|
||
}
|
||
|
||
// Otherwise do argument promotion, (C99 6.5.2.2p7).
|
||
} else {
|
||
for (unsigned i = ArgIx; i != NumArgs; ++i) {
|
||
ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType,
|
||
FDecl);
|
||
Invalid |= Arg.isInvalid();
|
||
AllArgs.push_back(Arg.take());
|
||
}
|
||
}
|
||
|
||
// Check for array bounds violations.
|
||
for (unsigned i = ArgIx; i != NumArgs; ++i)
|
||
CheckArrayAccess(Args[i]);
|
||
}
|
||
return Invalid;
|
||
}
|
||
|
||
static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
|
||
TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
|
||
if (ArrayTypeLoc *ATL = dyn_cast<ArrayTypeLoc>(&TL))
|
||
S.Diag(PVD->getLocation(), diag::note_callee_static_array)
|
||
<< ATL->getLocalSourceRange();
|
||
}
|
||
|
||
/// CheckStaticArrayArgument - If the given argument corresponds to a static
|
||
/// array parameter, check that it is non-null, and that if it is formed by
|
||
/// array-to-pointer decay, the underlying array is sufficiently large.
|
||
///
|
||
/// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
|
||
/// array type derivation, then for each call to the function, the value of the
|
||
/// corresponding actual argument shall provide access to the first element of
|
||
/// an array with at least as many elements as specified by the size expression.
|
||
void
|
||
Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
|
||
ParmVarDecl *Param,
|
||
const Expr *ArgExpr) {
|
||
// Static array parameters are not supported in C++.
|
||
if (!Param || getLangOptions().CPlusPlus)
|
||
return;
|
||
|
||
QualType OrigTy = Param->getOriginalType();
|
||
|
||
const ArrayType *AT = Context.getAsArrayType(OrigTy);
|
||
if (!AT || AT->getSizeModifier() != ArrayType::Static)
|
||
return;
|
||
|
||
if (ArgExpr->isNullPointerConstant(Context,
|
||
Expr::NPC_NeverValueDependent)) {
|
||
Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
|
||
DiagnoseCalleeStaticArrayParam(*this, Param);
|
||
return;
|
||
}
|
||
|
||
const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
|
||
if (!CAT)
|
||
return;
|
||
|
||
const ConstantArrayType *ArgCAT =
|
||
Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
|
||
if (!ArgCAT)
|
||
return;
|
||
|
||
if (ArgCAT->getSize().ult(CAT->getSize())) {
|
||
Diag(CallLoc, diag::warn_static_array_too_small)
|
||
<< ArgExpr->getSourceRange()
|
||
<< (unsigned) ArgCAT->getSize().getZExtValue()
|
||
<< (unsigned) CAT->getSize().getZExtValue();
|
||
DiagnoseCalleeStaticArrayParam(*this, Param);
|
||
}
|
||
}
|
||
|
||
/// Given a function expression of unknown-any type, try to rebuild it
|
||
/// to have a function type.
|
||
static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
|
||
|
||
/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
|
||
/// This provides the location of the left/right parens and a list of comma
|
||
/// locations.
|
||
ExprResult
|
||
Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
|
||
MultiExprArg ArgExprs, SourceLocation RParenLoc,
|
||
Expr *ExecConfig, bool IsExecConfig) {
|
||
unsigned NumArgs = ArgExprs.size();
|
||
|
||
// Since this might be a postfix expression, get rid of ParenListExprs.
|
||
ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
|
||
if (Result.isInvalid()) return ExprError();
|
||
Fn = Result.take();
|
||
|
||
Expr **Args = ArgExprs.release();
|
||
|
||
if (getLangOptions().CPlusPlus) {
|
||
// If this is a pseudo-destructor expression, build the call immediately.
|
||
if (isa<CXXPseudoDestructorExpr>(Fn)) {
|
||
if (NumArgs > 0) {
|
||
// Pseudo-destructor calls should not have any arguments.
|
||
Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
|
||
<< FixItHint::CreateRemoval(
|
||
SourceRange(Args[0]->getLocStart(),
|
||
Args[NumArgs-1]->getLocEnd()));
|
||
|
||
NumArgs = 0;
|
||
}
|
||
|
||
return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
|
||
VK_RValue, RParenLoc));
|
||
}
|
||
|
||
// Determine whether this is a dependent call inside a C++ template,
|
||
// in which case we won't do any semantic analysis now.
|
||
// FIXME: Will need to cache the results of name lookup (including ADL) in
|
||
// Fn.
|
||
bool Dependent = false;
|
||
if (Fn->isTypeDependent())
|
||
Dependent = true;
|
||
else if (Expr::hasAnyTypeDependentArguments(
|
||
llvm::makeArrayRef(Args, NumArgs)))
|
||
Dependent = true;
|
||
|
||
if (Dependent) {
|
||
if (ExecConfig) {
|
||
return Owned(new (Context) CUDAKernelCallExpr(
|
||
Context, Fn, cast<CallExpr>(ExecConfig), Args, NumArgs,
|
||
Context.DependentTy, VK_RValue, RParenLoc));
|
||
} else {
|
||
return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
|
||
Context.DependentTy, VK_RValue,
|
||
RParenLoc));
|
||
}
|
||
}
|
||
|
||
// Determine whether this is a call to an object (C++ [over.call.object]).
|
||
if (Fn->getType()->isRecordType())
|
||
return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
|
||
RParenLoc));
|
||
|
||
if (Fn->getType() == Context.UnknownAnyTy) {
|
||
ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
|
||
if (result.isInvalid()) return ExprError();
|
||
Fn = result.take();
|
||
}
|
||
|
||
if (Fn->getType() == Context.BoundMemberTy) {
|
||
return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
|
||
RParenLoc);
|
||
}
|
||
}
|
||
|
||
// Check for overloaded calls. This can happen even in C due to extensions.
|
||
if (Fn->getType() == Context.OverloadTy) {
|
||
OverloadExpr::FindResult find = OverloadExpr::find(Fn);
|
||
|
||
// We aren't supposed to apply this logic for if there's an '&' involved.
|
||
if (!find.HasFormOfMemberPointer) {
|
||
OverloadExpr *ovl = find.Expression;
|
||
if (isa<UnresolvedLookupExpr>(ovl)) {
|
||
UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
|
||
return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
|
||
RParenLoc, ExecConfig);
|
||
} else {
|
||
return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
|
||
RParenLoc);
|
||
}
|
||
}
|
||
}
|
||
|
||
// If we're directly calling a function, get the appropriate declaration.
|
||
if (Fn->getType() == Context.UnknownAnyTy) {
|
||
ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
|
||
if (result.isInvalid()) return ExprError();
|
||
Fn = result.take();
|
||
}
|
||
|
||
Expr *NakedFn = Fn->IgnoreParens();
|
||
|
||
NamedDecl *NDecl = 0;
|
||
if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
|
||
if (UnOp->getOpcode() == UO_AddrOf)
|
||
NakedFn = UnOp->getSubExpr()->IgnoreParens();
|
||
|
||
if (isa<DeclRefExpr>(NakedFn))
|
||
NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
|
||
else if (isa<MemberExpr>(NakedFn))
|
||
NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
|
||
|
||
return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc,
|
||
ExecConfig, IsExecConfig);
|
||
}
|
||
|
||
ExprResult
|
||
Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
|
||
MultiExprArg ExecConfig, SourceLocation GGGLoc) {
|
||
FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
|
||
if (!ConfigDecl)
|
||
return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
|
||
<< "cudaConfigureCall");
|
||
QualType ConfigQTy = ConfigDecl->getType();
|
||
|
||
DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
|
||
ConfigDecl, ConfigQTy, VK_LValue, LLLLoc);
|
||
MarkFunctionReferenced(LLLLoc, ConfigDecl);
|
||
|
||
return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, 0,
|
||
/*IsExecConfig=*/true);
|
||
}
|
||
|
||
/// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
|
||
///
|
||
/// __builtin_astype( value, dst type )
|
||
///
|
||
ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
|
||
SourceLocation BuiltinLoc,
|
||
SourceLocation RParenLoc) {
|
||
ExprValueKind VK = VK_RValue;
|
||
ExprObjectKind OK = OK_Ordinary;
|
||
QualType DstTy = GetTypeFromParser(ParsedDestTy);
|
||
QualType SrcTy = E->getType();
|
||
if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
|
||
return ExprError(Diag(BuiltinLoc,
|
||
diag::err_invalid_astype_of_different_size)
|
||
<< DstTy
|
||
<< SrcTy
|
||
<< E->getSourceRange());
|
||
return Owned(new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc,
|
||
RParenLoc));
|
||
}
|
||
|
||
/// BuildResolvedCallExpr - Build a call to a resolved expression,
|
||
/// i.e. an expression not of \p OverloadTy. The expression should
|
||
/// unary-convert to an expression of function-pointer or
|
||
/// block-pointer type.
|
||
///
|
||
/// \param NDecl the declaration being called, if available
|
||
ExprResult
|
||
Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
|
||
SourceLocation LParenLoc,
|
||
Expr **Args, unsigned NumArgs,
|
||
SourceLocation RParenLoc,
|
||
Expr *Config, bool IsExecConfig) {
|
||
FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
|
||
|
||
// Promote the function operand.
|
||
ExprResult Result = UsualUnaryConversions(Fn);
|
||
if (Result.isInvalid())
|
||
return ExprError();
|
||
Fn = Result.take();
|
||
|
||
// Make the call expr early, before semantic checks. This guarantees cleanup
|
||
// of arguments and function on error.
|
||
CallExpr *TheCall;
|
||
if (Config) {
|
||
TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
|
||
cast<CallExpr>(Config),
|
||
Args, NumArgs,
|
||
Context.BoolTy,
|
||
VK_RValue,
|
||
RParenLoc);
|
||
} else {
|
||
TheCall = new (Context) CallExpr(Context, Fn,
|
||
Args, NumArgs,
|
||
Context.BoolTy,
|
||
VK_RValue,
|
||
RParenLoc);
|
||
}
|
||
|
||
unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
|
||
|
||
// Bail out early if calling a builtin with custom typechecking.
|
||
if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
|
||
return CheckBuiltinFunctionCall(BuiltinID, TheCall);
|
||
|
||
retry:
|
||
const FunctionType *FuncT;
|
||
if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
|
||
// C99 6.5.2.2p1 - "The expression that denotes the called function shall
|
||
// have type pointer to function".
|
||
FuncT = PT->getPointeeType()->getAs<FunctionType>();
|
||
if (FuncT == 0)
|
||
return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
|
||
<< Fn->getType() << Fn->getSourceRange());
|
||
} else if (const BlockPointerType *BPT =
|
||
Fn->getType()->getAs<BlockPointerType>()) {
|
||
FuncT = BPT->getPointeeType()->castAs<FunctionType>();
|
||
} else {
|
||
// Handle calls to expressions of unknown-any type.
|
||
if (Fn->getType() == Context.UnknownAnyTy) {
|
||
ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
|
||
if (rewrite.isInvalid()) return ExprError();
|
||
Fn = rewrite.take();
|
||
TheCall->setCallee(Fn);
|
||
goto retry;
|
||
}
|
||
|
||
return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
|
||
<< Fn->getType() << Fn->getSourceRange());
|
||
}
|
||
|
||
if (getLangOptions().CUDA) {
|
||
if (Config) {
|
||
// CUDA: Kernel calls must be to global functions
|
||
if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
|
||
return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
|
||
<< FDecl->getName() << Fn->getSourceRange());
|
||
|
||
// CUDA: Kernel function must have 'void' return type
|
||
if (!FuncT->getResultType()->isVoidType())
|
||
return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
|
||
<< Fn->getType() << Fn->getSourceRange());
|
||
} else {
|
||
// CUDA: Calls to global functions must be configured
|
||
if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
|
||
return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
|
||
<< FDecl->getName() << Fn->getSourceRange());
|
||
}
|
||
}
|
||
|
||
// Check for a valid return type
|
||
if (CheckCallReturnType(FuncT->getResultType(),
|
||
Fn->getSourceRange().getBegin(), TheCall,
|
||
FDecl))
|
||
return ExprError();
|
||
|
||
// We know the result type of the call, set it.
|
||
TheCall->setType(FuncT->getCallResultType(Context));
|
||
TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
|
||
|
||
if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT)) {
|
||
if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
|
||
RParenLoc, IsExecConfig))
|
||
return ExprError();
|
||
} else {
|
||
assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
|
||
|
||
if (FDecl) {
|
||
// Check if we have too few/too many template arguments, based
|
||
// on our knowledge of the function definition.
|
||
const FunctionDecl *Def = 0;
|
||
if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
|
||
const FunctionProtoType *Proto
|
||
= Def->getType()->getAs<FunctionProtoType>();
|
||
if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size()))
|
||
Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
|
||
<< (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
|
||
}
|
||
|
||
// If the function we're calling isn't a function prototype, but we have
|
||
// a function prototype from a prior declaratiom, use that prototype.
|
||
if (!FDecl->hasPrototype())
|
||
Proto = FDecl->getType()->getAs<FunctionProtoType>();
|
||
}
|
||
|
||
// Promote the arguments (C99 6.5.2.2p6).
|
||
for (unsigned i = 0; i != NumArgs; i++) {
|
||
Expr *Arg = Args[i];
|
||
|
||
if (Proto && i < Proto->getNumArgs()) {
|
||
InitializedEntity Entity
|
||
= InitializedEntity::InitializeParameter(Context,
|
||
Proto->getArgType(i),
|
||
Proto->isArgConsumed(i));
|
||
ExprResult ArgE = PerformCopyInitialization(Entity,
|
||
SourceLocation(),
|
||
Owned(Arg));
|
||
if (ArgE.isInvalid())
|
||
return true;
|
||
|
||
Arg = ArgE.takeAs<Expr>();
|
||
|
||
} else {
|
||
ExprResult ArgE = DefaultArgumentPromotion(Arg);
|
||
|
||
if (ArgE.isInvalid())
|
||
return true;
|
||
|
||
Arg = ArgE.takeAs<Expr>();
|
||
}
|
||
|
||
if (RequireCompleteType(Arg->getSourceRange().getBegin(),
|
||
Arg->getType(),
|
||
PDiag(diag::err_call_incomplete_argument)
|
||
<< Arg->getSourceRange()))
|
||
return ExprError();
|
||
|
||
TheCall->setArg(i, Arg);
|
||
}
|
||
}
|
||
|
||
if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
|
||
if (!Method->isStatic())
|
||
return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
|
||
<< Fn->getSourceRange());
|
||
|
||
// Check for sentinels
|
||
if (NDecl)
|
||
DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
|
||
|
||
// Do special checking on direct calls to functions.
|
||
if (FDecl) {
|
||
if (CheckFunctionCall(FDecl, TheCall))
|
||
return ExprError();
|
||
|
||
if (BuiltinID)
|
||
return CheckBuiltinFunctionCall(BuiltinID, TheCall);
|
||
} else if (NDecl) {
|
||
if (CheckBlockCall(NDecl, TheCall))
|
||
return ExprError();
|
||
}
|
||
|
||
return MaybeBindToTemporary(TheCall);
|
||
}
|
||
|
||
ExprResult
|
||
Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
|
||
SourceLocation RParenLoc, Expr *InitExpr) {
|
||
assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
|
||
// FIXME: put back this assert when initializers are worked out.
|
||
//assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
|
||
|
||
TypeSourceInfo *TInfo;
|
||
QualType literalType = GetTypeFromParser(Ty, &TInfo);
|
||
if (!TInfo)
|
||
TInfo = Context.getTrivialTypeSourceInfo(literalType);
|
||
|
||
return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
|
||
}
|
||
|
||
ExprResult
|
||
Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
|
||
SourceLocation RParenLoc, Expr *LiteralExpr) {
|
||
QualType literalType = TInfo->getType();
|
||
|
||
if (literalType->isArrayType()) {
|
||
if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
|
||
PDiag(diag::err_illegal_decl_array_incomplete_type)
|
||
<< SourceRange(LParenLoc,
|
||
LiteralExpr->getSourceRange().getEnd())))
|
||
return ExprError();
|
||
if (literalType->isVariableArrayType())
|
||
return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
|
||
<< SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
|
||
} else if (!literalType->isDependentType() &&
|
||
RequireCompleteType(LParenLoc, literalType,
|
||
PDiag(diag::err_typecheck_decl_incomplete_type)
|
||
<< SourceRange(LParenLoc,
|
||
LiteralExpr->getSourceRange().getEnd())))
|
||
return ExprError();
|
||
|
||
InitializedEntity Entity
|
||
= InitializedEntity::InitializeTemporary(literalType);
|
||
InitializationKind Kind
|
||
= InitializationKind::CreateCStyleCast(LParenLoc,
|
||
SourceRange(LParenLoc, RParenLoc),
|
||
/*InitList=*/true);
|
||
InitializationSequence InitSeq(*this, Entity, Kind, &LiteralExpr, 1);
|
||
ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
|
||
MultiExprArg(*this, &LiteralExpr, 1),
|
||
&literalType);
|
||
if (Result.isInvalid())
|
||
return ExprError();
|
||
LiteralExpr = Result.get();
|
||
|
||
bool isFileScope = getCurFunctionOrMethodDecl() == 0;
|
||
if (isFileScope) { // 6.5.2.5p3
|
||
if (CheckForConstantInitializer(LiteralExpr, literalType))
|
||
return ExprError();
|
||
}
|
||
|
||
// In C, compound literals are l-values for some reason.
|
||
ExprValueKind VK = getLangOptions().CPlusPlus ? VK_RValue : VK_LValue;
|
||
|
||
return MaybeBindToTemporary(
|
||
new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
|
||
VK, LiteralExpr, isFileScope));
|
||
}
|
||
|
||
ExprResult
|
||
Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
|
||
SourceLocation RBraceLoc) {
|
||
unsigned NumInit = InitArgList.size();
|
||
Expr **InitList = InitArgList.release();
|
||
|
||
// Immediately handle non-overload placeholders. Overloads can be
|
||
// resolved contextually, but everything else here can't.
|
||
for (unsigned I = 0; I != NumInit; ++I) {
|
||
if (InitList[I]->getType()->isNonOverloadPlaceholderType()) {
|
||
ExprResult result = CheckPlaceholderExpr(InitList[I]);
|
||
|
||
// Ignore failures; dropping the entire initializer list because
|
||
// of one failure would be terrible for indexing/etc.
|
||
if (result.isInvalid()) continue;
|
||
|
||
InitList[I] = result.take();
|
||
}
|
||
}
|
||
|
||
// Semantic analysis for initializers is done by ActOnDeclarator() and
|
||
// CheckInitializer() - it requires knowledge of the object being intialized.
|
||
|
||
InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
|
||
NumInit, RBraceLoc);
|
||
E->setType(Context.VoidTy); // FIXME: just a place holder for now.
|
||
return Owned(E);
|
||
}
|
||
|
||
/// Do an explicit extend of the given block pointer if we're in ARC.
|
||
static void maybeExtendBlockObject(Sema &S, ExprResult &E) {
|
||
assert(E.get()->getType()->isBlockPointerType());
|
||
assert(E.get()->isRValue());
|
||
|
||
// Only do this in an r-value context.
|
||
if (!S.getLangOptions().ObjCAutoRefCount) return;
|
||
|
||
E = ImplicitCastExpr::Create(S.Context, E.get()->getType(),
|
||
CK_ARCExtendBlockObject, E.get(),
|
||
/*base path*/ 0, VK_RValue);
|
||
S.ExprNeedsCleanups = true;
|
||
}
|
||
|
||
/// Prepare a conversion of the given expression to an ObjC object
|
||
/// pointer type.
|
||
CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
|
||
QualType type = E.get()->getType();
|
||
if (type->isObjCObjectPointerType()) {
|
||
return CK_BitCast;
|
||
} else if (type->isBlockPointerType()) {
|
||
maybeExtendBlockObject(*this, E);
|
||
return CK_BlockPointerToObjCPointerCast;
|
||
} else {
|
||
assert(type->isPointerType());
|
||
return CK_CPointerToObjCPointerCast;
|
||
}
|
||
}
|
||
|
||
/// Prepares for a scalar cast, performing all the necessary stages
|
||
/// except the final cast and returning the kind required.
|
||
CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
|
||
// Both Src and Dest are scalar types, i.e. arithmetic or pointer.
|
||
// Also, callers should have filtered out the invalid cases with
|
||
// pointers. Everything else should be possible.
|
||
|
||
QualType SrcTy = Src.get()->getType();
|
||
if (const AtomicType *SrcAtomicTy = SrcTy->getAs<AtomicType>())
|
||
SrcTy = SrcAtomicTy->getValueType();
|
||
if (const AtomicType *DestAtomicTy = DestTy->getAs<AtomicType>())
|
||
DestTy = DestAtomicTy->getValueType();
|
||
|
||
if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
|
||
return CK_NoOp;
|
||
|
||
switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
|
||
case Type::STK_MemberPointer:
|
||
llvm_unreachable("member pointer type in C");
|
||
|
||
case Type::STK_CPointer:
|
||
case Type::STK_BlockPointer:
|
||
case Type::STK_ObjCObjectPointer:
|
||
switch (DestTy->getScalarTypeKind()) {
|
||
case Type::STK_CPointer:
|
||
return CK_BitCast;
|
||
case Type::STK_BlockPointer:
|
||
return (SrcKind == Type::STK_BlockPointer
|
||
? CK_BitCast : CK_AnyPointerToBlockPointerCast);
|
||
case Type::STK_ObjCObjectPointer:
|
||
if (SrcKind == Type::STK_ObjCObjectPointer)
|
||
return CK_BitCast;
|
||
if (SrcKind == Type::STK_CPointer)
|
||
return CK_CPointerToObjCPointerCast;
|
||
maybeExtendBlockObject(*this, Src);
|
||
return CK_BlockPointerToObjCPointerCast;
|
||
case Type::STK_Bool:
|
||
return CK_PointerToBoolean;
|
||
case Type::STK_Integral:
|
||
return CK_PointerToIntegral;
|
||
case Type::STK_Floating:
|
||
case Type::STK_FloatingComplex:
|
||
case Type::STK_IntegralComplex:
|
||
case Type::STK_MemberPointer:
|
||
llvm_unreachable("illegal cast from pointer");
|
||
}
|
||
llvm_unreachable("Should have returned before this");
|
||
|
||
case Type::STK_Bool: // casting from bool is like casting from an integer
|
||
case Type::STK_Integral:
|
||
switch (DestTy->getScalarTypeKind()) {
|
||
case Type::STK_CPointer:
|
||
case Type::STK_ObjCObjectPointer:
|
||
case Type::STK_BlockPointer:
|
||
if (Src.get()->isNullPointerConstant(Context,
|
||
Expr::NPC_ValueDependentIsNull))
|
||
return CK_NullToPointer;
|
||
return CK_IntegralToPointer;
|
||
case Type::STK_Bool:
|
||
return CK_IntegralToBoolean;
|
||
case Type::STK_Integral:
|
||
return CK_IntegralCast;
|
||
case Type::STK_Floating:
|
||
return CK_IntegralToFloating;
|
||
case Type::STK_IntegralComplex:
|
||
Src = ImpCastExprToType(Src.take(),
|
||
DestTy->castAs<ComplexType>()->getElementType(),
|
||
CK_IntegralCast);
|
||
return CK_IntegralRealToComplex;
|
||
case Type::STK_FloatingComplex:
|
||
Src = ImpCastExprToType(Src.take(),
|
||
DestTy->castAs<ComplexType>()->getElementType(),
|
||
CK_IntegralToFloating);
|
||
return CK_FloatingRealToComplex;
|
||
case Type::STK_MemberPointer:
|
||
llvm_unreachable("member pointer type in C");
|
||
}
|
||
llvm_unreachable("Should have returned before this");
|
||
|
||
case Type::STK_Floating:
|
||
switch (DestTy->getScalarTypeKind()) {
|
||
case Type::STK_Floating:
|
||
return CK_FloatingCast;
|
||
case Type::STK_Bool:
|
||
return CK_FloatingToBoolean;
|
||
case Type::STK_Integral:
|
||
return CK_FloatingToIntegral;
|
||
case Type::STK_FloatingComplex:
|
||
Src = ImpCastExprToType(Src.take(),
|
||
DestTy->castAs<ComplexType>()->getElementType(),
|
||
CK_FloatingCast);
|
||
return CK_FloatingRealToComplex;
|
||
case Type::STK_IntegralComplex:
|
||
Src = ImpCastExprToType(Src.take(),
|
||
DestTy->castAs<ComplexType>()->getElementType(),
|
||
CK_FloatingToIntegral);
|
||
return CK_IntegralRealToComplex;
|
||
case Type::STK_CPointer:
|
||
case Type::STK_ObjCObjectPointer:
|
||
case Type::STK_BlockPointer:
|
||
llvm_unreachable("valid float->pointer cast?");
|
||
case Type::STK_MemberPointer:
|
||
llvm_unreachable("member pointer type in C");
|
||
}
|
||
llvm_unreachable("Should have returned before this");
|
||
|
||
case Type::STK_FloatingComplex:
|
||
switch (DestTy->getScalarTypeKind()) {
|
||
case Type::STK_FloatingComplex:
|
||
return CK_FloatingComplexCast;
|
||
case Type::STK_IntegralComplex:
|
||
return CK_FloatingComplexToIntegralComplex;
|
||
case Type::STK_Floating: {
|
||
QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
|
||
if (Context.hasSameType(ET, DestTy))
|
||
return CK_FloatingComplexToReal;
|
||
Src = ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal);
|
||
return CK_FloatingCast;
|
||
}
|
||
case Type::STK_Bool:
|
||
return CK_FloatingComplexToBoolean;
|
||
case Type::STK_Integral:
|
||
Src = ImpCastExprToType(Src.take(),
|
||
SrcTy->castAs<ComplexType>()->getElementType(),
|
||
CK_FloatingComplexToReal);
|
||
return CK_FloatingToIntegral;
|
||
case Type::STK_CPointer:
|
||
case Type::STK_ObjCObjectPointer:
|
||
case Type::STK_BlockPointer:
|
||
llvm_unreachable("valid complex float->pointer cast?");
|
||
case Type::STK_MemberPointer:
|
||
llvm_unreachable("member pointer type in C");
|
||
}
|
||
llvm_unreachable("Should have returned before this");
|
||
|
||
case Type::STK_IntegralComplex:
|
||
switch (DestTy->getScalarTypeKind()) {
|
||
case Type::STK_FloatingComplex:
|
||
return CK_IntegralComplexToFloatingComplex;
|
||
case Type::STK_IntegralComplex:
|
||
return CK_IntegralComplexCast;
|
||
case Type::STK_Integral: {
|
||
QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
|
||
if (Context.hasSameType(ET, DestTy))
|
||
return CK_IntegralComplexToReal;
|
||
Src = ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal);
|
||
return CK_IntegralCast;
|
||
}
|
||
case Type::STK_Bool:
|
||
return CK_IntegralComplexToBoolean;
|
||
case Type::STK_Floating:
|
||
Src = ImpCastExprToType(Src.take(),
|
||
SrcTy->castAs<ComplexType>()->getElementType(),
|
||
CK_IntegralComplexToReal);
|
||
return CK_IntegralToFloating;
|
||
case Type::STK_CPointer:
|
||
case Type::STK_ObjCObjectPointer:
|
||
case Type::STK_BlockPointer:
|
||
llvm_unreachable("valid complex int->pointer cast?");
|
||
case Type::STK_MemberPointer:
|
||
llvm_unreachable("member pointer type in C");
|
||
}
|
||
llvm_unreachable("Should have returned before this");
|
||
}
|
||
|
||
llvm_unreachable("Unhandled scalar cast");
|
||
}
|
||
|
||
bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
|
||
CastKind &Kind) {
|
||
assert(VectorTy->isVectorType() && "Not a vector type!");
|
||
|
||
if (Ty->isVectorType() || Ty->isIntegerType()) {
|
||
if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
|
||
return Diag(R.getBegin(),
|
||
Ty->isVectorType() ?
|
||
diag::err_invalid_conversion_between_vectors :
|
||
diag::err_invalid_conversion_between_vector_and_integer)
|
||
<< VectorTy << Ty << R;
|
||
} else
|
||
return Diag(R.getBegin(),
|
||
diag::err_invalid_conversion_between_vector_and_scalar)
|
||
<< VectorTy << Ty << R;
|
||
|
||
Kind = CK_BitCast;
|
||
return false;
|
||
}
|
||
|
||
ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
|
||
Expr *CastExpr, CastKind &Kind) {
|
||
assert(DestTy->isExtVectorType() && "Not an extended vector type!");
|
||
|
||
QualType SrcTy = CastExpr->getType();
|
||
|
||
// If SrcTy is a VectorType, the total size must match to explicitly cast to
|
||
// an ExtVectorType.
|
||
// In OpenCL, casts between vectors of different types are not allowed.
|
||
// (See OpenCL 6.2).
|
||
if (SrcTy->isVectorType()) {
|
||
if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)
|
||
|| (getLangOptions().OpenCL &&
|
||
(DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
|
||
Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
|
||
<< DestTy << SrcTy << R;
|
||
return ExprError();
|
||
}
|
||
Kind = CK_BitCast;
|
||
return Owned(CastExpr);
|
||
}
|
||
|
||
// All non-pointer scalars can be cast to ExtVector type. The appropriate
|
||
// conversion will take place first from scalar to elt type, and then
|
||
// splat from elt type to vector.
|
||
if (SrcTy->isPointerType())
|
||
return Diag(R.getBegin(),
|
||
diag::err_invalid_conversion_between_vector_and_scalar)
|
||
<< DestTy << SrcTy << R;
|
||
|
||
QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
|
||
ExprResult CastExprRes = Owned(CastExpr);
|
||
CastKind CK = PrepareScalarCast(CastExprRes, DestElemTy);
|
||
if (CastExprRes.isInvalid())
|
||
return ExprError();
|
||
CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take();
|
||
|
||
Kind = CK_VectorSplat;
|
||
return Owned(CastExpr);
|
||
}
|
||
|
||
ExprResult
|
||
Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
|
||
Declarator &D, ParsedType &Ty,
|
||
SourceLocation RParenLoc, Expr *CastExpr) {
|
||
assert(!D.isInvalidType() && (CastExpr != 0) &&
|
||
"ActOnCastExpr(): missing type or expr");
|
||
|
||
TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
|
||
if (D.isInvalidType())
|
||
return ExprError();
|
||
|
||
if (getLangOptions().CPlusPlus) {
|
||
// Check that there are no default arguments (C++ only).
|
||
CheckExtraCXXDefaultArguments(D);
|
||
}
|
||
|
||
checkUnusedDeclAttributes(D);
|
||
|
||
QualType castType = castTInfo->getType();
|
||
Ty = CreateParsedType(castType, castTInfo);
|
||
|
||
bool isVectorLiteral = false;
|
||
|
||
// Check for an altivec or OpenCL literal,
|
||
// i.e. all the elements are integer constants.
|
||
ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
|
||
ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
|
||
if ((getLangOptions().AltiVec || getLangOptions().OpenCL)
|
||
&& castType->isVectorType() && (PE || PLE)) {
|
||
if (PLE && PLE->getNumExprs() == 0) {
|
||
Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
|
||
return ExprError();
|
||
}
|
||
if (PE || PLE->getNumExprs() == 1) {
|
||
Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
|
||
if (!E->getType()->isVectorType())
|
||
isVectorLiteral = true;
|
||
}
|
||
else
|
||
isVectorLiteral = true;
|
||
}
|
||
|
||
// If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
|
||
// then handle it as such.
|
||
if (isVectorLiteral)
|
||
return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
|
||
|
||
// If the Expr being casted is a ParenListExpr, handle it specially.
|
||
// This is not an AltiVec-style cast, so turn the ParenListExpr into a
|
||
// sequence of BinOp comma operators.
|
||
if (isa<ParenListExpr>(CastExpr)) {
|
||
ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
|
||
if (Result.isInvalid()) return ExprError();
|
||
CastExpr = Result.take();
|
||
}
|
||
|
||
return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
|
||
}
|
||
|
||
ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
|
||
SourceLocation RParenLoc, Expr *E,
|
||
TypeSourceInfo *TInfo) {
|
||
assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
|
||
"Expected paren or paren list expression");
|
||
|
||
Expr **exprs;
|
||
unsigned numExprs;
|
||
Expr *subExpr;
|
||
if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
|
||
exprs = PE->getExprs();
|
||
numExprs = PE->getNumExprs();
|
||
} else {
|
||
subExpr = cast<ParenExpr>(E)->getSubExpr();
|
||
exprs = &subExpr;
|
||
numExprs = 1;
|
||
}
|
||
|
||
QualType Ty = TInfo->getType();
|
||
assert(Ty->isVectorType() && "Expected vector type");
|
||
|
||
SmallVector<Expr *, 8> initExprs;
|
||
const VectorType *VTy = Ty->getAs<VectorType>();
|
||
unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
|
||
|
||
// '(...)' form of vector initialization in AltiVec: the number of
|
||
// initializers must be one or must match the size of the vector.
|
||
// If a single value is specified in the initializer then it will be
|
||
// replicated to all the components of the vector
|
||
if (VTy->getVectorKind() == VectorType::AltiVecVector) {
|
||
// The number of initializers must be one or must match the size of the
|
||
// vector. If a single value is specified in the initializer then it will
|
||
// be replicated to all the components of the vector
|
||
if (numExprs == 1) {
|
||
QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
|
||
ExprResult Literal = DefaultLvalueConversion(exprs[0]);
|
||
if (Literal.isInvalid())
|
||
return ExprError();
|
||
Literal = ImpCastExprToType(Literal.take(), ElemTy,
|
||
PrepareScalarCast(Literal, ElemTy));
|
||
return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
|
||
}
|
||
else if (numExprs < numElems) {
|
||
Diag(E->getExprLoc(),
|
||
diag::err_incorrect_number_of_vector_initializers);
|
||
return ExprError();
|
||
}
|
||
else
|
||
initExprs.append(exprs, exprs + numExprs);
|
||
}
|
||
else {
|
||
// For OpenCL, when the number of initializers is a single value,
|
||
// it will be replicated to all components of the vector.
|
||
if (getLangOptions().OpenCL &&
|
||
VTy->getVectorKind() == VectorType::GenericVector &&
|
||
numExprs == 1) {
|
||
QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
|
||
ExprResult Literal = DefaultLvalueConversion(exprs[0]);
|
||
if (Literal.isInvalid())
|
||
return ExprError();
|
||
Literal = ImpCastExprToType(Literal.take(), ElemTy,
|
||
PrepareScalarCast(Literal, ElemTy));
|
||
return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
|
||
}
|
||
|
||
initExprs.append(exprs, exprs + numExprs);
|
||
}
|
||
// FIXME: This means that pretty-printing the final AST will produce curly
|
||
// braces instead of the original commas.
|
||
InitListExpr *initE = new (Context) InitListExpr(Context, LParenLoc,
|
||
&initExprs[0],
|
||
initExprs.size(), RParenLoc);
|
||
initE->setType(Ty);
|
||
return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
|
||
}
|
||
|
||
/// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
|
||
/// the ParenListExpr into a sequence of comma binary operators.
|
||
ExprResult
|
||
Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
|
||
ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
|
||
if (!E)
|
||
return Owned(OrigExpr);
|
||
|
||
ExprResult Result(E->getExpr(0));
|
||
|
||
for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
|
||
Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
|
||
E->getExpr(i));
|
||
|
||
if (Result.isInvalid()) return ExprError();
|
||
|
||
return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
|
||
}
|
||
|
||
ExprResult Sema::ActOnParenListExpr(SourceLocation L,
|
||
SourceLocation R,
|
||
MultiExprArg Val) {
|
||
unsigned nexprs = Val.size();
|
||
Expr **exprs = reinterpret_cast<Expr**>(Val.release());
|
||
assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
|
||
Expr *expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
|
||
return Owned(expr);
|
||
}
|
||
|
||
/// \brief Emit a specialized diagnostic when one expression is a null pointer
|
||
/// constant and the other is not a pointer. Returns true if a diagnostic is
|
||
/// emitted.
|
||
bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
|
||
SourceLocation QuestionLoc) {
|
||
Expr *NullExpr = LHSExpr;
|
||
Expr *NonPointerExpr = RHSExpr;
|
||
Expr::NullPointerConstantKind NullKind =
|
||
NullExpr->isNullPointerConstant(Context,
|
||
Expr::NPC_ValueDependentIsNotNull);
|
||
|
||
if (NullKind == Expr::NPCK_NotNull) {
|
||
NullExpr = RHSExpr;
|
||
NonPointerExpr = LHSExpr;
|
||
NullKind =
|
||
NullExpr->isNullPointerConstant(Context,
|
||
Expr::NPC_ValueDependentIsNotNull);
|
||
}
|
||
|
||
if (NullKind == Expr::NPCK_NotNull)
|
||
return false;
|
||
|
||
if (NullKind == Expr::NPCK_ZeroInteger) {
|
||
// In this case, check to make sure that we got here from a "NULL"
|
||
// string in the source code.
|
||
NullExpr = NullExpr->IgnoreParenImpCasts();
|
||
SourceLocation loc = NullExpr->getExprLoc();
|
||
if (!findMacroSpelling(loc, "NULL"))
|
||
return false;
|
||
}
|
||
|
||
int DiagType = (NullKind == Expr::NPCK_CXX0X_nullptr);
|
||
Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
|
||
<< NonPointerExpr->getType() << DiagType
|
||
<< NonPointerExpr->getSourceRange();
|
||
return true;
|
||
}
|
||
|
||
/// \brief Return false if the condition expression is valid, true otherwise.
|
||
static bool checkCondition(Sema &S, Expr *Cond) {
|
||
QualType CondTy = Cond->getType();
|
||
|
||
// C99 6.5.15p2
|
||
if (CondTy->isScalarType()) return false;
|
||
|
||
// OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
|
||
if (S.getLangOptions().OpenCL && CondTy->isVectorType())
|
||
return false;
|
||
|
||
// Emit the proper error message.
|
||
S.Diag(Cond->getLocStart(), S.getLangOptions().OpenCL ?
|
||
diag::err_typecheck_cond_expect_scalar :
|
||
diag::err_typecheck_cond_expect_scalar_or_vector)
|
||
<< CondTy;
|
||
return true;
|
||
}
|
||
|
||
/// \brief Return false if the two expressions can be converted to a vector,
|
||
/// true otherwise
|
||
static bool checkConditionalConvertScalarsToVectors(Sema &S, ExprResult &LHS,
|
||
ExprResult &RHS,
|
||
QualType CondTy) {
|
||
// Both operands should be of scalar type.
|
||
if (!LHS.get()->getType()->isScalarType()) {
|
||
S.Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
|
||
<< CondTy;
|
||
return true;
|
||
}
|
||
if (!RHS.get()->getType()->isScalarType()) {
|
||
S.Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
|
||
<< CondTy;
|
||
return true;
|
||
}
|
||
|
||
// Implicity convert these scalars to the type of the condition.
|
||
LHS = S.ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast);
|
||
RHS = S.ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast);
|
||
return false;
|
||
}
|
||
|
||
/// \brief Handle when one or both operands are void type.
|
||
static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
|
||
ExprResult &RHS) {
|
||
Expr *LHSExpr = LHS.get();
|
||
Expr *RHSExpr = RHS.get();
|
||
|
||
if (!LHSExpr->getType()->isVoidType())
|
||
S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
|
||
<< RHSExpr->getSourceRange();
|
||
if (!RHSExpr->getType()->isVoidType())
|
||
S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
|
||
<< LHSExpr->getSourceRange();
|
||
LHS = S.ImpCastExprToType(LHS.take(), S.Context.VoidTy, CK_ToVoid);
|
||
RHS = S.ImpCastExprToType(RHS.take(), S.Context.VoidTy, CK_ToVoid);
|
||
return S.Context.VoidTy;
|
||
}
|
||
|
||
/// \brief Return false if the NullExpr can be promoted to PointerTy,
|
||
/// true otherwise.
|
||
static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
|
||
QualType PointerTy) {
|
||
if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
|
||
!NullExpr.get()->isNullPointerConstant(S.Context,
|
||
Expr::NPC_ValueDependentIsNull))
|
||
return true;
|
||
|
||
NullExpr = S.ImpCastExprToType(NullExpr.take(), PointerTy, CK_NullToPointer);
|
||
return false;
|
||
}
|
||
|
||
/// \brief Checks compatibility between two pointers and return the resulting
|
||
/// type.
|
||
static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
|
||
ExprResult &RHS,
|
||
SourceLocation Loc) {
|
||
QualType LHSTy = LHS.get()->getType();
|
||
QualType RHSTy = RHS.get()->getType();
|
||
|
||
if (S.Context.hasSameType(LHSTy, RHSTy)) {
|
||
// Two identical pointers types are always compatible.
|
||
return LHSTy;
|
||
}
|
||
|
||
QualType lhptee, rhptee;
|
||
|
||
// Get the pointee types.
|
||
if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
|
||
lhptee = LHSBTy->getPointeeType();
|
||
rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
|
||
} else {
|
||
lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
|
||
rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
|
||
}
|
||
|
||
if (!S.Context.typesAreCompatible(lhptee.getUnqualifiedType(),
|
||
rhptee.getUnqualifiedType())) {
|
||
S.Diag(Loc, diag::warn_typecheck_cond_incompatible_pointers)
|
||
<< LHSTy << RHSTy << LHS.get()->getSourceRange()
|
||
<< RHS.get()->getSourceRange();
|
||
// In this situation, we assume void* type. No especially good
|
||
// reason, but this is what gcc does, and we do have to pick
|
||
// to get a consistent AST.
|
||
QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
|
||
LHS = S.ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
|
||
RHS = S.ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
|
||
return incompatTy;
|
||
}
|
||
|
||
// The pointer types are compatible.
|
||
// C99 6.5.15p6: If both operands are pointers to compatible types *or* to
|
||
// differently qualified versions of compatible types, the result type is
|
||
// a pointer to an appropriately qualified version of the *composite*
|
||
// type.
|
||
// FIXME: Need to calculate the composite type.
|
||
// FIXME: Need to add qualifiers
|
||
|
||
LHS = S.ImpCastExprToType(LHS.take(), LHSTy, CK_BitCast);
|
||
RHS = S.ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
|
||
return LHSTy;
|
||
}
|
||
|
||
/// \brief Return the resulting type when the operands are both block pointers.
|
||
static QualType checkConditionalBlockPointerCompatibility(Sema &S,
|
||
ExprResult &LHS,
|
||
ExprResult &RHS,
|
||
SourceLocation Loc) {
|
||
QualType LHSTy = LHS.get()->getType();
|
||
QualType RHSTy = RHS.get()->getType();
|
||
|
||
if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
|
||
if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
|
||
QualType destType = S.Context.getPointerType(S.Context.VoidTy);
|
||
LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
|
||
RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
|
||
return destType;
|
||
}
|
||
S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
|
||
<< LHSTy << RHSTy << LHS.get()->getSourceRange()
|
||
<< RHS.get()->getSourceRange();
|
||
return QualType();
|
||
}
|
||
|
||
// We have 2 block pointer types.
|
||
return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
|
||
}
|
||
|
||
/// \brief Return the resulting type when the operands are both pointers.
|
||
static QualType
|
||
checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
|
||
ExprResult &RHS,
|
||
SourceLocation Loc) {
|
||
// get the pointer types
|
||
QualType LHSTy = LHS.get()->getType();
|
||
QualType RHSTy = RHS.get()->getType();
|
||
|
||
// get the "pointed to" types
|
||
QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
|
||
QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
|
||
|
||
// ignore qualifiers on void (C99 6.5.15p3, clause 6)
|
||
if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
|
||
// Figure out necessary qualifiers (C99 6.5.15p6)
|
||
QualType destPointee
|
||
= S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
|
||
QualType destType = S.Context.getPointerType(destPointee);
|
||
// Add qualifiers if necessary.
|
||
LHS = S.ImpCastExprToType(LHS.take(), destType, CK_NoOp);
|
||
// Promote to void*.
|
||
RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
|
||
return destType;
|
||
}
|
||
if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
|
||
QualType destPointee
|
||
= S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
|
||
QualType destType = S.Context.getPointerType(destPointee);
|
||
// Add qualifiers if necessary.
|
||
RHS = S.ImpCastExprToType(RHS.take(), destType, CK_NoOp);
|
||
// Promote to void*.
|
||
LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
|
||
return destType;
|
||
}
|
||
|
||
return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
|
||
}
|
||
|
||
/// \brief Return false if the first expression is not an integer and the second
|
||
/// expression is not a pointer, true otherwise.
|
||
static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
|
||
Expr* PointerExpr, SourceLocation Loc,
|
||
bool IsIntFirstExpr) {
|
||
if (!PointerExpr->getType()->isPointerType() ||
|
||
!Int.get()->getType()->isIntegerType())
|
||
return false;
|
||
|
||
Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
|
||
Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
|
||
|
||
S.Diag(Loc, diag::warn_typecheck_cond_pointer_integer_mismatch)
|
||
<< Expr1->getType() << Expr2->getType()
|
||
<< Expr1->getSourceRange() << Expr2->getSourceRange();
|
||
Int = S.ImpCastExprToType(Int.take(), PointerExpr->getType(),
|
||
CK_IntegralToPointer);
|
||
return true;
|
||
}
|
||
|
||
/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
|
||
/// In that case, LHS = cond.
|
||
/// C99 6.5.15
|
||
QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
|
||
ExprResult &RHS, ExprValueKind &VK,
|
||
ExprObjectKind &OK,
|
||
SourceLocation QuestionLoc) {
|
||
|
||
ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
|
||
if (!LHSResult.isUsable()) return QualType();
|
||
LHS = move(LHSResult);
|
||
|
||
ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
|
||
if (!RHSResult.isUsable()) return QualType();
|
||
RHS = move(RHSResult);
|
||
|
||
// C++ is sufficiently different to merit its own checker.
|
||
if (getLangOptions().CPlusPlus)
|
||
return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
|
||
|
||
VK = VK_RValue;
|
||
OK = OK_Ordinary;
|
||
|
||
Cond = UsualUnaryConversions(Cond.take());
|
||
if (Cond.isInvalid())
|
||
return QualType();
|
||
LHS = UsualUnaryConversions(LHS.take());
|
||
if (LHS.isInvalid())
|
||
return QualType();
|
||
RHS = UsualUnaryConversions(RHS.take());
|
||
if (RHS.isInvalid())
|
||
return QualType();
|
||
|
||
QualType CondTy = Cond.get()->getType();
|
||
QualType LHSTy = LHS.get()->getType();
|
||
QualType RHSTy = RHS.get()->getType();
|
||
|
||
// first, check the condition.
|
||
if (checkCondition(*this, Cond.get()))
|
||
return QualType();
|
||
|
||
// Now check the two expressions.
|
||
if (LHSTy->isVectorType() || RHSTy->isVectorType())
|
||
return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
|
||
|
||
// OpenCL: If the condition is a vector, and both operands are scalar,
|
||
// attempt to implicity convert them to the vector type to act like the
|
||
// built in select.
|
||
if (getLangOptions().OpenCL && CondTy->isVectorType())
|
||
if (checkConditionalConvertScalarsToVectors(*this, LHS, RHS, CondTy))
|
||
return QualType();
|
||
|
||
// If both operands have arithmetic type, do the usual arithmetic conversions
|
||
// to find a common type: C99 6.5.15p3,5.
|
||
if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
|
||
UsualArithmeticConversions(LHS, RHS);
|
||
if (LHS.isInvalid() || RHS.isInvalid())
|
||
return QualType();
|
||
return LHS.get()->getType();
|
||
}
|
||
|
||
// If both operands are the same structure or union type, the result is that
|
||
// type.
|
||
if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
|
||
if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
|
||
if (LHSRT->getDecl() == RHSRT->getDecl())
|
||
// "If both the operands have structure or union type, the result has
|
||
// that type." This implies that CV qualifiers are dropped.
|
||
return LHSTy.getUnqualifiedType();
|
||
// FIXME: Type of conditional expression must be complete in C mode.
|
||
}
|
||
|
||
// C99 6.5.15p5: "If both operands have void type, the result has void type."
|
||
// The following || allows only one side to be void (a GCC-ism).
|
||
if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
|
||
return checkConditionalVoidType(*this, LHS, RHS);
|
||
}
|
||
|
||
// C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
|
||
// the type of the other operand."
|
||
if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
|
||
if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
|
||
|
||
// All objective-c pointer type analysis is done here.
|
||
QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
|
||
QuestionLoc);
|
||
if (LHS.isInvalid() || RHS.isInvalid())
|
||
return QualType();
|
||
if (!compositeType.isNull())
|
||
return compositeType;
|
||
|
||
|
||
// Handle block pointer types.
|
||
if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
|
||
return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
|
||
QuestionLoc);
|
||
|
||
// Check constraints for C object pointers types (C99 6.5.15p3,6).
|
||
if (LHSTy->isPointerType() && RHSTy->isPointerType())
|
||
return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
|
||
QuestionLoc);
|
||
|
||
// GCC compatibility: soften pointer/integer mismatch. Note that
|
||
// null pointers have been filtered out by this point.
|
||
if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
|
||
/*isIntFirstExpr=*/true))
|
||
return RHSTy;
|
||
if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
|
||
/*isIntFirstExpr=*/false))
|
||
return LHSTy;
|
||
|
||
// Emit a better diagnostic if one of the expressions is a null pointer
|
||
// constant and the other is not a pointer type. In this case, the user most
|
||
// likely forgot to take the address of the other expression.
|
||
if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
|
||
return QualType();
|
||
|
||
// Otherwise, the operands are not compatible.
|
||
Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
|
||
<< LHSTy << RHSTy << LHS.get()->getSourceRange()
|
||
<< RHS.get()->getSourceRange();
|
||
return QualType();
|
||
}
|
||
|
||
/// FindCompositeObjCPointerType - Helper method to find composite type of
|
||
/// two objective-c pointer types of the two input expressions.
|
||
QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
|
||
SourceLocation QuestionLoc) {
|
||
QualType LHSTy = LHS.get()->getType();
|
||
QualType RHSTy = RHS.get()->getType();
|
||
|
||
// Handle things like Class and struct objc_class*. Here we case the result
|
||
// to the pseudo-builtin, because that will be implicitly cast back to the
|
||
// redefinition type if an attempt is made to access its fields.
|
||
if (LHSTy->isObjCClassType() &&
|
||
(Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
|
||
RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
|
||
return LHSTy;
|
||
}
|
||
if (RHSTy->isObjCClassType() &&
|
||
(Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
|
||
LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
|
||
return RHSTy;
|
||
}
|
||
// And the same for struct objc_object* / id
|
||
if (LHSTy->isObjCIdType() &&
|
||
(Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
|
||
RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
|
||
return LHSTy;
|
||
}
|
||
if (RHSTy->isObjCIdType() &&
|
||
(Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
|
||
LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
|
||
return RHSTy;
|
||
}
|
||
// And the same for struct objc_selector* / SEL
|
||
if (Context.isObjCSelType(LHSTy) &&
|
||
(Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
|
||
RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
|
||
return LHSTy;
|
||
}
|
||
if (Context.isObjCSelType(RHSTy) &&
|
||
(Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
|
||
LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
|
||
return RHSTy;
|
||
}
|
||
// Check constraints for Objective-C object pointers types.
|
||
if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
|
||
|
||
if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
|
||
// Two identical object pointer types are always compatible.
|
||
return LHSTy;
|
||
}
|
||
const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
|
||
const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
|
||
QualType compositeType = LHSTy;
|
||
|
||
// If both operands are interfaces and either operand can be
|
||
// assigned to the other, use that type as the composite
|
||
// type. This allows
|
||
// xxx ? (A*) a : (B*) b
|
||
// where B is a subclass of A.
|
||
//
|
||
// Additionally, as for assignment, if either type is 'id'
|
||
// allow silent coercion. Finally, if the types are
|
||
// incompatible then make sure to use 'id' as the composite
|
||
// type so the result is acceptable for sending messages to.
|
||
|
||
// FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
|
||
// It could return the composite type.
|
||
if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
|
||
compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
|
||
} else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
|
||
compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
|
||
} else if ((LHSTy->isObjCQualifiedIdType() ||
|
||
RHSTy->isObjCQualifiedIdType()) &&
|
||
Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
|
||
// Need to handle "id<xx>" explicitly.
|
||
// GCC allows qualified id and any Objective-C type to devolve to
|
||
// id. Currently localizing to here until clear this should be
|
||
// part of ObjCQualifiedIdTypesAreCompatible.
|
||
compositeType = Context.getObjCIdType();
|
||
} else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
|
||
compositeType = Context.getObjCIdType();
|
||
} else if (!(compositeType =
|
||
Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
|
||
;
|
||
else {
|
||
Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
|
||
<< LHSTy << RHSTy
|
||
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
||
QualType incompatTy = Context.getObjCIdType();
|
||
LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
|
||
RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
|
||
return incompatTy;
|
||
}
|
||
// The object pointer types are compatible.
|
||
LHS = ImpCastExprToType(LHS.take(), compositeType, CK_BitCast);
|
||
RHS = ImpCastExprToType(RHS.take(), compositeType, CK_BitCast);
|
||
return compositeType;
|
||
}
|
||
// Check Objective-C object pointer types and 'void *'
|
||
if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
|
||
if (getLangOptions().ObjCAutoRefCount) {
|
||
// ARC forbids the implicit conversion of object pointers to 'void *',
|
||
// so these types are not compatible.
|
||
Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
|
||
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
||
LHS = RHS = true;
|
||
return QualType();
|
||
}
|
||
QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
|
||
QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
|
||
QualType destPointee
|
||
= Context.getQualifiedType(lhptee, rhptee.getQualifiers());
|
||
QualType destType = Context.getPointerType(destPointee);
|
||
// Add qualifiers if necessary.
|
||
LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
|
||
// Promote to void*.
|
||
RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
|
||
return destType;
|
||
}
|
||
if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
|
||
if (getLangOptions().ObjCAutoRefCount) {
|
||
// ARC forbids the implicit conversion of object pointers to 'void *',
|
||
// so these types are not compatible.
|
||
Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
|
||
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
||
LHS = RHS = true;
|
||
return QualType();
|
||
}
|
||
QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
|
||
QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
|
||
QualType destPointee
|
||
= Context.getQualifiedType(rhptee, lhptee.getQualifiers());
|
||
QualType destType = Context.getPointerType(destPointee);
|
||
// Add qualifiers if necessary.
|
||
RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
|
||
// Promote to void*.
|
||
LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
|
||
return destType;
|
||
}
|
||
return QualType();
|
||
}
|
||
|
||
/// SuggestParentheses - Emit a note with a fixit hint that wraps
|
||
/// ParenRange in parentheses.
|
||
static void SuggestParentheses(Sema &Self, SourceLocation Loc,
|
||
const PartialDiagnostic &Note,
|
||
SourceRange ParenRange) {
|
||
SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
|
||
if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
|
||
EndLoc.isValid()) {
|
||
Self.Diag(Loc, Note)
|
||
<< FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
|
||
<< FixItHint::CreateInsertion(EndLoc, ")");
|
||
} else {
|
||
// We can't display the parentheses, so just show the bare note.
|
||
Self.Diag(Loc, Note) << ParenRange;
|
||
}
|
||
}
|
||
|
||
static bool IsArithmeticOp(BinaryOperatorKind Opc) {
|
||
return Opc >= BO_Mul && Opc <= BO_Shr;
|
||
}
|
||
|
||
/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
|
||
/// expression, either using a built-in or overloaded operator,
|
||
/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
|
||
/// expression.
|
||
static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
|
||
Expr **RHSExprs) {
|
||
// Don't strip parenthesis: we should not warn if E is in parenthesis.
|
||
E = E->IgnoreImpCasts();
|
||
E = E->IgnoreConversionOperator();
|
||
E = E->IgnoreImpCasts();
|
||
|
||
// Built-in binary operator.
|
||
if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
|
||
if (IsArithmeticOp(OP->getOpcode())) {
|
||
*Opcode = OP->getOpcode();
|
||
*RHSExprs = OP->getRHS();
|
||
return true;
|
||
}
|
||
}
|
||
|
||
// Overloaded operator.
|
||
if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
|
||
if (Call->getNumArgs() != 2)
|
||
return false;
|
||
|
||
// Make sure this is really a binary operator that is safe to pass into
|
||
// BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
|
||
OverloadedOperatorKind OO = Call->getOperator();
|
||
if (OO < OO_Plus || OO > OO_Arrow)
|
||
return false;
|
||
|
||
BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
|
||
if (IsArithmeticOp(OpKind)) {
|
||
*Opcode = OpKind;
|
||
*RHSExprs = Call->getArg(1);
|
||
return true;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
static bool IsLogicOp(BinaryOperatorKind Opc) {
|
||
return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr);
|
||
}
|
||
|
||
/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
|
||
/// or is a logical expression such as (x==y) which has int type, but is
|
||
/// commonly interpreted as boolean.
|
||
static bool ExprLooksBoolean(Expr *E) {
|
||
E = E->IgnoreParenImpCasts();
|
||
|
||
if (E->getType()->isBooleanType())
|
||
return true;
|
||
if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
|
||
return IsLogicOp(OP->getOpcode());
|
||
if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
|
||
return OP->getOpcode() == UO_LNot;
|
||
|
||
return false;
|
||
}
|
||
|
||
/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
|
||
/// and binary operator are mixed in a way that suggests the programmer assumed
|
||
/// the conditional operator has higher precedence, for example:
|
||
/// "int x = a + someBinaryCondition ? 1 : 2".
|
||
static void DiagnoseConditionalPrecedence(Sema &Self,
|
||
SourceLocation OpLoc,
|
||
Expr *Condition,
|
||
Expr *LHSExpr,
|
||
Expr *RHSExpr) {
|
||
BinaryOperatorKind CondOpcode;
|
||
Expr *CondRHS;
|
||
|
||
if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
|
||
return;
|
||
if (!ExprLooksBoolean(CondRHS))
|
||
return;
|
||
|
||
// The condition is an arithmetic binary expression, with a right-
|
||
// hand side that looks boolean, so warn.
|
||
|
||
Self.Diag(OpLoc, diag::warn_precedence_conditional)
|
||
<< Condition->getSourceRange()
|
||
<< BinaryOperator::getOpcodeStr(CondOpcode);
|
||
|
||
SuggestParentheses(Self, OpLoc,
|
||
Self.PDiag(diag::note_precedence_conditional_silence)
|
||
<< BinaryOperator::getOpcodeStr(CondOpcode),
|
||
SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
|
||
|
||
SuggestParentheses(Self, OpLoc,
|
||
Self.PDiag(diag::note_precedence_conditional_first),
|
||
SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
|
||
}
|
||
|
||
/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
|
||
/// in the case of a the GNU conditional expr extension.
|
||
ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
|
||
SourceLocation ColonLoc,
|
||
Expr *CondExpr, Expr *LHSExpr,
|
||
Expr *RHSExpr) {
|
||
// If this is the gnu "x ?: y" extension, analyze the types as though the LHS
|
||
// was the condition.
|
||
OpaqueValueExpr *opaqueValue = 0;
|
||
Expr *commonExpr = 0;
|
||
if (LHSExpr == 0) {
|
||
commonExpr = CondExpr;
|
||
|
||
// We usually want to apply unary conversions *before* saving, except
|
||
// in the special case of a C++ l-value conditional.
|
||
if (!(getLangOptions().CPlusPlus
|
||
&& !commonExpr->isTypeDependent()
|
||
&& commonExpr->getValueKind() == RHSExpr->getValueKind()
|
||
&& commonExpr->isGLValue()
|
||
&& commonExpr->isOrdinaryOrBitFieldObject()
|
||
&& RHSExpr->isOrdinaryOrBitFieldObject()
|
||
&& Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
|
||
ExprResult commonRes = UsualUnaryConversions(commonExpr);
|
||
if (commonRes.isInvalid())
|
||
return ExprError();
|
||
commonExpr = commonRes.take();
|
||
}
|
||
|
||
opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
|
||
commonExpr->getType(),
|
||
commonExpr->getValueKind(),
|
||
commonExpr->getObjectKind(),
|
||
commonExpr);
|
||
LHSExpr = CondExpr = opaqueValue;
|
||
}
|
||
|
||
ExprValueKind VK = VK_RValue;
|
||
ExprObjectKind OK = OK_Ordinary;
|
||
ExprResult Cond = Owned(CondExpr), LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
|
||
QualType result = CheckConditionalOperands(Cond, LHS, RHS,
|
||
VK, OK, QuestionLoc);
|
||
if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
|
||
RHS.isInvalid())
|
||
return ExprError();
|
||
|
||
DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
|
||
RHS.get());
|
||
|
||
if (!commonExpr)
|
||
return Owned(new (Context) ConditionalOperator(Cond.take(), QuestionLoc,
|
||
LHS.take(), ColonLoc,
|
||
RHS.take(), result, VK, OK));
|
||
|
||
return Owned(new (Context)
|
||
BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(),
|
||
RHS.take(), QuestionLoc, ColonLoc, result, VK,
|
||
OK));
|
||
}
|
||
|
||
// checkPointerTypesForAssignment - This is a very tricky routine (despite
|
||
// being closely modeled after the C99 spec:-). The odd characteristic of this
|
||
// routine is it effectively iqnores the qualifiers on the top level pointee.
|
||
// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
|
||
// FIXME: add a couple examples in this comment.
|
||
static Sema::AssignConvertType
|
||
checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
|
||
assert(LHSType.isCanonical() && "LHS not canonicalized!");
|
||
assert(RHSType.isCanonical() && "RHS not canonicalized!");
|
||
|
||
// get the "pointed to" type (ignoring qualifiers at the top level)
|
||
const Type *lhptee, *rhptee;
|
||
Qualifiers lhq, rhq;
|
||
llvm::tie(lhptee, lhq) = cast<PointerType>(LHSType)->getPointeeType().split();
|
||
llvm::tie(rhptee, rhq) = cast<PointerType>(RHSType)->getPointeeType().split();
|
||
|
||
Sema::AssignConvertType ConvTy = Sema::Compatible;
|
||
|
||
// C99 6.5.16.1p1: This following citation is common to constraints
|
||
// 3 & 4 (below). ...and the type *pointed to* by the left has all the
|
||
// qualifiers of the type *pointed to* by the right;
|
||
Qualifiers lq;
|
||
|
||
// As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
|
||
if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
|
||
lhq.compatiblyIncludesObjCLifetime(rhq)) {
|
||
// Ignore lifetime for further calculation.
|
||
lhq.removeObjCLifetime();
|
||
rhq.removeObjCLifetime();
|
||
}
|
||
|
||
if (!lhq.compatiblyIncludes(rhq)) {
|
||
// Treat address-space mismatches as fatal. TODO: address subspaces
|
||
if (lhq.getAddressSpace() != rhq.getAddressSpace())
|
||
ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
|
||
|
||
// It's okay to add or remove GC or lifetime qualifiers when converting to
|
||
// and from void*.
|
||
else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
|
||
.compatiblyIncludes(
|
||
rhq.withoutObjCGCAttr().withoutObjCLifetime())
|
||
&& (lhptee->isVoidType() || rhptee->isVoidType()))
|
||
; // keep old
|
||
|
||
// Treat lifetime mismatches as fatal.
|
||
else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
|
||
ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
|
||
|
||
// For GCC compatibility, other qualifier mismatches are treated
|
||
// as still compatible in C.
|
||
else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
|
||
}
|
||
|
||
// C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
|
||
// incomplete type and the other is a pointer to a qualified or unqualified
|
||
// version of void...
|
||
if (lhptee->isVoidType()) {
|
||
if (rhptee->isIncompleteOrObjectType())
|
||
return ConvTy;
|
||
|
||
// As an extension, we allow cast to/from void* to function pointer.
|
||
assert(rhptee->isFunctionType());
|
||
return Sema::FunctionVoidPointer;
|
||
}
|
||
|
||
if (rhptee->isVoidType()) {
|
||
if (lhptee->isIncompleteOrObjectType())
|
||
return ConvTy;
|
||
|
||
// As an extension, we allow cast to/from void* to function pointer.
|
||
assert(lhptee->isFunctionType());
|
||
return Sema::FunctionVoidPointer;
|
||
}
|
||
|
||
// C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
|
||
// unqualified versions of compatible types, ...
|
||
QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
|
||
if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
|
||
// Check if the pointee types are compatible ignoring the sign.
|
||
// We explicitly check for char so that we catch "char" vs
|
||
// "unsigned char" on systems where "char" is unsigned.
|
||
if (lhptee->isCharType())
|
||
ltrans = S.Context.UnsignedCharTy;
|
||
else if (lhptee->hasSignedIntegerRepresentation())
|
||
ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
|
||
|
||
if (rhptee->isCharType())
|
||
rtrans = S.Context.UnsignedCharTy;
|
||
else if (rhptee->hasSignedIntegerRepresentation())
|
||
rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
|
||
|
||
if (ltrans == rtrans) {
|
||
// Types are compatible ignoring the sign. Qualifier incompatibility
|
||
// takes priority over sign incompatibility because the sign
|
||
// warning can be disabled.
|
||
if (ConvTy != Sema::Compatible)
|
||
return ConvTy;
|
||
|
||
return Sema::IncompatiblePointerSign;
|
||
}
|
||
|
||
// If we are a multi-level pointer, it's possible that our issue is simply
|
||
// one of qualification - e.g. char ** -> const char ** is not allowed. If
|
||
// the eventual target type is the same and the pointers have the same
|
||
// level of indirection, this must be the issue.
|
||
if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
|
||
do {
|
||
lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
|
||
rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
|
||
} while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
|
||
|
||
if (lhptee == rhptee)
|
||
return Sema::IncompatibleNestedPointerQualifiers;
|
||
}
|
||
|
||
// General pointer incompatibility takes priority over qualifiers.
|
||
return Sema::IncompatiblePointer;
|
||
}
|
||
if (!S.getLangOptions().CPlusPlus &&
|
||
S.IsNoReturnConversion(ltrans, rtrans, ltrans))
|
||
return Sema::IncompatiblePointer;
|
||
return ConvTy;
|
||
}
|
||
|
||
/// checkBlockPointerTypesForAssignment - This routine determines whether two
|
||
/// block pointer types are compatible or whether a block and normal pointer
|
||
/// are compatible. It is more restrict than comparing two function pointer
|
||
// types.
|
||
static Sema::AssignConvertType
|
||
checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
|
||
QualType RHSType) {
|
||
assert(LHSType.isCanonical() && "LHS not canonicalized!");
|
||
assert(RHSType.isCanonical() && "RHS not canonicalized!");
|
||
|
||
QualType lhptee, rhptee;
|
||
|
||
// get the "pointed to" type (ignoring qualifiers at the top level)
|
||
lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
|
||
rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
|
||
|
||
// In C++, the types have to match exactly.
|
||
if (S.getLangOptions().CPlusPlus)
|
||
return Sema::IncompatibleBlockPointer;
|
||
|
||
Sema::AssignConvertType ConvTy = Sema::Compatible;
|
||
|
||
// For blocks we enforce that qualifiers are identical.
|
||
if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
|
||
ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
|
||
|
||
if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
|
||
return Sema::IncompatibleBlockPointer;
|
||
|
||
return ConvTy;
|
||
}
|
||
|
||
/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
|
||
/// for assignment compatibility.
|
||
static Sema::AssignConvertType
|
||
checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
|
||
QualType RHSType) {
|
||
assert(LHSType.isCanonical() && "LHS was not canonicalized!");
|
||
assert(RHSType.isCanonical() && "RHS was not canonicalized!");
|
||
|
||
if (LHSType->isObjCBuiltinType()) {
|
||
// Class is not compatible with ObjC object pointers.
|
||
if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
|
||
!RHSType->isObjCQualifiedClassType())
|
||
return Sema::IncompatiblePointer;
|
||
return Sema::Compatible;
|
||
}
|
||
if (RHSType->isObjCBuiltinType()) {
|
||
if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
|
||
!LHSType->isObjCQualifiedClassType())
|
||
return Sema::IncompatiblePointer;
|
||
return Sema::Compatible;
|
||
}
|
||
QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
|
||
QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
|
||
|
||
if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
|
||
// make an exception for id<P>
|
||
!LHSType->isObjCQualifiedIdType())
|
||
return Sema::CompatiblePointerDiscardsQualifiers;
|
||
|
||
if (S.Context.typesAreCompatible(LHSType, RHSType))
|
||
return Sema::Compatible;
|
||
if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
|
||
return Sema::IncompatibleObjCQualifiedId;
|
||
return Sema::IncompatiblePointer;
|
||
}
|
||
|
||
Sema::AssignConvertType
|
||
Sema::CheckAssignmentConstraints(SourceLocation Loc,
|
||
QualType LHSType, QualType RHSType) {
|
||
// Fake up an opaque expression. We don't actually care about what
|
||
// cast operations are required, so if CheckAssignmentConstraints
|
||
// adds casts to this they'll be wasted, but fortunately that doesn't
|
||
// usually happen on valid code.
|
||
OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
|
||
ExprResult RHSPtr = &RHSExpr;
|
||
CastKind K = CK_Invalid;
|
||
|
||
return CheckAssignmentConstraints(LHSType, RHSPtr, K);
|
||
}
|
||
|
||
/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
|
||
/// has code to accommodate several GCC extensions when type checking
|
||
/// pointers. Here are some objectionable examples that GCC considers warnings:
|
||
///
|
||
/// int a, *pint;
|
||
/// short *pshort;
|
||
/// struct foo *pfoo;
|
||
///
|
||
/// pint = pshort; // warning: assignment from incompatible pointer type
|
||
/// a = pint; // warning: assignment makes integer from pointer without a cast
|
||
/// pint = a; // warning: assignment makes pointer from integer without a cast
|
||
/// pint = pfoo; // warning: assignment from incompatible pointer type
|
||
///
|
||
/// As a result, the code for dealing with pointers is more complex than the
|
||
/// C99 spec dictates.
|
||
///
|
||
/// Sets 'Kind' for any result kind except Incompatible.
|
||
Sema::AssignConvertType
|
||
Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
|
||
CastKind &Kind) {
|
||
QualType RHSType = RHS.get()->getType();
|
||
QualType OrigLHSType = LHSType;
|
||
|
||
// Get canonical types. We're not formatting these types, just comparing
|
||
// them.
|
||
LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
|
||
RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
|
||
|
||
|
||
// Common case: no conversion required.
|
||
if (LHSType == RHSType) {
|
||
Kind = CK_NoOp;
|
||
return Compatible;
|
||
}
|
||
|
||
if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
|
||
if (AtomicTy->getValueType() == RHSType) {
|
||
Kind = CK_NonAtomicToAtomic;
|
||
return Compatible;
|
||
}
|
||
}
|
||
|
||
if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(RHSType)) {
|
||
if (AtomicTy->getValueType() == LHSType) {
|
||
Kind = CK_AtomicToNonAtomic;
|
||
return Compatible;
|
||
}
|
||
}
|
||
|
||
|
||
// If the left-hand side is a reference type, then we are in a
|
||
// (rare!) case where we've allowed the use of references in C,
|
||
// e.g., as a parameter type in a built-in function. In this case,
|
||
// just make sure that the type referenced is compatible with the
|
||
// right-hand side type. The caller is responsible for adjusting
|
||
// LHSType so that the resulting expression does not have reference
|
||
// type.
|
||
if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
|
||
if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
|
||
Kind = CK_LValueBitCast;
|
||
return Compatible;
|
||
}
|
||
return Incompatible;
|
||
}
|
||
|
||
// Allow scalar to ExtVector assignments, and assignments of an ExtVector type
|
||
// to the same ExtVector type.
|
||
if (LHSType->isExtVectorType()) {
|
||
if (RHSType->isExtVectorType())
|
||
return Incompatible;
|
||
if (RHSType->isArithmeticType()) {
|
||
// CK_VectorSplat does T -> vector T, so first cast to the
|
||
// element type.
|
||
QualType elType = cast<ExtVectorType>(LHSType)->getElementType();
|
||
if (elType != RHSType) {
|
||
Kind = PrepareScalarCast(RHS, elType);
|
||
RHS = ImpCastExprToType(RHS.take(), elType, Kind);
|
||
}
|
||
Kind = CK_VectorSplat;
|
||
return Compatible;
|
||
}
|
||
}
|
||
|
||
// Conversions to or from vector type.
|
||
if (LHSType->isVectorType() || RHSType->isVectorType()) {
|
||
if (LHSType->isVectorType() && RHSType->isVectorType()) {
|
||
// Allow assignments of an AltiVec vector type to an equivalent GCC
|
||
// vector type and vice versa
|
||
if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
|
||
Kind = CK_BitCast;
|
||
return Compatible;
|
||
}
|
||
|
||
// If we are allowing lax vector conversions, and LHS and RHS are both
|
||
// vectors, the total size only needs to be the same. This is a bitcast;
|
||
// no bits are changed but the result type is different.
|
||
if (getLangOptions().LaxVectorConversions &&
|
||
(Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType))) {
|
||
Kind = CK_BitCast;
|
||
return IncompatibleVectors;
|
||
}
|
||
}
|
||
return Incompatible;
|
||
}
|
||
|
||
// Arithmetic conversions.
|
||
if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
|
||
!(getLangOptions().CPlusPlus && LHSType->isEnumeralType())) {
|
||
Kind = PrepareScalarCast(RHS, LHSType);
|
||
return Compatible;
|
||
}
|
||
|
||
// Conversions to normal pointers.
|
||
if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
|
||
// U* -> T*
|
||
if (isa<PointerType>(RHSType)) {
|
||
Kind = CK_BitCast;
|
||
return checkPointerTypesForAssignment(*this, LHSType, RHSType);
|
||
}
|
||
|
||
// int -> T*
|
||
if (RHSType->isIntegerType()) {
|
||
Kind = CK_IntegralToPointer; // FIXME: null?
|
||
return IntToPointer;
|
||
}
|
||
|
||
// C pointers are not compatible with ObjC object pointers,
|
||
// with two exceptions:
|
||
if (isa<ObjCObjectPointerType>(RHSType)) {
|
||
// - conversions to void*
|
||
if (LHSPointer->getPointeeType()->isVoidType()) {
|
||
Kind = CK_BitCast;
|
||
return Compatible;
|
||
}
|
||
|
||
// - conversions from 'Class' to the redefinition type
|
||
if (RHSType->isObjCClassType() &&
|
||
Context.hasSameType(LHSType,
|
||
Context.getObjCClassRedefinitionType())) {
|
||
Kind = CK_BitCast;
|
||
return Compatible;
|
||
}
|
||
|
||
Kind = CK_BitCast;
|
||
return IncompatiblePointer;
|
||
}
|
||
|
||
// U^ -> void*
|
||
if (RHSType->getAs<BlockPointerType>()) {
|
||
if (LHSPointer->getPointeeType()->isVoidType()) {
|
||
Kind = CK_BitCast;
|
||
return Compatible;
|
||
}
|
||
}
|
||
|
||
return Incompatible;
|
||
}
|
||
|
||
// Conversions to block pointers.
|
||
if (isa<BlockPointerType>(LHSType)) {
|
||
// U^ -> T^
|
||
if (RHSType->isBlockPointerType()) {
|
||
Kind = CK_BitCast;
|
||
return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
|
||
}
|
||
|
||
// int or null -> T^
|
||
if (RHSType->isIntegerType()) {
|
||
Kind = CK_IntegralToPointer; // FIXME: null
|
||
return IntToBlockPointer;
|
||
}
|
||
|
||
// id -> T^
|
||
if (getLangOptions().ObjC1 && RHSType->isObjCIdType()) {
|
||
Kind = CK_AnyPointerToBlockPointerCast;
|
||
return Compatible;
|
||
}
|
||
|
||
// void* -> T^
|
||
if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
|
||
if (RHSPT->getPointeeType()->isVoidType()) {
|
||
Kind = CK_AnyPointerToBlockPointerCast;
|
||
return Compatible;
|
||
}
|
||
|
||
return Incompatible;
|
||
}
|
||
|
||
// Conversions to Objective-C pointers.
|
||
if (isa<ObjCObjectPointerType>(LHSType)) {
|
||
// A* -> B*
|
||
if (RHSType->isObjCObjectPointerType()) {
|
||
Kind = CK_BitCast;
|
||
Sema::AssignConvertType result =
|
||
checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
|
||
if (getLangOptions().ObjCAutoRefCount &&
|
||
result == Compatible &&
|
||
!CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
|
||
result = IncompatibleObjCWeakRef;
|
||
return result;
|
||
}
|
||
|
||
// int or null -> A*
|
||
if (RHSType->isIntegerType()) {
|
||
Kind = CK_IntegralToPointer; // FIXME: null
|
||
return IntToPointer;
|
||
}
|
||
|
||
// In general, C pointers are not compatible with ObjC object pointers,
|
||
// with two exceptions:
|
||
if (isa<PointerType>(RHSType)) {
|
||
Kind = CK_CPointerToObjCPointerCast;
|
||
|
||
// - conversions from 'void*'
|
||
if (RHSType->isVoidPointerType()) {
|
||
return Compatible;
|
||
}
|
||
|
||
// - conversions to 'Class' from its redefinition type
|
||
if (LHSType->isObjCClassType() &&
|
||
Context.hasSameType(RHSType,
|
||
Context.getObjCClassRedefinitionType())) {
|
||
return Compatible;
|
||
}
|
||
|
||
return IncompatiblePointer;
|
||
}
|
||
|
||
// T^ -> A*
|
||
if (RHSType->isBlockPointerType()) {
|
||
maybeExtendBlockObject(*this, RHS);
|
||
Kind = CK_BlockPointerToObjCPointerCast;
|
||
return Compatible;
|
||
}
|
||
|
||
return Incompatible;
|
||
}
|
||
|
||
// Conversions from pointers that are not covered by the above.
|
||
if (isa<PointerType>(RHSType)) {
|
||
// T* -> _Bool
|
||
if (LHSType == Context.BoolTy) {
|
||
Kind = CK_PointerToBoolean;
|
||
return Compatible;
|
||
}
|
||
|
||
// T* -> int
|
||
if (LHSType->isIntegerType()) {
|
||
Kind = CK_PointerToIntegral;
|
||
return PointerToInt;
|
||
}
|
||
|
||
return Incompatible;
|
||
}
|
||
|
||
// Conversions from Objective-C pointers that are not covered by the above.
|
||
if (isa<ObjCObjectPointerType>(RHSType)) {
|
||
// T* -> _Bool
|
||
if (LHSType == Context.BoolTy) {
|
||
Kind = CK_PointerToBoolean;
|
||
return Compatible;
|
||
}
|
||
|
||
// T* -> int
|
||
if (LHSType->isIntegerType()) {
|
||
Kind = CK_PointerToIntegral;
|
||
return PointerToInt;
|
||
}
|
||
|
||
return Incompatible;
|
||
}
|
||
|
||
// struct A -> struct B
|
||
if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
|
||
if (Context.typesAreCompatible(LHSType, RHSType)) {
|
||
Kind = CK_NoOp;
|
||
return Compatible;
|
||
}
|
||
}
|
||
|
||
return Incompatible;
|
||
}
|
||
|
||
/// \brief Constructs a transparent union from an expression that is
|
||
/// used to initialize the transparent union.
|
||
static void ConstructTransparentUnion(Sema &S, ASTContext &C,
|
||
ExprResult &EResult, QualType UnionType,
|
||
FieldDecl *Field) {
|
||
// Build an initializer list that designates the appropriate member
|
||
// of the transparent union.
|
||
Expr *E = EResult.take();
|
||
InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
|
||
&E, 1,
|
||
SourceLocation());
|
||
Initializer->setType(UnionType);
|
||
Initializer->setInitializedFieldInUnion(Field);
|
||
|
||
// Build a compound literal constructing a value of the transparent
|
||
// union type from this initializer list.
|
||
TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
|
||
EResult = S.Owned(
|
||
new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
|
||
VK_RValue, Initializer, false));
|
||
}
|
||
|
||
Sema::AssignConvertType
|
||
Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
|
||
ExprResult &RHS) {
|
||
QualType RHSType = RHS.get()->getType();
|
||
|
||
// If the ArgType is a Union type, we want to handle a potential
|
||
// transparent_union GCC extension.
|
||
const RecordType *UT = ArgType->getAsUnionType();
|
||
if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
|
||
return Incompatible;
|
||
|
||
// The field to initialize within the transparent union.
|
||
RecordDecl *UD = UT->getDecl();
|
||
FieldDecl *InitField = 0;
|
||
// It's compatible if the expression matches any of the fields.
|
||
for (RecordDecl::field_iterator it = UD->field_begin(),
|
||
itend = UD->field_end();
|
||
it != itend; ++it) {
|
||
if (it->getType()->isPointerType()) {
|
||
// If the transparent union contains a pointer type, we allow:
|
||
// 1) void pointer
|
||
// 2) null pointer constant
|
||
if (RHSType->isPointerType())
|
||
if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
|
||
RHS = ImpCastExprToType(RHS.take(), it->getType(), CK_BitCast);
|
||
InitField = *it;
|
||
break;
|
||
}
|
||
|
||
if (RHS.get()->isNullPointerConstant(Context,
|
||
Expr::NPC_ValueDependentIsNull)) {
|
||
RHS = ImpCastExprToType(RHS.take(), it->getType(),
|
||
CK_NullToPointer);
|
||
InitField = *it;
|
||
break;
|
||
}
|
||
}
|
||
|
||
CastKind Kind = CK_Invalid;
|
||
if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
|
||
== Compatible) {
|
||
RHS = ImpCastExprToType(RHS.take(), it->getType(), Kind);
|
||
InitField = *it;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (!InitField)
|
||
return Incompatible;
|
||
|
||
ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
|
||
return Compatible;
|
||
}
|
||
|
||
Sema::AssignConvertType
|
||
Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &RHS,
|
||
bool Diagnose) {
|
||
if (getLangOptions().CPlusPlus) {
|
||
if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
|
||
// C++ 5.17p3: If the left operand is not of class type, the
|
||
// expression is implicitly converted (C++ 4) to the
|
||
// cv-unqualified type of the left operand.
|
||
ExprResult Res;
|
||
if (Diagnose) {
|
||
Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
|
||
AA_Assigning);
|
||
} else {
|
||
ImplicitConversionSequence ICS =
|
||
TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
|
||
/*SuppressUserConversions=*/false,
|
||
/*AllowExplicit=*/false,
|
||
/*InOverloadResolution=*/false,
|
||
/*CStyle=*/false,
|
||
/*AllowObjCWritebackConversion=*/false);
|
||
if (ICS.isFailure())
|
||
return Incompatible;
|
||
Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
|
||
ICS, AA_Assigning);
|
||
}
|
||
if (Res.isInvalid())
|
||
return Incompatible;
|
||
Sema::AssignConvertType result = Compatible;
|
||
if (getLangOptions().ObjCAutoRefCount &&
|
||
!CheckObjCARCUnavailableWeakConversion(LHSType,
|
||
RHS.get()->getType()))
|
||
result = IncompatibleObjCWeakRef;
|
||
RHS = move(Res);
|
||
return result;
|
||
}
|
||
|
||
// FIXME: Currently, we fall through and treat C++ classes like C
|
||
// structures.
|
||
// FIXME: We also fall through for atomics; not sure what should
|
||
// happen there, though.
|
||
}
|
||
|
||
// C99 6.5.16.1p1: the left operand is a pointer and the right is
|
||
// a null pointer constant.
|
||
if ((LHSType->isPointerType() ||
|
||
LHSType->isObjCObjectPointerType() ||
|
||
LHSType->isBlockPointerType())
|
||
&& RHS.get()->isNullPointerConstant(Context,
|
||
Expr::NPC_ValueDependentIsNull)) {
|
||
RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
|
||
return Compatible;
|
||
}
|
||
|
||
// This check seems unnatural, however it is necessary to ensure the proper
|
||
// conversion of functions/arrays. If the conversion were done for all
|
||
// DeclExpr's (created by ActOnIdExpression), it would mess up the unary
|
||
// expressions that suppress this implicit conversion (&, sizeof).
|
||
//
|
||
// Suppress this for references: C++ 8.5.3p5.
|
||
if (!LHSType->isReferenceType()) {
|
||
RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
|
||
if (RHS.isInvalid())
|
||
return Incompatible;
|
||
}
|
||
|
||
CastKind Kind = CK_Invalid;
|
||
Sema::AssignConvertType result =
|
||
CheckAssignmentConstraints(LHSType, RHS, Kind);
|
||
|
||
// C99 6.5.16.1p2: The value of the right operand is converted to the
|
||
// type of the assignment expression.
|
||
// CheckAssignmentConstraints allows the left-hand side to be a reference,
|
||
// so that we can use references in built-in functions even in C.
|
||
// The getNonReferenceType() call makes sure that the resulting expression
|
||
// does not have reference type.
|
||
if (result != Incompatible && RHS.get()->getType() != LHSType)
|
||
RHS = ImpCastExprToType(RHS.take(),
|
||
LHSType.getNonLValueExprType(Context), Kind);
|
||
return result;
|
||
}
|
||
|
||
QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
|
||
ExprResult &RHS) {
|
||
Diag(Loc, diag::err_typecheck_invalid_operands)
|
||
<< LHS.get()->getType() << RHS.get()->getType()
|
||
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
||
return QualType();
|
||
}
|
||
|
||
QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
|
||
SourceLocation Loc, bool IsCompAssign) {
|
||
if (!IsCompAssign) {
|
||
LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
|
||
if (LHS.isInvalid())
|
||
return QualType();
|
||
}
|
||
RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
|
||
if (RHS.isInvalid())
|
||
return QualType();
|
||
|
||
// For conversion purposes, we ignore any qualifiers.
|
||
// For example, "const float" and "float" are equivalent.
|
||
QualType LHSType =
|
||
Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
|
||
QualType RHSType =
|
||
Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
|
||
|
||
// If the vector types are identical, return.
|
||
if (LHSType == RHSType)
|
||
return LHSType;
|
||
|
||
// Handle the case of equivalent AltiVec and GCC vector types
|
||
if (LHSType->isVectorType() && RHSType->isVectorType() &&
|
||
Context.areCompatibleVectorTypes(LHSType, RHSType)) {
|
||
if (LHSType->isExtVectorType()) {
|
||
RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
|
||
return LHSType;
|
||
}
|
||
|
||
if (!IsCompAssign)
|
||
LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
|
||
return RHSType;
|
||
}
|
||
|
||
if (getLangOptions().LaxVectorConversions &&
|
||
Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType)) {
|
||
// If we are allowing lax vector conversions, and LHS and RHS are both
|
||
// vectors, the total size only needs to be the same. This is a
|
||
// bitcast; no bits are changed but the result type is different.
|
||
// FIXME: Should we really be allowing this?
|
||
RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
|
||
return LHSType;
|
||
}
|
||
|
||
// Canonicalize the ExtVector to the LHS, remember if we swapped so we can
|
||
// swap back (so that we don't reverse the inputs to a subtract, for instance.
|
||
bool swapped = false;
|
||
if (RHSType->isExtVectorType() && !IsCompAssign) {
|
||
swapped = true;
|
||
std::swap(RHS, LHS);
|
||
std::swap(RHSType, LHSType);
|
||
}
|
||
|
||
// Handle the case of an ext vector and scalar.
|
||
if (const ExtVectorType *LV = LHSType->getAs<ExtVectorType>()) {
|
||
QualType EltTy = LV->getElementType();
|
||
if (EltTy->isIntegralType(Context) && RHSType->isIntegralType(Context)) {
|
||
int order = Context.getIntegerTypeOrder(EltTy, RHSType);
|
||
if (order > 0)
|
||
RHS = ImpCastExprToType(RHS.take(), EltTy, CK_IntegralCast);
|
||
if (order >= 0) {
|
||
RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
|
||
if (swapped) std::swap(RHS, LHS);
|
||
return LHSType;
|
||
}
|
||
}
|
||
if (EltTy->isRealFloatingType() && RHSType->isScalarType() &&
|
||
RHSType->isRealFloatingType()) {
|
||
int order = Context.getFloatingTypeOrder(EltTy, RHSType);
|
||
if (order > 0)
|
||
RHS = ImpCastExprToType(RHS.take(), EltTy, CK_FloatingCast);
|
||
if (order >= 0) {
|
||
RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
|
||
if (swapped) std::swap(RHS, LHS);
|
||
return LHSType;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Vectors of different size or scalar and non-ext-vector are errors.
|
||
if (swapped) std::swap(RHS, LHS);
|
||
Diag(Loc, diag::err_typecheck_vector_not_convertable)
|
||
<< LHS.get()->getType() << RHS.get()->getType()
|
||
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
||
return QualType();
|
||
}
|
||
|
||
// checkArithmeticNull - Detect when a NULL constant is used improperly in an
|
||
// expression. These are mainly cases where the null pointer is used as an
|
||
// integer instead of a pointer.
|
||
static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
|
||
SourceLocation Loc, bool IsCompare) {
|
||
// The canonical way to check for a GNU null is with isNullPointerConstant,
|
||
// but we use a bit of a hack here for speed; this is a relatively
|
||
// hot path, and isNullPointerConstant is slow.
|
||
bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
|
||
bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
|
||
|
||
QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
|
||
|
||
// Avoid analyzing cases where the result will either be invalid (and
|
||
// diagnosed as such) or entirely valid and not something to warn about.
|
||
if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
|
||
NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
|
||
return;
|
||
|
||
// Comparison operations would not make sense with a null pointer no matter
|
||
// what the other expression is.
|
||
if (!IsCompare) {
|
||
S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
|
||
<< (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
|
||
<< (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
|
||
return;
|
||
}
|
||
|
||
// The rest of the operations only make sense with a null pointer
|
||
// if the other expression is a pointer.
|
||
if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
|
||
NonNullType->canDecayToPointerType())
|
||
return;
|
||
|
||
S.Diag(Loc, diag::warn_null_in_comparison_operation)
|
||
<< LHSNull /* LHS is NULL */ << NonNullType
|
||
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
||
}
|
||
|
||
QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
|
||
SourceLocation Loc,
|
||
bool IsCompAssign, bool IsDiv) {
|
||
checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
|
||
|
||
if (LHS.get()->getType()->isVectorType() ||
|
||
RHS.get()->getType()->isVectorType())
|
||
return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
|
||
|
||
QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
|
||
if (LHS.isInvalid() || RHS.isInvalid())
|
||
return QualType();
|
||
|
||
|
||
if (!LHS.get()->getType()->isArithmeticType() ||
|
||
!RHS.get()->getType()->isArithmeticType()) {
|
||
if (IsCompAssign &&
|
||
LHS.get()->getType()->isAtomicType() &&
|
||
RHS.get()->getType()->isArithmeticType())
|
||
return compType;
|
||
return InvalidOperands(Loc, LHS, RHS);
|
||
}
|
||
|
||
// Check for division by zero.
|
||
if (IsDiv &&
|
||
RHS.get()->isNullPointerConstant(Context,
|
||
Expr::NPC_ValueDependentIsNotNull))
|
||
DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_division_by_zero)
|
||
<< RHS.get()->getSourceRange());
|
||
|
||
return compType;
|
||
}
|
||
|
||
QualType Sema::CheckRemainderOperands(
|
||
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
|
||
checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
|
||
|
||
if (LHS.get()->getType()->isVectorType() ||
|
||
RHS.get()->getType()->isVectorType()) {
|
||
if (LHS.get()->getType()->hasIntegerRepresentation() &&
|
||
RHS.get()->getType()->hasIntegerRepresentation())
|
||
return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
|
||
return InvalidOperands(Loc, LHS, RHS);
|
||
}
|
||
|
||
QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
|
||
if (LHS.isInvalid() || RHS.isInvalid())
|
||
return QualType();
|
||
|
||
if (!LHS.get()->getType()->isIntegerType() ||
|
||
!RHS.get()->getType()->isIntegerType())
|
||
return InvalidOperands(Loc, LHS, RHS);
|
||
|
||
// Check for remainder by zero.
|
||
if (RHS.get()->isNullPointerConstant(Context,
|
||
Expr::NPC_ValueDependentIsNotNull))
|
||
DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_remainder_by_zero)
|
||
<< RHS.get()->getSourceRange());
|
||
|
||
return compType;
|
||
}
|
||
|
||
/// \brief Diagnose invalid arithmetic on two void pointers.
|
||
static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
|
||
Expr *LHSExpr, Expr *RHSExpr) {
|
||
S.Diag(Loc, S.getLangOptions().CPlusPlus
|
||
? diag::err_typecheck_pointer_arith_void_type
|
||
: diag::ext_gnu_void_ptr)
|
||
<< 1 /* two pointers */ << LHSExpr->getSourceRange()
|
||
<< RHSExpr->getSourceRange();
|
||
}
|
||
|
||
/// \brief Diagnose invalid arithmetic on a void pointer.
|
||
static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
|
||
Expr *Pointer) {
|
||
S.Diag(Loc, S.getLangOptions().CPlusPlus
|
||
? diag::err_typecheck_pointer_arith_void_type
|
||
: diag::ext_gnu_void_ptr)
|
||
<< 0 /* one pointer */ << Pointer->getSourceRange();
|
||
}
|
||
|
||
/// \brief Diagnose invalid arithmetic on two function pointers.
|
||
static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
|
||
Expr *LHS, Expr *RHS) {
|
||
assert(LHS->getType()->isAnyPointerType());
|
||
assert(RHS->getType()->isAnyPointerType());
|
||
S.Diag(Loc, S.getLangOptions().CPlusPlus
|
||
? diag::err_typecheck_pointer_arith_function_type
|
||
: diag::ext_gnu_ptr_func_arith)
|
||
<< 1 /* two pointers */ << LHS->getType()->getPointeeType()
|
||
// We only show the second type if it differs from the first.
|
||
<< (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
|
||
RHS->getType())
|
||
<< RHS->getType()->getPointeeType()
|
||
<< LHS->getSourceRange() << RHS->getSourceRange();
|
||
}
|
||
|
||
/// \brief Diagnose invalid arithmetic on a function pointer.
|
||
static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
|
||
Expr *Pointer) {
|
||
assert(Pointer->getType()->isAnyPointerType());
|
||
S.Diag(Loc, S.getLangOptions().CPlusPlus
|
||
? diag::err_typecheck_pointer_arith_function_type
|
||
: diag::ext_gnu_ptr_func_arith)
|
||
<< 0 /* one pointer */ << Pointer->getType()->getPointeeType()
|
||
<< 0 /* one pointer, so only one type */
|
||
<< Pointer->getSourceRange();
|
||
}
|
||
|
||
/// \brief Emit error if Operand is incomplete pointer type
|
||
///
|
||
/// \returns True if pointer has incomplete type
|
||
static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
|
||
Expr *Operand) {
|
||
if ((Operand->getType()->isPointerType() &&
|
||
!Operand->getType()->isDependentType()) ||
|
||
Operand->getType()->isObjCObjectPointerType()) {
|
||
QualType PointeeTy = Operand->getType()->getPointeeType();
|
||
if (S.RequireCompleteType(
|
||
Loc, PointeeTy,
|
||
S.PDiag(diag::err_typecheck_arithmetic_incomplete_type)
|
||
<< PointeeTy << Operand->getSourceRange()))
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/// \brief Check the validity of an arithmetic pointer operand.
|
||
///
|
||
/// If the operand has pointer type, this code will check for pointer types
|
||
/// which are invalid in arithmetic operations. These will be diagnosed
|
||
/// appropriately, including whether or not the use is supported as an
|
||
/// extension.
|
||
///
|
||
/// \returns True when the operand is valid to use (even if as an extension).
|
||
static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
|
||
Expr *Operand) {
|
||
if (!Operand->getType()->isAnyPointerType()) return true;
|
||
|
||
QualType PointeeTy = Operand->getType()->getPointeeType();
|
||
if (PointeeTy->isVoidType()) {
|
||
diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
|
||
return !S.getLangOptions().CPlusPlus;
|
||
}
|
||
if (PointeeTy->isFunctionType()) {
|
||
diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
|
||
return !S.getLangOptions().CPlusPlus;
|
||
}
|
||
|
||
if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
|
||
/// operands.
|
||
///
|
||
/// This routine will diagnose any invalid arithmetic on pointer operands much
|
||
/// like \see checkArithmeticOpPointerOperand. However, it has special logic
|
||
/// for emitting a single diagnostic even for operations where both LHS and RHS
|
||
/// are (potentially problematic) pointers.
|
||
///
|
||
/// \returns True when the operand is valid to use (even if as an extension).
|
||
static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
|
||
Expr *LHSExpr, Expr *RHSExpr) {
|
||
bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
|
||
bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
|
||
if (!isLHSPointer && !isRHSPointer) return true;
|
||
|
||
QualType LHSPointeeTy, RHSPointeeTy;
|
||
if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
|
||
if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
|
||
|
||
// Check for arithmetic on pointers to incomplete types.
|
||
bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
|
||
bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
|
||
if (isLHSVoidPtr || isRHSVoidPtr) {
|
||
if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
|
||
else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
|
||
else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
|
||
|
||
return !S.getLangOptions().CPlusPlus;
|
||
}
|
||
|
||
bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
|
||
bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
|
||
if (isLHSFuncPtr || isRHSFuncPtr) {
|
||
if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
|
||
else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
|
||
RHSExpr);
|
||
else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
|
||
|
||
return !S.getLangOptions().CPlusPlus;
|
||
}
|
||
|
||
if (checkArithmeticIncompletePointerType(S, Loc, LHSExpr)) return false;
|
||
if (checkArithmeticIncompletePointerType(S, Loc, RHSExpr)) return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/// \brief Check bad cases where we step over interface counts.
|
||
static bool checkArithmethicPointerOnNonFragileABI(Sema &S,
|
||
SourceLocation OpLoc,
|
||
Expr *Op) {
|
||
assert(Op->getType()->isAnyPointerType());
|
||
QualType PointeeTy = Op->getType()->getPointeeType();
|
||
if (!PointeeTy->isObjCObjectType() || !S.LangOpts.ObjCNonFragileABI)
|
||
return true;
|
||
|
||
S.Diag(OpLoc, diag::err_arithmetic_nonfragile_interface)
|
||
<< PointeeTy << Op->getSourceRange();
|
||
return false;
|
||
}
|
||
|
||
/// \brief Emit error when two pointers are incompatible.
|
||
static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
|
||
Expr *LHSExpr, Expr *RHSExpr) {
|
||
assert(LHSExpr->getType()->isAnyPointerType());
|
||
assert(RHSExpr->getType()->isAnyPointerType());
|
||
S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
|
||
<< LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
|
||
<< RHSExpr->getSourceRange();
|
||
}
|
||
|
||
QualType Sema::CheckAdditionOperands( // C99 6.5.6
|
||
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, QualType* CompLHSTy) {
|
||
checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
|
||
|
||
if (LHS.get()->getType()->isVectorType() ||
|
||
RHS.get()->getType()->isVectorType()) {
|
||
QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
|
||
if (CompLHSTy) *CompLHSTy = compType;
|
||
return compType;
|
||
}
|
||
|
||
QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
|
||
if (LHS.isInvalid() || RHS.isInvalid())
|
||
return QualType();
|
||
|
||
// handle the common case first (both operands are arithmetic).
|
||
if (LHS.get()->getType()->isArithmeticType() &&
|
||
RHS.get()->getType()->isArithmeticType()) {
|
||
if (CompLHSTy) *CompLHSTy = compType;
|
||
return compType;
|
||
}
|
||
|
||
if (LHS.get()->getType()->isAtomicType() &&
|
||
RHS.get()->getType()->isArithmeticType()) {
|
||
*CompLHSTy = LHS.get()->getType();
|
||
return compType;
|
||
}
|
||
|
||
// Put any potential pointer into PExp
|
||
Expr* PExp = LHS.get(), *IExp = RHS.get();
|
||
if (IExp->getType()->isAnyPointerType())
|
||
std::swap(PExp, IExp);
|
||
|
||
if (!PExp->getType()->isAnyPointerType())
|
||
return InvalidOperands(Loc, LHS, RHS);
|
||
|
||
if (!IExp->getType()->isIntegerType())
|
||
return InvalidOperands(Loc, LHS, RHS);
|
||
|
||
if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
|
||
return QualType();
|
||
|
||
// Diagnose bad cases where we step over interface counts.
|
||
if (!checkArithmethicPointerOnNonFragileABI(*this, Loc, PExp))
|
||
return QualType();
|
||
|
||
// Check array bounds for pointer arithemtic
|
||
CheckArrayAccess(PExp, IExp);
|
||
|
||
if (CompLHSTy) {
|
||
QualType LHSTy = Context.isPromotableBitField(LHS.get());
|
||
if (LHSTy.isNull()) {
|
||
LHSTy = LHS.get()->getType();
|
||
if (LHSTy->isPromotableIntegerType())
|
||
LHSTy = Context.getPromotedIntegerType(LHSTy);
|
||
}
|
||
*CompLHSTy = LHSTy;
|
||
}
|
||
|
||
return PExp->getType();
|
||
}
|
||
|
||
// C99 6.5.6
|
||
QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
|
||
SourceLocation Loc,
|
||
QualType* CompLHSTy) {
|
||
checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
|
||
|
||
if (LHS.get()->getType()->isVectorType() ||
|
||
RHS.get()->getType()->isVectorType()) {
|
||
QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
|
||
if (CompLHSTy) *CompLHSTy = compType;
|
||
return compType;
|
||
}
|
||
|
||
QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
|
||
if (LHS.isInvalid() || RHS.isInvalid())
|
||
return QualType();
|
||
|
||
// Enforce type constraints: C99 6.5.6p3.
|
||
|
||
// Handle the common case first (both operands are arithmetic).
|
||
if (LHS.get()->getType()->isArithmeticType() &&
|
||
RHS.get()->getType()->isArithmeticType()) {
|
||
if (CompLHSTy) *CompLHSTy = compType;
|
||
return compType;
|
||
}
|
||
|
||
if (LHS.get()->getType()->isAtomicType() &&
|
||
RHS.get()->getType()->isArithmeticType()) {
|
||
*CompLHSTy = LHS.get()->getType();
|
||
return compType;
|
||
}
|
||
|
||
// Either ptr - int or ptr - ptr.
|
||
if (LHS.get()->getType()->isAnyPointerType()) {
|
||
QualType lpointee = LHS.get()->getType()->getPointeeType();
|
||
|
||
// Diagnose bad cases where we step over interface counts.
|
||
if (!checkArithmethicPointerOnNonFragileABI(*this, Loc, LHS.get()))
|
||
return QualType();
|
||
|
||
// The result type of a pointer-int computation is the pointer type.
|
||
if (RHS.get()->getType()->isIntegerType()) {
|
||
if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
|
||
return QualType();
|
||
|
||
// Check array bounds for pointer arithemtic
|
||
CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/0,
|
||
/*AllowOnePastEnd*/true, /*IndexNegated*/true);
|
||
|
||
if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
|
||
return LHS.get()->getType();
|
||
}
|
||
|
||
// Handle pointer-pointer subtractions.
|
||
if (const PointerType *RHSPTy
|
||
= RHS.get()->getType()->getAs<PointerType>()) {
|
||
QualType rpointee = RHSPTy->getPointeeType();
|
||
|
||
if (getLangOptions().CPlusPlus) {
|
||
// Pointee types must be the same: C++ [expr.add]
|
||
if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
|
||
diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
|
||
}
|
||
} else {
|
||
// Pointee types must be compatible C99 6.5.6p3
|
||
if (!Context.typesAreCompatible(
|
||
Context.getCanonicalType(lpointee).getUnqualifiedType(),
|
||
Context.getCanonicalType(rpointee).getUnqualifiedType())) {
|
||
diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
|
||
return QualType();
|
||
}
|
||
}
|
||
|
||
if (!checkArithmeticBinOpPointerOperands(*this, Loc,
|
||
LHS.get(), RHS.get()))
|
||
return QualType();
|
||
|
||
if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
|
||
return Context.getPointerDiffType();
|
||
}
|
||
}
|
||
|
||
return InvalidOperands(Loc, LHS, RHS);
|
||
}
|
||
|
||
static bool isScopedEnumerationType(QualType T) {
|
||
if (const EnumType *ET = dyn_cast<EnumType>(T))
|
||
return ET->getDecl()->isScoped();
|
||
return false;
|
||
}
|
||
|
||
static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
|
||
SourceLocation Loc, unsigned Opc,
|
||
QualType LHSType) {
|
||
llvm::APSInt Right;
|
||
// Check right/shifter operand
|
||
if (RHS.get()->isValueDependent() ||
|
||
!RHS.get()->isIntegerConstantExpr(Right, S.Context))
|
||
return;
|
||
|
||
if (Right.isNegative()) {
|
||
S.DiagRuntimeBehavior(Loc, RHS.get(),
|
||
S.PDiag(diag::warn_shift_negative)
|
||
<< RHS.get()->getSourceRange());
|
||
return;
|
||
}
|
||
llvm::APInt LeftBits(Right.getBitWidth(),
|
||
S.Context.getTypeSize(LHS.get()->getType()));
|
||
if (Right.uge(LeftBits)) {
|
||
S.DiagRuntimeBehavior(Loc, RHS.get(),
|
||
S.PDiag(diag::warn_shift_gt_typewidth)
|
||
<< RHS.get()->getSourceRange());
|
||
return;
|
||
}
|
||
if (Opc != BO_Shl)
|
||
return;
|
||
|
||
// When left shifting an ICE which is signed, we can check for overflow which
|
||
// according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
|
||
// integers have defined behavior modulo one more than the maximum value
|
||
// representable in the result type, so never warn for those.
|
||
llvm::APSInt Left;
|
||
if (LHS.get()->isValueDependent() ||
|
||
!LHS.get()->isIntegerConstantExpr(Left, S.Context) ||
|
||
LHSType->hasUnsignedIntegerRepresentation())
|
||
return;
|
||
llvm::APInt ResultBits =
|
||
static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
|
||
if (LeftBits.uge(ResultBits))
|
||
return;
|
||
llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
|
||
Result = Result.shl(Right);
|
||
|
||
// Print the bit representation of the signed integer as an unsigned
|
||
// hexadecimal number.
|
||
SmallString<40> HexResult;
|
||
Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
|
||
|
||
// If we are only missing a sign bit, this is less likely to result in actual
|
||
// bugs -- if the result is cast back to an unsigned type, it will have the
|
||
// expected value. Thus we place this behind a different warning that can be
|
||
// turned off separately if needed.
|
||
if (LeftBits == ResultBits - 1) {
|
||
S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
|
||
<< HexResult.str() << LHSType
|
||
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
||
return;
|
||
}
|
||
|
||
S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
|
||
<< HexResult.str() << Result.getMinSignedBits() << LHSType
|
||
<< Left.getBitWidth() << LHS.get()->getSourceRange()
|
||
<< RHS.get()->getSourceRange();
|
||
}
|
||
|
||
// C99 6.5.7
|
||
QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
|
||
SourceLocation Loc, unsigned Opc,
|
||
bool IsCompAssign) {
|
||
checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
|
||
|
||
// C99 6.5.7p2: Each of the operands shall have integer type.
|
||
if (!LHS.get()->getType()->hasIntegerRepresentation() ||
|
||
!RHS.get()->getType()->hasIntegerRepresentation())
|
||
return InvalidOperands(Loc, LHS, RHS);
|
||
|
||
// C++0x: Don't allow scoped enums. FIXME: Use something better than
|
||
// hasIntegerRepresentation() above instead of this.
|
||
if (isScopedEnumerationType(LHS.get()->getType()) ||
|
||
isScopedEnumerationType(RHS.get()->getType())) {
|
||
return InvalidOperands(Loc, LHS, RHS);
|
||
}
|
||
|
||
// Vector shifts promote their scalar inputs to vector type.
|
||
if (LHS.get()->getType()->isVectorType() ||
|
||
RHS.get()->getType()->isVectorType())
|
||
return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
|
||
|
||
// Shifts don't perform usual arithmetic conversions, they just do integer
|
||
// promotions on each operand. C99 6.5.7p3
|
||
|
||
// For the LHS, do usual unary conversions, but then reset them away
|
||
// if this is a compound assignment.
|
||
ExprResult OldLHS = LHS;
|
||
LHS = UsualUnaryConversions(LHS.take());
|
||
if (LHS.isInvalid())
|
||
return QualType();
|
||
QualType LHSType = LHS.get()->getType();
|
||
if (IsCompAssign) LHS = OldLHS;
|
||
|
||
// The RHS is simpler.
|
||
RHS = UsualUnaryConversions(RHS.take());
|
||
if (RHS.isInvalid())
|
||
return QualType();
|
||
|
||
// Sanity-check shift operands
|
||
DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
|
||
|
||
// "The type of the result is that of the promoted left operand."
|
||
return LHSType;
|
||
}
|
||
|
||
static bool IsWithinTemplateSpecialization(Decl *D) {
|
||
if (DeclContext *DC = D->getDeclContext()) {
|
||
if (isa<ClassTemplateSpecializationDecl>(DC))
|
||
return true;
|
||
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
|
||
return FD->isFunctionTemplateSpecialization();
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/// If two different enums are compared, raise a warning.
|
||
static void checkEnumComparison(Sema &S, SourceLocation Loc, ExprResult &LHS,
|
||
ExprResult &RHS) {
|
||
QualType LHSStrippedType = LHS.get()->IgnoreParenImpCasts()->getType();
|
||
QualType RHSStrippedType = RHS.get()->IgnoreParenImpCasts()->getType();
|
||
|
||
const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
|
||
if (!LHSEnumType)
|
||
return;
|
||
const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
|
||
if (!RHSEnumType)
|
||
return;
|
||
|
||
// Ignore anonymous enums.
|
||
if (!LHSEnumType->getDecl()->getIdentifier())
|
||
return;
|
||
if (!RHSEnumType->getDecl()->getIdentifier())
|
||
return;
|
||
|
||
if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
|
||
return;
|
||
|
||
S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
|
||
<< LHSStrippedType << RHSStrippedType
|
||
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
||
}
|
||
|
||
/// \brief Diagnose bad pointer comparisons.
|
||
static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
|
||
ExprResult &LHS, ExprResult &RHS,
|
||
bool IsError) {
|
||
S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
|
||
: diag::ext_typecheck_comparison_of_distinct_pointers)
|
||
<< LHS.get()->getType() << RHS.get()->getType()
|
||
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
||
}
|
||
|
||
/// \brief Returns false if the pointers are converted to a composite type,
|
||
/// true otherwise.
|
||
static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
|
||
ExprResult &LHS, ExprResult &RHS) {
|
||
// C++ [expr.rel]p2:
|
||
// [...] Pointer conversions (4.10) and qualification
|
||
// conversions (4.4) are performed on pointer operands (or on
|
||
// a pointer operand and a null pointer constant) to bring
|
||
// them to their composite pointer type. [...]
|
||
//
|
||
// C++ [expr.eq]p1 uses the same notion for (in)equality
|
||
// comparisons of pointers.
|
||
|
||
// C++ [expr.eq]p2:
|
||
// In addition, pointers to members can be compared, or a pointer to
|
||
// member and a null pointer constant. Pointer to member conversions
|
||
// (4.11) and qualification conversions (4.4) are performed to bring
|
||
// them to a common type. If one operand is a null pointer constant,
|
||
// the common type is the type of the other operand. Otherwise, the
|
||
// common type is a pointer to member type similar (4.4) to the type
|
||
// of one of the operands, with a cv-qualification signature (4.4)
|
||
// that is the union of the cv-qualification signatures of the operand
|
||
// types.
|
||
|
||
QualType LHSType = LHS.get()->getType();
|
||
QualType RHSType = RHS.get()->getType();
|
||
assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
|
||
(LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
|
||
|
||
bool NonStandardCompositeType = false;
|
||
bool *BoolPtr = S.isSFINAEContext() ? 0 : &NonStandardCompositeType;
|
||
QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
|
||
if (T.isNull()) {
|
||
diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
|
||
return true;
|
||
}
|
||
|
||
if (NonStandardCompositeType)
|
||
S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
|
||
<< LHSType << RHSType << T << LHS.get()->getSourceRange()
|
||
<< RHS.get()->getSourceRange();
|
||
|
||
LHS = S.ImpCastExprToType(LHS.take(), T, CK_BitCast);
|
||
RHS = S.ImpCastExprToType(RHS.take(), T, CK_BitCast);
|
||
return false;
|
||
}
|
||
|
||
static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
|
||
ExprResult &LHS,
|
||
ExprResult &RHS,
|
||
bool IsError) {
|
||
S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
|
||
: diag::ext_typecheck_comparison_of_fptr_to_void)
|
||
<< LHS.get()->getType() << RHS.get()->getType()
|
||
<< LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
|
||
}
|
||
|
||
// C99 6.5.8, C++ [expr.rel]
|
||
QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
|
||
SourceLocation Loc, unsigned OpaqueOpc,
|
||
bool IsRelational) {
|
||
checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
|
||
|
||
BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
|
||
|
||
// Handle vector comparisons separately.
|
||
if (LHS.get()->getType()->isVectorType() ||
|
||
RHS.get()->getType()->isVectorType())
|
||
return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
|
||
|
||
QualType LHSType = LHS.get()->getType();
|
||
QualType RHSType = RHS.get()->getType();
|
||
|
||
Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
|
||
Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
|
||
|
||
checkEnumComparison(*this, Loc, LHS, RHS);
|
||
|
||
if (!LHSType->hasFloatingRepresentation() &&
|
||
!(LHSType->isBlockPointerType() && IsRelational) &&
|
||
!LHS.get()->getLocStart().isMacroID() &&
|
||
!RHS.get()->getLocStart().isMacroID()) {
|
||
// For non-floating point types, check for self-comparisons of the form
|
||
// x == x, x != x, x < x, etc. These always evaluate to a constant, and
|
||
// often indicate logic errors in the program.
|
||
//
|
||
// NOTE: Don't warn about comparison expressions resulting from macro
|
||
// expansion. Also don't warn about comparisons which are only self
|
||
// comparisons within a template specialization. The warnings should catch
|
||
// obvious cases in the definition of the template anyways. The idea is to
|
||
// warn when the typed comparison operator will always evaluate to the same
|
||
// result.
|
||
if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
|
||
if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
|
||
if (DRL->getDecl() == DRR->getDecl() &&
|
||
!IsWithinTemplateSpecialization(DRL->getDecl())) {
|
||
DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
|
||
<< 0 // self-
|
||
<< (Opc == BO_EQ
|
||
|| Opc == BO_LE
|
||
|| Opc == BO_GE));
|
||
} else if (LHSType->isArrayType() && RHSType->isArrayType() &&
|
||
!DRL->getDecl()->getType()->isReferenceType() &&
|
||
!DRR->getDecl()->getType()->isReferenceType()) {
|
||
// what is it always going to eval to?
|
||
char always_evals_to;
|
||
switch(Opc) {
|
||
case BO_EQ: // e.g. array1 == array2
|
||
always_evals_to = 0; // false
|
||
break;
|
||
case BO_NE: // e.g. array1 != array2
|
||
always_evals_to = 1; // true
|
||
break;
|
||
default:
|
||
// best we can say is 'a constant'
|
||
always_evals_to = 2; // e.g. array1 <= array2
|
||
break;
|
||
}
|
||
DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
|
||
<< 1 // array
|
||
<< always_evals_to);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (isa<CastExpr>(LHSStripped))
|
||
LHSStripped = LHSStripped->IgnoreParenCasts();
|
||
if (isa<CastExpr>(RHSStripped))
|
||
RHSStripped = RHSStripped->IgnoreParenCasts();
|
||
|
||
// Warn about comparisons against a string constant (unless the other
|
||
// operand is null), the user probably wants strcmp.
|
||
Expr *literalString = 0;
|
||
Expr *literalStringStripped = 0;
|
||
if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
|
||
!RHSStripped->isNullPointerConstant(Context,
|
||
Expr::NPC_ValueDependentIsNull)) {
|
||
literalString = LHS.get();
|
||
literalStringStripped = LHSStripped;
|
||
} else if ((isa<StringLiteral>(RHSStripped) ||
|
||
isa<ObjCEncodeExpr>(RHSStripped)) &&
|
||
!LHSStripped->isNullPointerConstant(Context,
|
||
Expr::NPC_ValueDependentIsNull)) {
|
||
literalString = RHS.get();
|
||
literalStringStripped = RHSStripped;
|
||
}
|
||
|
||
if (literalString) {
|
||
std::string resultComparison;
|
||
switch (Opc) {
|
||
case BO_LT: resultComparison = ") < 0"; break;
|
||
case BO_GT: resultComparison = ") > 0"; break;
|
||
case BO_LE: resultComparison = ") <= 0"; break;
|
||
case BO_GE: resultComparison = ") >= 0"; break;
|
||
case BO_EQ: resultComparison = ") == 0"; break;
|
||
case BO_NE: resultComparison = ") != 0"; break;
|
||
default: llvm_unreachable("Invalid comparison operator");
|
||
}
|
||
|
||
DiagRuntimeBehavior(Loc, 0,
|
||
PDiag(diag::warn_stringcompare)
|
||
<< isa<ObjCEncodeExpr>(literalStringStripped)
|
||
<< literalString->getSourceRange());
|
||
}
|
||
}
|
||
|
||
// C99 6.5.8p3 / C99 6.5.9p4
|
||
if (LHS.get()->getType()->isArithmeticType() &&
|
||
RHS.get()->getType()->isArithmeticType()) {
|
||
UsualArithmeticConversions(LHS, RHS);
|
||
if (LHS.isInvalid() || RHS.isInvalid())
|
||
return QualType();
|
||
}
|
||
else {
|
||
LHS = UsualUnaryConversions(LHS.take());
|
||
if (LHS.isInvalid())
|
||
return QualType();
|
||
|
||
RHS = UsualUnaryConversions(RHS.take());
|
||
if (RHS.isInvalid())
|
||
return QualType();
|
||
}
|
||
|
||
LHSType = LHS.get()->getType();
|
||
RHSType = RHS.get()->getType();
|
||
|
||
// The result of comparisons is 'bool' in C++, 'int' in C.
|
||
QualType ResultTy = Context.getLogicalOperationType();
|
||
|
||
if (IsRelational) {
|
||
if (LHSType->isRealType() && RHSType->isRealType())
|
||
return ResultTy;
|
||
} else {
|
||
// Check for comparisons of floating point operands using != and ==.
|
||
if (LHSType->hasFloatingRepresentation())
|
||
CheckFloatComparison(Loc, LHS.get(), RHS.get());
|
||
|
||
if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
|
||
return ResultTy;
|
||
}
|
||
|
||
bool LHSIsNull = LHS.get()->isNullPointerConstant(Context,
|
||
Expr::NPC_ValueDependentIsNull);
|
||
bool RHSIsNull = RHS.get()->isNullPointerConstant(Context,
|
||
Expr::NPC_ValueDependentIsNull);
|
||
|
||
// All of the following pointer-related warnings are GCC extensions, except
|
||
// when handling null pointer constants.
|
||
if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
|
||
QualType LCanPointeeTy =
|
||
LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
|
||
QualType RCanPointeeTy =
|
||
RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
|
||
|
||
if (getLangOptions().CPlusPlus) {
|
||
if (LCanPointeeTy == RCanPointeeTy)
|
||
return ResultTy;
|
||
if (!IsRelational &&
|
||
(LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
|
||
// Valid unless comparison between non-null pointer and function pointer
|
||
// This is a gcc extension compatibility comparison.
|
||
// In a SFINAE context, we treat this as a hard error to maintain
|
||
// conformance with the C++ standard.
|
||
if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
|
||
&& !LHSIsNull && !RHSIsNull) {
|
||
diagnoseFunctionPointerToVoidComparison(
|
||
*this, Loc, LHS, RHS, /*isError*/ isSFINAEContext());
|
||
|
||
if (isSFINAEContext())
|
||
return QualType();
|
||
|
||
RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
|
||
return ResultTy;
|
||
}
|
||
}
|
||
|
||
if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
|
||
return QualType();
|
||
else
|
||
return ResultTy;
|
||
}
|
||
// C99 6.5.9p2 and C99 6.5.8p2
|
||
if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
|
||
RCanPointeeTy.getUnqualifiedType())) {
|
||
// Valid unless a relational comparison of function pointers
|
||
if (IsRelational && LCanPointeeTy->isFunctionType()) {
|
||
Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
|
||
<< LHSType << RHSType << LHS.get()->getSourceRange()
|
||
<< RHS.get()->getSourceRange();
|
||
}
|
||
} else if (!IsRelational &&
|
||
(LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
|
||
// Valid unless comparison between non-null pointer and function pointer
|
||
if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
|
||
&& !LHSIsNull && !RHSIsNull)
|
||
diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
|
||
/*isError*/false);
|
||
} else {
|
||
// Invalid
|
||
diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
|
||
}
|
||
if (LCanPointeeTy != RCanPointeeTy) {
|
||
if (LHSIsNull && !RHSIsNull)
|
||
LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
|
||
else
|
||
RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
|
||
}
|
||
return ResultTy;
|
||
}
|
||
|
||
if (getLangOptions().CPlusPlus) {
|
||
// Comparison of nullptr_t with itself.
|
||
if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
|
||
return ResultTy;
|
||
|
||
// Comparison of pointers with null pointer constants and equality
|
||
// comparisons of member pointers to null pointer constants.
|
||
if (RHSIsNull &&
|
||
((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
|
||
(!IsRelational &&
|
||
(LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
|
||
RHS = ImpCastExprToType(RHS.take(), LHSType,
|
||
LHSType->isMemberPointerType()
|
||
? CK_NullToMemberPointer
|
||
: CK_NullToPointer);
|
||
return ResultTy;
|
||
}
|
||
if (LHSIsNull &&
|
||
((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
|
||
(!IsRelational &&
|
||
(RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
|
||
LHS = ImpCastExprToType(LHS.take(), RHSType,
|
||
RHSType->isMemberPointerType()
|
||
? CK_NullToMemberPointer
|
||
: CK_NullToPointer);
|
||
return ResultTy;
|
||
}
|
||
|
||
// Comparison of member pointers.
|
||
if (!IsRelational &&
|
||
LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
|
||
if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
|
||
return QualType();
|
||
else
|
||
return ResultTy;
|
||
}
|
||
|
||
// Handle scoped enumeration types specifically, since they don't promote
|
||
// to integers.
|
||
if (LHS.get()->getType()->isEnumeralType() &&
|
||
Context.hasSameUnqualifiedType(LHS.get()->getType(),
|
||
RHS.get()->getType()))
|
||
return ResultTy;
|
||
}
|
||
|
||
// Handle block pointer types.
|
||
if (!IsRelational && LHSType->isBlockPointerType() &&
|
||
RHSType->isBlockPointerType()) {
|
||
QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
|
||
QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
|
||
|
||
if (!LHSIsNull && !RHSIsNull &&
|
||
!Context.typesAreCompatible(lpointee, rpointee)) {
|
||
Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
|
||
<< LHSType << RHSType << LHS.get()->getSourceRange()
|
||
<< RHS.get()->getSourceRange();
|
||
}
|
||
RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
|
||
return ResultTy;
|
||
}
|
||
|
||
// Allow block pointers to be compared with null pointer constants.
|
||
if (!IsRelational
|
||
&& ((LHSType->isBlockPointerType() && RHSType->isPointerType())
|
||
|| (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
|
||
if (!LHSIsNull && !RHSIsNull) {
|
||
if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
|
||
->getPointeeType()->isVoidType())
|
||
|| (LHSType->isPointerType() && LHSType->castAs<PointerType>()
|
||
->getPointeeType()->isVoidType())))
|
||
Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
|
||
<< LHSType << RHSType << LHS.get()->getSourceRange()
|
||
<< RHS.get()->getSourceRange();
|
||
}
|
||
if (LHSIsNull && !RHSIsNull)
|
||
LHS = ImpCastExprToType(LHS.take(), RHSType,
|
||
RHSType->isPointerType() ? CK_BitCast
|
||
: CK_AnyPointerToBlockPointerCast);
|
||
else
|
||
RHS = ImpCastExprToType(RHS.take(), LHSType,
|
||
LHSType->isPointerType() ? CK_BitCast
|
||
: CK_AnyPointerToBlockPointerCast);
|
||
return ResultTy;
|
||
}
|
||
|
||
if (LHSType->isObjCObjectPointerType() ||
|
||
RHSType->isObjCObjectPointerType()) {
|
||
const PointerType *LPT = LHSType->getAs<PointerType>();
|
||
const PointerType *RPT = RHSType->getAs<PointerType>();
|
||
if (LPT || RPT) {
|
||
bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
|
||
bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
|
||
|
||
if (!LPtrToVoid && !RPtrToVoid &&
|
||
!Context.typesAreCompatible(LHSType, RHSType)) {
|
||
diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
|
||
/*isError*/false);
|
||
}
|
||
if (LHSIsNull && !RHSIsNull)
|
||
LHS = ImpCastExprToType(LHS.take(), RHSType,
|
||
RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
|
||
else
|
||
RHS = ImpCastExprToType(RHS.take(), LHSType,
|
||
LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
|
||
return ResultTy;
|
||
}
|
||
if (LHSType->isObjCObjectPointerType() &&
|
||
RHSType->isObjCObjectPointerType()) {
|
||
if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
|
||
diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
|
||
/*isError*/false);
|
||
if (LHSIsNull && !RHSIsNull)
|
||
LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
|
||
else
|
||
RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
|
||
return ResultTy;
|
||
}
|
||
}
|
||
if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
|
||
(LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
|
||
unsigned DiagID = 0;
|
||
bool isError = false;
|
||
if ((LHSIsNull && LHSType->isIntegerType()) ||
|
||
(RHSIsNull && RHSType->isIntegerType())) {
|
||
if (IsRelational && !getLangOptions().CPlusPlus)
|
||
DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
|
||
} else if (IsRelational && !getLangOptions().CPlusPlus)
|
||
DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
|
||
else if (getLangOptions().CPlusPlus) {
|
||
DiagID = diag::err_typecheck_comparison_of_pointer_integer;
|
||
isError = true;
|
||
} else
|
||
DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
|
||
|
||
if (DiagID) {
|
||
Diag(Loc, DiagID)
|
||
<< LHSType << RHSType << LHS.get()->getSourceRange()
|
||
<< RHS.get()->getSourceRange();
|
||
if (isError)
|
||
return QualType();
|
||
}
|
||
|
||
if (LHSType->isIntegerType())
|
||
LHS = ImpCastExprToType(LHS.take(), RHSType,
|
||
LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
|
||
else
|
||
RHS = ImpCastExprToType(RHS.take(), LHSType,
|
||
RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
|
||
return ResultTy;
|
||
}
|
||
|
||
// Handle block pointers.
|
||
if (!IsRelational && RHSIsNull
|
||
&& LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
|
||
RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
|
||
return ResultTy;
|
||
}
|
||
if (!IsRelational && LHSIsNull
|
||
&& LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
|
||
LHS = ImpCastExprToType(LHS.take(), RHSType, CK_NullToPointer);
|
||
return ResultTy;
|
||
}
|
||
|
||
return InvalidOperands(Loc, LHS, RHS);
|
||
}
|
||
|
||
|
||
// Return a signed type that is of identical size and number of elements.
|
||
// For floating point vectors, return an integer type of identical size
|
||
// and number of elements.
|
||
QualType Sema::GetSignedVectorType(QualType V) {
|
||
const VectorType *VTy = V->getAs<VectorType>();
|
||
unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
|
||
if (TypeSize == Context.getTypeSize(Context.CharTy))
|
||
return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
|
||
else if (TypeSize == Context.getTypeSize(Context.ShortTy))
|
||
return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
|
||
else if (TypeSize == Context.getTypeSize(Context.IntTy))
|
||
return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
|
||
else if (TypeSize == Context.getTypeSize(Context.LongTy))
|
||
return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
|
||
assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
|
||
"Unhandled vector element size in vector compare");
|
||
return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
|
||
}
|
||
|
||
/// CheckVectorCompareOperands - vector comparisons are a clang extension that
|
||
/// operates on extended vector types. Instead of producing an IntTy result,
|
||
/// like a scalar comparison, a vector comparison produces a vector of integer
|
||
/// types.
|
||
QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
|
||
SourceLocation Loc,
|
||
bool IsRelational) {
|
||
// Check to make sure we're operating on vectors of the same type and width,
|
||
// Allowing one side to be a scalar of element type.
|
||
QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false);
|
||
if (vType.isNull())
|
||
return vType;
|
||
|
||
QualType LHSType = LHS.get()->getType();
|
||
|
||
// If AltiVec, the comparison results in a numeric type, i.e.
|
||
// bool for C++, int for C
|
||
if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
|
||
return Context.getLogicalOperationType();
|
||
|
||
// For non-floating point types, check for self-comparisons of the form
|
||
// x == x, x != x, x < x, etc. These always evaluate to a constant, and
|
||
// often indicate logic errors in the program.
|
||
if (!LHSType->hasFloatingRepresentation()) {
|
||
if (DeclRefExpr* DRL
|
||
= dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts()))
|
||
if (DeclRefExpr* DRR
|
||
= dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts()))
|
||
if (DRL->getDecl() == DRR->getDecl())
|
||
DiagRuntimeBehavior(Loc, 0,
|
||
PDiag(diag::warn_comparison_always)
|
||
<< 0 // self-
|
||
<< 2 // "a constant"
|
||
);
|
||
}
|
||
|
||
// Check for comparisons of floating point operands using != and ==.
|
||
if (!IsRelational && LHSType->hasFloatingRepresentation()) {
|
||
assert (RHS.get()->getType()->hasFloatingRepresentation());
|
||
CheckFloatComparison(Loc, LHS.get(), RHS.get());
|
||
}
|
||
|
||
// Return a signed type for the vector.
|
||
return GetSignedVectorType(LHSType);
|
||
}
|
||
|
||
QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
|
||
SourceLocation Loc) {
|
||
// Ensure that either both operands are of the same vector type, or
|
||
// one operand is of a vector type and the other is of its element type.
|
||
QualType vType = CheckVectorOperands(LHS, RHS, Loc, false);
|
||
if (vType.isNull() || vType->isFloatingType())
|
||
return InvalidOperands(Loc, LHS, RHS);
|
||
|
||
return GetSignedVectorType(LHS.get()->getType());
|
||
}
|
||
|
||
inline QualType Sema::CheckBitwiseOperands(
|
||
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
|
||
checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
|
||
|
||
if (LHS.get()->getType()->isVectorType() ||
|
||
RHS.get()->getType()->isVectorType()) {
|
||
if (LHS.get()->getType()->hasIntegerRepresentation() &&
|
||
RHS.get()->getType()->hasIntegerRepresentation())
|
||
return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
|
||
|
||
return InvalidOperands(Loc, LHS, RHS);
|
||
}
|
||
|
||
ExprResult LHSResult = Owned(LHS), RHSResult = Owned(RHS);
|
||
QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
|
||
IsCompAssign);
|
||
if (LHSResult.isInvalid() || RHSResult.isInvalid())
|
||
return QualType();
|
||
LHS = LHSResult.take();
|
||
RHS = RHSResult.take();
|
||
|
||
if (LHS.get()->getType()->isIntegralOrUnscopedEnumerationType() &&
|
||
RHS.get()->getType()->isIntegralOrUnscopedEnumerationType())
|
||
return compType;
|
||
return InvalidOperands(Loc, LHS, RHS);
|
||
}
|
||
|
||
inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
|
||
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc) {
|
||
|
||
// Check vector operands differently.
|
||
if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
|
||
return CheckVectorLogicalOperands(LHS, RHS, Loc);
|
||
|
||
// Diagnose cases where the user write a logical and/or but probably meant a
|
||
// bitwise one. We do this when the LHS is a non-bool integer and the RHS
|
||
// is a constant.
|
||
if (LHS.get()->getType()->isIntegerType() &&
|
||
!LHS.get()->getType()->isBooleanType() &&
|
||
RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
|
||
// Don't warn in macros or template instantiations.
|
||
!Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
|
||
// If the RHS can be constant folded, and if it constant folds to something
|
||
// that isn't 0 or 1 (which indicate a potential logical operation that
|
||
// happened to fold to true/false) then warn.
|
||
// Parens on the RHS are ignored.
|
||
llvm::APSInt Result;
|
||
if (RHS.get()->EvaluateAsInt(Result, Context))
|
||
if ((getLangOptions().Bool && !RHS.get()->getType()->isBooleanType()) ||
|
||
(Result != 0 && Result != 1)) {
|
||
Diag(Loc, diag::warn_logical_instead_of_bitwise)
|
||
<< RHS.get()->getSourceRange()
|
||
<< (Opc == BO_LAnd ? "&&" : "||");
|
||
// Suggest replacing the logical operator with the bitwise version
|
||
Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
|
||
<< (Opc == BO_LAnd ? "&" : "|")
|
||
<< FixItHint::CreateReplacement(SourceRange(
|
||
Loc, Lexer::getLocForEndOfToken(Loc, 0, getSourceManager(),
|
||
getLangOptions())),
|
||
Opc == BO_LAnd ? "&" : "|");
|
||
if (Opc == BO_LAnd)
|
||
// Suggest replacing "Foo() && kNonZero" with "Foo()"
|
||
Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
|
||
<< FixItHint::CreateRemoval(
|
||
SourceRange(
|
||
Lexer::getLocForEndOfToken(LHS.get()->getLocEnd(),
|
||
0, getSourceManager(),
|
||
getLangOptions()),
|
||
RHS.get()->getLocEnd()));
|
||
}
|
||
}
|
||
|
||
if (!Context.getLangOptions().CPlusPlus) {
|
||
LHS = UsualUnaryConversions(LHS.take());
|
||
if (LHS.isInvalid())
|
||
return QualType();
|
||
|
||
RHS = UsualUnaryConversions(RHS.take());
|
||
if (RHS.isInvalid())
|
||
return QualType();
|
||
|
||
if (!LHS.get()->getType()->isScalarType() ||
|
||
!RHS.get()->getType()->isScalarType())
|
||
return InvalidOperands(Loc, LHS, RHS);
|
||
|
||
return Context.IntTy;
|
||
}
|
||
|
||
// The following is safe because we only use this method for
|
||
// non-overloadable operands.
|
||
|
||
// C++ [expr.log.and]p1
|
||
// C++ [expr.log.or]p1
|
||
// The operands are both contextually converted to type bool.
|
||
ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
|
||
if (LHSRes.isInvalid())
|
||
return InvalidOperands(Loc, LHS, RHS);
|
||
LHS = move(LHSRes);
|
||
|
||
ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
|
||
if (RHSRes.isInvalid())
|
||
return InvalidOperands(Loc, LHS, RHS);
|
||
RHS = move(RHSRes);
|
||
|
||
// C++ [expr.log.and]p2
|
||
// C++ [expr.log.or]p2
|
||
// The result is a bool.
|
||
return Context.BoolTy;
|
||
}
|
||
|
||
/// IsReadonlyProperty - Verify that otherwise a valid l-value expression
|
||
/// is a read-only property; return true if so. A readonly property expression
|
||
/// depends on various declarations and thus must be treated specially.
|
||
///
|
||
static bool IsReadonlyProperty(Expr *E, Sema &S) {
|
||
const ObjCPropertyRefExpr *PropExpr = dyn_cast<ObjCPropertyRefExpr>(E);
|
||
if (!PropExpr) return false;
|
||
if (PropExpr->isImplicitProperty()) return false;
|
||
|
||
ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
|
||
QualType BaseType = PropExpr->isSuperReceiver() ?
|
||
PropExpr->getSuperReceiverType() :
|
||
PropExpr->getBase()->getType();
|
||
|
||
if (const ObjCObjectPointerType *OPT =
|
||
BaseType->getAsObjCInterfacePointerType())
|
||
if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
|
||
if (S.isPropertyReadonly(PDecl, IFace))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
static bool IsConstProperty(Expr *E, Sema &S) {
|
||
const ObjCPropertyRefExpr *PropExpr = dyn_cast<ObjCPropertyRefExpr>(E);
|
||
if (!PropExpr) return false;
|
||
if (PropExpr->isImplicitProperty()) return false;
|
||
|
||
ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
|
||
QualType T = PDecl->getType().getNonReferenceType();
|
||
return T.isConstQualified();
|
||
}
|
||
|
||
static bool IsReadonlyMessage(Expr *E, Sema &S) {
|
||
const MemberExpr *ME = dyn_cast<MemberExpr>(E);
|
||
if (!ME) return false;
|
||
if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
|
||
ObjCMessageExpr *Base =
|
||
dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts());
|
||
if (!Base) return false;
|
||
return Base->getMethodDecl() != 0;
|
||
}
|
||
|
||
/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
|
||
/// emit an error and return true. If so, return false.
|
||
static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
|
||
SourceLocation OrigLoc = Loc;
|
||
Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
|
||
&Loc);
|
||
if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
|
||
IsLV = Expr::MLV_ReadonlyProperty;
|
||
else if (Expr::MLV_ConstQualified && IsConstProperty(E, S))
|
||
IsLV = Expr::MLV_Valid;
|
||
else if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
|
||
IsLV = Expr::MLV_InvalidMessageExpression;
|
||
if (IsLV == Expr::MLV_Valid)
|
||
return false;
|
||
|
||
unsigned Diag = 0;
|
||
bool NeedType = false;
|
||
switch (IsLV) { // C99 6.5.16p2
|
||
case Expr::MLV_ConstQualified:
|
||
Diag = diag::err_typecheck_assign_const;
|
||
|
||
// In ARC, use some specialized diagnostics for occasions where we
|
||
// infer 'const'. These are always pseudo-strong variables.
|
||
if (S.getLangOptions().ObjCAutoRefCount) {
|
||
DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
|
||
if (declRef && isa<VarDecl>(declRef->getDecl())) {
|
||
VarDecl *var = cast<VarDecl>(declRef->getDecl());
|
||
|
||
// Use the normal diagnostic if it's pseudo-__strong but the
|
||
// user actually wrote 'const'.
|
||
if (var->isARCPseudoStrong() &&
|
||
(!var->getTypeSourceInfo() ||
|
||
!var->getTypeSourceInfo()->getType().isConstQualified())) {
|
||
// There are two pseudo-strong cases:
|
||
// - self
|
||
ObjCMethodDecl *method = S.getCurMethodDecl();
|
||
if (method && var == method->getSelfDecl())
|
||
Diag = method->isClassMethod()
|
||
? diag::err_typecheck_arc_assign_self_class_method
|
||
: diag::err_typecheck_arc_assign_self;
|
||
|
||
// - fast enumeration variables
|
||
else
|
||
Diag = diag::err_typecheck_arr_assign_enumeration;
|
||
|
||
SourceRange Assign;
|
||
if (Loc != OrigLoc)
|
||
Assign = SourceRange(OrigLoc, OrigLoc);
|
||
S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
|
||
// We need to preserve the AST regardless, so migration tool
|
||
// can do its job.
|
||
return false;
|
||
}
|
||
}
|
||
}
|
||
|
||
break;
|
||
case Expr::MLV_ArrayType:
|
||
Diag = diag::err_typecheck_array_not_modifiable_lvalue;
|
||
NeedType = true;
|
||
break;
|
||
case Expr::MLV_NotObjectType:
|
||
Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
|
||
NeedType = true;
|
||
break;
|
||
case Expr::MLV_LValueCast:
|
||
Diag = diag::err_typecheck_lvalue_casts_not_supported;
|
||
break;
|
||
case Expr::MLV_Valid:
|
||
llvm_unreachable("did not take early return for MLV_Valid");
|
||
case Expr::MLV_InvalidExpression:
|
||
case Expr::MLV_MemberFunction:
|
||
case Expr::MLV_ClassTemporary:
|
||
Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
|
||
break;
|
||
case Expr::MLV_IncompleteType:
|
||
case Expr::MLV_IncompleteVoidType:
|
||
return S.RequireCompleteType(Loc, E->getType(),
|
||
S.PDiag(diag::err_typecheck_incomplete_type_not_modifiable_lvalue)
|
||
<< E->getSourceRange());
|
||
case Expr::MLV_DuplicateVectorComponents:
|
||
Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
|
||
break;
|
||
case Expr::MLV_NotBlockQualified:
|
||
Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
|
||
break;
|
||
case Expr::MLV_ReadonlyProperty:
|
||
case Expr::MLV_NoSetterProperty:
|
||
llvm_unreachable("readonly properties should be processed differently");
|
||
case Expr::MLV_InvalidMessageExpression:
|
||
Diag = diag::error_readonly_message_assignment;
|
||
break;
|
||
case Expr::MLV_SubObjCPropertySetting:
|
||
Diag = diag::error_no_subobject_property_setting;
|
||
break;
|
||
}
|
||
|
||
SourceRange Assign;
|
||
if (Loc != OrigLoc)
|
||
Assign = SourceRange(OrigLoc, OrigLoc);
|
||
if (NeedType)
|
||
S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
|
||
else
|
||
S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
|
||
return true;
|
||
}
|
||
|
||
|
||
|
||
// C99 6.5.16.1
|
||
QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
|
||
SourceLocation Loc,
|
||
QualType CompoundType) {
|
||
assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
|
||
|
||
// Verify that LHS is a modifiable lvalue, and emit error if not.
|
||
if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
|
||
return QualType();
|
||
|
||
QualType LHSType = LHSExpr->getType();
|
||
QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
|
||
CompoundType;
|
||
AssignConvertType ConvTy;
|
||
if (CompoundType.isNull()) {
|
||
QualType LHSTy(LHSType);
|
||
ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
|
||
if (RHS.isInvalid())
|
||
return QualType();
|
||
// Special case of NSObject attributes on c-style pointer types.
|
||
if (ConvTy == IncompatiblePointer &&
|
||
((Context.isObjCNSObjectType(LHSType) &&
|
||
RHSType->isObjCObjectPointerType()) ||
|
||
(Context.isObjCNSObjectType(RHSType) &&
|
||
LHSType->isObjCObjectPointerType())))
|
||
ConvTy = Compatible;
|
||
|
||
if (ConvTy == Compatible &&
|
||
LHSType->isObjCObjectType())
|
||
Diag(Loc, diag::err_objc_object_assignment)
|
||
<< LHSType;
|
||
|
||
// If the RHS is a unary plus or minus, check to see if they = and + are
|
||
// right next to each other. If so, the user may have typo'd "x =+ 4"
|
||
// instead of "x += 4".
|
||
Expr *RHSCheck = RHS.get();
|
||
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
|
||
RHSCheck = ICE->getSubExpr();
|
||
if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
|
||
if ((UO->getOpcode() == UO_Plus ||
|
||
UO->getOpcode() == UO_Minus) &&
|
||
Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
|
||
// Only if the two operators are exactly adjacent.
|
||
Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
|
||
// And there is a space or other character before the subexpr of the
|
||
// unary +/-. We don't want to warn on "x=-1".
|
||
Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
|
||
UO->getSubExpr()->getLocStart().isFileID()) {
|
||
Diag(Loc, diag::warn_not_compound_assign)
|
||
<< (UO->getOpcode() == UO_Plus ? "+" : "-")
|
||
<< SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
|
||
}
|
||
}
|
||
|
||
if (ConvTy == Compatible) {
|
||
if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong)
|
||
checkRetainCycles(LHSExpr, RHS.get());
|
||
else if (getLangOptions().ObjCAutoRefCount)
|
||
checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
|
||
}
|
||
} else {
|
||
// Compound assignment "x += y"
|
||
ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
|
||
}
|
||
|
||
if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
|
||
RHS.get(), AA_Assigning))
|
||
return QualType();
|
||
|
||
CheckForNullPointerDereference(*this, LHSExpr);
|
||
|
||
// C99 6.5.16p3: The type of an assignment expression is the type of the
|
||
// left operand unless the left operand has qualified type, in which case
|
||
// it is the unqualified version of the type of the left operand.
|
||
// C99 6.5.16.1p2: In simple assignment, the value of the right operand
|
||
// is converted to the type of the assignment expression (above).
|
||
// C++ 5.17p1: the type of the assignment expression is that of its left
|
||
// operand.
|
||
return (getLangOptions().CPlusPlus
|
||
? LHSType : LHSType.getUnqualifiedType());
|
||
}
|
||
|
||
// C99 6.5.17
|
||
static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
|
||
SourceLocation Loc) {
|
||
S.DiagnoseUnusedExprResult(LHS.get());
|
||
|
||
LHS = S.CheckPlaceholderExpr(LHS.take());
|
||
RHS = S.CheckPlaceholderExpr(RHS.take());
|
||
if (LHS.isInvalid() || RHS.isInvalid())
|
||
return QualType();
|
||
|
||
// C's comma performs lvalue conversion (C99 6.3.2.1) on both its
|
||
// operands, but not unary promotions.
|
||
// C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
|
||
|
||
// So we treat the LHS as a ignored value, and in C++ we allow the
|
||
// containing site to determine what should be done with the RHS.
|
||
LHS = S.IgnoredValueConversions(LHS.take());
|
||
if (LHS.isInvalid())
|
||
return QualType();
|
||
|
||
if (!S.getLangOptions().CPlusPlus) {
|
||
RHS = S.DefaultFunctionArrayLvalueConversion(RHS.take());
|
||
if (RHS.isInvalid())
|
||
return QualType();
|
||
if (!RHS.get()->getType()->isVoidType())
|
||
S.RequireCompleteType(Loc, RHS.get()->getType(),
|
||
diag::err_incomplete_type);
|
||
}
|
||
|
||
return RHS.get()->getType();
|
||
}
|
||
|
||
/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
|
||
/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
|
||
static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
|
||
ExprValueKind &VK,
|
||
SourceLocation OpLoc,
|
||
bool IsInc, bool IsPrefix) {
|
||
if (Op->isTypeDependent())
|
||
return S.Context.DependentTy;
|
||
|
||
QualType ResType = Op->getType();
|
||
// Atomic types can be used for increment / decrement where the non-atomic
|
||
// versions can, so ignore the _Atomic() specifier for the purpose of
|
||
// checking.
|
||
if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
|
||
ResType = ResAtomicType->getValueType();
|
||
|
||
assert(!ResType.isNull() && "no type for increment/decrement expression");
|
||
|
||
if (S.getLangOptions().CPlusPlus && ResType->isBooleanType()) {
|
||
// Decrement of bool is not allowed.
|
||
if (!IsInc) {
|
||
S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
|
||
return QualType();
|
||
}
|
||
// Increment of bool sets it to true, but is deprecated.
|
||
S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
|
||
} else if (ResType->isRealType()) {
|
||
// OK!
|
||
} else if (ResType->isAnyPointerType()) {
|
||
// C99 6.5.2.4p2, 6.5.6p2
|
||
if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
|
||
return QualType();
|
||
|
||
// Diagnose bad cases where we step over interface counts.
|
||
else if (!checkArithmethicPointerOnNonFragileABI(S, OpLoc, Op))
|
||
return QualType();
|
||
} else if (ResType->isAnyComplexType()) {
|
||
// C99 does not support ++/-- on complex types, we allow as an extension.
|
||
S.Diag(OpLoc, diag::ext_integer_increment_complex)
|
||
<< ResType << Op->getSourceRange();
|
||
} else if (ResType->isPlaceholderType()) {
|
||
ExprResult PR = S.CheckPlaceholderExpr(Op);
|
||
if (PR.isInvalid()) return QualType();
|
||
return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
|
||
IsInc, IsPrefix);
|
||
} else if (S.getLangOptions().AltiVec && ResType->isVectorType()) {
|
||
// OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
|
||
} else {
|
||
S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
|
||
<< ResType << int(IsInc) << Op->getSourceRange();
|
||
return QualType();
|
||
}
|
||
// At this point, we know we have a real, complex or pointer type.
|
||
// Now make sure the operand is a modifiable lvalue.
|
||
if (CheckForModifiableLvalue(Op, OpLoc, S))
|
||
return QualType();
|
||
// In C++, a prefix increment is the same type as the operand. Otherwise
|
||
// (in C or with postfix), the increment is the unqualified type of the
|
||
// operand.
|
||
if (IsPrefix && S.getLangOptions().CPlusPlus) {
|
||
VK = VK_LValue;
|
||
return ResType;
|
||
} else {
|
||
VK = VK_RValue;
|
||
return ResType.getUnqualifiedType();
|
||
}
|
||
}
|
||
|
||
|
||
/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
|
||
/// This routine allows us to typecheck complex/recursive expressions
|
||
/// where the declaration is needed for type checking. We only need to
|
||
/// handle cases when the expression references a function designator
|
||
/// or is an lvalue. Here are some examples:
|
||
/// - &(x) => x
|
||
/// - &*****f => f for f a function designator.
|
||
/// - &s.xx => s
|
||
/// - &s.zz[1].yy -> s, if zz is an array
|
||
/// - *(x + 1) -> x, if x is an array
|
||
/// - &"123"[2] -> 0
|
||
/// - & __real__ x -> x
|
||
static ValueDecl *getPrimaryDecl(Expr *E) {
|
||
switch (E->getStmtClass()) {
|
||
case Stmt::DeclRefExprClass:
|
||
return cast<DeclRefExpr>(E)->getDecl();
|
||
case Stmt::MemberExprClass:
|
||
// If this is an arrow operator, the address is an offset from
|
||
// the base's value, so the object the base refers to is
|
||
// irrelevant.
|
||
if (cast<MemberExpr>(E)->isArrow())
|
||
return 0;
|
||
// Otherwise, the expression refers to a part of the base
|
||
return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
|
||
case Stmt::ArraySubscriptExprClass: {
|
||
// FIXME: This code shouldn't be necessary! We should catch the implicit
|
||
// promotion of register arrays earlier.
|
||
Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
|
||
if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
|
||
if (ICE->getSubExpr()->getType()->isArrayType())
|
||
return getPrimaryDecl(ICE->getSubExpr());
|
||
}
|
||
return 0;
|
||
}
|
||
case Stmt::UnaryOperatorClass: {
|
||
UnaryOperator *UO = cast<UnaryOperator>(E);
|
||
|
||
switch(UO->getOpcode()) {
|
||
case UO_Real:
|
||
case UO_Imag:
|
||
case UO_Extension:
|
||
return getPrimaryDecl(UO->getSubExpr());
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
case Stmt::ParenExprClass:
|
||
return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
|
||
case Stmt::ImplicitCastExprClass:
|
||
// If the result of an implicit cast is an l-value, we care about
|
||
// the sub-expression; otherwise, the result here doesn't matter.
|
||
return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
namespace {
|
||
enum {
|
||
AO_Bit_Field = 0,
|
||
AO_Vector_Element = 1,
|
||
AO_Property_Expansion = 2,
|
||
AO_Register_Variable = 3,
|
||
AO_No_Error = 4
|
||
};
|
||
}
|
||
/// \brief Diagnose invalid operand for address of operations.
|
||
///
|
||
/// \param Type The type of operand which cannot have its address taken.
|
||
static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
|
||
Expr *E, unsigned Type) {
|
||
S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
|
||
}
|
||
|
||
/// CheckAddressOfOperand - The operand of & must be either a function
|
||
/// designator or an lvalue designating an object. If it is an lvalue, the
|
||
/// object cannot be declared with storage class register or be a bit field.
|
||
/// Note: The usual conversions are *not* applied to the operand of the &
|
||
/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
|
||
/// In C++, the operand might be an overloaded function name, in which case
|
||
/// we allow the '&' but retain the overloaded-function type.
|
||
static QualType CheckAddressOfOperand(Sema &S, ExprResult &OrigOp,
|
||
SourceLocation OpLoc) {
|
||
if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
|
||
if (PTy->getKind() == BuiltinType::Overload) {
|
||
if (!isa<OverloadExpr>(OrigOp.get()->IgnoreParens())) {
|
||
S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
|
||
<< OrigOp.get()->getSourceRange();
|
||
return QualType();
|
||
}
|
||
|
||
return S.Context.OverloadTy;
|
||
}
|
||
|
||
if (PTy->getKind() == BuiltinType::UnknownAny)
|
||
return S.Context.UnknownAnyTy;
|
||
|
||
if (PTy->getKind() == BuiltinType::BoundMember) {
|
||
S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
|
||
<< OrigOp.get()->getSourceRange();
|
||
return QualType();
|
||
}
|
||
|
||
OrigOp = S.CheckPlaceholderExpr(OrigOp.take());
|
||
if (OrigOp.isInvalid()) return QualType();
|
||
}
|
||
|
||
if (OrigOp.get()->isTypeDependent())
|
||
return S.Context.DependentTy;
|
||
|
||
assert(!OrigOp.get()->getType()->isPlaceholderType());
|
||
|
||
// Make sure to ignore parentheses in subsequent checks
|
||
Expr *op = OrigOp.get()->IgnoreParens();
|
||
|
||
if (S.getLangOptions().C99) {
|
||
// Implement C99-only parts of addressof rules.
|
||
if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
|
||
if (uOp->getOpcode() == UO_Deref)
|
||
// Per C99 6.5.3.2, the address of a deref always returns a valid result
|
||
// (assuming the deref expression is valid).
|
||
return uOp->getSubExpr()->getType();
|
||
}
|
||
// Technically, there should be a check for array subscript
|
||
// expressions here, but the result of one is always an lvalue anyway.
|
||
}
|
||
ValueDecl *dcl = getPrimaryDecl(op);
|
||
Expr::LValueClassification lval = op->ClassifyLValue(S.Context);
|
||
unsigned AddressOfError = AO_No_Error;
|
||
|
||
if (lval == Expr::LV_ClassTemporary) {
|
||
bool sfinae = S.isSFINAEContext();
|
||
S.Diag(OpLoc, sfinae ? diag::err_typecheck_addrof_class_temporary
|
||
: diag::ext_typecheck_addrof_class_temporary)
|
||
<< op->getType() << op->getSourceRange();
|
||
if (sfinae)
|
||
return QualType();
|
||
} else if (isa<ObjCSelectorExpr>(op)) {
|
||
return S.Context.getPointerType(op->getType());
|
||
} else if (lval == Expr::LV_MemberFunction) {
|
||
// If it's an instance method, make a member pointer.
|
||
// The expression must have exactly the form &A::foo.
|
||
|
||
// If the underlying expression isn't a decl ref, give up.
|
||
if (!isa<DeclRefExpr>(op)) {
|
||
S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
|
||
<< OrigOp.get()->getSourceRange();
|
||
return QualType();
|
||
}
|
||
DeclRefExpr *DRE = cast<DeclRefExpr>(op);
|
||
CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
|
||
|
||
// The id-expression was parenthesized.
|
||
if (OrigOp.get() != DRE) {
|
||
S.Diag(OpLoc, diag::err_parens_pointer_member_function)
|
||
<< OrigOp.get()->getSourceRange();
|
||
|
||
// The method was named without a qualifier.
|
||
} else if (!DRE->getQualifier()) {
|
||
S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
|
||
<< op->getSourceRange();
|
||
}
|
||
|
||
return S.Context.getMemberPointerType(op->getType(),
|
||
S.Context.getTypeDeclType(MD->getParent()).getTypePtr());
|
||
} else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
|
||
// C99 6.5.3.2p1
|
||
// The operand must be either an l-value or a function designator
|
||
if (!op->getType()->isFunctionType()) {
|
||
// Use a special diagnostic for loads from property references.
|
||
if (isa<PseudoObjectExpr>(op)) {
|
||
AddressOfError = AO_Property_Expansion;
|
||
} else {
|
||
// FIXME: emit more specific diag...
|
||
S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
|
||
<< op->getSourceRange();
|
||
return QualType();
|
||
}
|
||
}
|
||
} else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
|
||
// The operand cannot be a bit-field
|
||
AddressOfError = AO_Bit_Field;
|
||
} else if (op->getObjectKind() == OK_VectorComponent) {
|
||
// The operand cannot be an element of a vector
|
||
AddressOfError = AO_Vector_Element;
|
||
} else if (dcl) { // C99 6.5.3.2p1
|
||
// We have an lvalue with a decl. Make sure the decl is not declared
|
||
// with the register storage-class specifier.
|
||
if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
|
||
// in C++ it is not error to take address of a register
|
||
// variable (c++03 7.1.1P3)
|
||
if (vd->getStorageClass() == SC_Register &&
|
||
!S.getLangOptions().CPlusPlus) {
|
||
AddressOfError = AO_Register_Variable;
|
||
}
|
||
} else if (isa<FunctionTemplateDecl>(dcl)) {
|
||
return S.Context.OverloadTy;
|
||
} else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
|
||
// Okay: we can take the address of a field.
|
||
// Could be a pointer to member, though, if there is an explicit
|
||
// scope qualifier for the class.
|
||
if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
|
||
DeclContext *Ctx = dcl->getDeclContext();
|
||
if (Ctx && Ctx->isRecord()) {
|
||
if (dcl->getType()->isReferenceType()) {
|
||
S.Diag(OpLoc,
|
||
diag::err_cannot_form_pointer_to_member_of_reference_type)
|
||
<< dcl->getDeclName() << dcl->getType();
|
||
return QualType();
|
||
}
|
||
|
||
while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
|
||
Ctx = Ctx->getParent();
|
||
return S.Context.getMemberPointerType(op->getType(),
|
||
S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
|
||
}
|
||
}
|
||
} else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
|
||
llvm_unreachable("Unknown/unexpected decl type");
|
||
}
|
||
|
||
if (AddressOfError != AO_No_Error) {
|
||
diagnoseAddressOfInvalidType(S, OpLoc, op, AddressOfError);
|
||
return QualType();
|
||
}
|
||
|
||
if (lval == Expr::LV_IncompleteVoidType) {
|
||
// Taking the address of a void variable is technically illegal, but we
|
||
// allow it in cases which are otherwise valid.
|
||
// Example: "extern void x; void* y = &x;".
|
||
S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
|
||
}
|
||
|
||
// If the operand has type "type", the result has type "pointer to type".
|
||
if (op->getType()->isObjCObjectType())
|
||
return S.Context.getObjCObjectPointerType(op->getType());
|
||
return S.Context.getPointerType(op->getType());
|
||
}
|
||
|
||
/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
|
||
static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
|
||
SourceLocation OpLoc) {
|
||
if (Op->isTypeDependent())
|
||
return S.Context.DependentTy;
|
||
|
||
ExprResult ConvResult = S.UsualUnaryConversions(Op);
|
||
if (ConvResult.isInvalid())
|
||
return QualType();
|
||
Op = ConvResult.take();
|
||
QualType OpTy = Op->getType();
|
||
QualType Result;
|
||
|
||
if (isa<CXXReinterpretCastExpr>(Op)) {
|
||
QualType OpOrigType = Op->IgnoreParenCasts()->getType();
|
||
S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
|
||
Op->getSourceRange());
|
||
}
|
||
|
||
// Note that per both C89 and C99, indirection is always legal, even if OpTy
|
||
// is an incomplete type or void. It would be possible to warn about
|
||
// dereferencing a void pointer, but it's completely well-defined, and such a
|
||
// warning is unlikely to catch any mistakes.
|
||
if (const PointerType *PT = OpTy->getAs<PointerType>())
|
||
Result = PT->getPointeeType();
|
||
else if (const ObjCObjectPointerType *OPT =
|
||
OpTy->getAs<ObjCObjectPointerType>())
|
||
Result = OPT->getPointeeType();
|
||
else {
|
||
ExprResult PR = S.CheckPlaceholderExpr(Op);
|
||
if (PR.isInvalid()) return QualType();
|
||
if (PR.take() != Op)
|
||
return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
|
||
}
|
||
|
||
if (Result.isNull()) {
|
||
S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
|
||
<< OpTy << Op->getSourceRange();
|
||
return QualType();
|
||
}
|
||
|
||
// Dereferences are usually l-values...
|
||
VK = VK_LValue;
|
||
|
||
// ...except that certain expressions are never l-values in C.
|
||
if (!S.getLangOptions().CPlusPlus && Result.isCForbiddenLValueType())
|
||
VK = VK_RValue;
|
||
|
||
return Result;
|
||
}
|
||
|
||
static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
|
||
tok::TokenKind Kind) {
|
||
BinaryOperatorKind Opc;
|
||
switch (Kind) {
|
||
default: llvm_unreachable("Unknown binop!");
|
||
case tok::periodstar: Opc = BO_PtrMemD; break;
|
||
case tok::arrowstar: Opc = BO_PtrMemI; break;
|
||
case tok::star: Opc = BO_Mul; break;
|
||
case tok::slash: Opc = BO_Div; break;
|
||
case tok::percent: Opc = BO_Rem; break;
|
||
case tok::plus: Opc = BO_Add; break;
|
||
case tok::minus: Opc = BO_Sub; break;
|
||
case tok::lessless: Opc = BO_Shl; break;
|
||
case tok::greatergreater: Opc = BO_Shr; break;
|
||
case tok::lessequal: Opc = BO_LE; break;
|
||
case tok::less: Opc = BO_LT; break;
|
||
case tok::greaterequal: Opc = BO_GE; break;
|
||
case tok::greater: Opc = BO_GT; break;
|
||
case tok::exclaimequal: Opc = BO_NE; break;
|
||
case tok::equalequal: Opc = BO_EQ; break;
|
||
case tok::amp: Opc = BO_And; break;
|
||
case tok::caret: Opc = BO_Xor; break;
|
||
case tok::pipe: Opc = BO_Or; break;
|
||
case tok::ampamp: Opc = BO_LAnd; break;
|
||
case tok::pipepipe: Opc = BO_LOr; break;
|
||
case tok::equal: Opc = BO_Assign; break;
|
||
case tok::starequal: Opc = BO_MulAssign; break;
|
||
case tok::slashequal: Opc = BO_DivAssign; break;
|
||
case tok::percentequal: Opc = BO_RemAssign; break;
|
||
case tok::plusequal: Opc = BO_AddAssign; break;
|
||
case tok::minusequal: Opc = BO_SubAssign; break;
|
||
case tok::lesslessequal: Opc = BO_ShlAssign; break;
|
||
case tok::greatergreaterequal: Opc = BO_ShrAssign; break;
|
||
case tok::ampequal: Opc = BO_AndAssign; break;
|
||
case tok::caretequal: Opc = BO_XorAssign; break;
|
||
case tok::pipeequal: Opc = BO_OrAssign; break;
|
||
case tok::comma: Opc = BO_Comma; break;
|
||
}
|
||
return Opc;
|
||
}
|
||
|
||
static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
|
||
tok::TokenKind Kind) {
|
||
UnaryOperatorKind Opc;
|
||
switch (Kind) {
|
||
default: llvm_unreachable("Unknown unary op!");
|
||
case tok::plusplus: Opc = UO_PreInc; break;
|
||
case tok::minusminus: Opc = UO_PreDec; break;
|
||
case tok::amp: Opc = UO_AddrOf; break;
|
||
case tok::star: Opc = UO_Deref; break;
|
||
case tok::plus: Opc = UO_Plus; break;
|
||
case tok::minus: Opc = UO_Minus; break;
|
||
case tok::tilde: Opc = UO_Not; break;
|
||
case tok::exclaim: Opc = UO_LNot; break;
|
||
case tok::kw___real: Opc = UO_Real; break;
|
||
case tok::kw___imag: Opc = UO_Imag; break;
|
||
case tok::kw___extension__: Opc = UO_Extension; break;
|
||
}
|
||
return Opc;
|
||
}
|
||
|
||
/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
|
||
/// This warning is only emitted for builtin assignment operations. It is also
|
||
/// suppressed in the event of macro expansions.
|
||
static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
|
||
SourceLocation OpLoc) {
|
||
if (!S.ActiveTemplateInstantiations.empty())
|
||
return;
|
||
if (OpLoc.isInvalid() || OpLoc.isMacroID())
|
||
return;
|
||
LHSExpr = LHSExpr->IgnoreParenImpCasts();
|
||
RHSExpr = RHSExpr->IgnoreParenImpCasts();
|
||
const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
|
||
const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
|
||
if (!LHSDeclRef || !RHSDeclRef ||
|
||
LHSDeclRef->getLocation().isMacroID() ||
|
||
RHSDeclRef->getLocation().isMacroID())
|
||
return;
|
||
const ValueDecl *LHSDecl =
|
||
cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
|
||
const ValueDecl *RHSDecl =
|
||
cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
|
||
if (LHSDecl != RHSDecl)
|
||
return;
|
||
if (LHSDecl->getType().isVolatileQualified())
|
||
return;
|
||
if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
|
||
if (RefTy->getPointeeType().isVolatileQualified())
|
||
return;
|
||
|
||
S.Diag(OpLoc, diag::warn_self_assignment)
|
||
<< LHSDeclRef->getType()
|
||
<< LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
|
||
}
|
||
|
||
/// CreateBuiltinBinOp - Creates a new built-in binary operation with
|
||
/// operator @p Opc at location @c TokLoc. This routine only supports
|
||
/// built-in operations; ActOnBinOp handles overloaded operators.
|
||
ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
|
||
BinaryOperatorKind Opc,
|
||
Expr *LHSExpr, Expr *RHSExpr) {
|
||
if (getLangOptions().CPlusPlus0x && isa<InitListExpr>(RHSExpr)) {
|
||
// The syntax only allows initializer lists on the RHS of assignment,
|
||
// so we don't need to worry about accepting invalid code for
|
||
// non-assignment operators.
|
||
// C++11 5.17p9:
|
||
// The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
|
||
// of x = {} is x = T().
|
||
InitializationKind Kind =
|
||
InitializationKind::CreateDirectList(RHSExpr->getLocStart());
|
||
InitializedEntity Entity =
|
||
InitializedEntity::InitializeTemporary(LHSExpr->getType());
|
||
InitializationSequence InitSeq(*this, Entity, Kind, &RHSExpr, 1);
|
||
ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
|
||
MultiExprArg(&RHSExpr, 1));
|
||
if (Init.isInvalid())
|
||
return Init;
|
||
RHSExpr = Init.take();
|
||
}
|
||
|
||
ExprResult LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
|
||
QualType ResultTy; // Result type of the binary operator.
|
||
// The following two variables are used for compound assignment operators
|
||
QualType CompLHSTy; // Type of LHS after promotions for computation
|
||
QualType CompResultTy; // Type of computation result
|
||
ExprValueKind VK = VK_RValue;
|
||
ExprObjectKind OK = OK_Ordinary;
|
||
|
||
switch (Opc) {
|
||
case BO_Assign:
|
||
ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
|
||
if (getLangOptions().CPlusPlus &&
|
||
LHS.get()->getObjectKind() != OK_ObjCProperty) {
|
||
VK = LHS.get()->getValueKind();
|
||
OK = LHS.get()->getObjectKind();
|
||
}
|
||
if (!ResultTy.isNull())
|
||
DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
|
||
break;
|
||
case BO_PtrMemD:
|
||
case BO_PtrMemI:
|
||
ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
|
||
Opc == BO_PtrMemI);
|
||
break;
|
||
case BO_Mul:
|
||
case BO_Div:
|
||
ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
|
||
Opc == BO_Div);
|
||
break;
|
||
case BO_Rem:
|
||
ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
|
||
break;
|
||
case BO_Add:
|
||
ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc);
|
||
break;
|
||
case BO_Sub:
|
||
ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
|
||
break;
|
||
case BO_Shl:
|
||
case BO_Shr:
|
||
ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
|
||
break;
|
||
case BO_LE:
|
||
case BO_LT:
|
||
case BO_GE:
|
||
case BO_GT:
|
||
ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
|
||
break;
|
||
case BO_EQ:
|
||
case BO_NE:
|
||
ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
|
||
break;
|
||
case BO_And:
|
||
case BO_Xor:
|
||
case BO_Or:
|
||
ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
|
||
break;
|
||
case BO_LAnd:
|
||
case BO_LOr:
|
||
ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
|
||
break;
|
||
case BO_MulAssign:
|
||
case BO_DivAssign:
|
||
CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
|
||
Opc == BO_DivAssign);
|
||
CompLHSTy = CompResultTy;
|
||
if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
|
||
ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
|
||
break;
|
||
case BO_RemAssign:
|
||
CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
|
||
CompLHSTy = CompResultTy;
|
||
if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
|
||
ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
|
||
break;
|
||
case BO_AddAssign:
|
||
CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, &CompLHSTy);
|
||
if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
|
||
ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
|
||
break;
|
||
case BO_SubAssign:
|
||
CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
|
||
if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
|
||
ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
|
||
break;
|
||
case BO_ShlAssign:
|
||
case BO_ShrAssign:
|
||
CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
|
||
CompLHSTy = CompResultTy;
|
||
if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
|
||
ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
|
||
break;
|
||
case BO_AndAssign:
|
||
case BO_XorAssign:
|
||
case BO_OrAssign:
|
||
CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
|
||
CompLHSTy = CompResultTy;
|
||
if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
|
||
ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
|
||
break;
|
||
case BO_Comma:
|
||
ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
|
||
if (getLangOptions().CPlusPlus && !RHS.isInvalid()) {
|
||
VK = RHS.get()->getValueKind();
|
||
OK = RHS.get()->getObjectKind();
|
||
}
|
||
break;
|
||
}
|
||
if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
|
||
return ExprError();
|
||
|
||
// Check for array bounds violations for both sides of the BinaryOperator
|
||
CheckArrayAccess(LHS.get());
|
||
CheckArrayAccess(RHS.get());
|
||
|
||
if (CompResultTy.isNull())
|
||
return Owned(new (Context) BinaryOperator(LHS.take(), RHS.take(), Opc,
|
||
ResultTy, VK, OK, OpLoc));
|
||
if (getLangOptions().CPlusPlus && LHS.get()->getObjectKind() !=
|
||
OK_ObjCProperty) {
|
||
VK = VK_LValue;
|
||
OK = LHS.get()->getObjectKind();
|
||
}
|
||
return Owned(new (Context) CompoundAssignOperator(LHS.take(), RHS.take(), Opc,
|
||
ResultTy, VK, OK, CompLHSTy,
|
||
CompResultTy, OpLoc));
|
||
}
|
||
|
||
/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
|
||
/// operators are mixed in a way that suggests that the programmer forgot that
|
||
/// comparison operators have higher precedence. The most typical example of
|
||
/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
|
||
static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
|
||
SourceLocation OpLoc, Expr *LHSExpr,
|
||
Expr *RHSExpr) {
|
||
typedef BinaryOperator BinOp;
|
||
BinOp::Opcode LHSopc = static_cast<BinOp::Opcode>(-1),
|
||
RHSopc = static_cast<BinOp::Opcode>(-1);
|
||
if (BinOp *BO = dyn_cast<BinOp>(LHSExpr))
|
||
LHSopc = BO->getOpcode();
|
||
if (BinOp *BO = dyn_cast<BinOp>(RHSExpr))
|
||
RHSopc = BO->getOpcode();
|
||
|
||
// Subs are not binary operators.
|
||
if (LHSopc == -1 && RHSopc == -1)
|
||
return;
|
||
|
||
// Bitwise operations are sometimes used as eager logical ops.
|
||
// Don't diagnose this.
|
||
if ((BinOp::isComparisonOp(LHSopc) || BinOp::isBitwiseOp(LHSopc)) &&
|
||
(BinOp::isComparisonOp(RHSopc) || BinOp::isBitwiseOp(RHSopc)))
|
||
return;
|
||
|
||
bool isLeftComp = BinOp::isComparisonOp(LHSopc);
|
||
bool isRightComp = BinOp::isComparisonOp(RHSopc);
|
||
if (!isLeftComp && !isRightComp) return;
|
||
|
||
SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
|
||
OpLoc)
|
||
: SourceRange(OpLoc, RHSExpr->getLocEnd());
|
||
std::string OpStr = isLeftComp ? BinOp::getOpcodeStr(LHSopc)
|
||
: BinOp::getOpcodeStr(RHSopc);
|
||
SourceRange ParensRange = isLeftComp ?
|
||
SourceRange(cast<BinOp>(LHSExpr)->getRHS()->getLocStart(),
|
||
RHSExpr->getLocEnd())
|
||
: SourceRange(LHSExpr->getLocStart(),
|
||
cast<BinOp>(RHSExpr)->getLHS()->getLocStart());
|
||
|
||
Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
|
||
<< DiagRange << BinOp::getOpcodeStr(Opc) << OpStr;
|
||
SuggestParentheses(Self, OpLoc,
|
||
Self.PDiag(diag::note_precedence_bitwise_silence) << OpStr,
|
||
RHSExpr->getSourceRange());
|
||
SuggestParentheses(Self, OpLoc,
|
||
Self.PDiag(diag::note_precedence_bitwise_first) << BinOp::getOpcodeStr(Opc),
|
||
ParensRange);
|
||
}
|
||
|
||
/// \brief It accepts a '&' expr that is inside a '|' one.
|
||
/// Emit a diagnostic together with a fixit hint that wraps the '&' expression
|
||
/// in parentheses.
|
||
static void
|
||
EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc,
|
||
BinaryOperator *Bop) {
|
||
assert(Bop->getOpcode() == BO_And);
|
||
Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or)
|
||
<< Bop->getSourceRange() << OpLoc;
|
||
SuggestParentheses(Self, Bop->getOperatorLoc(),
|
||
Self.PDiag(diag::note_bitwise_and_in_bitwise_or_silence),
|
||
Bop->getSourceRange());
|
||
}
|
||
|
||
/// \brief It accepts a '&&' expr that is inside a '||' one.
|
||
/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
|
||
/// in parentheses.
|
||
static void
|
||
EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
|
||
BinaryOperator *Bop) {
|
||
assert(Bop->getOpcode() == BO_LAnd);
|
||
Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
|
||
<< Bop->getSourceRange() << OpLoc;
|
||
SuggestParentheses(Self, Bop->getOperatorLoc(),
|
||
Self.PDiag(diag::note_logical_and_in_logical_or_silence),
|
||
Bop->getSourceRange());
|
||
}
|
||
|
||
/// \brief Returns true if the given expression can be evaluated as a constant
|
||
/// 'true'.
|
||
static bool EvaluatesAsTrue(Sema &S, Expr *E) {
|
||
bool Res;
|
||
return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
|
||
}
|
||
|
||
/// \brief Returns true if the given expression can be evaluated as a constant
|
||
/// 'false'.
|
||
static bool EvaluatesAsFalse(Sema &S, Expr *E) {
|
||
bool Res;
|
||
return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
|
||
}
|
||
|
||
/// \brief Look for '&&' in the left hand of a '||' expr.
|
||
static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
|
||
Expr *LHSExpr, Expr *RHSExpr) {
|
||
if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
|
||
if (Bop->getOpcode() == BO_LAnd) {
|
||
// If it's "a && b || 0" don't warn since the precedence doesn't matter.
|
||
if (EvaluatesAsFalse(S, RHSExpr))
|
||
return;
|
||
// If it's "1 && a || b" don't warn since the precedence doesn't matter.
|
||
if (!EvaluatesAsTrue(S, Bop->getLHS()))
|
||
return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
|
||
} else if (Bop->getOpcode() == BO_LOr) {
|
||
if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
|
||
// If it's "a || b && 1 || c" we didn't warn earlier for
|
||
// "a || b && 1", but warn now.
|
||
if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
|
||
return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/// \brief Look for '&&' in the right hand of a '||' expr.
|
||
static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
|
||
Expr *LHSExpr, Expr *RHSExpr) {
|
||
if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
|
||
if (Bop->getOpcode() == BO_LAnd) {
|
||
// If it's "0 || a && b" don't warn since the precedence doesn't matter.
|
||
if (EvaluatesAsFalse(S, LHSExpr))
|
||
return;
|
||
// If it's "a || b && 1" don't warn since the precedence doesn't matter.
|
||
if (!EvaluatesAsTrue(S, Bop->getRHS()))
|
||
return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
|
||
}
|
||
}
|
||
}
|
||
|
||
/// \brief Look for '&' in the left or right hand of a '|' expr.
|
||
static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc,
|
||
Expr *OrArg) {
|
||
if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) {
|
||
if (Bop->getOpcode() == BO_And)
|
||
return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop);
|
||
}
|
||
}
|
||
|
||
/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
|
||
/// precedence.
|
||
static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
|
||
SourceLocation OpLoc, Expr *LHSExpr,
|
||
Expr *RHSExpr){
|
||
// Diagnose "arg1 'bitwise' arg2 'eq' arg3".
|
||
if (BinaryOperator::isBitwiseOp(Opc))
|
||
DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
|
||
|
||
// Diagnose "arg1 & arg2 | arg3"
|
||
if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) {
|
||
DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, LHSExpr);
|
||
DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, RHSExpr);
|
||
}
|
||
|
||
// Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
|
||
// We don't warn for 'assert(a || b && "bad")' since this is safe.
|
||
if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
|
||
DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
|
||
DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
|
||
}
|
||
}
|
||
|
||
// Binary Operators. 'Tok' is the token for the operator.
|
||
ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
|
||
tok::TokenKind Kind,
|
||
Expr *LHSExpr, Expr *RHSExpr) {
|
||
BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
|
||
assert((LHSExpr != 0) && "ActOnBinOp(): missing left expression");
|
||
assert((RHSExpr != 0) && "ActOnBinOp(): missing right expression");
|
||
|
||
// Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
|
||
DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
|
||
|
||
return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
|
||
}
|
||
|
||
/// Build an overloaded binary operator expression in the given scope.
|
||
static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
|
||
BinaryOperatorKind Opc,
|
||
Expr *LHS, Expr *RHS) {
|
||
// Find all of the overloaded operators visible from this
|
||
// point. We perform both an operator-name lookup from the local
|
||
// scope and an argument-dependent lookup based on the types of
|
||
// the arguments.
|
||
UnresolvedSet<16> Functions;
|
||
OverloadedOperatorKind OverOp
|
||
= BinaryOperator::getOverloadedOperator(Opc);
|
||
if (Sc && OverOp != OO_None)
|
||
S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
|
||
RHS->getType(), Functions);
|
||
|
||
// Build the (potentially-overloaded, potentially-dependent)
|
||
// binary operation.
|
||
return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
|
||
}
|
||
|
||
ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
|
||
BinaryOperatorKind Opc,
|
||
Expr *LHSExpr, Expr *RHSExpr) {
|
||
// We want to end up calling one of checkPseudoObjectAssignment
|
||
// (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
|
||
// both expressions are overloadable or either is type-dependent),
|
||
// or CreateBuiltinBinOp (in any other case). We also want to get
|
||
// any placeholder types out of the way.
|
||
|
||
// Handle pseudo-objects in the LHS.
|
||
if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
|
||
// Assignments with a pseudo-object l-value need special analysis.
|
||
if (pty->getKind() == BuiltinType::PseudoObject &&
|
||
BinaryOperator::isAssignmentOp(Opc))
|
||
return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
|
||
|
||
// Don't resolve overloads if the other type is overloadable.
|
||
if (pty->getKind() == BuiltinType::Overload) {
|
||
// We can't actually test that if we still have a placeholder,
|
||
// though. Fortunately, none of the exceptions we see in that
|
||
// code below are valid when the LHS is an overload set. Note
|
||
// that an overload set can be dependently-typed, but it never
|
||
// instantiates to having an overloadable type.
|
||
ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
|
||
if (resolvedRHS.isInvalid()) return ExprError();
|
||
RHSExpr = resolvedRHS.take();
|
||
|
||
if (RHSExpr->isTypeDependent() ||
|
||
RHSExpr->getType()->isOverloadableType())
|
||
return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
|
||
}
|
||
|
||
ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
|
||
if (LHS.isInvalid()) return ExprError();
|
||
LHSExpr = LHS.take();
|
||
}
|
||
|
||
// Handle pseudo-objects in the RHS.
|
||
if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
|
||
// An overload in the RHS can potentially be resolved by the type
|
||
// being assigned to.
|
||
if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
|
||
if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
|
||
return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
|
||
|
||
if (LHSExpr->getType()->isOverloadableType())
|
||
return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
|
||
|
||
return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
|
||
}
|
||
|
||
// Don't resolve overloads if the other type is overloadable.
|
||
if (pty->getKind() == BuiltinType::Overload &&
|
||
LHSExpr->getType()->isOverloadableType())
|
||
return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
|
||
|
||
ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
|
||
if (!resolvedRHS.isUsable()) return ExprError();
|
||
RHSExpr = resolvedRHS.take();
|
||
}
|
||
|
||
if (getLangOptions().CPlusPlus) {
|
||
// If either expression is type-dependent, always build an
|
||
// overloaded op.
|
||
if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
|
||
return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
|
||
|
||
// Otherwise, build an overloaded op if either expression has an
|
||
// overloadable type.
|
||
if (LHSExpr->getType()->isOverloadableType() ||
|
||
RHSExpr->getType()->isOverloadableType())
|
||
return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
|
||
}
|
||
|
||
// Build a built-in binary operation.
|
||
return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
|
||
}
|
||
|
||
ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
|
||
UnaryOperatorKind Opc,
|
||
Expr *InputExpr) {
|
||
ExprResult Input = Owned(InputExpr);
|
||
ExprValueKind VK = VK_RValue;
|
||
ExprObjectKind OK = OK_Ordinary;
|
||
QualType resultType;
|
||
switch (Opc) {
|
||
case UO_PreInc:
|
||
case UO_PreDec:
|
||
case UO_PostInc:
|
||
case UO_PostDec:
|
||
resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc,
|
||
Opc == UO_PreInc ||
|
||
Opc == UO_PostInc,
|
||
Opc == UO_PreInc ||
|
||
Opc == UO_PreDec);
|
||
break;
|
||
case UO_AddrOf:
|
||
resultType = CheckAddressOfOperand(*this, Input, OpLoc);
|
||
break;
|
||
case UO_Deref: {
|
||
Input = DefaultFunctionArrayLvalueConversion(Input.take());
|
||
resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
|
||
break;
|
||
}
|
||
case UO_Plus:
|
||
case UO_Minus:
|
||
Input = UsualUnaryConversions(Input.take());
|
||
if (Input.isInvalid()) return ExprError();
|
||
resultType = Input.get()->getType();
|
||
if (resultType->isDependentType())
|
||
break;
|
||
if (resultType->isArithmeticType() || // C99 6.5.3.3p1
|
||
resultType->isVectorType())
|
||
break;
|
||
else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
|
||
resultType->isEnumeralType())
|
||
break;
|
||
else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
|
||
Opc == UO_Plus &&
|
||
resultType->isPointerType())
|
||
break;
|
||
|
||
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
|
||
<< resultType << Input.get()->getSourceRange());
|
||
|
||
case UO_Not: // bitwise complement
|
||
Input = UsualUnaryConversions(Input.take());
|
||
if (Input.isInvalid()) return ExprError();
|
||
resultType = Input.get()->getType();
|
||
if (resultType->isDependentType())
|
||
break;
|
||
// C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
|
||
if (resultType->isComplexType() || resultType->isComplexIntegerType())
|
||
// C99 does not support '~' for complex conjugation.
|
||
Diag(OpLoc, diag::ext_integer_complement_complex)
|
||
<< resultType << Input.get()->getSourceRange();
|
||
else if (resultType->hasIntegerRepresentation())
|
||
break;
|
||
else {
|
||
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
|
||
<< resultType << Input.get()->getSourceRange());
|
||
}
|
||
break;
|
||
|
||
case UO_LNot: // logical negation
|
||
// Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
|
||
Input = DefaultFunctionArrayLvalueConversion(Input.take());
|
||
if (Input.isInvalid()) return ExprError();
|
||
resultType = Input.get()->getType();
|
||
|
||
// Though we still have to promote half FP to float...
|
||
if (resultType->isHalfType()) {
|
||
Input = ImpCastExprToType(Input.take(), Context.FloatTy, CK_FloatingCast).take();
|
||
resultType = Context.FloatTy;
|
||
}
|
||
|
||
if (resultType->isDependentType())
|
||
break;
|
||
if (resultType->isScalarType()) {
|
||
// C99 6.5.3.3p1: ok, fallthrough;
|
||
if (Context.getLangOptions().CPlusPlus) {
|
||
// C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
|
||
// operand contextually converted to bool.
|
||
Input = ImpCastExprToType(Input.take(), Context.BoolTy,
|
||
ScalarTypeToBooleanCastKind(resultType));
|
||
}
|
||
} else if (resultType->isExtVectorType()) {
|
||
// Vector logical not returns the signed variant of the operand type.
|
||
resultType = GetSignedVectorType(resultType);
|
||
break;
|
||
} else {
|
||
return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
|
||
<< resultType << Input.get()->getSourceRange());
|
||
}
|
||
|
||
// LNot always has type int. C99 6.5.3.3p5.
|
||
// In C++, it's bool. C++ 5.3.1p8
|
||
resultType = Context.getLogicalOperationType();
|
||
break;
|
||
case UO_Real:
|
||
case UO_Imag:
|
||
resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
|
||
// _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
|
||
// complex l-values to ordinary l-values and all other values to r-values.
|
||
if (Input.isInvalid()) return ExprError();
|
||
if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
|
||
if (Input.get()->getValueKind() != VK_RValue &&
|
||
Input.get()->getObjectKind() == OK_Ordinary)
|
||
VK = Input.get()->getValueKind();
|
||
} else if (!getLangOptions().CPlusPlus) {
|
||
// In C, a volatile scalar is read by __imag. In C++, it is not.
|
||
Input = DefaultLvalueConversion(Input.take());
|
||
}
|
||
break;
|
||
case UO_Extension:
|
||
resultType = Input.get()->getType();
|
||
VK = Input.get()->getValueKind();
|
||
OK = Input.get()->getObjectKind();
|
||
break;
|
||
}
|
||
if (resultType.isNull() || Input.isInvalid())
|
||
return ExprError();
|
||
|
||
// Check for array bounds violations in the operand of the UnaryOperator,
|
||
// except for the '*' and '&' operators that have to be handled specially
|
||
// by CheckArrayAccess (as there are special cases like &array[arraysize]
|
||
// that are explicitly defined as valid by the standard).
|
||
if (Opc != UO_AddrOf && Opc != UO_Deref)
|
||
CheckArrayAccess(Input.get());
|
||
|
||
return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType,
|
||
VK, OK, OpLoc));
|
||
}
|
||
|
||
/// \brief Determine whether the given expression is a qualified member
|
||
/// access expression, of a form that could be turned into a pointer to member
|
||
/// with the address-of operator.
|
||
static bool isQualifiedMemberAccess(Expr *E) {
|
||
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
|
||
if (!DRE->getQualifier())
|
||
return false;
|
||
|
||
ValueDecl *VD = DRE->getDecl();
|
||
if (!VD->isCXXClassMember())
|
||
return false;
|
||
|
||
if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
|
||
return true;
|
||
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
|
||
return Method->isInstance();
|
||
|
||
return false;
|
||
}
|
||
|
||
if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
|
||
if (!ULE->getQualifier())
|
||
return false;
|
||
|
||
for (UnresolvedLookupExpr::decls_iterator D = ULE->decls_begin(),
|
||
DEnd = ULE->decls_end();
|
||
D != DEnd; ++D) {
|
||
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*D)) {
|
||
if (Method->isInstance())
|
||
return true;
|
||
} else {
|
||
// Overload set does not contain methods.
|
||
break;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
|
||
UnaryOperatorKind Opc, Expr *Input) {
|
||
// First things first: handle placeholders so that the
|
||
// overloaded-operator check considers the right type.
|
||
if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
|
||
// Increment and decrement of pseudo-object references.
|
||
if (pty->getKind() == BuiltinType::PseudoObject &&
|
||
UnaryOperator::isIncrementDecrementOp(Opc))
|
||
return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
|
||
|
||
// extension is always a builtin operator.
|
||
if (Opc == UO_Extension)
|
||
return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
|
||
|
||
// & gets special logic for several kinds of placeholder.
|
||
// The builtin code knows what to do.
|
||
if (Opc == UO_AddrOf &&
|
||
(pty->getKind() == BuiltinType::Overload ||
|
||
pty->getKind() == BuiltinType::UnknownAny ||
|
||
pty->getKind() == BuiltinType::BoundMember))
|
||
return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
|
||
|
||
// Anything else needs to be handled now.
|
||
ExprResult Result = CheckPlaceholderExpr(Input);
|
||
if (Result.isInvalid()) return ExprError();
|
||
Input = Result.take();
|
||
}
|
||
|
||
if (getLangOptions().CPlusPlus && Input->getType()->isOverloadableType() &&
|
||
UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
|
||
!(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
|
||
// Find all of the overloaded operators visible from this
|
||
// point. We perform both an operator-name lookup from the local
|
||
// scope and an argument-dependent lookup based on the types of
|
||
// the arguments.
|
||
UnresolvedSet<16> Functions;
|
||
OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
|
||
if (S && OverOp != OO_None)
|
||
LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
|
||
Functions);
|
||
|
||
return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
|
||
}
|
||
|
||
return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
|
||
}
|
||
|
||
// Unary Operators. 'Tok' is the token for the operator.
|
||
ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
|
||
tok::TokenKind Op, Expr *Input) {
|
||
return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
|
||
}
|
||
|
||
/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
|
||
ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
|
||
LabelDecl *TheDecl) {
|
||
TheDecl->setUsed();
|
||
// Create the AST node. The address of a label always has type 'void*'.
|
||
return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
|
||
Context.getPointerType(Context.VoidTy)));
|
||
}
|
||
|
||
/// Given the last statement in a statement-expression, check whether
|
||
/// the result is a producing expression (like a call to an
|
||
/// ns_returns_retained function) and, if so, rebuild it to hoist the
|
||
/// release out of the full-expression. Otherwise, return null.
|
||
/// Cannot fail.
|
||
static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
|
||
// Should always be wrapped with one of these.
|
||
ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
|
||
if (!cleanups) return 0;
|
||
|
||
ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
|
||
if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
|
||
return 0;
|
||
|
||
// Splice out the cast. This shouldn't modify any interesting
|
||
// features of the statement.
|
||
Expr *producer = cast->getSubExpr();
|
||
assert(producer->getType() == cast->getType());
|
||
assert(producer->getValueKind() == cast->getValueKind());
|
||
cleanups->setSubExpr(producer);
|
||
return cleanups;
|
||
}
|
||
|
||
ExprResult
|
||
Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
|
||
SourceLocation RPLoc) { // "({..})"
|
||
assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
|
||
CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
|
||
|
||
bool isFileScope
|
||
= (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
|
||
if (isFileScope)
|
||
return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
|
||
|
||
// FIXME: there are a variety of strange constraints to enforce here, for
|
||
// example, it is not possible to goto into a stmt expression apparently.
|
||
// More semantic analysis is needed.
|
||
|
||
// If there are sub stmts in the compound stmt, take the type of the last one
|
||
// as the type of the stmtexpr.
|
||
QualType Ty = Context.VoidTy;
|
||
bool StmtExprMayBindToTemp = false;
|
||
if (!Compound->body_empty()) {
|
||
Stmt *LastStmt = Compound->body_back();
|
||
LabelStmt *LastLabelStmt = 0;
|
||
// If LastStmt is a label, skip down through into the body.
|
||
while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
|
||
LastLabelStmt = Label;
|
||
LastStmt = Label->getSubStmt();
|
||
}
|
||
|
||
if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
|
||
// Do function/array conversion on the last expression, but not
|
||
// lvalue-to-rvalue. However, initialize an unqualified type.
|
||
ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
|
||
if (LastExpr.isInvalid())
|
||
return ExprError();
|
||
Ty = LastExpr.get()->getType().getUnqualifiedType();
|
||
|
||
if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
|
||
// In ARC, if the final expression ends in a consume, splice
|
||
// the consume out and bind it later. In the alternate case
|
||
// (when dealing with a retainable type), the result
|
||
// initialization will create a produce. In both cases the
|
||
// result will be +1, and we'll need to balance that out with
|
||
// a bind.
|
||
if (Expr *rebuiltLastStmt
|
||
= maybeRebuildARCConsumingStmt(LastExpr.get())) {
|
||
LastExpr = rebuiltLastStmt;
|
||
} else {
|
||
LastExpr = PerformCopyInitialization(
|
||
InitializedEntity::InitializeResult(LPLoc,
|
||
Ty,
|
||
false),
|
||
SourceLocation(),
|
||
LastExpr);
|
||
}
|
||
|
||
if (LastExpr.isInvalid())
|
||
return ExprError();
|
||
if (LastExpr.get() != 0) {
|
||
if (!LastLabelStmt)
|
||
Compound->setLastStmt(LastExpr.take());
|
||
else
|
||
LastLabelStmt->setSubStmt(LastExpr.take());
|
||
StmtExprMayBindToTemp = true;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// FIXME: Check that expression type is complete/non-abstract; statement
|
||
// expressions are not lvalues.
|
||
Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
|
||
if (StmtExprMayBindToTemp)
|
||
return MaybeBindToTemporary(ResStmtExpr);
|
||
return Owned(ResStmtExpr);
|
||
}
|
||
|
||
ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
|
||
TypeSourceInfo *TInfo,
|
||
OffsetOfComponent *CompPtr,
|
||
unsigned NumComponents,
|
||
SourceLocation RParenLoc) {
|
||
QualType ArgTy = TInfo->getType();
|
||
bool Dependent = ArgTy->isDependentType();
|
||
SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
|
||
|
||
// We must have at least one component that refers to the type, and the first
|
||
// one is known to be a field designator. Verify that the ArgTy represents
|
||
// a struct/union/class.
|
||
if (!Dependent && !ArgTy->isRecordType())
|
||
return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
|
||
<< ArgTy << TypeRange);
|
||
|
||
// Type must be complete per C99 7.17p3 because a declaring a variable
|
||
// with an incomplete type would be ill-formed.
|
||
if (!Dependent
|
||
&& RequireCompleteType(BuiltinLoc, ArgTy,
|
||
PDiag(diag::err_offsetof_incomplete_type)
|
||
<< TypeRange))
|
||
return ExprError();
|
||
|
||
// offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
|
||
// GCC extension, diagnose them.
|
||
// FIXME: This diagnostic isn't actually visible because the location is in
|
||
// a system header!
|
||
if (NumComponents != 1)
|
||
Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
|
||
<< SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
|
||
|
||
bool DidWarnAboutNonPOD = false;
|
||
QualType CurrentType = ArgTy;
|
||
typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
|
||
SmallVector<OffsetOfNode, 4> Comps;
|
||
SmallVector<Expr*, 4> Exprs;
|
||
for (unsigned i = 0; i != NumComponents; ++i) {
|
||
const OffsetOfComponent &OC = CompPtr[i];
|
||
if (OC.isBrackets) {
|
||
// Offset of an array sub-field. TODO: Should we allow vector elements?
|
||
if (!CurrentType->isDependentType()) {
|
||
const ArrayType *AT = Context.getAsArrayType(CurrentType);
|
||
if(!AT)
|
||
return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
|
||
<< CurrentType);
|
||
CurrentType = AT->getElementType();
|
||
} else
|
||
CurrentType = Context.DependentTy;
|
||
|
||
ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
|
||
if (IdxRval.isInvalid())
|
||
return ExprError();
|
||
Expr *Idx = IdxRval.take();
|
||
|
||
// The expression must be an integral expression.
|
||
// FIXME: An integral constant expression?
|
||
if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
|
||
!Idx->getType()->isIntegerType())
|
||
return ExprError(Diag(Idx->getLocStart(),
|
||
diag::err_typecheck_subscript_not_integer)
|
||
<< Idx->getSourceRange());
|
||
|
||
// Record this array index.
|
||
Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
|
||
Exprs.push_back(Idx);
|
||
continue;
|
||
}
|
||
|
||
// Offset of a field.
|
||
if (CurrentType->isDependentType()) {
|
||
// We have the offset of a field, but we can't look into the dependent
|
||
// type. Just record the identifier of the field.
|
||
Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
|
||
CurrentType = Context.DependentTy;
|
||
continue;
|
||
}
|
||
|
||
// We need to have a complete type to look into.
|
||
if (RequireCompleteType(OC.LocStart, CurrentType,
|
||
diag::err_offsetof_incomplete_type))
|
||
return ExprError();
|
||
|
||
// Look for the designated field.
|
||
const RecordType *RC = CurrentType->getAs<RecordType>();
|
||
if (!RC)
|
||
return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
|
||
<< CurrentType);
|
||
RecordDecl *RD = RC->getDecl();
|
||
|
||
// C++ [lib.support.types]p5:
|
||
// The macro offsetof accepts a restricted set of type arguments in this
|
||
// International Standard. type shall be a POD structure or a POD union
|
||
// (clause 9).
|
||
if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
|
||
if (!CRD->isPOD() && !DidWarnAboutNonPOD &&
|
||
DiagRuntimeBehavior(BuiltinLoc, 0,
|
||
PDiag(diag::warn_offsetof_non_pod_type)
|
||
<< SourceRange(CompPtr[0].LocStart, OC.LocEnd)
|
||
<< CurrentType))
|
||
DidWarnAboutNonPOD = true;
|
||
}
|
||
|
||
// Look for the field.
|
||
LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
|
||
LookupQualifiedName(R, RD);
|
||
FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
|
||
IndirectFieldDecl *IndirectMemberDecl = 0;
|
||
if (!MemberDecl) {
|
||
if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
|
||
MemberDecl = IndirectMemberDecl->getAnonField();
|
||
}
|
||
|
||
if (!MemberDecl)
|
||
return ExprError(Diag(BuiltinLoc, diag::err_no_member)
|
||
<< OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
|
||
OC.LocEnd));
|
||
|
||
// C99 7.17p3:
|
||
// (If the specified member is a bit-field, the behavior is undefined.)
|
||
//
|
||
// We diagnose this as an error.
|
||
if (MemberDecl->isBitField()) {
|
||
Diag(OC.LocEnd, diag::err_offsetof_bitfield)
|
||
<< MemberDecl->getDeclName()
|
||
<< SourceRange(BuiltinLoc, RParenLoc);
|
||
Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
|
||
return ExprError();
|
||
}
|
||
|
||
RecordDecl *Parent = MemberDecl->getParent();
|
||
if (IndirectMemberDecl)
|
||
Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
|
||
|
||
// If the member was found in a base class, introduce OffsetOfNodes for
|
||
// the base class indirections.
|
||
CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
|
||
/*DetectVirtual=*/false);
|
||
if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
|
||
CXXBasePath &Path = Paths.front();
|
||
for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
|
||
B != BEnd; ++B)
|
||
Comps.push_back(OffsetOfNode(B->Base));
|
||
}
|
||
|
||
if (IndirectMemberDecl) {
|
||
for (IndirectFieldDecl::chain_iterator FI =
|
||
IndirectMemberDecl->chain_begin(),
|
||
FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
|
||
assert(isa<FieldDecl>(*FI));
|
||
Comps.push_back(OffsetOfNode(OC.LocStart,
|
||
cast<FieldDecl>(*FI), OC.LocEnd));
|
||
}
|
||
} else
|
||
Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
|
||
|
||
CurrentType = MemberDecl->getType().getNonReferenceType();
|
||
}
|
||
|
||
return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
|
||
TInfo, Comps.data(), Comps.size(),
|
||
Exprs.data(), Exprs.size(), RParenLoc));
|
||
}
|
||
|
||
ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
|
||
SourceLocation BuiltinLoc,
|
||
SourceLocation TypeLoc,
|
||
ParsedType ParsedArgTy,
|
||
OffsetOfComponent *CompPtr,
|
||
unsigned NumComponents,
|
||
SourceLocation RParenLoc) {
|
||
|
||
TypeSourceInfo *ArgTInfo;
|
||
QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
|
||
if (ArgTy.isNull())
|
||
return ExprError();
|
||
|
||
if (!ArgTInfo)
|
||
ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
|
||
|
||
return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
|
||
RParenLoc);
|
||
}
|
||
|
||
|
||
ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
|
||
Expr *CondExpr,
|
||
Expr *LHSExpr, Expr *RHSExpr,
|
||
SourceLocation RPLoc) {
|
||
assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
|
||
|
||
ExprValueKind VK = VK_RValue;
|
||
ExprObjectKind OK = OK_Ordinary;
|
||
QualType resType;
|
||
bool ValueDependent = false;
|
||
if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
|
||
resType = Context.DependentTy;
|
||
ValueDependent = true;
|
||
} else {
|
||
// The conditional expression is required to be a constant expression.
|
||
llvm::APSInt condEval(32);
|
||
ExprResult CondICE = VerifyIntegerConstantExpression(CondExpr, &condEval,
|
||
PDiag(diag::err_typecheck_choose_expr_requires_constant), false);
|
||
if (CondICE.isInvalid())
|
||
return ExprError();
|
||
CondExpr = CondICE.take();
|
||
|
||
// If the condition is > zero, then the AST type is the same as the LSHExpr.
|
||
Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr;
|
||
|
||
resType = ActiveExpr->getType();
|
||
ValueDependent = ActiveExpr->isValueDependent();
|
||
VK = ActiveExpr->getValueKind();
|
||
OK = ActiveExpr->getObjectKind();
|
||
}
|
||
|
||
return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
|
||
resType, VK, OK, RPLoc,
|
||
resType->isDependentType(),
|
||
ValueDependent));
|
||
}
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// Clang Extensions.
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
/// ActOnBlockStart - This callback is invoked when a block literal is started.
|
||
void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
|
||
BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
|
||
PushBlockScope(CurScope, Block);
|
||
CurContext->addDecl(Block);
|
||
if (CurScope)
|
||
PushDeclContext(CurScope, Block);
|
||
else
|
||
CurContext = Block;
|
||
|
||
getCurBlock()->HasImplicitReturnType = true;
|
||
|
||
// Enter a new evaluation context to insulate the block from any
|
||
// cleanups from the enclosing full-expression.
|
||
PushExpressionEvaluationContext(PotentiallyEvaluated);
|
||
}
|
||
|
||
void Sema::ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {
|
||
assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
|
||
assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
|
||
BlockScopeInfo *CurBlock = getCurBlock();
|
||
|
||
TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
|
||
QualType T = Sig->getType();
|
||
|
||
// GetTypeForDeclarator always produces a function type for a block
|
||
// literal signature. Furthermore, it is always a FunctionProtoType
|
||
// unless the function was written with a typedef.
|
||
assert(T->isFunctionType() &&
|
||
"GetTypeForDeclarator made a non-function block signature");
|
||
|
||
// Look for an explicit signature in that function type.
|
||
FunctionProtoTypeLoc ExplicitSignature;
|
||
|
||
TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
|
||
if (isa<FunctionProtoTypeLoc>(tmp)) {
|
||
ExplicitSignature = cast<FunctionProtoTypeLoc>(tmp);
|
||
|
||
// Check whether that explicit signature was synthesized by
|
||
// GetTypeForDeclarator. If so, don't save that as part of the
|
||
// written signature.
|
||
if (ExplicitSignature.getLocalRangeBegin() ==
|
||
ExplicitSignature.getLocalRangeEnd()) {
|
||
// This would be much cheaper if we stored TypeLocs instead of
|
||
// TypeSourceInfos.
|
||
TypeLoc Result = ExplicitSignature.getResultLoc();
|
||
unsigned Size = Result.getFullDataSize();
|
||
Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
|
||
Sig->getTypeLoc().initializeFullCopy(Result, Size);
|
||
|
||
ExplicitSignature = FunctionProtoTypeLoc();
|
||
}
|
||
}
|
||
|
||
CurBlock->TheDecl->setSignatureAsWritten(Sig);
|
||
CurBlock->FunctionType = T;
|
||
|
||
const FunctionType *Fn = T->getAs<FunctionType>();
|
||
QualType RetTy = Fn->getResultType();
|
||
bool isVariadic =
|
||
(isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
|
||
|
||
CurBlock->TheDecl->setIsVariadic(isVariadic);
|
||
|
||
// Don't allow returning a objc interface by value.
|
||
if (RetTy->isObjCObjectType()) {
|
||
Diag(ParamInfo.getSourceRange().getBegin(),
|
||
diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
|
||
return;
|
||
}
|
||
|
||
// Context.DependentTy is used as a placeholder for a missing block
|
||
// return type. TODO: what should we do with declarators like:
|
||
// ^ * { ... }
|
||
// If the answer is "apply template argument deduction"....
|
||
if (RetTy != Context.DependentTy) {
|
||
CurBlock->ReturnType = RetTy;
|
||
CurBlock->TheDecl->setBlockMissingReturnType(false);
|
||
CurBlock->HasImplicitReturnType = false;
|
||
}
|
||
|
||
// Push block parameters from the declarator if we had them.
|
||
SmallVector<ParmVarDecl*, 8> Params;
|
||
if (ExplicitSignature) {
|
||
for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
|
||
ParmVarDecl *Param = ExplicitSignature.getArg(I);
|
||
if (Param->getIdentifier() == 0 &&
|
||
!Param->isImplicit() &&
|
||
!Param->isInvalidDecl() &&
|
||
!getLangOptions().CPlusPlus)
|
||
Diag(Param->getLocation(), diag::err_parameter_name_omitted);
|
||
Params.push_back(Param);
|
||
}
|
||
|
||
// Fake up parameter variables if we have a typedef, like
|
||
// ^ fntype { ... }
|
||
} else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
|
||
for (FunctionProtoType::arg_type_iterator
|
||
I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
|
||
ParmVarDecl *Param =
|
||
BuildParmVarDeclForTypedef(CurBlock->TheDecl,
|
||
ParamInfo.getSourceRange().getBegin(),
|
||
*I);
|
||
Params.push_back(Param);
|
||
}
|
||
}
|
||
|
||
// Set the parameters on the block decl.
|
||
if (!Params.empty()) {
|
||
CurBlock->TheDecl->setParams(Params);
|
||
CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
|
||
CurBlock->TheDecl->param_end(),
|
||
/*CheckParameterNames=*/false);
|
||
}
|
||
|
||
// Finally we can process decl attributes.
|
||
ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
|
||
|
||
// Put the parameter variables in scope. We can bail out immediately
|
||
// if we don't have any.
|
||
if (Params.empty())
|
||
return;
|
||
|
||
for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
|
||
E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
|
||
(*AI)->setOwningFunction(CurBlock->TheDecl);
|
||
|
||
// If this has an identifier, add it to the scope stack.
|
||
if ((*AI)->getIdentifier()) {
|
||
CheckShadow(CurBlock->TheScope, *AI);
|
||
|
||
PushOnScopeChains(*AI, CurBlock->TheScope);
|
||
}
|
||
}
|
||
}
|
||
|
||
/// ActOnBlockError - If there is an error parsing a block, this callback
|
||
/// is invoked to pop the information about the block from the action impl.
|
||
void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
|
||
// Leave the expression-evaluation context.
|
||
DiscardCleanupsInEvaluationContext();
|
||
PopExpressionEvaluationContext();
|
||
|
||
// Pop off CurBlock, handle nested blocks.
|
||
PopDeclContext();
|
||
PopFunctionScopeInfo();
|
||
}
|
||
|
||
/// ActOnBlockStmtExpr - This is called when the body of a block statement
|
||
/// literal was successfully completed. ^(int x){...}
|
||
ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
|
||
Stmt *Body, Scope *CurScope) {
|
||
// If blocks are disabled, emit an error.
|
||
if (!LangOpts.Blocks)
|
||
Diag(CaretLoc, diag::err_blocks_disable);
|
||
|
||
// Leave the expression-evaluation context.
|
||
assert(!ExprNeedsCleanups && "cleanups within block not correctly bound!");
|
||
PopExpressionEvaluationContext();
|
||
|
||
BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
|
||
|
||
PopDeclContext();
|
||
|
||
QualType RetTy = Context.VoidTy;
|
||
if (!BSI->ReturnType.isNull())
|
||
RetTy = BSI->ReturnType;
|
||
|
||
bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
|
||
QualType BlockTy;
|
||
|
||
// Set the captured variables on the block.
|
||
// FIXME: Share capture structure between BlockDecl and CapturingScopeInfo!
|
||
SmallVector<BlockDecl::Capture, 4> Captures;
|
||
for (unsigned i = 0, e = BSI->Captures.size(); i != e; i++) {
|
||
CapturingScopeInfo::Capture &Cap = BSI->Captures[i];
|
||
if (Cap.isThisCapture())
|
||
continue;
|
||
BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(),
|
||
Cap.isNested(), Cap.getCopyExpr());
|
||
Captures.push_back(NewCap);
|
||
}
|
||
BSI->TheDecl->setCaptures(Context, Captures.begin(), Captures.end(),
|
||
BSI->CXXThisCaptureIndex != 0);
|
||
|
||
// If the user wrote a function type in some form, try to use that.
|
||
if (!BSI->FunctionType.isNull()) {
|
||
const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
|
||
|
||
FunctionType::ExtInfo Ext = FTy->getExtInfo();
|
||
if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
|
||
|
||
// Turn protoless block types into nullary block types.
|
||
if (isa<FunctionNoProtoType>(FTy)) {
|
||
FunctionProtoType::ExtProtoInfo EPI;
|
||
EPI.ExtInfo = Ext;
|
||
BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
|
||
|
||
// Otherwise, if we don't need to change anything about the function type,
|
||
// preserve its sugar structure.
|
||
} else if (FTy->getResultType() == RetTy &&
|
||
(!NoReturn || FTy->getNoReturnAttr())) {
|
||
BlockTy = BSI->FunctionType;
|
||
|
||
// Otherwise, make the minimal modifications to the function type.
|
||
} else {
|
||
const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
|
||
FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
|
||
EPI.TypeQuals = 0; // FIXME: silently?
|
||
EPI.ExtInfo = Ext;
|
||
BlockTy = Context.getFunctionType(RetTy,
|
||
FPT->arg_type_begin(),
|
||
FPT->getNumArgs(),
|
||
EPI);
|
||
}
|
||
|
||
// If we don't have a function type, just build one from nothing.
|
||
} else {
|
||
FunctionProtoType::ExtProtoInfo EPI;
|
||
EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
|
||
BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
|
||
}
|
||
|
||
DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
|
||
BSI->TheDecl->param_end());
|
||
BlockTy = Context.getBlockPointerType(BlockTy);
|
||
|
||
// If needed, diagnose invalid gotos and switches in the block.
|
||
if (getCurFunction()->NeedsScopeChecking() &&
|
||
!hasAnyUnrecoverableErrorsInThisFunction())
|
||
DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
|
||
|
||
BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
|
||
|
||
for (BlockDecl::capture_const_iterator ci = BSI->TheDecl->capture_begin(),
|
||
ce = BSI->TheDecl->capture_end(); ci != ce; ++ci) {
|
||
const VarDecl *variable = ci->getVariable();
|
||
QualType T = variable->getType();
|
||
QualType::DestructionKind destructKind = T.isDestructedType();
|
||
if (destructKind != QualType::DK_none)
|
||
getCurFunction()->setHasBranchProtectedScope();
|
||
}
|
||
|
||
computeNRVO(Body, getCurBlock());
|
||
|
||
BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
|
||
const AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy();
|
||
PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result);
|
||
|
||
// If the block isn't obviously global, i.e. it captures anything at
|
||
// all, mark this full-expression as needing a cleanup.
|
||
if (Result->getBlockDecl()->hasCaptures()) {
|
||
ExprCleanupObjects.push_back(Result->getBlockDecl());
|
||
ExprNeedsCleanups = true;
|
||
}
|
||
|
||
return Owned(Result);
|
||
}
|
||
|
||
ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
|
||
Expr *E, ParsedType Ty,
|
||
SourceLocation RPLoc) {
|
||
TypeSourceInfo *TInfo;
|
||
GetTypeFromParser(Ty, &TInfo);
|
||
return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
|
||
}
|
||
|
||
ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
|
||
Expr *E, TypeSourceInfo *TInfo,
|
||
SourceLocation RPLoc) {
|
||
Expr *OrigExpr = E;
|
||
|
||
// Get the va_list type
|
||
QualType VaListType = Context.getBuiltinVaListType();
|
||
if (VaListType->isArrayType()) {
|
||
// Deal with implicit array decay; for example, on x86-64,
|
||
// va_list is an array, but it's supposed to decay to
|
||
// a pointer for va_arg.
|
||
VaListType = Context.getArrayDecayedType(VaListType);
|
||
// Make sure the input expression also decays appropriately.
|
||
ExprResult Result = UsualUnaryConversions(E);
|
||
if (Result.isInvalid())
|
||
return ExprError();
|
||
E = Result.take();
|
||
} else {
|
||
// Otherwise, the va_list argument must be an l-value because
|
||
// it is modified by va_arg.
|
||
if (!E->isTypeDependent() &&
|
||
CheckForModifiableLvalue(E, BuiltinLoc, *this))
|
||
return ExprError();
|
||
}
|
||
|
||
if (!E->isTypeDependent() &&
|
||
!Context.hasSameType(VaListType, E->getType())) {
|
||
return ExprError(Diag(E->getLocStart(),
|
||
diag::err_first_argument_to_va_arg_not_of_type_va_list)
|
||
<< OrigExpr->getType() << E->getSourceRange());
|
||
}
|
||
|
||
if (!TInfo->getType()->isDependentType()) {
|
||
if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
|
||
PDiag(diag::err_second_parameter_to_va_arg_incomplete)
|
||
<< TInfo->getTypeLoc().getSourceRange()))
|
||
return ExprError();
|
||
|
||
if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
|
||
TInfo->getType(),
|
||
PDiag(diag::err_second_parameter_to_va_arg_abstract)
|
||
<< TInfo->getTypeLoc().getSourceRange()))
|
||
return ExprError();
|
||
|
||
if (!TInfo->getType().isPODType(Context)) {
|
||
Diag(TInfo->getTypeLoc().getBeginLoc(),
|
||
TInfo->getType()->isObjCLifetimeType()
|
||
? diag::warn_second_parameter_to_va_arg_ownership_qualified
|
||
: diag::warn_second_parameter_to_va_arg_not_pod)
|
||
<< TInfo->getType()
|
||
<< TInfo->getTypeLoc().getSourceRange();
|
||
}
|
||
|
||
// Check for va_arg where arguments of the given type will be promoted
|
||
// (i.e. this va_arg is guaranteed to have undefined behavior).
|
||
QualType PromoteType;
|
||
if (TInfo->getType()->isPromotableIntegerType()) {
|
||
PromoteType = Context.getPromotedIntegerType(TInfo->getType());
|
||
if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
|
||
PromoteType = QualType();
|
||
}
|
||
if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
|
||
PromoteType = Context.DoubleTy;
|
||
if (!PromoteType.isNull())
|
||
Diag(TInfo->getTypeLoc().getBeginLoc(),
|
||
diag::warn_second_parameter_to_va_arg_never_compatible)
|
||
<< TInfo->getType()
|
||
<< PromoteType
|
||
<< TInfo->getTypeLoc().getSourceRange();
|
||
}
|
||
|
||
QualType T = TInfo->getType().getNonLValueExprType(Context);
|
||
return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
|
||
}
|
||
|
||
ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
|
||
// The type of __null will be int or long, depending on the size of
|
||
// pointers on the target.
|
||
QualType Ty;
|
||
unsigned pw = Context.getTargetInfo().getPointerWidth(0);
|
||
if (pw == Context.getTargetInfo().getIntWidth())
|
||
Ty = Context.IntTy;
|
||
else if (pw == Context.getTargetInfo().getLongWidth())
|
||
Ty = Context.LongTy;
|
||
else if (pw == Context.getTargetInfo().getLongLongWidth())
|
||
Ty = Context.LongLongTy;
|
||
else {
|
||
llvm_unreachable("I don't know size of pointer!");
|
||
}
|
||
|
||
return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
|
||
}
|
||
|
||
static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
|
||
Expr *SrcExpr, FixItHint &Hint) {
|
||
if (!SemaRef.getLangOptions().ObjC1)
|
||
return;
|
||
|
||
const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
|
||
if (!PT)
|
||
return;
|
||
|
||
// Check if the destination is of type 'id'.
|
||
if (!PT->isObjCIdType()) {
|
||
// Check if the destination is the 'NSString' interface.
|
||
const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
|
||
if (!ID || !ID->getIdentifier()->isStr("NSString"))
|
||
return;
|
||
}
|
||
|
||
// Ignore any parens, implicit casts (should only be
|
||
// array-to-pointer decays), and not-so-opaque values. The last is
|
||
// important for making this trigger for property assignments.
|
||
SrcExpr = SrcExpr->IgnoreParenImpCasts();
|
||
if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
|
||
if (OV->getSourceExpr())
|
||
SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
|
||
|
||
StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
|
||
if (!SL || !SL->isAscii())
|
||
return;
|
||
|
||
Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
|
||
}
|
||
|
||
bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
|
||
SourceLocation Loc,
|
||
QualType DstType, QualType SrcType,
|
||
Expr *SrcExpr, AssignmentAction Action,
|
||
bool *Complained) {
|
||
if (Complained)
|
||
*Complained = false;
|
||
|
||
// Decode the result (notice that AST's are still created for extensions).
|
||
bool CheckInferredResultType = false;
|
||
bool isInvalid = false;
|
||
unsigned DiagKind;
|
||
FixItHint Hint;
|
||
ConversionFixItGenerator ConvHints;
|
||
bool MayHaveConvFixit = false;
|
||
bool MayHaveFunctionDiff = false;
|
||
|
||
switch (ConvTy) {
|
||
case Compatible: return false;
|
||
case PointerToInt:
|
||
DiagKind = diag::ext_typecheck_convert_pointer_int;
|
||
ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
|
||
MayHaveConvFixit = true;
|
||
break;
|
||
case IntToPointer:
|
||
DiagKind = diag::ext_typecheck_convert_int_pointer;
|
||
ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
|
||
MayHaveConvFixit = true;
|
||
break;
|
||
case IncompatiblePointer:
|
||
MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
|
||
DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
|
||
CheckInferredResultType = DstType->isObjCObjectPointerType() &&
|
||
SrcType->isObjCObjectPointerType();
|
||
if (Hint.isNull() && !CheckInferredResultType) {
|
||
ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
|
||
}
|
||
MayHaveConvFixit = true;
|
||
break;
|
||
case IncompatiblePointerSign:
|
||
DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
|
||
break;
|
||
case FunctionVoidPointer:
|
||
DiagKind = diag::ext_typecheck_convert_pointer_void_func;
|
||
break;
|
||
case IncompatiblePointerDiscardsQualifiers: {
|
||
// Perform array-to-pointer decay if necessary.
|
||
if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
|
||
|
||
Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
|
||
Qualifiers rhq = DstType->getPointeeType().getQualifiers();
|
||
if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
|
||
DiagKind = diag::err_typecheck_incompatible_address_space;
|
||
break;
|
||
|
||
|
||
} else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
|
||
DiagKind = diag::err_typecheck_incompatible_ownership;
|
||
break;
|
||
}
|
||
|
||
llvm_unreachable("unknown error case for discarding qualifiers!");
|
||
// fallthrough
|
||
}
|
||
case CompatiblePointerDiscardsQualifiers:
|
||
// If the qualifiers lost were because we were applying the
|
||
// (deprecated) C++ conversion from a string literal to a char*
|
||
// (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
|
||
// Ideally, this check would be performed in
|
||
// checkPointerTypesForAssignment. However, that would require a
|
||
// bit of refactoring (so that the second argument is an
|
||
// expression, rather than a type), which should be done as part
|
||
// of a larger effort to fix checkPointerTypesForAssignment for
|
||
// C++ semantics.
|
||
if (getLangOptions().CPlusPlus &&
|
||
IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
|
||
return false;
|
||
DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
|
||
break;
|
||
case IncompatibleNestedPointerQualifiers:
|
||
DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
|
||
break;
|
||
case IntToBlockPointer:
|
||
DiagKind = diag::err_int_to_block_pointer;
|
||
break;
|
||
case IncompatibleBlockPointer:
|
||
DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
|
||
break;
|
||
case IncompatibleObjCQualifiedId:
|
||
// FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
|
||
// it can give a more specific diagnostic.
|
||
DiagKind = diag::warn_incompatible_qualified_id;
|
||
break;
|
||
case IncompatibleVectors:
|
||
DiagKind = diag::warn_incompatible_vectors;
|
||
break;
|
||
case IncompatibleObjCWeakRef:
|
||
DiagKind = diag::err_arc_weak_unavailable_assign;
|
||
break;
|
||
case Incompatible:
|
||
DiagKind = diag::err_typecheck_convert_incompatible;
|
||
ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
|
||
MayHaveConvFixit = true;
|
||
isInvalid = true;
|
||
MayHaveFunctionDiff = true;
|
||
break;
|
||
}
|
||
|
||
QualType FirstType, SecondType;
|
||
switch (Action) {
|
||
case AA_Assigning:
|
||
case AA_Initializing:
|
||
// The destination type comes first.
|
||
FirstType = DstType;
|
||
SecondType = SrcType;
|
||
break;
|
||
|
||
case AA_Returning:
|
||
case AA_Passing:
|
||
case AA_Converting:
|
||
case AA_Sending:
|
||
case AA_Casting:
|
||
// The source type comes first.
|
||
FirstType = SrcType;
|
||
SecondType = DstType;
|
||
break;
|
||
}
|
||
|
||
PartialDiagnostic FDiag = PDiag(DiagKind);
|
||
FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
|
||
|
||
// If we can fix the conversion, suggest the FixIts.
|
||
assert(ConvHints.isNull() || Hint.isNull());
|
||
if (!ConvHints.isNull()) {
|
||
for (std::vector<FixItHint>::iterator HI = ConvHints.Hints.begin(),
|
||
HE = ConvHints.Hints.end(); HI != HE; ++HI)
|
||
FDiag << *HI;
|
||
} else {
|
||
FDiag << Hint;
|
||
}
|
||
if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
|
||
|
||
if (MayHaveFunctionDiff)
|
||
HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
|
||
|
||
Diag(Loc, FDiag);
|
||
|
||
if (SecondType == Context.OverloadTy)
|
||
NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
|
||
FirstType);
|
||
|
||
if (CheckInferredResultType)
|
||
EmitRelatedResultTypeNote(SrcExpr);
|
||
|
||
if (Complained)
|
||
*Complained = true;
|
||
return isInvalid;
|
||
}
|
||
|
||
ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
|
||
llvm::APSInt *Result) {
|
||
return VerifyIntegerConstantExpression(E, Result,
|
||
PDiag(diag::err_expr_not_ice) << LangOpts.CPlusPlus);
|
||
}
|
||
|
||
ExprResult Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
|
||
PartialDiagnostic NotIceDiag,
|
||
bool AllowFold,
|
||
PartialDiagnostic FoldDiag) {
|
||
SourceLocation DiagLoc = E->getSourceRange().getBegin();
|
||
|
||
if (getLangOptions().CPlusPlus0x) {
|
||
// C++11 [expr.const]p5:
|
||
// If an expression of literal class type is used in a context where an
|
||
// integral constant expression is required, then that class type shall
|
||
// have a single non-explicit conversion function to an integral or
|
||
// unscoped enumeration type
|
||
ExprResult Converted;
|
||
if (NotIceDiag.getDiagID()) {
|
||
Converted = ConvertToIntegralOrEnumerationType(
|
||
DiagLoc, E,
|
||
PDiag(diag::err_ice_not_integral),
|
||
PDiag(diag::err_ice_incomplete_type),
|
||
PDiag(diag::err_ice_explicit_conversion),
|
||
PDiag(diag::note_ice_conversion_here),
|
||
PDiag(diag::err_ice_ambiguous_conversion),
|
||
PDiag(diag::note_ice_conversion_here),
|
||
PDiag(0),
|
||
/*AllowScopedEnumerations*/ false);
|
||
} else {
|
||
// The caller wants to silently enquire whether this is an ICE. Don't
|
||
// produce any diagnostics if it isn't.
|
||
Converted = ConvertToIntegralOrEnumerationType(
|
||
DiagLoc, E, PDiag(), PDiag(), PDiag(), PDiag(),
|
||
PDiag(), PDiag(), PDiag(), false);
|
||
}
|
||
if (Converted.isInvalid())
|
||
return Converted;
|
||
E = Converted.take();
|
||
if (!E->getType()->isIntegralOrUnscopedEnumerationType())
|
||
return ExprError();
|
||
} else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
|
||
// An ICE must be of integral or unscoped enumeration type.
|
||
if (NotIceDiag.getDiagID())
|
||
Diag(DiagLoc, NotIceDiag) << E->getSourceRange();
|
||
return ExprError();
|
||
}
|
||
|
||
// Circumvent ICE checking in C++11 to avoid evaluating the expression twice
|
||
// in the non-ICE case.
|
||
if (!getLangOptions().CPlusPlus0x && E->isIntegerConstantExpr(Context)) {
|
||
if (Result)
|
||
*Result = E->EvaluateKnownConstInt(Context);
|
||
return Owned(E);
|
||
}
|
||
|
||
Expr::EvalResult EvalResult;
|
||
llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
|
||
EvalResult.Diag = &Notes;
|
||
|
||
// Try to evaluate the expression, and produce diagnostics explaining why it's
|
||
// not a constant expression as a side-effect.
|
||
bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
|
||
EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
|
||
|
||
// In C++11, we can rely on diagnostics being produced for any expression
|
||
// which is not a constant expression. If no diagnostics were produced, then
|
||
// this is a constant expression.
|
||
if (Folded && getLangOptions().CPlusPlus0x && Notes.empty()) {
|
||
if (Result)
|
||
*Result = EvalResult.Val.getInt();
|
||
return Owned(E);
|
||
}
|
||
|
||
// If our only note is the usual "invalid subexpression" note, just point
|
||
// the caret at its location rather than producing an essentially
|
||
// redundant note.
|
||
if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
|
||
diag::note_invalid_subexpr_in_const_expr) {
|
||
DiagLoc = Notes[0].first;
|
||
Notes.clear();
|
||
}
|
||
|
||
if (!Folded || !AllowFold) {
|
||
if (NotIceDiag.getDiagID()) {
|
||
Diag(DiagLoc, NotIceDiag) << E->getSourceRange();
|
||
for (unsigned I = 0, N = Notes.size(); I != N; ++I)
|
||
Diag(Notes[I].first, Notes[I].second);
|
||
}
|
||
|
||
return ExprError();
|
||
}
|
||
|
||
if (FoldDiag.getDiagID())
|
||
Diag(DiagLoc, FoldDiag) << E->getSourceRange();
|
||
else
|
||
Diag(DiagLoc, diag::ext_expr_not_ice)
|
||
<< E->getSourceRange() << LangOpts.CPlusPlus;
|
||
for (unsigned I = 0, N = Notes.size(); I != N; ++I)
|
||
Diag(Notes[I].first, Notes[I].second);
|
||
|
||
if (Result)
|
||
*Result = EvalResult.Val.getInt();
|
||
return Owned(E);
|
||
}
|
||
|
||
namespace {
|
||
// Handle the case where we conclude a expression which we speculatively
|
||
// considered to be unevaluated is actually evaluated.
|
||
class TransformToPE : public TreeTransform<TransformToPE> {
|
||
typedef TreeTransform<TransformToPE> BaseTransform;
|
||
|
||
public:
|
||
TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
|
||
|
||
// Make sure we redo semantic analysis
|
||
bool AlwaysRebuild() { return true; }
|
||
|
||
// Make sure we handle LabelStmts correctly.
|
||
// FIXME: This does the right thing, but maybe we need a more general
|
||
// fix to TreeTransform?
|
||
StmtResult TransformLabelStmt(LabelStmt *S) {
|
||
S->getDecl()->setStmt(0);
|
||
return BaseTransform::TransformLabelStmt(S);
|
||
}
|
||
|
||
// We need to special-case DeclRefExprs referring to FieldDecls which
|
||
// are not part of a member pointer formation; normal TreeTransforming
|
||
// doesn't catch this case because of the way we represent them in the AST.
|
||
// FIXME: This is a bit ugly; is it really the best way to handle this
|
||
// case?
|
||
//
|
||
// Error on DeclRefExprs referring to FieldDecls.
|
||
ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
|
||
if (isa<FieldDecl>(E->getDecl()) &&
|
||
SemaRef.ExprEvalContexts.back().Context != Sema::Unevaluated)
|
||
return SemaRef.Diag(E->getLocation(),
|
||
diag::err_invalid_non_static_member_use)
|
||
<< E->getDecl() << E->getSourceRange();
|
||
|
||
return BaseTransform::TransformDeclRefExpr(E);
|
||
}
|
||
|
||
// Exception: filter out member pointer formation
|
||
ExprResult TransformUnaryOperator(UnaryOperator *E) {
|
||
if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
|
||
return E;
|
||
|
||
return BaseTransform::TransformUnaryOperator(E);
|
||
}
|
||
|
||
ExprResult TransformLambdaExpr(LambdaExpr *E) {
|
||
// Lambdas never need to be transformed.
|
||
return E;
|
||
}
|
||
};
|
||
}
|
||
|
||
ExprResult Sema::TranformToPotentiallyEvaluated(Expr *E) {
|
||
ExprEvalContexts.back().Context =
|
||
ExprEvalContexts[ExprEvalContexts.size()-2].Context;
|
||
if (ExprEvalContexts.back().Context == Unevaluated)
|
||
return E;
|
||
return TransformToPE(*this).TransformExpr(E);
|
||
}
|
||
|
||
void
|
||
Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
|
||
Decl *LambdaContextDecl,
|
||
bool IsDecltype) {
|
||
ExprEvalContexts.push_back(
|
||
ExpressionEvaluationContextRecord(NewContext,
|
||
ExprCleanupObjects.size(),
|
||
ExprNeedsCleanups,
|
||
LambdaContextDecl,
|
||
IsDecltype));
|
||
ExprNeedsCleanups = false;
|
||
if (!MaybeODRUseExprs.empty())
|
||
std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
|
||
}
|
||
|
||
void Sema::PopExpressionEvaluationContext() {
|
||
ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
|
||
|
||
if (!Rec.Lambdas.empty()) {
|
||
if (Rec.Context == Unevaluated) {
|
||
// C++11 [expr.prim.lambda]p2:
|
||
// A lambda-expression shall not appear in an unevaluated operand
|
||
// (Clause 5).
|
||
for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I)
|
||
Diag(Rec.Lambdas[I]->getLocStart(),
|
||
diag::err_lambda_unevaluated_operand);
|
||
} else {
|
||
// Mark the capture expressions odr-used. This was deferred
|
||
// during lambda expression creation.
|
||
for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I) {
|
||
LambdaExpr *Lambda = Rec.Lambdas[I];
|
||
for (LambdaExpr::capture_init_iterator
|
||
C = Lambda->capture_init_begin(),
|
||
CEnd = Lambda->capture_init_end();
|
||
C != CEnd; ++C) {
|
||
MarkDeclarationsReferencedInExpr(*C);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// When are coming out of an unevaluated context, clear out any
|
||
// temporaries that we may have created as part of the evaluation of
|
||
// the expression in that context: they aren't relevant because they
|
||
// will never be constructed.
|
||
if (Rec.Context == Unevaluated || Rec.Context == ConstantEvaluated) {
|
||
ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
|
||
ExprCleanupObjects.end());
|
||
ExprNeedsCleanups = Rec.ParentNeedsCleanups;
|
||
CleanupVarDeclMarking();
|
||
std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
|
||
// Otherwise, merge the contexts together.
|
||
} else {
|
||
ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
|
||
MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
|
||
Rec.SavedMaybeODRUseExprs.end());
|
||
}
|
||
|
||
// Pop the current expression evaluation context off the stack.
|
||
ExprEvalContexts.pop_back();
|
||
}
|
||
|
||
void Sema::DiscardCleanupsInEvaluationContext() {
|
||
ExprCleanupObjects.erase(
|
||
ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
|
||
ExprCleanupObjects.end());
|
||
ExprNeedsCleanups = false;
|
||
MaybeODRUseExprs.clear();
|
||
}
|
||
|
||
ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
|
||
if (!E->getType()->isVariablyModifiedType())
|
||
return E;
|
||
return TranformToPotentiallyEvaluated(E);
|
||
}
|
||
|
||
static bool IsPotentiallyEvaluatedContext(Sema &SemaRef) {
|
||
// Do not mark anything as "used" within a dependent context; wait for
|
||
// an instantiation.
|
||
if (SemaRef.CurContext->isDependentContext())
|
||
return false;
|
||
|
||
switch (SemaRef.ExprEvalContexts.back().Context) {
|
||
case Sema::Unevaluated:
|
||
// We are in an expression that is not potentially evaluated; do nothing.
|
||
// (Depending on how you read the standard, we actually do need to do
|
||
// something here for null pointer constants, but the standard's
|
||
// definition of a null pointer constant is completely crazy.)
|
||
return false;
|
||
|
||
case Sema::ConstantEvaluated:
|
||
case Sema::PotentiallyEvaluated:
|
||
// We are in a potentially evaluated expression (or a constant-expression
|
||
// in C++03); we need to do implicit template instantiation, implicitly
|
||
// define class members, and mark most declarations as used.
|
||
return true;
|
||
|
||
case Sema::PotentiallyEvaluatedIfUsed:
|
||
// Referenced declarations will only be used if the construct in the
|
||
// containing expression is used.
|
||
return false;
|
||
}
|
||
llvm_unreachable("Invalid context");
|
||
}
|
||
|
||
/// \brief Mark a function referenced, and check whether it is odr-used
|
||
/// (C++ [basic.def.odr]p2, C99 6.9p3)
|
||
void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func) {
|
||
assert(Func && "No function?");
|
||
|
||
Func->setReferenced();
|
||
|
||
// Don't mark this function as used multiple times, unless it's a constexpr
|
||
// function which we need to instantiate.
|
||
if (Func->isUsed(false) &&
|
||
!(Func->isConstexpr() && !Func->getBody() &&
|
||
Func->isImplicitlyInstantiable()))
|
||
return;
|
||
|
||
if (!IsPotentiallyEvaluatedContext(*this))
|
||
return;
|
||
|
||
// Note that this declaration has been used.
|
||
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
|
||
if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
|
||
if (Constructor->isDefaultConstructor()) {
|
||
if (Constructor->isTrivial())
|
||
return;
|
||
if (!Constructor->isUsed(false))
|
||
DefineImplicitDefaultConstructor(Loc, Constructor);
|
||
} else if (Constructor->isCopyConstructor()) {
|
||
if (!Constructor->isUsed(false))
|
||
DefineImplicitCopyConstructor(Loc, Constructor);
|
||
} else if (Constructor->isMoveConstructor()) {
|
||
if (!Constructor->isUsed(false))
|
||
DefineImplicitMoveConstructor(Loc, Constructor);
|
||
}
|
||
}
|
||
|
||
MarkVTableUsed(Loc, Constructor->getParent());
|
||
} else if (CXXDestructorDecl *Destructor =
|
||
dyn_cast<CXXDestructorDecl>(Func)) {
|
||
if (Destructor->isDefaulted() && !Destructor->isDeleted() &&
|
||
!Destructor->isUsed(false))
|
||
DefineImplicitDestructor(Loc, Destructor);
|
||
if (Destructor->isVirtual())
|
||
MarkVTableUsed(Loc, Destructor->getParent());
|
||
} else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
|
||
if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted() &&
|
||
MethodDecl->isOverloadedOperator() &&
|
||
MethodDecl->getOverloadedOperator() == OO_Equal) {
|
||
if (!MethodDecl->isUsed(false)) {
|
||
if (MethodDecl->isCopyAssignmentOperator())
|
||
DefineImplicitCopyAssignment(Loc, MethodDecl);
|
||
else
|
||
DefineImplicitMoveAssignment(Loc, MethodDecl);
|
||
}
|
||
} else if (isa<CXXConversionDecl>(MethodDecl) &&
|
||
MethodDecl->getParent()->isLambda()) {
|
||
CXXConversionDecl *Conversion = cast<CXXConversionDecl>(MethodDecl);
|
||
if (Conversion->isLambdaToBlockPointerConversion())
|
||
DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
|
||
else
|
||
DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
|
||
} else if (MethodDecl->isVirtual())
|
||
MarkVTableUsed(Loc, MethodDecl->getParent());
|
||
}
|
||
|
||
// Recursive functions should be marked when used from another function.
|
||
// FIXME: Is this really right?
|
||
if (CurContext == Func) return;
|
||
|
||
// Implicit instantiation of function templates and member functions of
|
||
// class templates.
|
||
if (Func->isImplicitlyInstantiable()) {
|
||
bool AlreadyInstantiated = false;
|
||
SourceLocation PointOfInstantiation = Loc;
|
||
if (FunctionTemplateSpecializationInfo *SpecInfo
|
||
= Func->getTemplateSpecializationInfo()) {
|
||
if (SpecInfo->getPointOfInstantiation().isInvalid())
|
||
SpecInfo->setPointOfInstantiation(Loc);
|
||
else if (SpecInfo->getTemplateSpecializationKind()
|
||
== TSK_ImplicitInstantiation) {
|
||
AlreadyInstantiated = true;
|
||
PointOfInstantiation = SpecInfo->getPointOfInstantiation();
|
||
}
|
||
} else if (MemberSpecializationInfo *MSInfo
|
||
= Func->getMemberSpecializationInfo()) {
|
||
if (MSInfo->getPointOfInstantiation().isInvalid())
|
||
MSInfo->setPointOfInstantiation(Loc);
|
||
else if (MSInfo->getTemplateSpecializationKind()
|
||
== TSK_ImplicitInstantiation) {
|
||
AlreadyInstantiated = true;
|
||
PointOfInstantiation = MSInfo->getPointOfInstantiation();
|
||
}
|
||
}
|
||
|
||
if (!AlreadyInstantiated || Func->isConstexpr()) {
|
||
if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
|
||
cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass())
|
||
PendingLocalImplicitInstantiations.push_back(
|
||
std::make_pair(Func, PointOfInstantiation));
|
||
else if (Func->isConstexpr())
|
||
// Do not defer instantiations of constexpr functions, to avoid the
|
||
// expression evaluator needing to call back into Sema if it sees a
|
||
// call to such a function.
|
||
InstantiateFunctionDefinition(PointOfInstantiation, Func);
|
||
else {
|
||
PendingInstantiations.push_back(std::make_pair(Func,
|
||
PointOfInstantiation));
|
||
// Notify the consumer that a function was implicitly instantiated.
|
||
Consumer.HandleCXXImplicitFunctionInstantiation(Func);
|
||
}
|
||
}
|
||
} else {
|
||
// Walk redefinitions, as some of them may be instantiable.
|
||
for (FunctionDecl::redecl_iterator i(Func->redecls_begin()),
|
||
e(Func->redecls_end()); i != e; ++i) {
|
||
if (!i->isUsed(false) && i->isImplicitlyInstantiable())
|
||
MarkFunctionReferenced(Loc, *i);
|
||
}
|
||
}
|
||
|
||
// Keep track of used but undefined functions.
|
||
if (!Func->isPure() && !Func->hasBody() &&
|
||
Func->getLinkage() != ExternalLinkage) {
|
||
SourceLocation &old = UndefinedInternals[Func->getCanonicalDecl()];
|
||
if (old.isInvalid()) old = Loc;
|
||
}
|
||
|
||
Func->setUsed(true);
|
||
}
|
||
|
||
static void
|
||
diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
|
||
VarDecl *var, DeclContext *DC) {
|
||
DeclContext *VarDC = var->getDeclContext();
|
||
|
||
// If the parameter still belongs to the translation unit, then
|
||
// we're actually just using one parameter in the declaration of
|
||
// the next.
|
||
if (isa<ParmVarDecl>(var) &&
|
||
isa<TranslationUnitDecl>(VarDC))
|
||
return;
|
||
|
||
// For C code, don't diagnose about capture if we're not actually in code
|
||
// right now; it's impossible to write a non-constant expression outside of
|
||
// function context, so we'll get other (more useful) diagnostics later.
|
||
//
|
||
// For C++, things get a bit more nasty... it would be nice to suppress this
|
||
// diagnostic for certain cases like using a local variable in an array bound
|
||
// for a member of a local class, but the correct predicate is not obvious.
|
||
if (!S.getLangOptions().CPlusPlus && !S.CurContext->isFunctionOrMethod())
|
||
return;
|
||
|
||
if (isa<CXXMethodDecl>(VarDC) &&
|
||
cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
|
||
S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_lambda)
|
||
<< var->getIdentifier();
|
||
} else if (FunctionDecl *fn = dyn_cast<FunctionDecl>(VarDC)) {
|
||
S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
|
||
<< var->getIdentifier() << fn->getDeclName();
|
||
} else if (isa<BlockDecl>(VarDC)) {
|
||
S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_block)
|
||
<< var->getIdentifier();
|
||
} else {
|
||
// FIXME: Is there any other context where a local variable can be
|
||
// declared?
|
||
S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_context)
|
||
<< var->getIdentifier();
|
||
}
|
||
|
||
S.Diag(var->getLocation(), diag::note_local_variable_declared_here)
|
||
<< var->getIdentifier();
|
||
|
||
// FIXME: Add additional diagnostic info about class etc. which prevents
|
||
// capture.
|
||
}
|
||
|
||
/// \brief Capture the given variable in the given lambda expression.
|
||
static ExprResult captureInLambda(Sema &S, LambdaScopeInfo *LSI,
|
||
VarDecl *Var, QualType FieldType,
|
||
QualType DeclRefType,
|
||
SourceLocation Loc) {
|
||
CXXRecordDecl *Lambda = LSI->Lambda;
|
||
|
||
// Build the non-static data member.
|
||
FieldDecl *Field
|
||
= FieldDecl::Create(S.Context, Lambda, Loc, Loc, 0, FieldType,
|
||
S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
|
||
0, false, false);
|
||
Field->setImplicit(true);
|
||
Field->setAccess(AS_private);
|
||
Lambda->addDecl(Field);
|
||
|
||
// C++11 [expr.prim.lambda]p21:
|
||
// When the lambda-expression is evaluated, the entities that
|
||
// are captured by copy are used to direct-initialize each
|
||
// corresponding non-static data member of the resulting closure
|
||
// object. (For array members, the array elements are
|
||
// direct-initialized in increasing subscript order.) These
|
||
// initializations are performed in the (unspecified) order in
|
||
// which the non-static data members are declared.
|
||
|
||
// Introduce a new evaluation context for the initialization, so
|
||
// that temporaries introduced as part of the capture are retained
|
||
// to be re-"exported" from the lambda expression itself.
|
||
S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
|
||
|
||
// C++ [expr.prim.labda]p12:
|
||
// An entity captured by a lambda-expression is odr-used (3.2) in
|
||
// the scope containing the lambda-expression.
|
||
Expr *Ref = new (S.Context) DeclRefExpr(Var, DeclRefType, VK_LValue, Loc);
|
||
Var->setUsed(true);
|
||
|
||
// When the field has array type, create index variables for each
|
||
// dimension of the array. We use these index variables to subscript
|
||
// the source array, and other clients (e.g., CodeGen) will perform
|
||
// the necessary iteration with these index variables.
|
||
SmallVector<VarDecl *, 4> IndexVariables;
|
||
QualType BaseType = FieldType;
|
||
QualType SizeType = S.Context.getSizeType();
|
||
LSI->ArrayIndexStarts.push_back(LSI->ArrayIndexVars.size());
|
||
while (const ConstantArrayType *Array
|
||
= S.Context.getAsConstantArrayType(BaseType)) {
|
||
// Create the iteration variable for this array index.
|
||
IdentifierInfo *IterationVarName = 0;
|
||
{
|
||
SmallString<8> Str;
|
||
llvm::raw_svector_ostream OS(Str);
|
||
OS << "__i" << IndexVariables.size();
|
||
IterationVarName = &S.Context.Idents.get(OS.str());
|
||
}
|
||
VarDecl *IterationVar
|
||
= VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
|
||
IterationVarName, SizeType,
|
||
S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
|
||
SC_None, SC_None);
|
||
IndexVariables.push_back(IterationVar);
|
||
LSI->ArrayIndexVars.push_back(IterationVar);
|
||
|
||
// Create a reference to the iteration variable.
|
||
ExprResult IterationVarRef
|
||
= S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
|
||
assert(!IterationVarRef.isInvalid() &&
|
||
"Reference to invented variable cannot fail!");
|
||
IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.take());
|
||
assert(!IterationVarRef.isInvalid() &&
|
||
"Conversion of invented variable cannot fail!");
|
||
|
||
// Subscript the array with this iteration variable.
|
||
ExprResult Subscript = S.CreateBuiltinArraySubscriptExpr(
|
||
Ref, Loc, IterationVarRef.take(), Loc);
|
||
if (Subscript.isInvalid()) {
|
||
S.CleanupVarDeclMarking();
|
||
S.DiscardCleanupsInEvaluationContext();
|
||
S.PopExpressionEvaluationContext();
|
||
return ExprError();
|
||
}
|
||
|
||
Ref = Subscript.take();
|
||
BaseType = Array->getElementType();
|
||
}
|
||
|
||
// Construct the entity that we will be initializing. For an array, this
|
||
// will be first element in the array, which may require several levels
|
||
// of array-subscript entities.
|
||
SmallVector<InitializedEntity, 4> Entities;
|
||
Entities.reserve(1 + IndexVariables.size());
|
||
Entities.push_back(
|
||
InitializedEntity::InitializeLambdaCapture(Var, Field, Loc));
|
||
for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
|
||
Entities.push_back(InitializedEntity::InitializeElement(S.Context,
|
||
0,
|
||
Entities.back()));
|
||
|
||
InitializationKind InitKind
|
||
= InitializationKind::CreateDirect(Loc, Loc, Loc);
|
||
InitializationSequence Init(S, Entities.back(), InitKind, &Ref, 1);
|
||
ExprResult Result(true);
|
||
if (!Init.Diagnose(S, Entities.back(), InitKind, &Ref, 1))
|
||
Result = Init.Perform(S, Entities.back(), InitKind,
|
||
MultiExprArg(S, &Ref, 1));
|
||
|
||
// If this initialization requires any cleanups (e.g., due to a
|
||
// default argument to a copy constructor), note that for the
|
||
// lambda.
|
||
if (S.ExprNeedsCleanups)
|
||
LSI->ExprNeedsCleanups = true;
|
||
|
||
// Exit the expression evaluation context used for the capture.
|
||
S.CleanupVarDeclMarking();
|
||
S.DiscardCleanupsInEvaluationContext();
|
||
S.PopExpressionEvaluationContext();
|
||
return Result;
|
||
}
|
||
|
||
bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
|
||
TryCaptureKind Kind, SourceLocation EllipsisLoc,
|
||
bool BuildAndDiagnose,
|
||
QualType &CaptureType,
|
||
QualType &DeclRefType) {
|
||
bool Nested = false;
|
||
|
||
DeclContext *DC = CurContext;
|
||
if (Var->getDeclContext() == DC) return true;
|
||
if (!Var->hasLocalStorage()) return true;
|
||
|
||
bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
|
||
|
||
// Walk up the stack to determine whether we can capture the variable,
|
||
// performing the "simple" checks that don't depend on type. We stop when
|
||
// we've either hit the declared scope of the variable or find an existing
|
||
// capture of that variable.
|
||
CaptureType = Var->getType();
|
||
DeclRefType = CaptureType.getNonReferenceType();
|
||
bool Explicit = (Kind != TryCapture_Implicit);
|
||
unsigned FunctionScopesIndex = FunctionScopes.size() - 1;
|
||
do {
|
||
// Only block literals and lambda expressions can capture; other
|
||
// scopes don't work.
|
||
DeclContext *ParentDC;
|
||
if (isa<BlockDecl>(DC))
|
||
ParentDC = DC->getParent();
|
||
else if (isa<CXXMethodDecl>(DC) &&
|
||
cast<CXXMethodDecl>(DC)->getOverloadedOperator() == OO_Call &&
|
||
cast<CXXRecordDecl>(DC->getParent())->isLambda())
|
||
ParentDC = DC->getParent()->getParent();
|
||
else {
|
||
if (BuildAndDiagnose)
|
||
diagnoseUncapturableValueReference(*this, Loc, Var, DC);
|
||
return true;
|
||
}
|
||
|
||
CapturingScopeInfo *CSI =
|
||
cast<CapturingScopeInfo>(FunctionScopes[FunctionScopesIndex]);
|
||
|
||
// Check whether we've already captured it.
|
||
if (CSI->CaptureMap.count(Var)) {
|
||
// If we found a capture, any subcaptures are nested.
|
||
Nested = true;
|
||
|
||
// Retrieve the capture type for this variable.
|
||
CaptureType = CSI->getCapture(Var).getCaptureType();
|
||
|
||
// Compute the type of an expression that refers to this variable.
|
||
DeclRefType = CaptureType.getNonReferenceType();
|
||
|
||
const CapturingScopeInfo::Capture &Cap = CSI->getCapture(Var);
|
||
if (Cap.isCopyCapture() &&
|
||
!(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable))
|
||
DeclRefType.addConst();
|
||
break;
|
||
}
|
||
|
||
bool IsBlock = isa<BlockScopeInfo>(CSI);
|
||
bool IsLambda = !IsBlock;
|
||
|
||
// Lambdas are not allowed to capture unnamed variables
|
||
// (e.g. anonymous unions).
|
||
// FIXME: The C++11 rule don't actually state this explicitly, but I'm
|
||
// assuming that's the intent.
|
||
if (IsLambda && !Var->getDeclName()) {
|
||
if (BuildAndDiagnose) {
|
||
Diag(Loc, diag::err_lambda_capture_anonymous_var);
|
||
Diag(Var->getLocation(), diag::note_declared_at);
|
||
}
|
||
return true;
|
||
}
|
||
|
||
// Prohibit variably-modified types; they're difficult to deal with.
|
||
if (Var->getType()->isVariablyModifiedType()) {
|
||
if (BuildAndDiagnose) {
|
||
if (IsBlock)
|
||
Diag(Loc, diag::err_ref_vm_type);
|
||
else
|
||
Diag(Loc, diag::err_lambda_capture_vm_type) << Var->getDeclName();
|
||
Diag(Var->getLocation(), diag::note_previous_decl)
|
||
<< Var->getDeclName();
|
||
}
|
||
return true;
|
||
}
|
||
|
||
// Lambdas are not allowed to capture __block variables; they don't
|
||
// support the expected semantics.
|
||
if (IsLambda && HasBlocksAttr) {
|
||
if (BuildAndDiagnose) {
|
||
Diag(Loc, diag::err_lambda_capture_block)
|
||
<< Var->getDeclName();
|
||
Diag(Var->getLocation(), diag::note_previous_decl)
|
||
<< Var->getDeclName();
|
||
}
|
||
return true;
|
||
}
|
||
|
||
if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
|
||
// No capture-default
|
||
if (BuildAndDiagnose) {
|
||
Diag(Loc, diag::err_lambda_impcap) << Var->getDeclName();
|
||
Diag(Var->getLocation(), diag::note_previous_decl)
|
||
<< Var->getDeclName();
|
||
Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getLocStart(),
|
||
diag::note_lambda_decl);
|
||
}
|
||
return true;
|
||
}
|
||
|
||
FunctionScopesIndex--;
|
||
DC = ParentDC;
|
||
Explicit = false;
|
||
} while (!Var->getDeclContext()->Equals(DC));
|
||
|
||
// Walk back down the scope stack, computing the type of the capture at
|
||
// each step, checking type-specific requirements, and adding captures if
|
||
// requested.
|
||
for (unsigned I = ++FunctionScopesIndex, N = FunctionScopes.size(); I != N;
|
||
++I) {
|
||
CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
|
||
|
||
// Compute the type of the capture and of a reference to the capture within
|
||
// this scope.
|
||
if (isa<BlockScopeInfo>(CSI)) {
|
||
Expr *CopyExpr = 0;
|
||
bool ByRef = false;
|
||
|
||
// Blocks are not allowed to capture arrays.
|
||
if (CaptureType->isArrayType()) {
|
||
if (BuildAndDiagnose) {
|
||
Diag(Loc, diag::err_ref_array_type);
|
||
Diag(Var->getLocation(), diag::note_previous_decl)
|
||
<< Var->getDeclName();
|
||
}
|
||
return true;
|
||
}
|
||
|
||
if (HasBlocksAttr || CaptureType->isReferenceType()) {
|
||
// Block capture by reference does not change the capture or
|
||
// declaration reference types.
|
||
ByRef = true;
|
||
} else {
|
||
// Block capture by copy introduces 'const'.
|
||
CaptureType = CaptureType.getNonReferenceType().withConst();
|
||
DeclRefType = CaptureType;
|
||
|
||
if (getLangOptions().CPlusPlus && BuildAndDiagnose) {
|
||
if (const RecordType *Record = DeclRefType->getAs<RecordType>()) {
|
||
// The capture logic needs the destructor, so make sure we mark it.
|
||
// Usually this is unnecessary because most local variables have
|
||
// their destructors marked at declaration time, but parameters are
|
||
// an exception because it's technically only the call site that
|
||
// actually requires the destructor.
|
||
if (isa<ParmVarDecl>(Var))
|
||
FinalizeVarWithDestructor(Var, Record);
|
||
|
||
// According to the blocks spec, the capture of a variable from
|
||
// the stack requires a const copy constructor. This is not true
|
||
// of the copy/move done to move a __block variable to the heap.
|
||
Expr *DeclRef = new (Context) DeclRefExpr(Var,
|
||
DeclRefType.withConst(),
|
||
VK_LValue, Loc);
|
||
ExprResult Result
|
||
= PerformCopyInitialization(
|
||
InitializedEntity::InitializeBlock(Var->getLocation(),
|
||
CaptureType, false),
|
||
Loc, Owned(DeclRef));
|
||
|
||
// Build a full-expression copy expression if initialization
|
||
// succeeded and used a non-trivial constructor. Recover from
|
||
// errors by pretending that the copy isn't necessary.
|
||
if (!Result.isInvalid() &&
|
||
!cast<CXXConstructExpr>(Result.get())->getConstructor()
|
||
->isTrivial()) {
|
||
Result = MaybeCreateExprWithCleanups(Result);
|
||
CopyExpr = Result.take();
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// Actually capture the variable.
|
||
if (BuildAndDiagnose)
|
||
CSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc,
|
||
SourceLocation(), CaptureType, CopyExpr);
|
||
Nested = true;
|
||
continue;
|
||
}
|
||
|
||
LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
|
||
|
||
// Determine whether we are capturing by reference or by value.
|
||
bool ByRef = false;
|
||
if (I == N - 1 && Kind != TryCapture_Implicit) {
|
||
ByRef = (Kind == TryCapture_ExplicitByRef);
|
||
} else {
|
||
ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
|
||
}
|
||
|
||
// Compute the type of the field that will capture this variable.
|
||
if (ByRef) {
|
||
// C++11 [expr.prim.lambda]p15:
|
||
// An entity is captured by reference if it is implicitly or
|
||
// explicitly captured but not captured by copy. It is
|
||
// unspecified whether additional unnamed non-static data
|
||
// members are declared in the closure type for entities
|
||
// captured by reference.
|
||
//
|
||
// FIXME: It is not clear whether we want to build an lvalue reference
|
||
// to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
|
||
// to do the former, while EDG does the latter. Core issue 1249 will
|
||
// clarify, but for now we follow GCC because it's a more permissive and
|
||
// easily defensible position.
|
||
CaptureType = Context.getLValueReferenceType(DeclRefType);
|
||
} else {
|
||
// C++11 [expr.prim.lambda]p14:
|
||
// For each entity captured by copy, an unnamed non-static
|
||
// data member is declared in the closure type. The
|
||
// declaration order of these members is unspecified. The type
|
||
// of such a data member is the type of the corresponding
|
||
// captured entity if the entity is not a reference to an
|
||
// object, or the referenced type otherwise. [Note: If the
|
||
// captured entity is a reference to a function, the
|
||
// corresponding data member is also a reference to a
|
||
// function. - end note ]
|
||
if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
|
||
if (!RefType->getPointeeType()->isFunctionType())
|
||
CaptureType = RefType->getPointeeType();
|
||
}
|
||
}
|
||
|
||
// Capture this variable in the lambda.
|
||
Expr *CopyExpr = 0;
|
||
if (BuildAndDiagnose) {
|
||
ExprResult Result = captureInLambda(*this, LSI, Var, CaptureType,
|
||
DeclRefType, Loc);
|
||
if (!Result.isInvalid())
|
||
CopyExpr = Result.take();
|
||
}
|
||
|
||
// Compute the type of a reference to this captured variable.
|
||
if (ByRef)
|
||
DeclRefType = CaptureType.getNonReferenceType();
|
||
else {
|
||
// C++ [expr.prim.lambda]p5:
|
||
// The closure type for a lambda-expression has a public inline
|
||
// function call operator [...]. This function call operator is
|
||
// declared const (9.3.1) if and only if the lambda-expression’s
|
||
// parameter-declaration-clause is not followed by mutable.
|
||
DeclRefType = CaptureType.getNonReferenceType();
|
||
if (!LSI->Mutable && !CaptureType->isReferenceType())
|
||
DeclRefType.addConst();
|
||
}
|
||
|
||
// Add the capture.
|
||
if (BuildAndDiagnose)
|
||
CSI->addCapture(Var, /*IsBlock=*/false, ByRef, Nested, Loc,
|
||
EllipsisLoc, CaptureType, CopyExpr);
|
||
Nested = true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
|
||
TryCaptureKind Kind, SourceLocation EllipsisLoc) {
|
||
QualType CaptureType;
|
||
QualType DeclRefType;
|
||
return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
|
||
/*BuildAndDiagnose=*/true, CaptureType,
|
||
DeclRefType);
|
||
}
|
||
|
||
QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
|
||
QualType CaptureType;
|
||
QualType DeclRefType;
|
||
|
||
// Determine whether we can capture this variable.
|
||
if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
|
||
/*BuildAndDiagnose=*/false, CaptureType, DeclRefType))
|
||
return QualType();
|
||
|
||
return DeclRefType;
|
||
}
|
||
|
||
static void MarkVarDeclODRUsed(Sema &SemaRef, VarDecl *Var,
|
||
SourceLocation Loc) {
|
||
// Keep track of used but undefined variables.
|
||
// FIXME: We shouldn't suppress this warning for static data members.
|
||
if (Var->hasDefinition() == VarDecl::DeclarationOnly &&
|
||
Var->getLinkage() != ExternalLinkage &&
|
||
!(Var->isStaticDataMember() && Var->hasInit())) {
|
||
SourceLocation &old = SemaRef.UndefinedInternals[Var->getCanonicalDecl()];
|
||
if (old.isInvalid()) old = Loc;
|
||
}
|
||
|
||
SemaRef.tryCaptureVariable(Var, Loc);
|
||
|
||
Var->setUsed(true);
|
||
}
|
||
|
||
void Sema::UpdateMarkingForLValueToRValue(Expr *E) {
|
||
// Per C++11 [basic.def.odr], a variable is odr-used "unless it is
|
||
// an object that satisfies the requirements for appearing in a
|
||
// constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
|
||
// is immediately applied." This function handles the lvalue-to-rvalue
|
||
// conversion part.
|
||
MaybeODRUseExprs.erase(E->IgnoreParens());
|
||
}
|
||
|
||
void Sema::CleanupVarDeclMarking() {
|
||
for (llvm::SmallPtrSetIterator<Expr*> i = MaybeODRUseExprs.begin(),
|
||
e = MaybeODRUseExprs.end();
|
||
i != e; ++i) {
|
||
VarDecl *Var;
|
||
SourceLocation Loc;
|
||
if (BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(*i)) {
|
||
Var = BDRE->getDecl();
|
||
Loc = BDRE->getLocation();
|
||
} else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(*i)) {
|
||
Var = cast<VarDecl>(DRE->getDecl());
|
||
Loc = DRE->getLocation();
|
||
} else if (MemberExpr *ME = dyn_cast<MemberExpr>(*i)) {
|
||
Var = cast<VarDecl>(ME->getMemberDecl());
|
||
Loc = ME->getMemberLoc();
|
||
} else {
|
||
llvm_unreachable("Unexpcted expression");
|
||
}
|
||
|
||
MarkVarDeclODRUsed(*this, Var, Loc);
|
||
}
|
||
|
||
MaybeODRUseExprs.clear();
|
||
}
|
||
|
||
// Mark a VarDecl referenced, and perform the necessary handling to compute
|
||
// odr-uses.
|
||
static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
|
||
VarDecl *Var, Expr *E) {
|
||
Var->setReferenced();
|
||
|
||
if (!IsPotentiallyEvaluatedContext(SemaRef))
|
||
return;
|
||
|
||
// Implicit instantiation of static data members of class templates.
|
||
if (Var->isStaticDataMember() && Var->getInstantiatedFromStaticDataMember()) {
|
||
MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
|
||
assert(MSInfo && "Missing member specialization information?");
|
||
bool AlreadyInstantiated = !MSInfo->getPointOfInstantiation().isInvalid();
|
||
if (MSInfo->getTemplateSpecializationKind() == TSK_ImplicitInstantiation &&
|
||
(!AlreadyInstantiated || Var->isUsableInConstantExpressions())) {
|
||
if (!AlreadyInstantiated) {
|
||
// This is a modification of an existing AST node. Notify listeners.
|
||
if (ASTMutationListener *L = SemaRef.getASTMutationListener())
|
||
L->StaticDataMemberInstantiated(Var);
|
||
MSInfo->setPointOfInstantiation(Loc);
|
||
}
|
||
SourceLocation PointOfInstantiation = MSInfo->getPointOfInstantiation();
|
||
if (Var->isUsableInConstantExpressions())
|
||
// Do not defer instantiations of variables which could be used in a
|
||
// constant expression.
|
||
SemaRef.InstantiateStaticDataMemberDefinition(PointOfInstantiation,Var);
|
||
else
|
||
SemaRef.PendingInstantiations.push_back(
|
||
std::make_pair(Var, PointOfInstantiation));
|
||
}
|
||
}
|
||
|
||
// Per C++11 [basic.def.odr], a variable is odr-used "unless it is
|
||
// an object that satisfies the requirements for appearing in a
|
||
// constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
|
||
// is immediately applied." We check the first part here, and
|
||
// Sema::UpdateMarkingForLValueToRValue deals with the second part.
|
||
// Note that we use the C++11 definition everywhere because nothing in
|
||
// C++03 depends on whether we get the C++03 version correct.
|
||
const VarDecl *DefVD;
|
||
if (E && !isa<ParmVarDecl>(Var) &&
|
||
Var->isUsableInConstantExpressions() &&
|
||
Var->getAnyInitializer(DefVD) && DefVD->checkInitIsICE())
|
||
SemaRef.MaybeODRUseExprs.insert(E);
|
||
else
|
||
MarkVarDeclODRUsed(SemaRef, Var, Loc);
|
||
}
|
||
|
||
/// \brief Mark a variable referenced, and check whether it is odr-used
|
||
/// (C++ [basic.def.odr]p2, C99 6.9p3). Note that this should not be
|
||
/// used directly for normal expressions referring to VarDecl.
|
||
void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
|
||
DoMarkVarDeclReferenced(*this, Loc, Var, 0);
|
||
}
|
||
|
||
static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
|
||
Decl *D, Expr *E) {
|
||
if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
|
||
DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
|
||
return;
|
||
}
|
||
|
||
SemaRef.MarkAnyDeclReferenced(Loc, D);
|
||
}
|
||
|
||
/// \brief Perform reference-marking and odr-use handling for a
|
||
/// BlockDeclRefExpr.
|
||
void Sema::MarkBlockDeclRefReferenced(BlockDeclRefExpr *E) {
|
||
MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E);
|
||
}
|
||
|
||
/// \brief Perform reference-marking and odr-use handling for a DeclRefExpr.
|
||
void Sema::MarkDeclRefReferenced(DeclRefExpr *E) {
|
||
MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E);
|
||
}
|
||
|
||
/// \brief Perform reference-marking and odr-use handling for a MemberExpr.
|
||
void Sema::MarkMemberReferenced(MemberExpr *E) {
|
||
MarkExprReferenced(*this, E->getMemberLoc(), E->getMemberDecl(), E);
|
||
}
|
||
|
||
/// \brief Perform marking for a reference to an arbitrary declaration. It
|
||
/// marks the declaration referenced, and performs odr-use checking for functions
|
||
/// and variables. This method should not be used when building an normal
|
||
/// expression which refers to a variable.
|
||
void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D) {
|
||
if (VarDecl *VD = dyn_cast<VarDecl>(D))
|
||
MarkVariableReferenced(Loc, VD);
|
||
else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
|
||
MarkFunctionReferenced(Loc, FD);
|
||
else
|
||
D->setReferenced();
|
||
}
|
||
|
||
namespace {
|
||
// Mark all of the declarations referenced
|
||
// FIXME: Not fully implemented yet! We need to have a better understanding
|
||
// of when we're entering
|
||
class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
|
||
Sema &S;
|
||
SourceLocation Loc;
|
||
|
||
public:
|
||
typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
|
||
|
||
MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
|
||
|
||
bool TraverseTemplateArgument(const TemplateArgument &Arg);
|
||
bool TraverseRecordType(RecordType *T);
|
||
};
|
||
}
|
||
|
||
bool MarkReferencedDecls::TraverseTemplateArgument(
|
||
const TemplateArgument &Arg) {
|
||
if (Arg.getKind() == TemplateArgument::Declaration) {
|
||
S.MarkAnyDeclReferenced(Loc, Arg.getAsDecl());
|
||
}
|
||
|
||
return Inherited::TraverseTemplateArgument(Arg);
|
||
}
|
||
|
||
bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
|
||
if (ClassTemplateSpecializationDecl *Spec
|
||
= dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
|
||
const TemplateArgumentList &Args = Spec->getTemplateArgs();
|
||
return TraverseTemplateArguments(Args.data(), Args.size());
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
|
||
MarkReferencedDecls Marker(*this, Loc);
|
||
Marker.TraverseType(Context.getCanonicalType(T));
|
||
}
|
||
|
||
namespace {
|
||
/// \brief Helper class that marks all of the declarations referenced by
|
||
/// potentially-evaluated subexpressions as "referenced".
|
||
class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
|
||
Sema &S;
|
||
bool SkipLocalVariables;
|
||
|
||
public:
|
||
typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
|
||
|
||
EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
|
||
: Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
|
||
|
||
void VisitDeclRefExpr(DeclRefExpr *E) {
|
||
// If we were asked not to visit local variables, don't.
|
||
if (SkipLocalVariables) {
|
||
if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
|
||
if (VD->hasLocalStorage())
|
||
return;
|
||
}
|
||
|
||
S.MarkDeclRefReferenced(E);
|
||
}
|
||
|
||
void VisitMemberExpr(MemberExpr *E) {
|
||
S.MarkMemberReferenced(E);
|
||
Inherited::VisitMemberExpr(E);
|
||
}
|
||
|
||
void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
|
||
S.MarkFunctionReferenced(E->getLocStart(),
|
||
const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor()));
|
||
Visit(E->getSubExpr());
|
||
}
|
||
|
||
void VisitCXXNewExpr(CXXNewExpr *E) {
|
||
if (E->getOperatorNew())
|
||
S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorNew());
|
||
if (E->getOperatorDelete())
|
||
S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
|
||
Inherited::VisitCXXNewExpr(E);
|
||
}
|
||
|
||
void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
|
||
if (E->getOperatorDelete())
|
||
S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
|
||
QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
|
||
if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
|
||
CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
|
||
S.MarkFunctionReferenced(E->getLocStart(),
|
||
S.LookupDestructor(Record));
|
||
}
|
||
|
||
Inherited::VisitCXXDeleteExpr(E);
|
||
}
|
||
|
||
void VisitCXXConstructExpr(CXXConstructExpr *E) {
|
||
S.MarkFunctionReferenced(E->getLocStart(), E->getConstructor());
|
||
Inherited::VisitCXXConstructExpr(E);
|
||
}
|
||
|
||
void VisitBlockDeclRefExpr(BlockDeclRefExpr *E) {
|
||
// If we were asked not to visit local variables, don't.
|
||
if (SkipLocalVariables && E->getDecl()->hasLocalStorage())
|
||
return;
|
||
|
||
S.MarkBlockDeclRefReferenced(E);
|
||
}
|
||
|
||
void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
|
||
Visit(E->getExpr());
|
||
}
|
||
|
||
void VisitImplicitCastExpr(ImplicitCastExpr *E) {
|
||
Inherited::VisitImplicitCastExpr(E);
|
||
|
||
if (E->getCastKind() == CK_LValueToRValue)
|
||
S.UpdateMarkingForLValueToRValue(E->getSubExpr());
|
||
}
|
||
};
|
||
}
|
||
|
||
/// \brief Mark any declarations that appear within this expression or any
|
||
/// potentially-evaluated subexpressions as "referenced".
|
||
///
|
||
/// \param SkipLocalVariables If true, don't mark local variables as
|
||
/// 'referenced'.
|
||
void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
|
||
bool SkipLocalVariables) {
|
||
EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
|
||
}
|
||
|
||
/// \brief Emit a diagnostic that describes an effect on the run-time behavior
|
||
/// of the program being compiled.
|
||
///
|
||
/// This routine emits the given diagnostic when the code currently being
|
||
/// type-checked is "potentially evaluated", meaning that there is a
|
||
/// possibility that the code will actually be executable. Code in sizeof()
|
||
/// expressions, code used only during overload resolution, etc., are not
|
||
/// potentially evaluated. This routine will suppress such diagnostics or,
|
||
/// in the absolutely nutty case of potentially potentially evaluated
|
||
/// expressions (C++ typeid), queue the diagnostic to potentially emit it
|
||
/// later.
|
||
///
|
||
/// This routine should be used for all diagnostics that describe the run-time
|
||
/// behavior of a program, such as passing a non-POD value through an ellipsis.
|
||
/// Failure to do so will likely result in spurious diagnostics or failures
|
||
/// during overload resolution or within sizeof/alignof/typeof/typeid.
|
||
bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
|
||
const PartialDiagnostic &PD) {
|
||
switch (ExprEvalContexts.back().Context) {
|
||
case Unevaluated:
|
||
// The argument will never be evaluated, so don't complain.
|
||
break;
|
||
|
||
case ConstantEvaluated:
|
||
// Relevant diagnostics should be produced by constant evaluation.
|
||
break;
|
||
|
||
case PotentiallyEvaluated:
|
||
case PotentiallyEvaluatedIfUsed:
|
||
if (Statement && getCurFunctionOrMethodDecl()) {
|
||
FunctionScopes.back()->PossiblyUnreachableDiags.
|
||
push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
|
||
}
|
||
else
|
||
Diag(Loc, PD);
|
||
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
|
||
CallExpr *CE, FunctionDecl *FD) {
|
||
if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
|
||
return false;
|
||
|
||
// If we're inside a decltype's expression, don't check for a valid return
|
||
// type or construct temporaries until we know whether this is the last call.
|
||
if (ExprEvalContexts.back().IsDecltype) {
|
||
ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
|
||
return false;
|
||
}
|
||
|
||
PartialDiagnostic Note =
|
||
FD ? PDiag(diag::note_function_with_incomplete_return_type_declared_here)
|
||
<< FD->getDeclName() : PDiag();
|
||
SourceLocation NoteLoc = FD ? FD->getLocation() : SourceLocation();
|
||
|
||
if (RequireCompleteType(Loc, ReturnType,
|
||
FD ?
|
||
PDiag(diag::err_call_function_incomplete_return)
|
||
<< CE->getSourceRange() << FD->getDeclName() :
|
||
PDiag(diag::err_call_incomplete_return)
|
||
<< CE->getSourceRange(),
|
||
std::make_pair(NoteLoc, Note)))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
|
||
// will prevent this condition from triggering, which is what we want.
|
||
void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
|
||
SourceLocation Loc;
|
||
|
||
unsigned diagnostic = diag::warn_condition_is_assignment;
|
||
bool IsOrAssign = false;
|
||
|
||
if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
|
||
if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
|
||
return;
|
||
|
||
IsOrAssign = Op->getOpcode() == BO_OrAssign;
|
||
|
||
// Greylist some idioms by putting them into a warning subcategory.
|
||
if (ObjCMessageExpr *ME
|
||
= dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
|
||
Selector Sel = ME->getSelector();
|
||
|
||
// self = [<foo> init...]
|
||
if (isSelfExpr(Op->getLHS()) && Sel.getNameForSlot(0).startswith("init"))
|
||
diagnostic = diag::warn_condition_is_idiomatic_assignment;
|
||
|
||
// <foo> = [<bar> nextObject]
|
||
else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
|
||
diagnostic = diag::warn_condition_is_idiomatic_assignment;
|
||
}
|
||
|
||
Loc = Op->getOperatorLoc();
|
||
} else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
|
||
if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
|
||
return;
|
||
|
||
IsOrAssign = Op->getOperator() == OO_PipeEqual;
|
||
Loc = Op->getOperatorLoc();
|
||
} else {
|
||
// Not an assignment.
|
||
return;
|
||
}
|
||
|
||
Diag(Loc, diagnostic) << E->getSourceRange();
|
||
|
||
SourceLocation Open = E->getSourceRange().getBegin();
|
||
SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
|
||
Diag(Loc, diag::note_condition_assign_silence)
|
||
<< FixItHint::CreateInsertion(Open, "(")
|
||
<< FixItHint::CreateInsertion(Close, ")");
|
||
|
||
if (IsOrAssign)
|
||
Diag(Loc, diag::note_condition_or_assign_to_comparison)
|
||
<< FixItHint::CreateReplacement(Loc, "!=");
|
||
else
|
||
Diag(Loc, diag::note_condition_assign_to_comparison)
|
||
<< FixItHint::CreateReplacement(Loc, "==");
|
||
}
|
||
|
||
/// \brief Redundant parentheses over an equality comparison can indicate
|
||
/// that the user intended an assignment used as condition.
|
||
void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
|
||
// Don't warn if the parens came from a macro.
|
||
SourceLocation parenLoc = ParenE->getLocStart();
|
||
if (parenLoc.isInvalid() || parenLoc.isMacroID())
|
||
return;
|
||
// Don't warn for dependent expressions.
|
||
if (ParenE->isTypeDependent())
|
||
return;
|
||
|
||
Expr *E = ParenE->IgnoreParens();
|
||
|
||
if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
|
||
if (opE->getOpcode() == BO_EQ &&
|
||
opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
|
||
== Expr::MLV_Valid) {
|
||
SourceLocation Loc = opE->getOperatorLoc();
|
||
|
||
Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
|
||
Diag(Loc, diag::note_equality_comparison_silence)
|
||
<< FixItHint::CreateRemoval(ParenE->getSourceRange().getBegin())
|
||
<< FixItHint::CreateRemoval(ParenE->getSourceRange().getEnd());
|
||
Diag(Loc, diag::note_equality_comparison_to_assign)
|
||
<< FixItHint::CreateReplacement(Loc, "=");
|
||
}
|
||
}
|
||
|
||
ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
|
||
DiagnoseAssignmentAsCondition(E);
|
||
if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
|
||
DiagnoseEqualityWithExtraParens(parenE);
|
||
|
||
ExprResult result = CheckPlaceholderExpr(E);
|
||
if (result.isInvalid()) return ExprError();
|
||
E = result.take();
|
||
|
||
if (!E->isTypeDependent()) {
|
||
if (getLangOptions().CPlusPlus)
|
||
return CheckCXXBooleanCondition(E); // C++ 6.4p4
|
||
|
||
ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
|
||
if (ERes.isInvalid())
|
||
return ExprError();
|
||
E = ERes.take();
|
||
|
||
QualType T = E->getType();
|
||
if (!T->isScalarType()) { // C99 6.8.4.1p1
|
||
Diag(Loc, diag::err_typecheck_statement_requires_scalar)
|
||
<< T << E->getSourceRange();
|
||
return ExprError();
|
||
}
|
||
}
|
||
|
||
return Owned(E);
|
||
}
|
||
|
||
ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
|
||
Expr *SubExpr) {
|
||
if (!SubExpr)
|
||
return ExprError();
|
||
|
||
return CheckBooleanCondition(SubExpr, Loc);
|
||
}
|
||
|
||
namespace {
|
||
/// A visitor for rebuilding a call to an __unknown_any expression
|
||
/// to have an appropriate type.
|
||
struct RebuildUnknownAnyFunction
|
||
: StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
|
||
|
||
Sema &S;
|
||
|
||
RebuildUnknownAnyFunction(Sema &S) : S(S) {}
|
||
|
||
ExprResult VisitStmt(Stmt *S) {
|
||
llvm_unreachable("unexpected statement!");
|
||
}
|
||
|
||
ExprResult VisitExpr(Expr *E) {
|
||
S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
|
||
<< E->getSourceRange();
|
||
return ExprError();
|
||
}
|
||
|
||
/// Rebuild an expression which simply semantically wraps another
|
||
/// expression which it shares the type and value kind of.
|
||
template <class T> ExprResult rebuildSugarExpr(T *E) {
|
||
ExprResult SubResult = Visit(E->getSubExpr());
|
||
if (SubResult.isInvalid()) return ExprError();
|
||
|
||
Expr *SubExpr = SubResult.take();
|
||
E->setSubExpr(SubExpr);
|
||
E->setType(SubExpr->getType());
|
||
E->setValueKind(SubExpr->getValueKind());
|
||
assert(E->getObjectKind() == OK_Ordinary);
|
||
return E;
|
||
}
|
||
|
||
ExprResult VisitParenExpr(ParenExpr *E) {
|
||
return rebuildSugarExpr(E);
|
||
}
|
||
|
||
ExprResult VisitUnaryExtension(UnaryOperator *E) {
|
||
return rebuildSugarExpr(E);
|
||
}
|
||
|
||
ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
|
||
ExprResult SubResult = Visit(E->getSubExpr());
|
||
if (SubResult.isInvalid()) return ExprError();
|
||
|
||
Expr *SubExpr = SubResult.take();
|
||
E->setSubExpr(SubExpr);
|
||
E->setType(S.Context.getPointerType(SubExpr->getType()));
|
||
assert(E->getValueKind() == VK_RValue);
|
||
assert(E->getObjectKind() == OK_Ordinary);
|
||
return E;
|
||
}
|
||
|
||
ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
|
||
if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
|
||
|
||
E->setType(VD->getType());
|
||
|
||
assert(E->getValueKind() == VK_RValue);
|
||
if (S.getLangOptions().CPlusPlus &&
|
||
!(isa<CXXMethodDecl>(VD) &&
|
||
cast<CXXMethodDecl>(VD)->isInstance()))
|
||
E->setValueKind(VK_LValue);
|
||
|
||
return E;
|
||
}
|
||
|
||
ExprResult VisitMemberExpr(MemberExpr *E) {
|
||
return resolveDecl(E, E->getMemberDecl());
|
||
}
|
||
|
||
ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
|
||
return resolveDecl(E, E->getDecl());
|
||
}
|
||
};
|
||
}
|
||
|
||
/// Given a function expression of unknown-any type, try to rebuild it
|
||
/// to have a function type.
|
||
static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
|
||
ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
|
||
if (Result.isInvalid()) return ExprError();
|
||
return S.DefaultFunctionArrayConversion(Result.take());
|
||
}
|
||
|
||
namespace {
|
||
/// A visitor for rebuilding an expression of type __unknown_anytype
|
||
/// into one which resolves the type directly on the referring
|
||
/// expression. Strict preservation of the original source
|
||
/// structure is not a goal.
|
||
struct RebuildUnknownAnyExpr
|
||
: StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
|
||
|
||
Sema &S;
|
||
|
||
/// The current destination type.
|
||
QualType DestType;
|
||
|
||
RebuildUnknownAnyExpr(Sema &S, QualType CastType)
|
||
: S(S), DestType(CastType) {}
|
||
|
||
ExprResult VisitStmt(Stmt *S) {
|
||
llvm_unreachable("unexpected statement!");
|
||
}
|
||
|
||
ExprResult VisitExpr(Expr *E) {
|
||
S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
|
||
<< E->getSourceRange();
|
||
return ExprError();
|
||
}
|
||
|
||
ExprResult VisitCallExpr(CallExpr *E);
|
||
ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
|
||
|
||
/// Rebuild an expression which simply semantically wraps another
|
||
/// expression which it shares the type and value kind of.
|
||
template <class T> ExprResult rebuildSugarExpr(T *E) {
|
||
ExprResult SubResult = Visit(E->getSubExpr());
|
||
if (SubResult.isInvalid()) return ExprError();
|
||
Expr *SubExpr = SubResult.take();
|
||
E->setSubExpr(SubExpr);
|
||
E->setType(SubExpr->getType());
|
||
E->setValueKind(SubExpr->getValueKind());
|
||
assert(E->getObjectKind() == OK_Ordinary);
|
||
return E;
|
||
}
|
||
|
||
ExprResult VisitParenExpr(ParenExpr *E) {
|
||
return rebuildSugarExpr(E);
|
||
}
|
||
|
||
ExprResult VisitUnaryExtension(UnaryOperator *E) {
|
||
return rebuildSugarExpr(E);
|
||
}
|
||
|
||
ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
|
||
const PointerType *Ptr = DestType->getAs<PointerType>();
|
||
if (!Ptr) {
|
||
S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
|
||
<< E->getSourceRange();
|
||
return ExprError();
|
||
}
|
||
assert(E->getValueKind() == VK_RValue);
|
||
assert(E->getObjectKind() == OK_Ordinary);
|
||
E->setType(DestType);
|
||
|
||
// Build the sub-expression as if it were an object of the pointee type.
|
||
DestType = Ptr->getPointeeType();
|
||
ExprResult SubResult = Visit(E->getSubExpr());
|
||
if (SubResult.isInvalid()) return ExprError();
|
||
E->setSubExpr(SubResult.take());
|
||
return E;
|
||
}
|
||
|
||
ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
|
||
|
||
ExprResult resolveDecl(Expr *E, ValueDecl *VD);
|
||
|
||
ExprResult VisitMemberExpr(MemberExpr *E) {
|
||
return resolveDecl(E, E->getMemberDecl());
|
||
}
|
||
|
||
ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
|
||
return resolveDecl(E, E->getDecl());
|
||
}
|
||
};
|
||
}
|
||
|
||
/// Rebuilds a call expression which yielded __unknown_anytype.
|
||
ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
|
||
Expr *CalleeExpr = E->getCallee();
|
||
|
||
enum FnKind {
|
||
FK_MemberFunction,
|
||
FK_FunctionPointer,
|
||
FK_BlockPointer
|
||
};
|
||
|
||
FnKind Kind;
|
||
QualType CalleeType = CalleeExpr->getType();
|
||
if (CalleeType == S.Context.BoundMemberTy) {
|
||
assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
|
||
Kind = FK_MemberFunction;
|
||
CalleeType = Expr::findBoundMemberType(CalleeExpr);
|
||
} else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
|
||
CalleeType = Ptr->getPointeeType();
|
||
Kind = FK_FunctionPointer;
|
||
} else {
|
||
CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
|
||
Kind = FK_BlockPointer;
|
||
}
|
||
const FunctionType *FnType = CalleeType->castAs<FunctionType>();
|
||
|
||
// Verify that this is a legal result type of a function.
|
||
if (DestType->isArrayType() || DestType->isFunctionType()) {
|
||
unsigned diagID = diag::err_func_returning_array_function;
|
||
if (Kind == FK_BlockPointer)
|
||
diagID = diag::err_block_returning_array_function;
|
||
|
||
S.Diag(E->getExprLoc(), diagID)
|
||
<< DestType->isFunctionType() << DestType;
|
||
return ExprError();
|
||
}
|
||
|
||
// Otherwise, go ahead and set DestType as the call's result.
|
||
E->setType(DestType.getNonLValueExprType(S.Context));
|
||
E->setValueKind(Expr::getValueKindForType(DestType));
|
||
assert(E->getObjectKind() == OK_Ordinary);
|
||
|
||
// Rebuild the function type, replacing the result type with DestType.
|
||
if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType))
|
||
DestType = S.Context.getFunctionType(DestType,
|
||
Proto->arg_type_begin(),
|
||
Proto->getNumArgs(),
|
||
Proto->getExtProtoInfo());
|
||
else
|
||
DestType = S.Context.getFunctionNoProtoType(DestType,
|
||
FnType->getExtInfo());
|
||
|
||
// Rebuild the appropriate pointer-to-function type.
|
||
switch (Kind) {
|
||
case FK_MemberFunction:
|
||
// Nothing to do.
|
||
break;
|
||
|
||
case FK_FunctionPointer:
|
||
DestType = S.Context.getPointerType(DestType);
|
||
break;
|
||
|
||
case FK_BlockPointer:
|
||
DestType = S.Context.getBlockPointerType(DestType);
|
||
break;
|
||
}
|
||
|
||
// Finally, we can recurse.
|
||
ExprResult CalleeResult = Visit(CalleeExpr);
|
||
if (!CalleeResult.isUsable()) return ExprError();
|
||
E->setCallee(CalleeResult.take());
|
||
|
||
// Bind a temporary if necessary.
|
||
return S.MaybeBindToTemporary(E);
|
||
}
|
||
|
||
ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
|
||
// Verify that this is a legal result type of a call.
|
||
if (DestType->isArrayType() || DestType->isFunctionType()) {
|
||
S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
|
||
<< DestType->isFunctionType() << DestType;
|
||
return ExprError();
|
||
}
|
||
|
||
// Rewrite the method result type if available.
|
||
if (ObjCMethodDecl *Method = E->getMethodDecl()) {
|
||
assert(Method->getResultType() == S.Context.UnknownAnyTy);
|
||
Method->setResultType(DestType);
|
||
}
|
||
|
||
// Change the type of the message.
|
||
E->setType(DestType.getNonReferenceType());
|
||
E->setValueKind(Expr::getValueKindForType(DestType));
|
||
|
||
return S.MaybeBindToTemporary(E);
|
||
}
|
||
|
||
ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
|
||
// The only case we should ever see here is a function-to-pointer decay.
|
||
assert(E->getCastKind() == CK_FunctionToPointerDecay);
|
||
assert(E->getValueKind() == VK_RValue);
|
||
assert(E->getObjectKind() == OK_Ordinary);
|
||
|
||
E->setType(DestType);
|
||
|
||
// Rebuild the sub-expression as the pointee (function) type.
|
||
DestType = DestType->castAs<PointerType>()->getPointeeType();
|
||
|
||
ExprResult Result = Visit(E->getSubExpr());
|
||
if (!Result.isUsable()) return ExprError();
|
||
|
||
E->setSubExpr(Result.take());
|
||
return S.Owned(E);
|
||
}
|
||
|
||
ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
|
||
ExprValueKind ValueKind = VK_LValue;
|
||
QualType Type = DestType;
|
||
|
||
// We know how to make this work for certain kinds of decls:
|
||
|
||
// - functions
|
||
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
|
||
if (const PointerType *Ptr = Type->getAs<PointerType>()) {
|
||
DestType = Ptr->getPointeeType();
|
||
ExprResult Result = resolveDecl(E, VD);
|
||
if (Result.isInvalid()) return ExprError();
|
||
return S.ImpCastExprToType(Result.take(), Type,
|
||
CK_FunctionToPointerDecay, VK_RValue);
|
||
}
|
||
|
||
if (!Type->isFunctionType()) {
|
||
S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
|
||
<< VD << E->getSourceRange();
|
||
return ExprError();
|
||
}
|
||
|
||
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
|
||
if (MD->isInstance()) {
|
||
ValueKind = VK_RValue;
|
||
Type = S.Context.BoundMemberTy;
|
||
}
|
||
|
||
// Function references aren't l-values in C.
|
||
if (!S.getLangOptions().CPlusPlus)
|
||
ValueKind = VK_RValue;
|
||
|
||
// - variables
|
||
} else if (isa<VarDecl>(VD)) {
|
||
if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
|
||
Type = RefTy->getPointeeType();
|
||
} else if (Type->isFunctionType()) {
|
||
S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
|
||
<< VD << E->getSourceRange();
|
||
return ExprError();
|
||
}
|
||
|
||
// - nothing else
|
||
} else {
|
||
S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
|
||
<< VD << E->getSourceRange();
|
||
return ExprError();
|
||
}
|
||
|
||
VD->setType(DestType);
|
||
E->setType(Type);
|
||
E->setValueKind(ValueKind);
|
||
return S.Owned(E);
|
||
}
|
||
|
||
/// Check a cast of an unknown-any type. We intentionally only
|
||
/// trigger this for C-style casts.
|
||
ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
|
||
Expr *CastExpr, CastKind &CastKind,
|
||
ExprValueKind &VK, CXXCastPath &Path) {
|
||
// Rewrite the casted expression from scratch.
|
||
ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
|
||
if (!result.isUsable()) return ExprError();
|
||
|
||
CastExpr = result.take();
|
||
VK = CastExpr->getValueKind();
|
||
CastKind = CK_NoOp;
|
||
|
||
return CastExpr;
|
||
}
|
||
|
||
ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
|
||
return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
|
||
}
|
||
|
||
static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
|
||
Expr *orig = E;
|
||
unsigned diagID = diag::err_uncasted_use_of_unknown_any;
|
||
while (true) {
|
||
E = E->IgnoreParenImpCasts();
|
||
if (CallExpr *call = dyn_cast<CallExpr>(E)) {
|
||
E = call->getCallee();
|
||
diagID = diag::err_uncasted_call_of_unknown_any;
|
||
} else {
|
||
break;
|
||
}
|
||
}
|
||
|
||
SourceLocation loc;
|
||
NamedDecl *d;
|
||
if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
|
||
loc = ref->getLocation();
|
||
d = ref->getDecl();
|
||
} else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
|
||
loc = mem->getMemberLoc();
|
||
d = mem->getMemberDecl();
|
||
} else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
|
||
diagID = diag::err_uncasted_call_of_unknown_any;
|
||
loc = msg->getSelectorStartLoc();
|
||
d = msg->getMethodDecl();
|
||
if (!d) {
|
||
S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
|
||
<< static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
|
||
<< orig->getSourceRange();
|
||
return ExprError();
|
||
}
|
||
} else {
|
||
S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
|
||
<< E->getSourceRange();
|
||
return ExprError();
|
||
}
|
||
|
||
S.Diag(loc, diagID) << d << orig->getSourceRange();
|
||
|
||
// Never recoverable.
|
||
return ExprError();
|
||
}
|
||
|
||
/// Check for operands with placeholder types and complain if found.
|
||
/// Returns true if there was an error and no recovery was possible.
|
||
ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
|
||
const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
|
||
if (!placeholderType) return Owned(E);
|
||
|
||
switch (placeholderType->getKind()) {
|
||
|
||
// Overloaded expressions.
|
||
case BuiltinType::Overload: {
|
||
// Try to resolve a single function template specialization.
|
||
// This is obligatory.
|
||
ExprResult result = Owned(E);
|
||
if (ResolveAndFixSingleFunctionTemplateSpecialization(result, false)) {
|
||
return result;
|
||
|
||
// If that failed, try to recover with a call.
|
||
} else {
|
||
tryToRecoverWithCall(result, PDiag(diag::err_ovl_unresolvable),
|
||
/*complain*/ true);
|
||
return result;
|
||
}
|
||
}
|
||
|
||
// Bound member functions.
|
||
case BuiltinType::BoundMember: {
|
||
ExprResult result = Owned(E);
|
||
tryToRecoverWithCall(result, PDiag(diag::err_bound_member_function),
|
||
/*complain*/ true);
|
||
return result;
|
||
}
|
||
|
||
// ARC unbridged casts.
|
||
case BuiltinType::ARCUnbridgedCast: {
|
||
Expr *realCast = stripARCUnbridgedCast(E);
|
||
diagnoseARCUnbridgedCast(realCast);
|
||
return Owned(realCast);
|
||
}
|
||
|
||
// Expressions of unknown type.
|
||
case BuiltinType::UnknownAny:
|
||
return diagnoseUnknownAnyExpr(*this, E);
|
||
|
||
// Pseudo-objects.
|
||
case BuiltinType::PseudoObject:
|
||
return checkPseudoObjectRValue(E);
|
||
|
||
// Everything else should be impossible.
|
||
#define BUILTIN_TYPE(Id, SingletonId) \
|
||
case BuiltinType::Id:
|
||
#define PLACEHOLDER_TYPE(Id, SingletonId)
|
||
#include "clang/AST/BuiltinTypes.def"
|
||
break;
|
||
}
|
||
|
||
llvm_unreachable("invalid placeholder type!");
|
||
}
|
||
|
||
bool Sema::CheckCaseExpression(Expr *E) {
|
||
if (E->isTypeDependent())
|
||
return true;
|
||
if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
|
||
return E->getType()->isIntegralOrEnumerationType();
|
||
return false;
|
||
}
|