forked from OSchip/llvm-project
2443 lines
79 KiB
C++
2443 lines
79 KiB
C++
//===- HexagonLoopIdiomRecognition.cpp ------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "hexagon-lir"
|
|
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Analysis/MemoryLocation.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils.h"
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <cstdlib>
|
|
#include <deque>
|
|
#include <functional>
|
|
#include <iterator>
|
|
#include <map>
|
|
#include <set>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool> DisableMemcpyIdiom("disable-memcpy-idiom",
|
|
cl::Hidden, cl::init(false),
|
|
cl::desc("Disable generation of memcpy in loop idiom recognition"));
|
|
|
|
static cl::opt<bool> DisableMemmoveIdiom("disable-memmove-idiom",
|
|
cl::Hidden, cl::init(false),
|
|
cl::desc("Disable generation of memmove in loop idiom recognition"));
|
|
|
|
static cl::opt<unsigned> RuntimeMemSizeThreshold("runtime-mem-idiom-threshold",
|
|
cl::Hidden, cl::init(0), cl::desc("Threshold (in bytes) for the runtime "
|
|
"check guarding the memmove."));
|
|
|
|
static cl::opt<unsigned> CompileTimeMemSizeThreshold(
|
|
"compile-time-mem-idiom-threshold", cl::Hidden, cl::init(64),
|
|
cl::desc("Threshold (in bytes) to perform the transformation, if the "
|
|
"runtime loop count (mem transfer size) is known at compile-time."));
|
|
|
|
static cl::opt<bool> OnlyNonNestedMemmove("only-nonnested-memmove-idiom",
|
|
cl::Hidden, cl::init(true),
|
|
cl::desc("Only enable generating memmove in non-nested loops"));
|
|
|
|
cl::opt<bool> HexagonVolatileMemcpy("disable-hexagon-volatile-memcpy",
|
|
cl::Hidden, cl::init(false),
|
|
cl::desc("Enable Hexagon-specific memcpy for volatile destination."));
|
|
|
|
static cl::opt<unsigned> SimplifyLimit("hlir-simplify-limit", cl::init(10000),
|
|
cl::Hidden, cl::desc("Maximum number of simplification steps in HLIR"));
|
|
|
|
static const char *HexagonVolatileMemcpyName
|
|
= "hexagon_memcpy_forward_vp4cp4n2";
|
|
|
|
|
|
namespace llvm {
|
|
|
|
void initializeHexagonLoopIdiomRecognizePass(PassRegistry&);
|
|
Pass *createHexagonLoopIdiomPass();
|
|
|
|
} // end namespace llvm
|
|
|
|
namespace {
|
|
|
|
class HexagonLoopIdiomRecognize : public LoopPass {
|
|
public:
|
|
static char ID;
|
|
|
|
explicit HexagonLoopIdiomRecognize() : LoopPass(ID) {
|
|
initializeHexagonLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
StringRef getPassName() const override {
|
|
return "Recognize Hexagon-specific loop idioms";
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<LoopInfoWrapperPass>();
|
|
AU.addRequiredID(LoopSimplifyID);
|
|
AU.addRequiredID(LCSSAID);
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
AU.addPreserved<AAResultsWrapperPass>();
|
|
AU.addRequired<ScalarEvolutionWrapperPass>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.addPreserved<TargetLibraryInfoWrapperPass>();
|
|
}
|
|
|
|
bool runOnLoop(Loop *L, LPPassManager &LPM) override;
|
|
|
|
private:
|
|
int getSCEVStride(const SCEVAddRecExpr *StoreEv);
|
|
bool isLegalStore(Loop *CurLoop, StoreInst *SI);
|
|
void collectStores(Loop *CurLoop, BasicBlock *BB,
|
|
SmallVectorImpl<StoreInst*> &Stores);
|
|
bool processCopyingStore(Loop *CurLoop, StoreInst *SI, const SCEV *BECount);
|
|
bool coverLoop(Loop *L, SmallVectorImpl<Instruction*> &Insts) const;
|
|
bool runOnLoopBlock(Loop *CurLoop, BasicBlock *BB, const SCEV *BECount,
|
|
SmallVectorImpl<BasicBlock*> &ExitBlocks);
|
|
bool runOnCountableLoop(Loop *L);
|
|
|
|
AliasAnalysis *AA;
|
|
const DataLayout *DL;
|
|
DominatorTree *DT;
|
|
LoopInfo *LF;
|
|
const TargetLibraryInfo *TLI;
|
|
ScalarEvolution *SE;
|
|
bool HasMemcpy, HasMemmove;
|
|
};
|
|
|
|
struct Simplifier {
|
|
struct Rule {
|
|
using FuncType = std::function<Value* (Instruction*, LLVMContext&)>;
|
|
Rule(StringRef N, FuncType F) : Name(N), Fn(F) {}
|
|
StringRef Name; // For debugging.
|
|
FuncType Fn;
|
|
};
|
|
|
|
void addRule(StringRef N, const Rule::FuncType &F) {
|
|
Rules.push_back(Rule(N, F));
|
|
}
|
|
|
|
private:
|
|
struct WorkListType {
|
|
WorkListType() = default;
|
|
|
|
void push_back(Value* V) {
|
|
// Do not push back duplicates.
|
|
if (!S.count(V)) { Q.push_back(V); S.insert(V); }
|
|
}
|
|
|
|
Value *pop_front_val() {
|
|
Value *V = Q.front(); Q.pop_front(); S.erase(V);
|
|
return V;
|
|
}
|
|
|
|
bool empty() const { return Q.empty(); }
|
|
|
|
private:
|
|
std::deque<Value*> Q;
|
|
std::set<Value*> S;
|
|
};
|
|
|
|
using ValueSetType = std::set<Value *>;
|
|
|
|
std::vector<Rule> Rules;
|
|
|
|
public:
|
|
struct Context {
|
|
using ValueMapType = DenseMap<Value *, Value *>;
|
|
|
|
Value *Root;
|
|
ValueSetType Used; // The set of all cloned values used by Root.
|
|
ValueSetType Clones; // The set of all cloned values.
|
|
LLVMContext &Ctx;
|
|
|
|
Context(Instruction *Exp)
|
|
: Ctx(Exp->getParent()->getParent()->getContext()) {
|
|
initialize(Exp);
|
|
}
|
|
|
|
~Context() { cleanup(); }
|
|
|
|
void print(raw_ostream &OS, const Value *V) const;
|
|
Value *materialize(BasicBlock *B, BasicBlock::iterator At);
|
|
|
|
private:
|
|
friend struct Simplifier;
|
|
|
|
void initialize(Instruction *Exp);
|
|
void cleanup();
|
|
|
|
template <typename FuncT> void traverse(Value *V, FuncT F);
|
|
void record(Value *V);
|
|
void use(Value *V);
|
|
void unuse(Value *V);
|
|
|
|
bool equal(const Instruction *I, const Instruction *J) const;
|
|
Value *find(Value *Tree, Value *Sub) const;
|
|
Value *subst(Value *Tree, Value *OldV, Value *NewV);
|
|
void replace(Value *OldV, Value *NewV);
|
|
void link(Instruction *I, BasicBlock *B, BasicBlock::iterator At);
|
|
};
|
|
|
|
Value *simplify(Context &C);
|
|
};
|
|
|
|
struct PE {
|
|
PE(const Simplifier::Context &c, Value *v = nullptr) : C(c), V(v) {}
|
|
|
|
const Simplifier::Context &C;
|
|
const Value *V;
|
|
};
|
|
|
|
LLVM_ATTRIBUTE_USED
|
|
raw_ostream &operator<<(raw_ostream &OS, const PE &P) {
|
|
P.C.print(OS, P.V ? P.V : P.C.Root);
|
|
return OS;
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
char HexagonLoopIdiomRecognize::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(HexagonLoopIdiomRecognize, "hexagon-loop-idiom",
|
|
"Recognize Hexagon-specific loop idioms", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
|
|
INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
|
|
INITIALIZE_PASS_END(HexagonLoopIdiomRecognize, "hexagon-loop-idiom",
|
|
"Recognize Hexagon-specific loop idioms", false, false)
|
|
|
|
template <typename FuncT>
|
|
void Simplifier::Context::traverse(Value *V, FuncT F) {
|
|
WorkListType Q;
|
|
Q.push_back(V);
|
|
|
|
while (!Q.empty()) {
|
|
Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
|
|
if (!U || U->getParent())
|
|
continue;
|
|
if (!F(U))
|
|
continue;
|
|
for (Value *Op : U->operands())
|
|
Q.push_back(Op);
|
|
}
|
|
}
|
|
|
|
void Simplifier::Context::print(raw_ostream &OS, const Value *V) const {
|
|
const auto *U = dyn_cast<const Instruction>(V);
|
|
if (!U) {
|
|
OS << V << '(' << *V << ')';
|
|
return;
|
|
}
|
|
|
|
if (U->getParent()) {
|
|
OS << U << '(';
|
|
U->printAsOperand(OS, true);
|
|
OS << ')';
|
|
return;
|
|
}
|
|
|
|
unsigned N = U->getNumOperands();
|
|
if (N != 0)
|
|
OS << U << '(';
|
|
OS << U->getOpcodeName();
|
|
for (const Value *Op : U->operands()) {
|
|
OS << ' ';
|
|
print(OS, Op);
|
|
}
|
|
if (N != 0)
|
|
OS << ')';
|
|
}
|
|
|
|
void Simplifier::Context::initialize(Instruction *Exp) {
|
|
// Perform a deep clone of the expression, set Root to the root
|
|
// of the clone, and build a map from the cloned values to the
|
|
// original ones.
|
|
ValueMapType M;
|
|
BasicBlock *Block = Exp->getParent();
|
|
WorkListType Q;
|
|
Q.push_back(Exp);
|
|
|
|
while (!Q.empty()) {
|
|
Value *V = Q.pop_front_val();
|
|
if (M.find(V) != M.end())
|
|
continue;
|
|
if (Instruction *U = dyn_cast<Instruction>(V)) {
|
|
if (isa<PHINode>(U) || U->getParent() != Block)
|
|
continue;
|
|
for (Value *Op : U->operands())
|
|
Q.push_back(Op);
|
|
M.insert({U, U->clone()});
|
|
}
|
|
}
|
|
|
|
for (std::pair<Value*,Value*> P : M) {
|
|
Instruction *U = cast<Instruction>(P.second);
|
|
for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) {
|
|
auto F = M.find(U->getOperand(i));
|
|
if (F != M.end())
|
|
U->setOperand(i, F->second);
|
|
}
|
|
}
|
|
|
|
auto R = M.find(Exp);
|
|
assert(R != M.end());
|
|
Root = R->second;
|
|
|
|
record(Root);
|
|
use(Root);
|
|
}
|
|
|
|
void Simplifier::Context::record(Value *V) {
|
|
auto Record = [this](Instruction *U) -> bool {
|
|
Clones.insert(U);
|
|
return true;
|
|
};
|
|
traverse(V, Record);
|
|
}
|
|
|
|
void Simplifier::Context::use(Value *V) {
|
|
auto Use = [this](Instruction *U) -> bool {
|
|
Used.insert(U);
|
|
return true;
|
|
};
|
|
traverse(V, Use);
|
|
}
|
|
|
|
void Simplifier::Context::unuse(Value *V) {
|
|
if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != nullptr)
|
|
return;
|
|
|
|
auto Unuse = [this](Instruction *U) -> bool {
|
|
if (!U->use_empty())
|
|
return false;
|
|
Used.erase(U);
|
|
return true;
|
|
};
|
|
traverse(V, Unuse);
|
|
}
|
|
|
|
Value *Simplifier::Context::subst(Value *Tree, Value *OldV, Value *NewV) {
|
|
if (Tree == OldV)
|
|
return NewV;
|
|
if (OldV == NewV)
|
|
return Tree;
|
|
|
|
WorkListType Q;
|
|
Q.push_back(Tree);
|
|
while (!Q.empty()) {
|
|
Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
|
|
// If U is not an instruction, or it's not a clone, skip it.
|
|
if (!U || U->getParent())
|
|
continue;
|
|
for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) {
|
|
Value *Op = U->getOperand(i);
|
|
if (Op == OldV) {
|
|
U->setOperand(i, NewV);
|
|
unuse(OldV);
|
|
} else {
|
|
Q.push_back(Op);
|
|
}
|
|
}
|
|
}
|
|
return Tree;
|
|
}
|
|
|
|
void Simplifier::Context::replace(Value *OldV, Value *NewV) {
|
|
if (Root == OldV) {
|
|
Root = NewV;
|
|
use(Root);
|
|
return;
|
|
}
|
|
|
|
// NewV may be a complex tree that has just been created by one of the
|
|
// transformation rules. We need to make sure that it is commoned with
|
|
// the existing Root to the maximum extent possible.
|
|
// Identify all subtrees of NewV (including NewV itself) that have
|
|
// equivalent counterparts in Root, and replace those subtrees with
|
|
// these counterparts.
|
|
WorkListType Q;
|
|
Q.push_back(NewV);
|
|
while (!Q.empty()) {
|
|
Value *V = Q.pop_front_val();
|
|
Instruction *U = dyn_cast<Instruction>(V);
|
|
if (!U || U->getParent())
|
|
continue;
|
|
if (Value *DupV = find(Root, V)) {
|
|
if (DupV != V)
|
|
NewV = subst(NewV, V, DupV);
|
|
} else {
|
|
for (Value *Op : U->operands())
|
|
Q.push_back(Op);
|
|
}
|
|
}
|
|
|
|
// Now, simply replace OldV with NewV in Root.
|
|
Root = subst(Root, OldV, NewV);
|
|
use(Root);
|
|
}
|
|
|
|
void Simplifier::Context::cleanup() {
|
|
for (Value *V : Clones) {
|
|
Instruction *U = cast<Instruction>(V);
|
|
if (!U->getParent())
|
|
U->dropAllReferences();
|
|
}
|
|
|
|
for (Value *V : Clones) {
|
|
Instruction *U = cast<Instruction>(V);
|
|
if (!U->getParent())
|
|
U->deleteValue();
|
|
}
|
|
}
|
|
|
|
bool Simplifier::Context::equal(const Instruction *I,
|
|
const Instruction *J) const {
|
|
if (I == J)
|
|
return true;
|
|
if (!I->isSameOperationAs(J))
|
|
return false;
|
|
if (isa<PHINode>(I))
|
|
return I->isIdenticalTo(J);
|
|
|
|
for (unsigned i = 0, n = I->getNumOperands(); i != n; ++i) {
|
|
Value *OpI = I->getOperand(i), *OpJ = J->getOperand(i);
|
|
if (OpI == OpJ)
|
|
continue;
|
|
auto *InI = dyn_cast<const Instruction>(OpI);
|
|
auto *InJ = dyn_cast<const Instruction>(OpJ);
|
|
if (InI && InJ) {
|
|
if (!equal(InI, InJ))
|
|
return false;
|
|
} else if (InI != InJ || !InI)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
Value *Simplifier::Context::find(Value *Tree, Value *Sub) const {
|
|
Instruction *SubI = dyn_cast<Instruction>(Sub);
|
|
WorkListType Q;
|
|
Q.push_back(Tree);
|
|
|
|
while (!Q.empty()) {
|
|
Value *V = Q.pop_front_val();
|
|
if (V == Sub)
|
|
return V;
|
|
Instruction *U = dyn_cast<Instruction>(V);
|
|
if (!U || U->getParent())
|
|
continue;
|
|
if (SubI && equal(SubI, U))
|
|
return U;
|
|
assert(!isa<PHINode>(U));
|
|
for (Value *Op : U->operands())
|
|
Q.push_back(Op);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void Simplifier::Context::link(Instruction *I, BasicBlock *B,
|
|
BasicBlock::iterator At) {
|
|
if (I->getParent())
|
|
return;
|
|
|
|
for (Value *Op : I->operands()) {
|
|
if (Instruction *OpI = dyn_cast<Instruction>(Op))
|
|
link(OpI, B, At);
|
|
}
|
|
|
|
B->getInstList().insert(At, I);
|
|
}
|
|
|
|
Value *Simplifier::Context::materialize(BasicBlock *B,
|
|
BasicBlock::iterator At) {
|
|
if (Instruction *RootI = dyn_cast<Instruction>(Root))
|
|
link(RootI, B, At);
|
|
return Root;
|
|
}
|
|
|
|
Value *Simplifier::simplify(Context &C) {
|
|
WorkListType Q;
|
|
Q.push_back(C.Root);
|
|
unsigned Count = 0;
|
|
const unsigned Limit = SimplifyLimit;
|
|
|
|
while (!Q.empty()) {
|
|
if (Count++ >= Limit)
|
|
break;
|
|
Instruction *U = dyn_cast<Instruction>(Q.pop_front_val());
|
|
if (!U || U->getParent() || !C.Used.count(U))
|
|
continue;
|
|
bool Changed = false;
|
|
for (Rule &R : Rules) {
|
|
Value *W = R.Fn(U, C.Ctx);
|
|
if (!W)
|
|
continue;
|
|
Changed = true;
|
|
C.record(W);
|
|
C.replace(U, W);
|
|
Q.push_back(C.Root);
|
|
break;
|
|
}
|
|
if (!Changed) {
|
|
for (Value *Op : U->operands())
|
|
Q.push_back(Op);
|
|
}
|
|
}
|
|
return Count < Limit ? C.Root : nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Implementation of PolynomialMultiplyRecognize
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class PolynomialMultiplyRecognize {
|
|
public:
|
|
explicit PolynomialMultiplyRecognize(Loop *loop, const DataLayout &dl,
|
|
const DominatorTree &dt, const TargetLibraryInfo &tli,
|
|
ScalarEvolution &se)
|
|
: CurLoop(loop), DL(dl), DT(dt), TLI(tli), SE(se) {}
|
|
|
|
bool recognize();
|
|
|
|
private:
|
|
using ValueSeq = SetVector<Value *>;
|
|
|
|
IntegerType *getPmpyType() const {
|
|
LLVMContext &Ctx = CurLoop->getHeader()->getParent()->getContext();
|
|
return IntegerType::get(Ctx, 32);
|
|
}
|
|
|
|
bool isPromotableTo(Value *V, IntegerType *Ty);
|
|
void promoteTo(Instruction *In, IntegerType *DestTy, BasicBlock *LoopB);
|
|
bool promoteTypes(BasicBlock *LoopB, BasicBlock *ExitB);
|
|
|
|
Value *getCountIV(BasicBlock *BB);
|
|
bool findCycle(Value *Out, Value *In, ValueSeq &Cycle);
|
|
void classifyCycle(Instruction *DivI, ValueSeq &Cycle, ValueSeq &Early,
|
|
ValueSeq &Late);
|
|
bool classifyInst(Instruction *UseI, ValueSeq &Early, ValueSeq &Late);
|
|
bool commutesWithShift(Instruction *I);
|
|
bool highBitsAreZero(Value *V, unsigned IterCount);
|
|
bool keepsHighBitsZero(Value *V, unsigned IterCount);
|
|
bool isOperandShifted(Instruction *I, Value *Op);
|
|
bool convertShiftsToLeft(BasicBlock *LoopB, BasicBlock *ExitB,
|
|
unsigned IterCount);
|
|
void cleanupLoopBody(BasicBlock *LoopB);
|
|
|
|
struct ParsedValues {
|
|
ParsedValues() = default;
|
|
|
|
Value *M = nullptr;
|
|
Value *P = nullptr;
|
|
Value *Q = nullptr;
|
|
Value *R = nullptr;
|
|
Value *X = nullptr;
|
|
Instruction *Res = nullptr;
|
|
unsigned IterCount = 0;
|
|
bool Left = false;
|
|
bool Inv = false;
|
|
};
|
|
|
|
bool matchLeftShift(SelectInst *SelI, Value *CIV, ParsedValues &PV);
|
|
bool matchRightShift(SelectInst *SelI, ParsedValues &PV);
|
|
bool scanSelect(SelectInst *SI, BasicBlock *LoopB, BasicBlock *PrehB,
|
|
Value *CIV, ParsedValues &PV, bool PreScan);
|
|
unsigned getInverseMxN(unsigned QP);
|
|
Value *generate(BasicBlock::iterator At, ParsedValues &PV);
|
|
|
|
void setupPreSimplifier(Simplifier &S);
|
|
void setupPostSimplifier(Simplifier &S);
|
|
|
|
Loop *CurLoop;
|
|
const DataLayout &DL;
|
|
const DominatorTree &DT;
|
|
const TargetLibraryInfo &TLI;
|
|
ScalarEvolution &SE;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
Value *PolynomialMultiplyRecognize::getCountIV(BasicBlock *BB) {
|
|
pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
|
|
if (std::distance(PI, PE) != 2)
|
|
return nullptr;
|
|
BasicBlock *PB = (*PI == BB) ? *std::next(PI) : *PI;
|
|
|
|
for (auto I = BB->begin(), E = BB->end(); I != E && isa<PHINode>(I); ++I) {
|
|
auto *PN = cast<PHINode>(I);
|
|
Value *InitV = PN->getIncomingValueForBlock(PB);
|
|
if (!isa<ConstantInt>(InitV) || !cast<ConstantInt>(InitV)->isZero())
|
|
continue;
|
|
Value *IterV = PN->getIncomingValueForBlock(BB);
|
|
if (!isa<BinaryOperator>(IterV))
|
|
continue;
|
|
auto *BO = dyn_cast<BinaryOperator>(IterV);
|
|
if (BO->getOpcode() != Instruction::Add)
|
|
continue;
|
|
Value *IncV = nullptr;
|
|
if (BO->getOperand(0) == PN)
|
|
IncV = BO->getOperand(1);
|
|
else if (BO->getOperand(1) == PN)
|
|
IncV = BO->getOperand(0);
|
|
if (IncV == nullptr)
|
|
continue;
|
|
|
|
if (auto *T = dyn_cast<ConstantInt>(IncV))
|
|
if (T->getZExtValue() == 1)
|
|
return PN;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
static void replaceAllUsesOfWithIn(Value *I, Value *J, BasicBlock *BB) {
|
|
for (auto UI = I->user_begin(), UE = I->user_end(); UI != UE;) {
|
|
Use &TheUse = UI.getUse();
|
|
++UI;
|
|
if (auto *II = dyn_cast<Instruction>(TheUse.getUser()))
|
|
if (BB == II->getParent())
|
|
II->replaceUsesOfWith(I, J);
|
|
}
|
|
}
|
|
|
|
bool PolynomialMultiplyRecognize::matchLeftShift(SelectInst *SelI,
|
|
Value *CIV, ParsedValues &PV) {
|
|
// Match the following:
|
|
// select (X & (1 << i)) != 0 ? R ^ (Q << i) : R
|
|
// select (X & (1 << i)) == 0 ? R : R ^ (Q << i)
|
|
// The condition may also check for equality with the masked value, i.e
|
|
// select (X & (1 << i)) == (1 << i) ? R ^ (Q << i) : R
|
|
// select (X & (1 << i)) != (1 << i) ? R : R ^ (Q << i);
|
|
|
|
Value *CondV = SelI->getCondition();
|
|
Value *TrueV = SelI->getTrueValue();
|
|
Value *FalseV = SelI->getFalseValue();
|
|
|
|
using namespace PatternMatch;
|
|
|
|
CmpInst::Predicate P;
|
|
Value *A = nullptr, *B = nullptr, *C = nullptr;
|
|
|
|
if (!match(CondV, m_ICmp(P, m_And(m_Value(A), m_Value(B)), m_Value(C))) &&
|
|
!match(CondV, m_ICmp(P, m_Value(C), m_And(m_Value(A), m_Value(B)))))
|
|
return false;
|
|
if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
|
|
return false;
|
|
// Matched: select (A & B) == C ? ... : ...
|
|
// select (A & B) != C ? ... : ...
|
|
|
|
Value *X = nullptr, *Sh1 = nullptr;
|
|
// Check (A & B) for (X & (1 << i)):
|
|
if (match(A, m_Shl(m_One(), m_Specific(CIV)))) {
|
|
Sh1 = A;
|
|
X = B;
|
|
} else if (match(B, m_Shl(m_One(), m_Specific(CIV)))) {
|
|
Sh1 = B;
|
|
X = A;
|
|
} else {
|
|
// TODO: Could also check for an induction variable containing single
|
|
// bit shifted left by 1 in each iteration.
|
|
return false;
|
|
}
|
|
|
|
bool TrueIfZero;
|
|
|
|
// Check C against the possible values for comparison: 0 and (1 << i):
|
|
if (match(C, m_Zero()))
|
|
TrueIfZero = (P == CmpInst::ICMP_EQ);
|
|
else if (C == Sh1)
|
|
TrueIfZero = (P == CmpInst::ICMP_NE);
|
|
else
|
|
return false;
|
|
|
|
// So far, matched:
|
|
// select (X & (1 << i)) ? ... : ...
|
|
// including variations of the check against zero/non-zero value.
|
|
|
|
Value *ShouldSameV = nullptr, *ShouldXoredV = nullptr;
|
|
if (TrueIfZero) {
|
|
ShouldSameV = TrueV;
|
|
ShouldXoredV = FalseV;
|
|
} else {
|
|
ShouldSameV = FalseV;
|
|
ShouldXoredV = TrueV;
|
|
}
|
|
|
|
Value *Q = nullptr, *R = nullptr, *Y = nullptr, *Z = nullptr;
|
|
Value *T = nullptr;
|
|
if (match(ShouldXoredV, m_Xor(m_Value(Y), m_Value(Z)))) {
|
|
// Matched: select +++ ? ... : Y ^ Z
|
|
// select +++ ? Y ^ Z : ...
|
|
// where +++ denotes previously checked matches.
|
|
if (ShouldSameV == Y)
|
|
T = Z;
|
|
else if (ShouldSameV == Z)
|
|
T = Y;
|
|
else
|
|
return false;
|
|
R = ShouldSameV;
|
|
// Matched: select +++ ? R : R ^ T
|
|
// select +++ ? R ^ T : R
|
|
// depending on TrueIfZero.
|
|
|
|
} else if (match(ShouldSameV, m_Zero())) {
|
|
// Matched: select +++ ? 0 : ...
|
|
// select +++ ? ... : 0
|
|
if (!SelI->hasOneUse())
|
|
return false;
|
|
T = ShouldXoredV;
|
|
// Matched: select +++ ? 0 : T
|
|
// select +++ ? T : 0
|
|
|
|
Value *U = *SelI->user_begin();
|
|
if (!match(U, m_Xor(m_Specific(SelI), m_Value(R))) &&
|
|
!match(U, m_Xor(m_Value(R), m_Specific(SelI))))
|
|
return false;
|
|
// Matched: xor (select +++ ? 0 : T), R
|
|
// xor (select +++ ? T : 0), R
|
|
} else
|
|
return false;
|
|
|
|
// The xor input value T is isolated into its own match so that it could
|
|
// be checked against an induction variable containing a shifted bit
|
|
// (todo).
|
|
// For now, check against (Q << i).
|
|
if (!match(T, m_Shl(m_Value(Q), m_Specific(CIV))) &&
|
|
!match(T, m_Shl(m_ZExt(m_Value(Q)), m_ZExt(m_Specific(CIV)))))
|
|
return false;
|
|
// Matched: select +++ ? R : R ^ (Q << i)
|
|
// select +++ ? R ^ (Q << i) : R
|
|
|
|
PV.X = X;
|
|
PV.Q = Q;
|
|
PV.R = R;
|
|
PV.Left = true;
|
|
return true;
|
|
}
|
|
|
|
bool PolynomialMultiplyRecognize::matchRightShift(SelectInst *SelI,
|
|
ParsedValues &PV) {
|
|
// Match the following:
|
|
// select (X & 1) != 0 ? (R >> 1) ^ Q : (R >> 1)
|
|
// select (X & 1) == 0 ? (R >> 1) : (R >> 1) ^ Q
|
|
// The condition may also check for equality with the masked value, i.e
|
|
// select (X & 1) == 1 ? (R >> 1) ^ Q : (R >> 1)
|
|
// select (X & 1) != 1 ? (R >> 1) : (R >> 1) ^ Q
|
|
|
|
Value *CondV = SelI->getCondition();
|
|
Value *TrueV = SelI->getTrueValue();
|
|
Value *FalseV = SelI->getFalseValue();
|
|
|
|
using namespace PatternMatch;
|
|
|
|
Value *C = nullptr;
|
|
CmpInst::Predicate P;
|
|
bool TrueIfZero;
|
|
|
|
if (match(CondV, m_ICmp(P, m_Value(C), m_Zero())) ||
|
|
match(CondV, m_ICmp(P, m_Zero(), m_Value(C)))) {
|
|
if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
|
|
return false;
|
|
// Matched: select C == 0 ? ... : ...
|
|
// select C != 0 ? ... : ...
|
|
TrueIfZero = (P == CmpInst::ICMP_EQ);
|
|
} else if (match(CondV, m_ICmp(P, m_Value(C), m_One())) ||
|
|
match(CondV, m_ICmp(P, m_One(), m_Value(C)))) {
|
|
if (P != CmpInst::ICMP_EQ && P != CmpInst::ICMP_NE)
|
|
return false;
|
|
// Matched: select C == 1 ? ... : ...
|
|
// select C != 1 ? ... : ...
|
|
TrueIfZero = (P == CmpInst::ICMP_NE);
|
|
} else
|
|
return false;
|
|
|
|
Value *X = nullptr;
|
|
if (!match(C, m_And(m_Value(X), m_One())) &&
|
|
!match(C, m_And(m_One(), m_Value(X))))
|
|
return false;
|
|
// Matched: select (X & 1) == +++ ? ... : ...
|
|
// select (X & 1) != +++ ? ... : ...
|
|
|
|
Value *R = nullptr, *Q = nullptr;
|
|
if (TrueIfZero) {
|
|
// The select's condition is true if the tested bit is 0.
|
|
// TrueV must be the shift, FalseV must be the xor.
|
|
if (!match(TrueV, m_LShr(m_Value(R), m_One())))
|
|
return false;
|
|
// Matched: select +++ ? (R >> 1) : ...
|
|
if (!match(FalseV, m_Xor(m_Specific(TrueV), m_Value(Q))) &&
|
|
!match(FalseV, m_Xor(m_Value(Q), m_Specific(TrueV))))
|
|
return false;
|
|
// Matched: select +++ ? (R >> 1) : (R >> 1) ^ Q
|
|
// with commuting ^.
|
|
} else {
|
|
// The select's condition is true if the tested bit is 1.
|
|
// TrueV must be the xor, FalseV must be the shift.
|
|
if (!match(FalseV, m_LShr(m_Value(R), m_One())))
|
|
return false;
|
|
// Matched: select +++ ? ... : (R >> 1)
|
|
if (!match(TrueV, m_Xor(m_Specific(FalseV), m_Value(Q))) &&
|
|
!match(TrueV, m_Xor(m_Value(Q), m_Specific(FalseV))))
|
|
return false;
|
|
// Matched: select +++ ? (R >> 1) ^ Q : (R >> 1)
|
|
// with commuting ^.
|
|
}
|
|
|
|
PV.X = X;
|
|
PV.Q = Q;
|
|
PV.R = R;
|
|
PV.Left = false;
|
|
return true;
|
|
}
|
|
|
|
bool PolynomialMultiplyRecognize::scanSelect(SelectInst *SelI,
|
|
BasicBlock *LoopB, BasicBlock *PrehB, Value *CIV, ParsedValues &PV,
|
|
bool PreScan) {
|
|
using namespace PatternMatch;
|
|
|
|
// The basic pattern for R = P.Q is:
|
|
// for i = 0..31
|
|
// R = phi (0, R')
|
|
// if (P & (1 << i)) ; test-bit(P, i)
|
|
// R' = R ^ (Q << i)
|
|
//
|
|
// Similarly, the basic pattern for R = (P/Q).Q - P
|
|
// for i = 0..31
|
|
// R = phi(P, R')
|
|
// if (R & (1 << i))
|
|
// R' = R ^ (Q << i)
|
|
|
|
// There exist idioms, where instead of Q being shifted left, P is shifted
|
|
// right. This produces a result that is shifted right by 32 bits (the
|
|
// non-shifted result is 64-bit).
|
|
//
|
|
// For R = P.Q, this would be:
|
|
// for i = 0..31
|
|
// R = phi (0, R')
|
|
// if ((P >> i) & 1)
|
|
// R' = (R >> 1) ^ Q ; R is cycled through the loop, so it must
|
|
// else ; be shifted by 1, not i.
|
|
// R' = R >> 1
|
|
//
|
|
// And for the inverse:
|
|
// for i = 0..31
|
|
// R = phi (P, R')
|
|
// if (R & 1)
|
|
// R' = (R >> 1) ^ Q
|
|
// else
|
|
// R' = R >> 1
|
|
|
|
// The left-shifting idioms share the same pattern:
|
|
// select (X & (1 << i)) ? R ^ (Q << i) : R
|
|
// Similarly for right-shifting idioms:
|
|
// select (X & 1) ? (R >> 1) ^ Q
|
|
|
|
if (matchLeftShift(SelI, CIV, PV)) {
|
|
// If this is a pre-scan, getting this far is sufficient.
|
|
if (PreScan)
|
|
return true;
|
|
|
|
// Need to make sure that the SelI goes back into R.
|
|
auto *RPhi = dyn_cast<PHINode>(PV.R);
|
|
if (!RPhi)
|
|
return false;
|
|
if (SelI != RPhi->getIncomingValueForBlock(LoopB))
|
|
return false;
|
|
PV.Res = SelI;
|
|
|
|
// If X is loop invariant, it must be the input polynomial, and the
|
|
// idiom is the basic polynomial multiply.
|
|
if (CurLoop->isLoopInvariant(PV.X)) {
|
|
PV.P = PV.X;
|
|
PV.Inv = false;
|
|
} else {
|
|
// X is not loop invariant. If X == R, this is the inverse pmpy.
|
|
// Otherwise, check for an xor with an invariant value. If the
|
|
// variable argument to the xor is R, then this is still a valid
|
|
// inverse pmpy.
|
|
PV.Inv = true;
|
|
if (PV.X != PV.R) {
|
|
Value *Var = nullptr, *Inv = nullptr, *X1 = nullptr, *X2 = nullptr;
|
|
if (!match(PV.X, m_Xor(m_Value(X1), m_Value(X2))))
|
|
return false;
|
|
auto *I1 = dyn_cast<Instruction>(X1);
|
|
auto *I2 = dyn_cast<Instruction>(X2);
|
|
if (!I1 || I1->getParent() != LoopB) {
|
|
Var = X2;
|
|
Inv = X1;
|
|
} else if (!I2 || I2->getParent() != LoopB) {
|
|
Var = X1;
|
|
Inv = X2;
|
|
} else
|
|
return false;
|
|
if (Var != PV.R)
|
|
return false;
|
|
PV.M = Inv;
|
|
}
|
|
// The input polynomial P still needs to be determined. It will be
|
|
// the entry value of R.
|
|
Value *EntryP = RPhi->getIncomingValueForBlock(PrehB);
|
|
PV.P = EntryP;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
if (matchRightShift(SelI, PV)) {
|
|
// If this is an inverse pattern, the Q polynomial must be known at
|
|
// compile time.
|
|
if (PV.Inv && !isa<ConstantInt>(PV.Q))
|
|
return false;
|
|
if (PreScan)
|
|
return true;
|
|
// There is no exact matching of right-shift pmpy.
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool PolynomialMultiplyRecognize::isPromotableTo(Value *Val,
|
|
IntegerType *DestTy) {
|
|
IntegerType *T = dyn_cast<IntegerType>(Val->getType());
|
|
if (!T || T->getBitWidth() > DestTy->getBitWidth())
|
|
return false;
|
|
if (T->getBitWidth() == DestTy->getBitWidth())
|
|
return true;
|
|
// Non-instructions are promotable. The reason why an instruction may not
|
|
// be promotable is that it may produce a different result if its operands
|
|
// and the result are promoted, for example, it may produce more non-zero
|
|
// bits. While it would still be possible to represent the proper result
|
|
// in a wider type, it may require adding additional instructions (which
|
|
// we don't want to do).
|
|
Instruction *In = dyn_cast<Instruction>(Val);
|
|
if (!In)
|
|
return true;
|
|
// The bitwidth of the source type is smaller than the destination.
|
|
// Check if the individual operation can be promoted.
|
|
switch (In->getOpcode()) {
|
|
case Instruction::PHI:
|
|
case Instruction::ZExt:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
case Instruction::LShr: // Shift right is ok.
|
|
case Instruction::Select:
|
|
case Instruction::Trunc:
|
|
return true;
|
|
case Instruction::ICmp:
|
|
if (CmpInst *CI = cast<CmpInst>(In))
|
|
return CI->isEquality() || CI->isUnsigned();
|
|
llvm_unreachable("Cast failed unexpectedly");
|
|
case Instruction::Add:
|
|
return In->hasNoSignedWrap() && In->hasNoUnsignedWrap();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void PolynomialMultiplyRecognize::promoteTo(Instruction *In,
|
|
IntegerType *DestTy, BasicBlock *LoopB) {
|
|
Type *OrigTy = In->getType();
|
|
assert(!OrigTy->isVoidTy() && "Invalid instruction to promote");
|
|
|
|
// Leave boolean values alone.
|
|
if (!In->getType()->isIntegerTy(1))
|
|
In->mutateType(DestTy);
|
|
unsigned DestBW = DestTy->getBitWidth();
|
|
|
|
// Handle PHIs.
|
|
if (PHINode *P = dyn_cast<PHINode>(In)) {
|
|
unsigned N = P->getNumIncomingValues();
|
|
for (unsigned i = 0; i != N; ++i) {
|
|
BasicBlock *InB = P->getIncomingBlock(i);
|
|
if (InB == LoopB)
|
|
continue;
|
|
Value *InV = P->getIncomingValue(i);
|
|
IntegerType *Ty = cast<IntegerType>(InV->getType());
|
|
// Do not promote values in PHI nodes of type i1.
|
|
if (Ty != P->getType()) {
|
|
// If the value type does not match the PHI type, the PHI type
|
|
// must have been promoted.
|
|
assert(Ty->getBitWidth() < DestBW);
|
|
InV = IRBuilder<>(InB->getTerminator()).CreateZExt(InV, DestTy);
|
|
P->setIncomingValue(i, InV);
|
|
}
|
|
}
|
|
} else if (ZExtInst *Z = dyn_cast<ZExtInst>(In)) {
|
|
Value *Op = Z->getOperand(0);
|
|
if (Op->getType() == Z->getType())
|
|
Z->replaceAllUsesWith(Op);
|
|
Z->eraseFromParent();
|
|
return;
|
|
}
|
|
if (TruncInst *T = dyn_cast<TruncInst>(In)) {
|
|
IntegerType *TruncTy = cast<IntegerType>(OrigTy);
|
|
Value *Mask = ConstantInt::get(DestTy, (1u << TruncTy->getBitWidth()) - 1);
|
|
Value *And = IRBuilder<>(In).CreateAnd(T->getOperand(0), Mask);
|
|
T->replaceAllUsesWith(And);
|
|
T->eraseFromParent();
|
|
return;
|
|
}
|
|
|
|
// Promote immediates.
|
|
for (unsigned i = 0, n = In->getNumOperands(); i != n; ++i) {
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(In->getOperand(i)))
|
|
if (CI->getType()->getBitWidth() < DestBW)
|
|
In->setOperand(i, ConstantInt::get(DestTy, CI->getZExtValue()));
|
|
}
|
|
}
|
|
|
|
bool PolynomialMultiplyRecognize::promoteTypes(BasicBlock *LoopB,
|
|
BasicBlock *ExitB) {
|
|
assert(LoopB);
|
|
// Skip loops where the exit block has more than one predecessor. The values
|
|
// coming from the loop block will be promoted to another type, and so the
|
|
// values coming into the exit block from other predecessors would also have
|
|
// to be promoted.
|
|
if (!ExitB || (ExitB->getSinglePredecessor() != LoopB))
|
|
return false;
|
|
IntegerType *DestTy = getPmpyType();
|
|
// Check if the exit values have types that are no wider than the type
|
|
// that we want to promote to.
|
|
unsigned DestBW = DestTy->getBitWidth();
|
|
for (PHINode &P : ExitB->phis()) {
|
|
if (P.getNumIncomingValues() != 1)
|
|
return false;
|
|
assert(P.getIncomingBlock(0) == LoopB);
|
|
IntegerType *T = dyn_cast<IntegerType>(P.getType());
|
|
if (!T || T->getBitWidth() > DestBW)
|
|
return false;
|
|
}
|
|
|
|
// Check all instructions in the loop.
|
|
for (Instruction &In : *LoopB)
|
|
if (!In.isTerminator() && !isPromotableTo(&In, DestTy))
|
|
return false;
|
|
|
|
// Perform the promotion.
|
|
std::vector<Instruction*> LoopIns;
|
|
std::transform(LoopB->begin(), LoopB->end(), std::back_inserter(LoopIns),
|
|
[](Instruction &In) { return &In; });
|
|
for (Instruction *In : LoopIns)
|
|
if (!In->isTerminator())
|
|
promoteTo(In, DestTy, LoopB);
|
|
|
|
// Fix up the PHI nodes in the exit block.
|
|
Instruction *EndI = ExitB->getFirstNonPHI();
|
|
BasicBlock::iterator End = EndI ? EndI->getIterator() : ExitB->end();
|
|
for (auto I = ExitB->begin(); I != End; ++I) {
|
|
PHINode *P = dyn_cast<PHINode>(I);
|
|
if (!P)
|
|
break;
|
|
Type *Ty0 = P->getIncomingValue(0)->getType();
|
|
Type *PTy = P->getType();
|
|
if (PTy != Ty0) {
|
|
assert(Ty0 == DestTy);
|
|
// In order to create the trunc, P must have the promoted type.
|
|
P->mutateType(Ty0);
|
|
Value *T = IRBuilder<>(ExitB, End).CreateTrunc(P, PTy);
|
|
// In order for the RAUW to work, the types of P and T must match.
|
|
P->mutateType(PTy);
|
|
P->replaceAllUsesWith(T);
|
|
// Final update of the P's type.
|
|
P->mutateType(Ty0);
|
|
cast<Instruction>(T)->setOperand(0, P);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool PolynomialMultiplyRecognize::findCycle(Value *Out, Value *In,
|
|
ValueSeq &Cycle) {
|
|
// Out = ..., In, ...
|
|
if (Out == In)
|
|
return true;
|
|
|
|
auto *BB = cast<Instruction>(Out)->getParent();
|
|
bool HadPhi = false;
|
|
|
|
for (auto U : Out->users()) {
|
|
auto *I = dyn_cast<Instruction>(&*U);
|
|
if (I == nullptr || I->getParent() != BB)
|
|
continue;
|
|
// Make sure that there are no multi-iteration cycles, e.g.
|
|
// p1 = phi(p2)
|
|
// p2 = phi(p1)
|
|
// The cycle p1->p2->p1 would span two loop iterations.
|
|
// Check that there is only one phi in the cycle.
|
|
bool IsPhi = isa<PHINode>(I);
|
|
if (IsPhi && HadPhi)
|
|
return false;
|
|
HadPhi |= IsPhi;
|
|
if (Cycle.count(I))
|
|
return false;
|
|
Cycle.insert(I);
|
|
if (findCycle(I, In, Cycle))
|
|
break;
|
|
Cycle.remove(I);
|
|
}
|
|
return !Cycle.empty();
|
|
}
|
|
|
|
void PolynomialMultiplyRecognize::classifyCycle(Instruction *DivI,
|
|
ValueSeq &Cycle, ValueSeq &Early, ValueSeq &Late) {
|
|
// All the values in the cycle that are between the phi node and the
|
|
// divider instruction will be classified as "early", all other values
|
|
// will be "late".
|
|
|
|
bool IsE = true;
|
|
unsigned I, N = Cycle.size();
|
|
for (I = 0; I < N; ++I) {
|
|
Value *V = Cycle[I];
|
|
if (DivI == V)
|
|
IsE = false;
|
|
else if (!isa<PHINode>(V))
|
|
continue;
|
|
// Stop if found either.
|
|
break;
|
|
}
|
|
// "I" is the index of either DivI or the phi node, whichever was first.
|
|
// "E" is "false" or "true" respectively.
|
|
ValueSeq &First = !IsE ? Early : Late;
|
|
for (unsigned J = 0; J < I; ++J)
|
|
First.insert(Cycle[J]);
|
|
|
|
ValueSeq &Second = IsE ? Early : Late;
|
|
Second.insert(Cycle[I]);
|
|
for (++I; I < N; ++I) {
|
|
Value *V = Cycle[I];
|
|
if (DivI == V || isa<PHINode>(V))
|
|
break;
|
|
Second.insert(V);
|
|
}
|
|
|
|
for (; I < N; ++I)
|
|
First.insert(Cycle[I]);
|
|
}
|
|
|
|
bool PolynomialMultiplyRecognize::classifyInst(Instruction *UseI,
|
|
ValueSeq &Early, ValueSeq &Late) {
|
|
// Select is an exception, since the condition value does not have to be
|
|
// classified in the same way as the true/false values. The true/false
|
|
// values do have to be both early or both late.
|
|
if (UseI->getOpcode() == Instruction::Select) {
|
|
Value *TV = UseI->getOperand(1), *FV = UseI->getOperand(2);
|
|
if (Early.count(TV) || Early.count(FV)) {
|
|
if (Late.count(TV) || Late.count(FV))
|
|
return false;
|
|
Early.insert(UseI);
|
|
} else if (Late.count(TV) || Late.count(FV)) {
|
|
if (Early.count(TV) || Early.count(FV))
|
|
return false;
|
|
Late.insert(UseI);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Not sure what would be the example of this, but the code below relies
|
|
// on having at least one operand.
|
|
if (UseI->getNumOperands() == 0)
|
|
return true;
|
|
|
|
bool AE = true, AL = true;
|
|
for (auto &I : UseI->operands()) {
|
|
if (Early.count(&*I))
|
|
AL = false;
|
|
else if (Late.count(&*I))
|
|
AE = false;
|
|
}
|
|
// If the operands appear "all early" and "all late" at the same time,
|
|
// then it means that none of them are actually classified as either.
|
|
// This is harmless.
|
|
if (AE && AL)
|
|
return true;
|
|
// Conversely, if they are neither "all early" nor "all late", then
|
|
// we have a mixture of early and late operands that is not a known
|
|
// exception.
|
|
if (!AE && !AL)
|
|
return false;
|
|
|
|
// Check that we have covered the two special cases.
|
|
assert(AE != AL);
|
|
|
|
if (AE)
|
|
Early.insert(UseI);
|
|
else
|
|
Late.insert(UseI);
|
|
return true;
|
|
}
|
|
|
|
bool PolynomialMultiplyRecognize::commutesWithShift(Instruction *I) {
|
|
switch (I->getOpcode()) {
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
case Instruction::LShr:
|
|
case Instruction::Shl:
|
|
case Instruction::Select:
|
|
case Instruction::ICmp:
|
|
case Instruction::PHI:
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool PolynomialMultiplyRecognize::highBitsAreZero(Value *V,
|
|
unsigned IterCount) {
|
|
auto *T = dyn_cast<IntegerType>(V->getType());
|
|
if (!T)
|
|
return false;
|
|
|
|
KnownBits Known(T->getBitWidth());
|
|
computeKnownBits(V, Known, DL);
|
|
return Known.countMinLeadingZeros() >= IterCount;
|
|
}
|
|
|
|
bool PolynomialMultiplyRecognize::keepsHighBitsZero(Value *V,
|
|
unsigned IterCount) {
|
|
// Assume that all inputs to the value have the high bits zero.
|
|
// Check if the value itself preserves the zeros in the high bits.
|
|
if (auto *C = dyn_cast<ConstantInt>(V))
|
|
return C->getValue().countLeadingZeros() >= IterCount;
|
|
|
|
if (auto *I = dyn_cast<Instruction>(V)) {
|
|
switch (I->getOpcode()) {
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
case Instruction::LShr:
|
|
case Instruction::Select:
|
|
case Instruction::ICmp:
|
|
case Instruction::PHI:
|
|
case Instruction::ZExt:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool PolynomialMultiplyRecognize::isOperandShifted(Instruction *I, Value *Op) {
|
|
unsigned Opc = I->getOpcode();
|
|
if (Opc == Instruction::Shl || Opc == Instruction::LShr)
|
|
return Op != I->getOperand(1);
|
|
return true;
|
|
}
|
|
|
|
bool PolynomialMultiplyRecognize::convertShiftsToLeft(BasicBlock *LoopB,
|
|
BasicBlock *ExitB, unsigned IterCount) {
|
|
Value *CIV = getCountIV(LoopB);
|
|
if (CIV == nullptr)
|
|
return false;
|
|
auto *CIVTy = dyn_cast<IntegerType>(CIV->getType());
|
|
if (CIVTy == nullptr)
|
|
return false;
|
|
|
|
ValueSeq RShifts;
|
|
ValueSeq Early, Late, Cycled;
|
|
|
|
// Find all value cycles that contain logical right shifts by 1.
|
|
for (Instruction &I : *LoopB) {
|
|
using namespace PatternMatch;
|
|
|
|
Value *V = nullptr;
|
|
if (!match(&I, m_LShr(m_Value(V), m_One())))
|
|
continue;
|
|
ValueSeq C;
|
|
if (!findCycle(&I, V, C))
|
|
continue;
|
|
|
|
// Found a cycle.
|
|
C.insert(&I);
|
|
classifyCycle(&I, C, Early, Late);
|
|
Cycled.insert(C.begin(), C.end());
|
|
RShifts.insert(&I);
|
|
}
|
|
|
|
// Find the set of all values affected by the shift cycles, i.e. all
|
|
// cycled values, and (recursively) all their users.
|
|
ValueSeq Users(Cycled.begin(), Cycled.end());
|
|
for (unsigned i = 0; i < Users.size(); ++i) {
|
|
Value *V = Users[i];
|
|
if (!isa<IntegerType>(V->getType()))
|
|
return false;
|
|
auto *R = cast<Instruction>(V);
|
|
// If the instruction does not commute with shifts, the loop cannot
|
|
// be unshifted.
|
|
if (!commutesWithShift(R))
|
|
return false;
|
|
for (auto I = R->user_begin(), E = R->user_end(); I != E; ++I) {
|
|
auto *T = cast<Instruction>(*I);
|
|
// Skip users from outside of the loop. They will be handled later.
|
|
// Also, skip the right-shifts and phi nodes, since they mix early
|
|
// and late values.
|
|
if (T->getParent() != LoopB || RShifts.count(T) || isa<PHINode>(T))
|
|
continue;
|
|
|
|
Users.insert(T);
|
|
if (!classifyInst(T, Early, Late))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (Users.empty())
|
|
return false;
|
|
|
|
// Verify that high bits remain zero.
|
|
ValueSeq Internal(Users.begin(), Users.end());
|
|
ValueSeq Inputs;
|
|
for (unsigned i = 0; i < Internal.size(); ++i) {
|
|
auto *R = dyn_cast<Instruction>(Internal[i]);
|
|
if (!R)
|
|
continue;
|
|
for (Value *Op : R->operands()) {
|
|
auto *T = dyn_cast<Instruction>(Op);
|
|
if (T && T->getParent() != LoopB)
|
|
Inputs.insert(Op);
|
|
else
|
|
Internal.insert(Op);
|
|
}
|
|
}
|
|
for (Value *V : Inputs)
|
|
if (!highBitsAreZero(V, IterCount))
|
|
return false;
|
|
for (Value *V : Internal)
|
|
if (!keepsHighBitsZero(V, IterCount))
|
|
return false;
|
|
|
|
// Finally, the work can be done. Unshift each user.
|
|
IRBuilder<> IRB(LoopB);
|
|
std::map<Value*,Value*> ShiftMap;
|
|
|
|
using CastMapType = std::map<std::pair<Value *, Type *>, Value *>;
|
|
|
|
CastMapType CastMap;
|
|
|
|
auto upcast = [] (CastMapType &CM, IRBuilder<> &IRB, Value *V,
|
|
IntegerType *Ty) -> Value* {
|
|
auto H = CM.find(std::make_pair(V, Ty));
|
|
if (H != CM.end())
|
|
return H->second;
|
|
Value *CV = IRB.CreateIntCast(V, Ty, false);
|
|
CM.insert(std::make_pair(std::make_pair(V, Ty), CV));
|
|
return CV;
|
|
};
|
|
|
|
for (auto I = LoopB->begin(), E = LoopB->end(); I != E; ++I) {
|
|
using namespace PatternMatch;
|
|
|
|
if (isa<PHINode>(I) || !Users.count(&*I))
|
|
continue;
|
|
|
|
// Match lshr x, 1.
|
|
Value *V = nullptr;
|
|
if (match(&*I, m_LShr(m_Value(V), m_One()))) {
|
|
replaceAllUsesOfWithIn(&*I, V, LoopB);
|
|
continue;
|
|
}
|
|
// For each non-cycled operand, replace it with the corresponding
|
|
// value shifted left.
|
|
for (auto &J : I->operands()) {
|
|
Value *Op = J.get();
|
|
if (!isOperandShifted(&*I, Op))
|
|
continue;
|
|
if (Users.count(Op))
|
|
continue;
|
|
// Skip shifting zeros.
|
|
if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
|
|
continue;
|
|
// Check if we have already generated a shift for this value.
|
|
auto F = ShiftMap.find(Op);
|
|
Value *W = (F != ShiftMap.end()) ? F->second : nullptr;
|
|
if (W == nullptr) {
|
|
IRB.SetInsertPoint(&*I);
|
|
// First, the shift amount will be CIV or CIV+1, depending on
|
|
// whether the value is early or late. Instead of creating CIV+1,
|
|
// do a single shift of the value.
|
|
Value *ShAmt = CIV, *ShVal = Op;
|
|
auto *VTy = cast<IntegerType>(ShVal->getType());
|
|
auto *ATy = cast<IntegerType>(ShAmt->getType());
|
|
if (Late.count(&*I))
|
|
ShVal = IRB.CreateShl(Op, ConstantInt::get(VTy, 1));
|
|
// Second, the types of the shifted value and the shift amount
|
|
// must match.
|
|
if (VTy != ATy) {
|
|
if (VTy->getBitWidth() < ATy->getBitWidth())
|
|
ShVal = upcast(CastMap, IRB, ShVal, ATy);
|
|
else
|
|
ShAmt = upcast(CastMap, IRB, ShAmt, VTy);
|
|
}
|
|
// Ready to generate the shift and memoize it.
|
|
W = IRB.CreateShl(ShVal, ShAmt);
|
|
ShiftMap.insert(std::make_pair(Op, W));
|
|
}
|
|
I->replaceUsesOfWith(Op, W);
|
|
}
|
|
}
|
|
|
|
// Update the users outside of the loop to account for having left
|
|
// shifts. They would normally be shifted right in the loop, so shift
|
|
// them right after the loop exit.
|
|
// Take advantage of the loop-closed SSA form, which has all the post-
|
|
// loop values in phi nodes.
|
|
IRB.SetInsertPoint(ExitB, ExitB->getFirstInsertionPt());
|
|
for (auto P = ExitB->begin(), Q = ExitB->end(); P != Q; ++P) {
|
|
if (!isa<PHINode>(P))
|
|
break;
|
|
auto *PN = cast<PHINode>(P);
|
|
Value *U = PN->getIncomingValueForBlock(LoopB);
|
|
if (!Users.count(U))
|
|
continue;
|
|
Value *S = IRB.CreateLShr(PN, ConstantInt::get(PN->getType(), IterCount));
|
|
PN->replaceAllUsesWith(S);
|
|
// The above RAUW will create
|
|
// S = lshr S, IterCount
|
|
// so we need to fix it back into
|
|
// S = lshr PN, IterCount
|
|
cast<User>(S)->replaceUsesOfWith(S, PN);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void PolynomialMultiplyRecognize::cleanupLoopBody(BasicBlock *LoopB) {
|
|
for (auto &I : *LoopB)
|
|
if (Value *SV = SimplifyInstruction(&I, {DL, &TLI, &DT}))
|
|
I.replaceAllUsesWith(SV);
|
|
|
|
for (auto I = LoopB->begin(), N = I; I != LoopB->end(); I = N) {
|
|
N = std::next(I);
|
|
RecursivelyDeleteTriviallyDeadInstructions(&*I, &TLI);
|
|
}
|
|
}
|
|
|
|
unsigned PolynomialMultiplyRecognize::getInverseMxN(unsigned QP) {
|
|
// Arrays of coefficients of Q and the inverse, C.
|
|
// Q[i] = coefficient at x^i.
|
|
std::array<char,32> Q, C;
|
|
|
|
for (unsigned i = 0; i < 32; ++i) {
|
|
Q[i] = QP & 1;
|
|
QP >>= 1;
|
|
}
|
|
assert(Q[0] == 1);
|
|
|
|
// Find C, such that
|
|
// (Q[n]*x^n + ... + Q[1]*x + Q[0]) * (C[n]*x^n + ... + C[1]*x + C[0]) = 1
|
|
//
|
|
// For it to have a solution, Q[0] must be 1. Since this is Z2[x], the
|
|
// operations * and + are & and ^ respectively.
|
|
//
|
|
// Find C[i] recursively, by comparing i-th coefficient in the product
|
|
// with 0 (or 1 for i=0).
|
|
//
|
|
// C[0] = 1, since C[0] = Q[0], and Q[0] = 1.
|
|
C[0] = 1;
|
|
for (unsigned i = 1; i < 32; ++i) {
|
|
// Solve for C[i] in:
|
|
// C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i]Q[0] = 0
|
|
// This is equivalent to
|
|
// C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] ^ C[i] = 0
|
|
// which is
|
|
// C[0]Q[i] ^ C[1]Q[i-1] ^ ... ^ C[i-1]Q[1] = C[i]
|
|
unsigned T = 0;
|
|
for (unsigned j = 0; j < i; ++j)
|
|
T = T ^ (C[j] & Q[i-j]);
|
|
C[i] = T;
|
|
}
|
|
|
|
unsigned QV = 0;
|
|
for (unsigned i = 0; i < 32; ++i)
|
|
if (C[i])
|
|
QV |= (1 << i);
|
|
|
|
return QV;
|
|
}
|
|
|
|
Value *PolynomialMultiplyRecognize::generate(BasicBlock::iterator At,
|
|
ParsedValues &PV) {
|
|
IRBuilder<> B(&*At);
|
|
Module *M = At->getParent()->getParent()->getParent();
|
|
Function *PMF = Intrinsic::getDeclaration(M, Intrinsic::hexagon_M4_pmpyw);
|
|
|
|
Value *P = PV.P, *Q = PV.Q, *P0 = P;
|
|
unsigned IC = PV.IterCount;
|
|
|
|
if (PV.M != nullptr)
|
|
P0 = P = B.CreateXor(P, PV.M);
|
|
|
|
// Create a bit mask to clear the high bits beyond IterCount.
|
|
auto *BMI = ConstantInt::get(P->getType(), APInt::getLowBitsSet(32, IC));
|
|
|
|
if (PV.IterCount != 32)
|
|
P = B.CreateAnd(P, BMI);
|
|
|
|
if (PV.Inv) {
|
|
auto *QI = dyn_cast<ConstantInt>(PV.Q);
|
|
assert(QI && QI->getBitWidth() <= 32);
|
|
|
|
// Again, clearing bits beyond IterCount.
|
|
unsigned M = (1 << PV.IterCount) - 1;
|
|
unsigned Tmp = (QI->getZExtValue() | 1) & M;
|
|
unsigned QV = getInverseMxN(Tmp) & M;
|
|
auto *QVI = ConstantInt::get(QI->getType(), QV);
|
|
P = B.CreateCall(PMF, {P, QVI});
|
|
P = B.CreateTrunc(P, QI->getType());
|
|
if (IC != 32)
|
|
P = B.CreateAnd(P, BMI);
|
|
}
|
|
|
|
Value *R = B.CreateCall(PMF, {P, Q});
|
|
|
|
if (PV.M != nullptr)
|
|
R = B.CreateXor(R, B.CreateIntCast(P0, R->getType(), false));
|
|
|
|
return R;
|
|
}
|
|
|
|
static bool hasZeroSignBit(const Value *V) {
|
|
if (const auto *CI = dyn_cast<const ConstantInt>(V))
|
|
return (CI->getType()->getSignBit() & CI->getSExtValue()) == 0;
|
|
const Instruction *I = dyn_cast<const Instruction>(V);
|
|
if (!I)
|
|
return false;
|
|
switch (I->getOpcode()) {
|
|
case Instruction::LShr:
|
|
if (const auto SI = dyn_cast<const ConstantInt>(I->getOperand(1)))
|
|
return SI->getZExtValue() > 0;
|
|
return false;
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
return hasZeroSignBit(I->getOperand(0)) &&
|
|
hasZeroSignBit(I->getOperand(1));
|
|
case Instruction::And:
|
|
return hasZeroSignBit(I->getOperand(0)) ||
|
|
hasZeroSignBit(I->getOperand(1));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void PolynomialMultiplyRecognize::setupPreSimplifier(Simplifier &S) {
|
|
S.addRule("sink-zext",
|
|
// Sink zext past bitwise operations.
|
|
[](Instruction *I, LLVMContext &Ctx) -> Value* {
|
|
if (I->getOpcode() != Instruction::ZExt)
|
|
return nullptr;
|
|
Instruction *T = dyn_cast<Instruction>(I->getOperand(0));
|
|
if (!T)
|
|
return nullptr;
|
|
switch (T->getOpcode()) {
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
break;
|
|
default:
|
|
return nullptr;
|
|
}
|
|
IRBuilder<> B(Ctx);
|
|
return B.CreateBinOp(cast<BinaryOperator>(T)->getOpcode(),
|
|
B.CreateZExt(T->getOperand(0), I->getType()),
|
|
B.CreateZExt(T->getOperand(1), I->getType()));
|
|
});
|
|
S.addRule("xor/and -> and/xor",
|
|
// (xor (and x a) (and y a)) -> (and (xor x y) a)
|
|
[](Instruction *I, LLVMContext &Ctx) -> Value* {
|
|
if (I->getOpcode() != Instruction::Xor)
|
|
return nullptr;
|
|
Instruction *And0 = dyn_cast<Instruction>(I->getOperand(0));
|
|
Instruction *And1 = dyn_cast<Instruction>(I->getOperand(1));
|
|
if (!And0 || !And1)
|
|
return nullptr;
|
|
if (And0->getOpcode() != Instruction::And ||
|
|
And1->getOpcode() != Instruction::And)
|
|
return nullptr;
|
|
if (And0->getOperand(1) != And1->getOperand(1))
|
|
return nullptr;
|
|
IRBuilder<> B(Ctx);
|
|
return B.CreateAnd(B.CreateXor(And0->getOperand(0), And1->getOperand(0)),
|
|
And0->getOperand(1));
|
|
});
|
|
S.addRule("sink binop into select",
|
|
// (Op (select c x y) z) -> (select c (Op x z) (Op y z))
|
|
// (Op x (select c y z)) -> (select c (Op x y) (Op x z))
|
|
[](Instruction *I, LLVMContext &Ctx) -> Value* {
|
|
BinaryOperator *BO = dyn_cast<BinaryOperator>(I);
|
|
if (!BO)
|
|
return nullptr;
|
|
Instruction::BinaryOps Op = BO->getOpcode();
|
|
if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(0))) {
|
|
IRBuilder<> B(Ctx);
|
|
Value *X = Sel->getTrueValue(), *Y = Sel->getFalseValue();
|
|
Value *Z = BO->getOperand(1);
|
|
return B.CreateSelect(Sel->getCondition(),
|
|
B.CreateBinOp(Op, X, Z),
|
|
B.CreateBinOp(Op, Y, Z));
|
|
}
|
|
if (SelectInst *Sel = dyn_cast<SelectInst>(BO->getOperand(1))) {
|
|
IRBuilder<> B(Ctx);
|
|
Value *X = BO->getOperand(0);
|
|
Value *Y = Sel->getTrueValue(), *Z = Sel->getFalseValue();
|
|
return B.CreateSelect(Sel->getCondition(),
|
|
B.CreateBinOp(Op, X, Y),
|
|
B.CreateBinOp(Op, X, Z));
|
|
}
|
|
return nullptr;
|
|
});
|
|
S.addRule("fold select-select",
|
|
// (select c (select c x y) z) -> (select c x z)
|
|
// (select c x (select c y z)) -> (select c x z)
|
|
[](Instruction *I, LLVMContext &Ctx) -> Value* {
|
|
SelectInst *Sel = dyn_cast<SelectInst>(I);
|
|
if (!Sel)
|
|
return nullptr;
|
|
IRBuilder<> B(Ctx);
|
|
Value *C = Sel->getCondition();
|
|
if (SelectInst *Sel0 = dyn_cast<SelectInst>(Sel->getTrueValue())) {
|
|
if (Sel0->getCondition() == C)
|
|
return B.CreateSelect(C, Sel0->getTrueValue(), Sel->getFalseValue());
|
|
}
|
|
if (SelectInst *Sel1 = dyn_cast<SelectInst>(Sel->getFalseValue())) {
|
|
if (Sel1->getCondition() == C)
|
|
return B.CreateSelect(C, Sel->getTrueValue(), Sel1->getFalseValue());
|
|
}
|
|
return nullptr;
|
|
});
|
|
S.addRule("or-signbit -> xor-signbit",
|
|
// (or (lshr x 1) 0x800.0) -> (xor (lshr x 1) 0x800.0)
|
|
[](Instruction *I, LLVMContext &Ctx) -> Value* {
|
|
if (I->getOpcode() != Instruction::Or)
|
|
return nullptr;
|
|
ConstantInt *Msb = dyn_cast<ConstantInt>(I->getOperand(1));
|
|
if (!Msb || Msb->getZExtValue() != Msb->getType()->getSignBit())
|
|
return nullptr;
|
|
if (!hasZeroSignBit(I->getOperand(0)))
|
|
return nullptr;
|
|
return IRBuilder<>(Ctx).CreateXor(I->getOperand(0), Msb);
|
|
});
|
|
S.addRule("sink lshr into binop",
|
|
// (lshr (BitOp x y) c) -> (BitOp (lshr x c) (lshr y c))
|
|
[](Instruction *I, LLVMContext &Ctx) -> Value* {
|
|
if (I->getOpcode() != Instruction::LShr)
|
|
return nullptr;
|
|
BinaryOperator *BitOp = dyn_cast<BinaryOperator>(I->getOperand(0));
|
|
if (!BitOp)
|
|
return nullptr;
|
|
switch (BitOp->getOpcode()) {
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
break;
|
|
default:
|
|
return nullptr;
|
|
}
|
|
IRBuilder<> B(Ctx);
|
|
Value *S = I->getOperand(1);
|
|
return B.CreateBinOp(BitOp->getOpcode(),
|
|
B.CreateLShr(BitOp->getOperand(0), S),
|
|
B.CreateLShr(BitOp->getOperand(1), S));
|
|
});
|
|
S.addRule("expose bitop-const",
|
|
// (BitOp1 (BitOp2 x a) b) -> (BitOp2 x (BitOp1 a b))
|
|
[](Instruction *I, LLVMContext &Ctx) -> Value* {
|
|
auto IsBitOp = [](unsigned Op) -> bool {
|
|
switch (Op) {
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
BinaryOperator *BitOp1 = dyn_cast<BinaryOperator>(I);
|
|
if (!BitOp1 || !IsBitOp(BitOp1->getOpcode()))
|
|
return nullptr;
|
|
BinaryOperator *BitOp2 = dyn_cast<BinaryOperator>(BitOp1->getOperand(0));
|
|
if (!BitOp2 || !IsBitOp(BitOp2->getOpcode()))
|
|
return nullptr;
|
|
ConstantInt *CA = dyn_cast<ConstantInt>(BitOp2->getOperand(1));
|
|
ConstantInt *CB = dyn_cast<ConstantInt>(BitOp1->getOperand(1));
|
|
if (!CA || !CB)
|
|
return nullptr;
|
|
IRBuilder<> B(Ctx);
|
|
Value *X = BitOp2->getOperand(0);
|
|
return B.CreateBinOp(BitOp2->getOpcode(), X,
|
|
B.CreateBinOp(BitOp1->getOpcode(), CA, CB));
|
|
});
|
|
}
|
|
|
|
void PolynomialMultiplyRecognize::setupPostSimplifier(Simplifier &S) {
|
|
S.addRule("(and (xor (and x a) y) b) -> (and (xor x y) b), if b == b&a",
|
|
[](Instruction *I, LLVMContext &Ctx) -> Value* {
|
|
if (I->getOpcode() != Instruction::And)
|
|
return nullptr;
|
|
Instruction *Xor = dyn_cast<Instruction>(I->getOperand(0));
|
|
ConstantInt *C0 = dyn_cast<ConstantInt>(I->getOperand(1));
|
|
if (!Xor || !C0)
|
|
return nullptr;
|
|
if (Xor->getOpcode() != Instruction::Xor)
|
|
return nullptr;
|
|
Instruction *And0 = dyn_cast<Instruction>(Xor->getOperand(0));
|
|
Instruction *And1 = dyn_cast<Instruction>(Xor->getOperand(1));
|
|
// Pick the first non-null and.
|
|
if (!And0 || And0->getOpcode() != Instruction::And)
|
|
std::swap(And0, And1);
|
|
ConstantInt *C1 = dyn_cast<ConstantInt>(And0->getOperand(1));
|
|
if (!C1)
|
|
return nullptr;
|
|
uint32_t V0 = C0->getZExtValue();
|
|
uint32_t V1 = C1->getZExtValue();
|
|
if (V0 != (V0 & V1))
|
|
return nullptr;
|
|
IRBuilder<> B(Ctx);
|
|
return B.CreateAnd(B.CreateXor(And0->getOperand(0), And1), C0);
|
|
});
|
|
}
|
|
|
|
bool PolynomialMultiplyRecognize::recognize() {
|
|
LLVM_DEBUG(dbgs() << "Starting PolynomialMultiplyRecognize on loop\n"
|
|
<< *CurLoop << '\n');
|
|
// Restrictions:
|
|
// - The loop must consist of a single block.
|
|
// - The iteration count must be known at compile-time.
|
|
// - The loop must have an induction variable starting from 0, and
|
|
// incremented in each iteration of the loop.
|
|
BasicBlock *LoopB = CurLoop->getHeader();
|
|
LLVM_DEBUG(dbgs() << "Loop header:\n" << *LoopB);
|
|
|
|
if (LoopB != CurLoop->getLoopLatch())
|
|
return false;
|
|
BasicBlock *ExitB = CurLoop->getExitBlock();
|
|
if (ExitB == nullptr)
|
|
return false;
|
|
BasicBlock *EntryB = CurLoop->getLoopPreheader();
|
|
if (EntryB == nullptr)
|
|
return false;
|
|
|
|
unsigned IterCount = 0;
|
|
const SCEV *CT = SE.getBackedgeTakenCount(CurLoop);
|
|
if (isa<SCEVCouldNotCompute>(CT))
|
|
return false;
|
|
if (auto *CV = dyn_cast<SCEVConstant>(CT))
|
|
IterCount = CV->getValue()->getZExtValue() + 1;
|
|
|
|
Value *CIV = getCountIV(LoopB);
|
|
ParsedValues PV;
|
|
Simplifier PreSimp;
|
|
PV.IterCount = IterCount;
|
|
LLVM_DEBUG(dbgs() << "Loop IV: " << *CIV << "\nIterCount: " << IterCount
|
|
<< '\n');
|
|
|
|
setupPreSimplifier(PreSimp);
|
|
|
|
// Perform a preliminary scan of select instructions to see if any of them
|
|
// looks like a generator of the polynomial multiply steps. Assume that a
|
|
// loop can only contain a single transformable operation, so stop the
|
|
// traversal after the first reasonable candidate was found.
|
|
// XXX: Currently this approach can modify the loop before being 100% sure
|
|
// that the transformation can be carried out.
|
|
bool FoundPreScan = false;
|
|
auto FeedsPHI = [LoopB](const Value *V) -> bool {
|
|
for (const Value *U : V->users()) {
|
|
if (const auto *P = dyn_cast<const PHINode>(U))
|
|
if (P->getParent() == LoopB)
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
for (Instruction &In : *LoopB) {
|
|
SelectInst *SI = dyn_cast<SelectInst>(&In);
|
|
if (!SI || !FeedsPHI(SI))
|
|
continue;
|
|
|
|
Simplifier::Context C(SI);
|
|
Value *T = PreSimp.simplify(C);
|
|
SelectInst *SelI = (T && isa<SelectInst>(T)) ? cast<SelectInst>(T) : SI;
|
|
LLVM_DEBUG(dbgs() << "scanSelect(pre-scan): " << PE(C, SelI) << '\n');
|
|
if (scanSelect(SelI, LoopB, EntryB, CIV, PV, true)) {
|
|
FoundPreScan = true;
|
|
if (SelI != SI) {
|
|
Value *NewSel = C.materialize(LoopB, SI->getIterator());
|
|
SI->replaceAllUsesWith(NewSel);
|
|
RecursivelyDeleteTriviallyDeadInstructions(SI, &TLI);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!FoundPreScan) {
|
|
LLVM_DEBUG(dbgs() << "Have not found candidates for pmpy\n");
|
|
return false;
|
|
}
|
|
|
|
if (!PV.Left) {
|
|
// The right shift version actually only returns the higher bits of
|
|
// the result (each iteration discards the LSB). If we want to convert it
|
|
// to a left-shifting loop, the working data type must be at least as
|
|
// wide as the target's pmpy instruction.
|
|
if (!promoteTypes(LoopB, ExitB))
|
|
return false;
|
|
// Run post-promotion simplifications.
|
|
Simplifier PostSimp;
|
|
setupPostSimplifier(PostSimp);
|
|
for (Instruction &In : *LoopB) {
|
|
SelectInst *SI = dyn_cast<SelectInst>(&In);
|
|
if (!SI || !FeedsPHI(SI))
|
|
continue;
|
|
Simplifier::Context C(SI);
|
|
Value *T = PostSimp.simplify(C);
|
|
SelectInst *SelI = dyn_cast_or_null<SelectInst>(T);
|
|
if (SelI != SI) {
|
|
Value *NewSel = C.materialize(LoopB, SI->getIterator());
|
|
SI->replaceAllUsesWith(NewSel);
|
|
RecursivelyDeleteTriviallyDeadInstructions(SI, &TLI);
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (!convertShiftsToLeft(LoopB, ExitB, IterCount))
|
|
return false;
|
|
cleanupLoopBody(LoopB);
|
|
}
|
|
|
|
// Scan the loop again, find the generating select instruction.
|
|
bool FoundScan = false;
|
|
for (Instruction &In : *LoopB) {
|
|
SelectInst *SelI = dyn_cast<SelectInst>(&In);
|
|
if (!SelI)
|
|
continue;
|
|
LLVM_DEBUG(dbgs() << "scanSelect: " << *SelI << '\n');
|
|
FoundScan = scanSelect(SelI, LoopB, EntryB, CIV, PV, false);
|
|
if (FoundScan)
|
|
break;
|
|
}
|
|
assert(FoundScan);
|
|
|
|
LLVM_DEBUG({
|
|
StringRef PP = (PV.M ? "(P+M)" : "P");
|
|
if (!PV.Inv)
|
|
dbgs() << "Found pmpy idiom: R = " << PP << ".Q\n";
|
|
else
|
|
dbgs() << "Found inverse pmpy idiom: R = (" << PP << "/Q).Q) + "
|
|
<< PP << "\n";
|
|
dbgs() << " Res:" << *PV.Res << "\n P:" << *PV.P << "\n";
|
|
if (PV.M)
|
|
dbgs() << " M:" << *PV.M << "\n";
|
|
dbgs() << " Q:" << *PV.Q << "\n";
|
|
dbgs() << " Iteration count:" << PV.IterCount << "\n";
|
|
});
|
|
|
|
BasicBlock::iterator At(EntryB->getTerminator());
|
|
Value *PM = generate(At, PV);
|
|
if (PM == nullptr)
|
|
return false;
|
|
|
|
if (PM->getType() != PV.Res->getType())
|
|
PM = IRBuilder<>(&*At).CreateIntCast(PM, PV.Res->getType(), false);
|
|
|
|
PV.Res->replaceAllUsesWith(PM);
|
|
PV.Res->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
int HexagonLoopIdiomRecognize::getSCEVStride(const SCEVAddRecExpr *S) {
|
|
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
|
|
return SC->getAPInt().getSExtValue();
|
|
return 0;
|
|
}
|
|
|
|
bool HexagonLoopIdiomRecognize::isLegalStore(Loop *CurLoop, StoreInst *SI) {
|
|
// Allow volatile stores if HexagonVolatileMemcpy is enabled.
|
|
if (!(SI->isVolatile() && HexagonVolatileMemcpy) && !SI->isSimple())
|
|
return false;
|
|
|
|
Value *StoredVal = SI->getValueOperand();
|
|
Value *StorePtr = SI->getPointerOperand();
|
|
|
|
// Reject stores that are so large that they overflow an unsigned.
|
|
uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
|
|
if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
|
|
return false;
|
|
|
|
// See if the pointer expression is an AddRec like {base,+,1} on the current
|
|
// loop, which indicates a strided store. If we have something else, it's a
|
|
// random store we can't handle.
|
|
auto *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
|
|
if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
|
|
return false;
|
|
|
|
// Check to see if the stride matches the size of the store. If so, then we
|
|
// know that every byte is touched in the loop.
|
|
int Stride = getSCEVStride(StoreEv);
|
|
if (Stride == 0)
|
|
return false;
|
|
unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
|
|
if (StoreSize != unsigned(std::abs(Stride)))
|
|
return false;
|
|
|
|
// The store must be feeding a non-volatile load.
|
|
LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
|
|
if (!LI || !LI->isSimple())
|
|
return false;
|
|
|
|
// See if the pointer expression is an AddRec like {base,+,1} on the current
|
|
// loop, which indicates a strided load. If we have something else, it's a
|
|
// random load we can't handle.
|
|
Value *LoadPtr = LI->getPointerOperand();
|
|
auto *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr));
|
|
if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
|
|
return false;
|
|
|
|
// The store and load must share the same stride.
|
|
if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
|
|
return false;
|
|
|
|
// Success. This store can be converted into a memcpy.
|
|
return true;
|
|
}
|
|
|
|
/// mayLoopAccessLocation - Return true if the specified loop might access the
|
|
/// specified pointer location, which is a loop-strided access. The 'Access'
|
|
/// argument specifies what the verboten forms of access are (read or write).
|
|
static bool
|
|
mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
|
|
const SCEV *BECount, unsigned StoreSize,
|
|
AliasAnalysis &AA,
|
|
SmallPtrSetImpl<Instruction *> &Ignored) {
|
|
// Get the location that may be stored across the loop. Since the access
|
|
// is strided positively through memory, we say that the modified location
|
|
// starts at the pointer and has infinite size.
|
|
LocationSize AccessSize = LocationSize::unknown();
|
|
|
|
// If the loop iterates a fixed number of times, we can refine the access
|
|
// size to be exactly the size of the memset, which is (BECount+1)*StoreSize
|
|
if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
|
|
AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) *
|
|
StoreSize);
|
|
|
|
// TODO: For this to be really effective, we have to dive into the pointer
|
|
// operand in the store. Store to &A[i] of 100 will always return may alias
|
|
// with store of &A[100], we need to StoreLoc to be "A" with size of 100,
|
|
// which will then no-alias a store to &A[100].
|
|
MemoryLocation StoreLoc(Ptr, AccessSize);
|
|
|
|
for (auto *B : L->blocks())
|
|
for (auto &I : *B)
|
|
if (Ignored.count(&I) == 0 &&
|
|
isModOrRefSet(
|
|
intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access)))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
void HexagonLoopIdiomRecognize::collectStores(Loop *CurLoop, BasicBlock *BB,
|
|
SmallVectorImpl<StoreInst*> &Stores) {
|
|
Stores.clear();
|
|
for (Instruction &I : *BB)
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(&I))
|
|
if (isLegalStore(CurLoop, SI))
|
|
Stores.push_back(SI);
|
|
}
|
|
|
|
bool HexagonLoopIdiomRecognize::processCopyingStore(Loop *CurLoop,
|
|
StoreInst *SI, const SCEV *BECount) {
|
|
assert((SI->isSimple() || (SI->isVolatile() && HexagonVolatileMemcpy)) &&
|
|
"Expected only non-volatile stores, or Hexagon-specific memcpy"
|
|
"to volatile destination.");
|
|
|
|
Value *StorePtr = SI->getPointerOperand();
|
|
auto *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
|
|
unsigned Stride = getSCEVStride(StoreEv);
|
|
unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
|
|
if (Stride != StoreSize)
|
|
return false;
|
|
|
|
// See if the pointer expression is an AddRec like {base,+,1} on the current
|
|
// loop, which indicates a strided load. If we have something else, it's a
|
|
// random load we can't handle.
|
|
LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
|
|
auto *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
|
|
|
|
// The trip count of the loop and the base pointer of the addrec SCEV is
|
|
// guaranteed to be loop invariant, which means that it should dominate the
|
|
// header. This allows us to insert code for it in the preheader.
|
|
BasicBlock *Preheader = CurLoop->getLoopPreheader();
|
|
Instruction *ExpPt = Preheader->getTerminator();
|
|
IRBuilder<> Builder(ExpPt);
|
|
SCEVExpander Expander(*SE, *DL, "hexagon-loop-idiom");
|
|
|
|
Type *IntPtrTy = Builder.getIntPtrTy(*DL, SI->getPointerAddressSpace());
|
|
|
|
// Okay, we have a strided store "p[i]" of a loaded value. We can turn
|
|
// this into a memcpy/memmove in the loop preheader now if we want. However,
|
|
// this would be unsafe to do if there is anything else in the loop that may
|
|
// read or write the memory region we're storing to. For memcpy, this
|
|
// includes the load that feeds the stores. Check for an alias by generating
|
|
// the base address and checking everything.
|
|
Value *StoreBasePtr = Expander.expandCodeFor(StoreEv->getStart(),
|
|
Builder.getInt8PtrTy(SI->getPointerAddressSpace()), ExpPt);
|
|
Value *LoadBasePtr = nullptr;
|
|
|
|
bool Overlap = false;
|
|
bool DestVolatile = SI->isVolatile();
|
|
Type *BECountTy = BECount->getType();
|
|
|
|
if (DestVolatile) {
|
|
// The trip count must fit in i32, since it is the type of the "num_words"
|
|
// argument to hexagon_memcpy_forward_vp4cp4n2.
|
|
if (StoreSize != 4 || DL->getTypeSizeInBits(BECountTy) > 32) {
|
|
CleanupAndExit:
|
|
// If we generated new code for the base pointer, clean up.
|
|
Expander.clear();
|
|
if (StoreBasePtr && (LoadBasePtr != StoreBasePtr)) {
|
|
RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
|
|
StoreBasePtr = nullptr;
|
|
}
|
|
if (LoadBasePtr) {
|
|
RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
|
|
LoadBasePtr = nullptr;
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
SmallPtrSet<Instruction*, 2> Ignore1;
|
|
Ignore1.insert(SI);
|
|
if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
|
|
StoreSize, *AA, Ignore1)) {
|
|
// Check if the load is the offending instruction.
|
|
Ignore1.insert(LI);
|
|
if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop,
|
|
BECount, StoreSize, *AA, Ignore1)) {
|
|
// Still bad. Nothing we can do.
|
|
goto CleanupAndExit;
|
|
}
|
|
// It worked with the load ignored.
|
|
Overlap = true;
|
|
}
|
|
|
|
if (!Overlap) {
|
|
if (DisableMemcpyIdiom || !HasMemcpy)
|
|
goto CleanupAndExit;
|
|
} else {
|
|
// Don't generate memmove if this function will be inlined. This is
|
|
// because the caller will undergo this transformation after inlining.
|
|
Function *Func = CurLoop->getHeader()->getParent();
|
|
if (Func->hasFnAttribute(Attribute::AlwaysInline))
|
|
goto CleanupAndExit;
|
|
|
|
// In case of a memmove, the call to memmove will be executed instead
|
|
// of the loop, so we need to make sure that there is nothing else in
|
|
// the loop than the load, store and instructions that these two depend
|
|
// on.
|
|
SmallVector<Instruction*,2> Insts;
|
|
Insts.push_back(SI);
|
|
Insts.push_back(LI);
|
|
if (!coverLoop(CurLoop, Insts))
|
|
goto CleanupAndExit;
|
|
|
|
if (DisableMemmoveIdiom || !HasMemmove)
|
|
goto CleanupAndExit;
|
|
bool IsNested = CurLoop->getParentLoop() != nullptr;
|
|
if (IsNested && OnlyNonNestedMemmove)
|
|
goto CleanupAndExit;
|
|
}
|
|
|
|
// For a memcpy, we have to make sure that the input array is not being
|
|
// mutated by the loop.
|
|
LoadBasePtr = Expander.expandCodeFor(LoadEv->getStart(),
|
|
Builder.getInt8PtrTy(LI->getPointerAddressSpace()), ExpPt);
|
|
|
|
SmallPtrSet<Instruction*, 2> Ignore2;
|
|
Ignore2.insert(SI);
|
|
if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
|
|
StoreSize, *AA, Ignore2))
|
|
goto CleanupAndExit;
|
|
|
|
// Check the stride.
|
|
bool StridePos = getSCEVStride(LoadEv) >= 0;
|
|
|
|
// Currently, the volatile memcpy only emulates traversing memory forward.
|
|
if (!StridePos && DestVolatile)
|
|
goto CleanupAndExit;
|
|
|
|
bool RuntimeCheck = (Overlap || DestVolatile);
|
|
|
|
BasicBlock *ExitB;
|
|
if (RuntimeCheck) {
|
|
// The runtime check needs a single exit block.
|
|
SmallVector<BasicBlock*, 8> ExitBlocks;
|
|
CurLoop->getUniqueExitBlocks(ExitBlocks);
|
|
if (ExitBlocks.size() != 1)
|
|
goto CleanupAndExit;
|
|
ExitB = ExitBlocks[0];
|
|
}
|
|
|
|
// The # stored bytes is (BECount+1)*Size. Expand the trip count out to
|
|
// pointer size if it isn't already.
|
|
LLVMContext &Ctx = SI->getContext();
|
|
BECount = SE->getTruncateOrZeroExtend(BECount, IntPtrTy);
|
|
DebugLoc DLoc = SI->getDebugLoc();
|
|
|
|
const SCEV *NumBytesS =
|
|
SE->getAddExpr(BECount, SE->getOne(IntPtrTy), SCEV::FlagNUW);
|
|
if (StoreSize != 1)
|
|
NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtrTy, StoreSize),
|
|
SCEV::FlagNUW);
|
|
Value *NumBytes = Expander.expandCodeFor(NumBytesS, IntPtrTy, ExpPt);
|
|
if (Instruction *In = dyn_cast<Instruction>(NumBytes))
|
|
if (Value *Simp = SimplifyInstruction(In, {*DL, TLI, DT}))
|
|
NumBytes = Simp;
|
|
|
|
CallInst *NewCall;
|
|
|
|
if (RuntimeCheck) {
|
|
unsigned Threshold = RuntimeMemSizeThreshold;
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) {
|
|
uint64_t C = CI->getZExtValue();
|
|
if (Threshold != 0 && C < Threshold)
|
|
goto CleanupAndExit;
|
|
if (C < CompileTimeMemSizeThreshold)
|
|
goto CleanupAndExit;
|
|
}
|
|
|
|
BasicBlock *Header = CurLoop->getHeader();
|
|
Function *Func = Header->getParent();
|
|
Loop *ParentL = LF->getLoopFor(Preheader);
|
|
StringRef HeaderName = Header->getName();
|
|
|
|
// Create a new (empty) preheader, and update the PHI nodes in the
|
|
// header to use the new preheader.
|
|
BasicBlock *NewPreheader = BasicBlock::Create(Ctx, HeaderName+".rtli.ph",
|
|
Func, Header);
|
|
if (ParentL)
|
|
ParentL->addBasicBlockToLoop(NewPreheader, *LF);
|
|
IRBuilder<>(NewPreheader).CreateBr(Header);
|
|
for (auto &In : *Header) {
|
|
PHINode *PN = dyn_cast<PHINode>(&In);
|
|
if (!PN)
|
|
break;
|
|
int bx = PN->getBasicBlockIndex(Preheader);
|
|
if (bx >= 0)
|
|
PN->setIncomingBlock(bx, NewPreheader);
|
|
}
|
|
DT->addNewBlock(NewPreheader, Preheader);
|
|
DT->changeImmediateDominator(Header, NewPreheader);
|
|
|
|
// Check for safe conditions to execute memmove.
|
|
// If stride is positive, copying things from higher to lower addresses
|
|
// is equivalent to memmove. For negative stride, it's the other way
|
|
// around. Copying forward in memory with positive stride may not be
|
|
// same as memmove since we may be copying values that we just stored
|
|
// in some previous iteration.
|
|
Value *LA = Builder.CreatePtrToInt(LoadBasePtr, IntPtrTy);
|
|
Value *SA = Builder.CreatePtrToInt(StoreBasePtr, IntPtrTy);
|
|
Value *LowA = StridePos ? SA : LA;
|
|
Value *HighA = StridePos ? LA : SA;
|
|
Value *CmpA = Builder.CreateICmpULT(LowA, HighA);
|
|
Value *Cond = CmpA;
|
|
|
|
// Check for distance between pointers. Since the case LowA < HighA
|
|
// is checked for above, assume LowA >= HighA.
|
|
Value *Dist = Builder.CreateSub(LowA, HighA);
|
|
Value *CmpD = Builder.CreateICmpSLE(NumBytes, Dist);
|
|
Value *CmpEither = Builder.CreateOr(Cond, CmpD);
|
|
Cond = CmpEither;
|
|
|
|
if (Threshold != 0) {
|
|
Type *Ty = NumBytes->getType();
|
|
Value *Thr = ConstantInt::get(Ty, Threshold);
|
|
Value *CmpB = Builder.CreateICmpULT(Thr, NumBytes);
|
|
Value *CmpBoth = Builder.CreateAnd(Cond, CmpB);
|
|
Cond = CmpBoth;
|
|
}
|
|
BasicBlock *MemmoveB = BasicBlock::Create(Ctx, Header->getName()+".rtli",
|
|
Func, NewPreheader);
|
|
if (ParentL)
|
|
ParentL->addBasicBlockToLoop(MemmoveB, *LF);
|
|
Instruction *OldT = Preheader->getTerminator();
|
|
Builder.CreateCondBr(Cond, MemmoveB, NewPreheader);
|
|
OldT->eraseFromParent();
|
|
Preheader->setName(Preheader->getName()+".old");
|
|
DT->addNewBlock(MemmoveB, Preheader);
|
|
// Find the new immediate dominator of the exit block.
|
|
BasicBlock *ExitD = Preheader;
|
|
for (auto PI = pred_begin(ExitB), PE = pred_end(ExitB); PI != PE; ++PI) {
|
|
BasicBlock *PB = *PI;
|
|
ExitD = DT->findNearestCommonDominator(ExitD, PB);
|
|
if (!ExitD)
|
|
break;
|
|
}
|
|
// If the prior immediate dominator of ExitB was dominated by the
|
|
// old preheader, then the old preheader becomes the new immediate
|
|
// dominator. Otherwise don't change anything (because the newly
|
|
// added blocks are dominated by the old preheader).
|
|
if (ExitD && DT->dominates(Preheader, ExitD)) {
|
|
DomTreeNode *BN = DT->getNode(ExitB);
|
|
DomTreeNode *DN = DT->getNode(ExitD);
|
|
BN->setIDom(DN);
|
|
}
|
|
|
|
// Add a call to memmove to the conditional block.
|
|
IRBuilder<> CondBuilder(MemmoveB);
|
|
CondBuilder.CreateBr(ExitB);
|
|
CondBuilder.SetInsertPoint(MemmoveB->getTerminator());
|
|
|
|
if (DestVolatile) {
|
|
Type *Int32Ty = Type::getInt32Ty(Ctx);
|
|
Type *Int32PtrTy = Type::getInt32PtrTy(Ctx);
|
|
Type *VoidTy = Type::getVoidTy(Ctx);
|
|
Module *M = Func->getParent();
|
|
FunctionCallee Fn = M->getOrInsertFunction(
|
|
HexagonVolatileMemcpyName, VoidTy, Int32PtrTy, Int32PtrTy, Int32Ty);
|
|
|
|
const SCEV *OneS = SE->getConstant(Int32Ty, 1);
|
|
const SCEV *BECount32 = SE->getTruncateOrZeroExtend(BECount, Int32Ty);
|
|
const SCEV *NumWordsS = SE->getAddExpr(BECount32, OneS, SCEV::FlagNUW);
|
|
Value *NumWords = Expander.expandCodeFor(NumWordsS, Int32Ty,
|
|
MemmoveB->getTerminator());
|
|
if (Instruction *In = dyn_cast<Instruction>(NumWords))
|
|
if (Value *Simp = SimplifyInstruction(In, {*DL, TLI, DT}))
|
|
NumWords = Simp;
|
|
|
|
Value *Op0 = (StoreBasePtr->getType() == Int32PtrTy)
|
|
? StoreBasePtr
|
|
: CondBuilder.CreateBitCast(StoreBasePtr, Int32PtrTy);
|
|
Value *Op1 = (LoadBasePtr->getType() == Int32PtrTy)
|
|
? LoadBasePtr
|
|
: CondBuilder.CreateBitCast(LoadBasePtr, Int32PtrTy);
|
|
NewCall = CondBuilder.CreateCall(Fn, {Op0, Op1, NumWords});
|
|
} else {
|
|
NewCall = CondBuilder.CreateMemMove(StoreBasePtr, SI->getAlignment(),
|
|
LoadBasePtr, LI->getAlignment(),
|
|
NumBytes);
|
|
}
|
|
} else {
|
|
NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlignment(),
|
|
LoadBasePtr, LI->getAlignment(),
|
|
NumBytes);
|
|
// Okay, the memcpy has been formed. Zap the original store and
|
|
// anything that feeds into it.
|
|
RecursivelyDeleteTriviallyDeadInstructions(SI, TLI);
|
|
}
|
|
|
|
NewCall->setDebugLoc(DLoc);
|
|
|
|
LLVM_DEBUG(dbgs() << " Formed " << (Overlap ? "memmove: " : "memcpy: ")
|
|
<< *NewCall << "\n"
|
|
<< " from load ptr=" << *LoadEv << " at: " << *LI << "\n"
|
|
<< " from store ptr=" << *StoreEv << " at: " << *SI
|
|
<< "\n");
|
|
|
|
return true;
|
|
}
|
|
|
|
// Check if the instructions in Insts, together with their dependencies
|
|
// cover the loop in the sense that the loop could be safely eliminated once
|
|
// the instructions in Insts are removed.
|
|
bool HexagonLoopIdiomRecognize::coverLoop(Loop *L,
|
|
SmallVectorImpl<Instruction*> &Insts) const {
|
|
SmallSet<BasicBlock*,8> LoopBlocks;
|
|
for (auto *B : L->blocks())
|
|
LoopBlocks.insert(B);
|
|
|
|
SetVector<Instruction*> Worklist(Insts.begin(), Insts.end());
|
|
|
|
// Collect all instructions from the loop that the instructions in Insts
|
|
// depend on (plus their dependencies, etc.). These instructions will
|
|
// constitute the expression trees that feed those in Insts, but the trees
|
|
// will be limited only to instructions contained in the loop.
|
|
for (unsigned i = 0; i < Worklist.size(); ++i) {
|
|
Instruction *In = Worklist[i];
|
|
for (auto I = In->op_begin(), E = In->op_end(); I != E; ++I) {
|
|
Instruction *OpI = dyn_cast<Instruction>(I);
|
|
if (!OpI)
|
|
continue;
|
|
BasicBlock *PB = OpI->getParent();
|
|
if (!LoopBlocks.count(PB))
|
|
continue;
|
|
Worklist.insert(OpI);
|
|
}
|
|
}
|
|
|
|
// Scan all instructions in the loop, if any of them have a user outside
|
|
// of the loop, or outside of the expressions collected above, then either
|
|
// the loop has a side-effect visible outside of it, or there are
|
|
// instructions in it that are not involved in the original set Insts.
|
|
for (auto *B : L->blocks()) {
|
|
for (auto &In : *B) {
|
|
if (isa<BranchInst>(In) || isa<DbgInfoIntrinsic>(In))
|
|
continue;
|
|
if (!Worklist.count(&In) && In.mayHaveSideEffects())
|
|
return false;
|
|
for (const auto &K : In.users()) {
|
|
Instruction *UseI = dyn_cast<Instruction>(K);
|
|
if (!UseI)
|
|
continue;
|
|
BasicBlock *UseB = UseI->getParent();
|
|
if (LF->getLoopFor(UseB) != L)
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// runOnLoopBlock - Process the specified block, which lives in a counted loop
|
|
/// with the specified backedge count. This block is known to be in the current
|
|
/// loop and not in any subloops.
|
|
bool HexagonLoopIdiomRecognize::runOnLoopBlock(Loop *CurLoop, BasicBlock *BB,
|
|
const SCEV *BECount, SmallVectorImpl<BasicBlock*> &ExitBlocks) {
|
|
// We can only promote stores in this block if they are unconditionally
|
|
// executed in the loop. For a block to be unconditionally executed, it has
|
|
// to dominate all the exit blocks of the loop. Verify this now.
|
|
auto DominatedByBB = [this,BB] (BasicBlock *EB) -> bool {
|
|
return DT->dominates(BB, EB);
|
|
};
|
|
if (!all_of(ExitBlocks, DominatedByBB))
|
|
return false;
|
|
|
|
bool MadeChange = false;
|
|
// Look for store instructions, which may be optimized to memset/memcpy.
|
|
SmallVector<StoreInst*,8> Stores;
|
|
collectStores(CurLoop, BB, Stores);
|
|
|
|
// Optimize the store into a memcpy, if it feeds an similarly strided load.
|
|
for (auto &SI : Stores)
|
|
MadeChange |= processCopyingStore(CurLoop, SI, BECount);
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
bool HexagonLoopIdiomRecognize::runOnCountableLoop(Loop *L) {
|
|
PolynomialMultiplyRecognize PMR(L, *DL, *DT, *TLI, *SE);
|
|
if (PMR.recognize())
|
|
return true;
|
|
|
|
if (!HasMemcpy && !HasMemmove)
|
|
return false;
|
|
|
|
const SCEV *BECount = SE->getBackedgeTakenCount(L);
|
|
assert(!isa<SCEVCouldNotCompute>(BECount) &&
|
|
"runOnCountableLoop() called on a loop without a predictable"
|
|
"backedge-taken count");
|
|
|
|
SmallVector<BasicBlock *, 8> ExitBlocks;
|
|
L->getUniqueExitBlocks(ExitBlocks);
|
|
|
|
bool Changed = false;
|
|
|
|
// Scan all the blocks in the loop that are not in subloops.
|
|
for (auto *BB : L->getBlocks()) {
|
|
// Ignore blocks in subloops.
|
|
if (LF->getLoopFor(BB) != L)
|
|
continue;
|
|
Changed |= runOnLoopBlock(L, BB, BECount, ExitBlocks);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool HexagonLoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
|
|
const Module &M = *L->getHeader()->getParent()->getParent();
|
|
if (Triple(M.getTargetTriple()).getArch() != Triple::hexagon)
|
|
return false;
|
|
|
|
if (skipLoop(L))
|
|
return false;
|
|
|
|
// If the loop could not be converted to canonical form, it must have an
|
|
// indirectbr in it, just give up.
|
|
if (!L->getLoopPreheader())
|
|
return false;
|
|
|
|
// Disable loop idiom recognition if the function's name is a common idiom.
|
|
StringRef Name = L->getHeader()->getParent()->getName();
|
|
if (Name == "memset" || Name == "memcpy" || Name == "memmove")
|
|
return false;
|
|
|
|
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
DL = &L->getHeader()->getModule()->getDataLayout();
|
|
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
LF = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
|
|
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
|
|
HasMemcpy = TLI->has(LibFunc_memcpy);
|
|
HasMemmove = TLI->has(LibFunc_memmove);
|
|
|
|
if (SE->hasLoopInvariantBackedgeTakenCount(L))
|
|
return runOnCountableLoop(L);
|
|
return false;
|
|
}
|
|
|
|
Pass *llvm::createHexagonLoopIdiomPass() {
|
|
return new HexagonLoopIdiomRecognize();
|
|
}
|