forked from OSchip/llvm-project
782 lines
25 KiB
C++
782 lines
25 KiB
C++
//===-- sanitizer_allocator.h -----------------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Specialized memory allocator for ThreadSanitizer, MemorySanitizer, etc.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef SANITIZER_ALLOCATOR_H
|
|
#define SANITIZER_ALLOCATOR_H
|
|
|
|
#include "sanitizer_internal_defs.h"
|
|
#include "sanitizer_common.h"
|
|
#include "sanitizer_libc.h"
|
|
#include "sanitizer_list.h"
|
|
#include "sanitizer_mutex.h"
|
|
|
|
namespace __sanitizer {
|
|
|
|
// Maps size class id to size and back.
|
|
template <uptr l0, uptr l1, uptr l2, uptr l3, uptr l4, uptr l5,
|
|
uptr s0, uptr s1, uptr s2, uptr s3, uptr s4,
|
|
uptr c0, uptr c1, uptr c2, uptr c3, uptr c4>
|
|
class SplineSizeClassMap {
|
|
private:
|
|
// Here we use a spline composed of 5 polynomials of oder 1.
|
|
// The first size class is l0, then the classes go with step s0
|
|
// untill they reach l1, after which they go with step s1 and so on.
|
|
// Steps should be powers of two for cheap division.
|
|
// The size of the last size class should be a power of two.
|
|
// There should be at most 256 size classes.
|
|
static const uptr u0 = 0 + (l1 - l0) / s0;
|
|
static const uptr u1 = u0 + (l2 - l1) / s1;
|
|
static const uptr u2 = u1 + (l3 - l2) / s2;
|
|
static const uptr u3 = u2 + (l4 - l3) / s3;
|
|
static const uptr u4 = u3 + (l5 - l4) / s4;
|
|
|
|
public:
|
|
// The number of size classes should be a power of two for fast division.
|
|
static const uptr kNumClasses = u4 + 1;
|
|
static const uptr kMaxSize = l5;
|
|
static const uptr kMinSize = l0;
|
|
|
|
COMPILER_CHECK(kNumClasses <= 256);
|
|
COMPILER_CHECK((kNumClasses & (kNumClasses - 1)) == 0);
|
|
COMPILER_CHECK((kMaxSize & (kMaxSize - 1)) == 0);
|
|
|
|
static uptr Size(uptr class_id) {
|
|
if (class_id <= u0) return l0 + s0 * (class_id - 0);
|
|
if (class_id <= u1) return l1 + s1 * (class_id - u0);
|
|
if (class_id <= u2) return l2 + s2 * (class_id - u1);
|
|
if (class_id <= u3) return l3 + s3 * (class_id - u2);
|
|
if (class_id <= u4) return l4 + s4 * (class_id - u3);
|
|
return 0;
|
|
}
|
|
static uptr ClassID(uptr size) {
|
|
if (size <= l1) return 0 + (size - l0 + s0 - 1) / s0;
|
|
if (size <= l2) return u0 + (size - l1 + s1 - 1) / s1;
|
|
if (size <= l3) return u1 + (size - l2 + s2 - 1) / s2;
|
|
if (size <= l4) return u2 + (size - l3 + s3 - 1) / s3;
|
|
if (size <= l5) return u3 + (size - l4 + s4 - 1) / s4;
|
|
return 0;
|
|
}
|
|
|
|
static uptr MaxCached(uptr class_id) {
|
|
if (class_id <= u0) return c0;
|
|
if (class_id <= u1) return c1;
|
|
if (class_id <= u2) return c2;
|
|
if (class_id <= u3) return c3;
|
|
if (class_id <= u4) return c4;
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
class DefaultSizeClassMap: public SplineSizeClassMap<
|
|
/* l: */1 << 4, 1 << 9, 1 << 12, 1 << 15, 1 << 18, 1 << 21,
|
|
/* s: */1 << 4, 1 << 6, 1 << 9, 1 << 12, 1 << 15,
|
|
/* c: */256, 64, 16, 4, 1> {
|
|
private:
|
|
COMPILER_CHECK(kNumClasses == 256);
|
|
};
|
|
|
|
class CompactSizeClassMap: public SplineSizeClassMap<
|
|
/* l: */1 << 3, 1 << 4, 1 << 7, 1 << 8, 1 << 12, 1 << 15,
|
|
/* s: */1 << 3, 1 << 4, 1 << 7, 1 << 8, 1 << 12,
|
|
/* c: */256, 64, 16, 4, 1> {
|
|
private:
|
|
COMPILER_CHECK(kNumClasses <= 32);
|
|
};
|
|
|
|
struct AllocatorListNode {
|
|
AllocatorListNode *next;
|
|
};
|
|
|
|
typedef IntrusiveList<AllocatorListNode> AllocatorFreeList;
|
|
|
|
// Move at most max_count chunks from allocate_from to allocate_to.
|
|
// This function is better be a method of AllocatorFreeList, but we can't
|
|
// inherit it from IntrusiveList as the ancient gcc complains about non-PODness.
|
|
static inline void BulkMove(uptr max_count,
|
|
AllocatorFreeList *allocate_from,
|
|
AllocatorFreeList *allocate_to) {
|
|
CHECK(!allocate_from->empty());
|
|
CHECK(allocate_to->empty());
|
|
if (allocate_from->size() <= max_count) {
|
|
allocate_to->append_front(allocate_from);
|
|
CHECK(allocate_from->empty());
|
|
} else {
|
|
for (uptr i = 0; i < max_count; i++) {
|
|
AllocatorListNode *node = allocate_from->front();
|
|
allocate_from->pop_front();
|
|
allocate_to->push_front(node);
|
|
}
|
|
CHECK(!allocate_from->empty());
|
|
}
|
|
CHECK(!allocate_to->empty());
|
|
}
|
|
|
|
// SizeClassAllocator64 -- allocator for 64-bit address space.
|
|
//
|
|
// Space: a portion of address space of kSpaceSize bytes starting at
|
|
// a fixed address (kSpaceBeg). Both constants are powers of two and
|
|
// kSpaceBeg is kSpaceSize-aligned.
|
|
//
|
|
// Region: a part of Space dedicated to a single size class.
|
|
// There are kNumClasses Regions of equal size.
|
|
//
|
|
// UserChunk: a piece of memory returned to user.
|
|
// MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.
|
|
//
|
|
// A Region looks like this:
|
|
// UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1
|
|
template <const uptr kSpaceBeg, const uptr kSpaceSize,
|
|
const uptr kMetadataSize, class SizeClassMap>
|
|
class SizeClassAllocator64 {
|
|
public:
|
|
void Init() {
|
|
CHECK_EQ(AllocBeg(), reinterpret_cast<uptr>(MmapFixedNoReserve(
|
|
AllocBeg(), AllocSize())));
|
|
}
|
|
|
|
bool CanAllocate(uptr size, uptr alignment) {
|
|
return size <= SizeClassMap::kMaxSize &&
|
|
alignment <= SizeClassMap::kMaxSize;
|
|
}
|
|
|
|
void *Allocate(uptr size, uptr alignment) {
|
|
if (size < alignment) size = alignment;
|
|
CHECK(CanAllocate(size, alignment));
|
|
return AllocateBySizeClass(ClassID(size));
|
|
}
|
|
|
|
void Deallocate(void *p) {
|
|
CHECK(PointerIsMine(p));
|
|
DeallocateBySizeClass(p, GetSizeClass(p));
|
|
}
|
|
|
|
// Allocate several chunks of the given class_id.
|
|
void BulkAllocate(uptr class_id, AllocatorFreeList *free_list) {
|
|
CHECK_LT(class_id, kNumClasses);
|
|
RegionInfo *region = GetRegionInfo(class_id);
|
|
SpinMutexLock l(®ion->mutex);
|
|
if (region->free_list.empty()) {
|
|
PopulateFreeList(class_id, region);
|
|
}
|
|
BulkMove(SizeClassMap::MaxCached(class_id), ®ion->free_list, free_list);
|
|
}
|
|
|
|
// Swallow the entire free_list for the given class_id.
|
|
void BulkDeallocate(uptr class_id, AllocatorFreeList *free_list) {
|
|
CHECK_LT(class_id, kNumClasses);
|
|
RegionInfo *region = GetRegionInfo(class_id);
|
|
SpinMutexLock l(®ion->mutex);
|
|
region->free_list.append_front(free_list);
|
|
}
|
|
|
|
static bool PointerIsMine(void *p) {
|
|
return reinterpret_cast<uptr>(p) / kSpaceSize == kSpaceBeg / kSpaceSize;
|
|
}
|
|
|
|
static uptr GetSizeClass(void *p) {
|
|
return (reinterpret_cast<uptr>(p) / kRegionSize) % kNumClasses;
|
|
}
|
|
|
|
static void *GetBlockBegin(void *p) {
|
|
uptr class_id = GetSizeClass(p);
|
|
uptr size = SizeClassMap::Size(class_id);
|
|
uptr chunk_idx = GetChunkIdx((uptr)p, size);
|
|
uptr reg_beg = (uptr)p & ~(kRegionSize - 1);
|
|
uptr begin = reg_beg + chunk_idx * size;
|
|
return reinterpret_cast<void*>(begin);
|
|
}
|
|
|
|
static uptr GetActuallyAllocatedSize(void *p) {
|
|
CHECK(PointerIsMine(p));
|
|
return SizeClassMap::Size(GetSizeClass(p));
|
|
}
|
|
|
|
uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
|
|
|
|
void *GetMetaData(void *p) {
|
|
uptr class_id = GetSizeClass(p);
|
|
uptr size = SizeClassMap::Size(class_id);
|
|
uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size);
|
|
return reinterpret_cast<void*>(kSpaceBeg + (kRegionSize * (class_id + 1)) -
|
|
(1 + chunk_idx) * kMetadataSize);
|
|
}
|
|
|
|
uptr TotalMemoryUsed() {
|
|
uptr res = 0;
|
|
for (uptr i = 0; i < kNumClasses; i++)
|
|
res += GetRegionInfo(i)->allocated_user;
|
|
return res;
|
|
}
|
|
|
|
// Test-only.
|
|
void TestOnlyUnmap() {
|
|
UnmapOrDie(reinterpret_cast<void*>(AllocBeg()), AllocSize());
|
|
}
|
|
|
|
static uptr AllocBeg() { return kSpaceBeg; }
|
|
static uptr AllocSize() { return kSpaceSize + AdditionalSize(); }
|
|
|
|
typedef SizeClassMap SizeClassMapT;
|
|
static const uptr kNumClasses = SizeClassMap::kNumClasses; // 2^k <= 256
|
|
|
|
private:
|
|
static const uptr kRegionSize = kSpaceSize / kNumClasses;
|
|
COMPILER_CHECK(kSpaceBeg % kSpaceSize == 0);
|
|
// kRegionSize must be >= 2^32.
|
|
COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2)));
|
|
// Populate the free list with at most this number of bytes at once
|
|
// or with one element if its size is greater.
|
|
static const uptr kPopulateSize = 1 << 18;
|
|
|
|
struct RegionInfo {
|
|
SpinMutex mutex;
|
|
AllocatorFreeList free_list;
|
|
uptr allocated_user; // Bytes allocated for user memory.
|
|
uptr allocated_meta; // Bytes allocated for metadata.
|
|
char padding[kCacheLineSize - 3 * sizeof(uptr) - sizeof(AllocatorFreeList)];
|
|
};
|
|
COMPILER_CHECK(sizeof(RegionInfo) == kCacheLineSize);
|
|
|
|
static uptr AdditionalSize() {
|
|
uptr PageSize = GetPageSizeCached();
|
|
uptr res = Max(sizeof(RegionInfo) * kNumClasses, PageSize);
|
|
CHECK_EQ(res % PageSize, 0);
|
|
return res;
|
|
}
|
|
|
|
RegionInfo *GetRegionInfo(uptr class_id) {
|
|
CHECK_LT(class_id, kNumClasses);
|
|
RegionInfo *regions = reinterpret_cast<RegionInfo*>(kSpaceBeg + kSpaceSize);
|
|
return ®ions[class_id];
|
|
}
|
|
|
|
static uptr GetChunkIdx(uptr chunk, uptr size) {
|
|
u32 offset = chunk % kRegionSize;
|
|
// Here we divide by a non-constant. This is costly.
|
|
// We require that kRegionSize is at least 2^32 so that offset is 32-bit.
|
|
// We save 2x by using 32-bit div, but may need to use a 256-way switch.
|
|
return offset / (u32)size;
|
|
}
|
|
|
|
void PopulateFreeList(uptr class_id, RegionInfo *region) {
|
|
CHECK(region->free_list.empty());
|
|
uptr size = SizeClassMap::Size(class_id);
|
|
uptr beg_idx = region->allocated_user;
|
|
uptr end_idx = beg_idx + kPopulateSize;
|
|
uptr region_beg = kSpaceBeg + kRegionSize * class_id;
|
|
uptr idx = beg_idx;
|
|
uptr i = 0;
|
|
do { // do-while loop because we need to put at least one item.
|
|
uptr p = region_beg + idx;
|
|
region->free_list.push_front(reinterpret_cast<AllocatorListNode*>(p));
|
|
idx += size;
|
|
i++;
|
|
} while (idx < end_idx);
|
|
region->allocated_user += idx - beg_idx;
|
|
region->allocated_meta += i * kMetadataSize;
|
|
if (region->allocated_user + region->allocated_meta > kRegionSize) {
|
|
Printf("Out of memory. Dying.\n");
|
|
Printf("The process has exhausted %zuMB for size class %zu.\n",
|
|
kRegionSize / 1024 / 1024, size);
|
|
Die();
|
|
}
|
|
}
|
|
|
|
void *AllocateBySizeClass(uptr class_id) {
|
|
CHECK_LT(class_id, kNumClasses);
|
|
RegionInfo *region = GetRegionInfo(class_id);
|
|
SpinMutexLock l(®ion->mutex);
|
|
if (region->free_list.empty()) {
|
|
PopulateFreeList(class_id, region);
|
|
}
|
|
CHECK(!region->free_list.empty());
|
|
AllocatorListNode *node = region->free_list.front();
|
|
region->free_list.pop_front();
|
|
return reinterpret_cast<void*>(node);
|
|
}
|
|
|
|
void DeallocateBySizeClass(void *p, uptr class_id) {
|
|
RegionInfo *region = GetRegionInfo(class_id);
|
|
SpinMutexLock l(®ion->mutex);
|
|
region->free_list.push_front(reinterpret_cast<AllocatorListNode*>(p));
|
|
}
|
|
};
|
|
|
|
// SizeClassAllocator32 -- allocator for 32-bit address space.
|
|
// This allocator can theoretically be used on 64-bit arch, but there it is less
|
|
// efficient than SizeClassAllocator64.
|
|
//
|
|
// [kSpaceBeg, kSpaceBeg + kSpaceSize) is the range of addresses which can
|
|
// be returned by MmapOrDie().
|
|
//
|
|
// Region:
|
|
// a result of a single call to MmapAlignedOrDie(kRegionSize, kRegionSize).
|
|
// Since the regions are aligned by kRegionSize, there are exactly
|
|
// kNumPossibleRegions possible regions in the address space and so we keep
|
|
// an u8 array possible_regions_[kNumPossibleRegions] to store the size classes.
|
|
// 0 size class means the region is not used by the allocator.
|
|
//
|
|
// One Region is used to allocate chunks of a single size class.
|
|
// A Region looks like this:
|
|
// UserChunk1 .. UserChunkN <gap> MetaChunkN .. MetaChunk1
|
|
//
|
|
// In order to avoid false sharing the objects of this class should be
|
|
// chache-line aligned.
|
|
template <const uptr kSpaceBeg, const u64 kSpaceSize,
|
|
const uptr kMetadataSize, class SizeClassMap>
|
|
class SizeClassAllocator32 {
|
|
public:
|
|
// Don't need to call Init if the object is a global (i.e. zero-initialized).
|
|
void Init() {
|
|
internal_memset(this, 0, sizeof(*this));
|
|
}
|
|
|
|
bool CanAllocate(uptr size, uptr alignment) {
|
|
return size <= SizeClassMap::kMaxSize &&
|
|
alignment <= SizeClassMap::kMaxSize;
|
|
}
|
|
|
|
void *Allocate(uptr size, uptr alignment) {
|
|
if (size < alignment) size = alignment;
|
|
CHECK(CanAllocate(size, alignment));
|
|
return AllocateBySizeClass(ClassID(size));
|
|
}
|
|
|
|
void Deallocate(void *p) {
|
|
CHECK(PointerIsMine(p));
|
|
DeallocateBySizeClass(p, GetSizeClass(p));
|
|
}
|
|
|
|
void *GetMetaData(void *p) {
|
|
CHECK(PointerIsMine(p));
|
|
uptr mem = reinterpret_cast<uptr>(p);
|
|
uptr beg = ComputeRegionBeg(mem);
|
|
uptr size = SizeClassMap::Size(GetSizeClass(p));
|
|
u32 offset = mem - beg;
|
|
uptr n = offset / (u32)size; // 32-bit division
|
|
uptr meta = (beg + kRegionSize) - (n + 1) * kMetadataSize;
|
|
return reinterpret_cast<void*>(meta);
|
|
}
|
|
|
|
// Allocate several chunks of the given class_id.
|
|
void BulkAllocate(uptr class_id, AllocatorFreeList *free_list) {
|
|
SizeClassInfo *sci = GetSizeClassInfo(class_id);
|
|
SpinMutexLock l(&sci->mutex);
|
|
EnsureSizeClassHasAvailableChunks(sci, class_id);
|
|
CHECK(!sci->free_list.empty());
|
|
BulkMove(SizeClassMap::MaxCached(class_id), &sci->free_list, free_list);
|
|
}
|
|
|
|
// Swallow the entire free_list for the given class_id.
|
|
void BulkDeallocate(uptr class_id, AllocatorFreeList *free_list) {
|
|
SizeClassInfo *sci = GetSizeClassInfo(class_id);
|
|
SpinMutexLock l(&sci->mutex);
|
|
sci->free_list.append_front(free_list);
|
|
}
|
|
|
|
bool PointerIsMine(void *p) {
|
|
return possible_regions_[ComputeRegionId(reinterpret_cast<uptr>(p))] != 0;
|
|
}
|
|
|
|
uptr GetSizeClass(void *p) {
|
|
return possible_regions_[ComputeRegionId(reinterpret_cast<uptr>(p))] - 1;
|
|
}
|
|
|
|
void *GetBlockBegin(void *p) {
|
|
CHECK(PointerIsMine(p));
|
|
uptr mem = reinterpret_cast<uptr>(p);
|
|
uptr beg = ComputeRegionBeg(mem);
|
|
uptr size = SizeClassMap::Size(GetSizeClass(p));
|
|
u32 offset = mem - beg;
|
|
u32 n = offset / (u32)size; // 32-bit division
|
|
uptr res = beg + (n * (u32)size);
|
|
return reinterpret_cast<void*>(res);
|
|
}
|
|
|
|
uptr GetActuallyAllocatedSize(void *p) {
|
|
CHECK(PointerIsMine(p));
|
|
return SizeClassMap::Size(GetSizeClass(p));
|
|
}
|
|
|
|
uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
|
|
|
|
uptr TotalMemoryUsed() {
|
|
// No need to lock here.
|
|
uptr res = 0;
|
|
for (uptr i = 0; i < kNumPossibleRegions; i++)
|
|
if (possible_regions_[i])
|
|
res += kRegionSize;
|
|
return res;
|
|
}
|
|
|
|
void TestOnlyUnmap() {
|
|
for (uptr i = 0; i < kNumPossibleRegions; i++)
|
|
if (possible_regions_[i])
|
|
UnmapOrDie(reinterpret_cast<void*>(i * kRegionSize), kRegionSize);
|
|
}
|
|
|
|
typedef SizeClassMap SizeClassMapT;
|
|
static const uptr kNumClasses = SizeClassMap::kNumClasses; // 2^k <= 128
|
|
|
|
private:
|
|
static const uptr kRegionSizeLog = SANITIZER_WORDSIZE == 64 ? 24 : 20;
|
|
static const uptr kRegionSize = 1 << kRegionSizeLog;
|
|
static const uptr kNumPossibleRegions = kSpaceSize / kRegionSize;
|
|
COMPILER_CHECK(kNumClasses <= 128);
|
|
|
|
struct SizeClassInfo {
|
|
SpinMutex mutex;
|
|
AllocatorFreeList free_list;
|
|
char padding[kCacheLineSize - sizeof(uptr) - sizeof(AllocatorFreeList)];
|
|
};
|
|
COMPILER_CHECK(sizeof(SizeClassInfo) == kCacheLineSize);
|
|
|
|
uptr ComputeRegionId(uptr mem) {
|
|
uptr res = mem >> kRegionSizeLog;
|
|
CHECK_LT(res, kNumPossibleRegions);
|
|
return res;
|
|
}
|
|
|
|
uptr ComputeRegionBeg(uptr mem) {
|
|
return mem & ~(kRegionSize - 1);
|
|
}
|
|
|
|
uptr AllocateRegion(uptr class_id) {
|
|
CHECK_LT(class_id, kNumClasses);
|
|
uptr res = reinterpret_cast<uptr>(MmapAlignedOrDie(kRegionSize, kRegionSize,
|
|
"SizeClassAllocator32"));
|
|
CHECK_EQ(0U, (res & (kRegionSize - 1)));
|
|
CHECK_EQ(0U, possible_regions_[ComputeRegionId(res)]);
|
|
possible_regions_[ComputeRegionId(res)] = class_id + 1;
|
|
return res;
|
|
}
|
|
|
|
SizeClassInfo *GetSizeClassInfo(uptr class_id) {
|
|
CHECK_LT(class_id, kNumClasses);
|
|
return &size_class_info_array_[class_id];
|
|
}
|
|
|
|
void EnsureSizeClassHasAvailableChunks(SizeClassInfo *sci, uptr class_id) {
|
|
if (!sci->free_list.empty()) return;
|
|
uptr size = SizeClassMap::Size(class_id);
|
|
uptr reg = AllocateRegion(class_id);
|
|
uptr n_chunks = kRegionSize / (size + kMetadataSize);
|
|
for (uptr i = reg; i < reg + n_chunks * size; i += size)
|
|
sci->free_list.push_back(reinterpret_cast<AllocatorListNode*>(i));
|
|
}
|
|
|
|
void *AllocateBySizeClass(uptr class_id) {
|
|
CHECK_LT(class_id, kNumClasses);
|
|
SizeClassInfo *sci = GetSizeClassInfo(class_id);
|
|
SpinMutexLock l(&sci->mutex);
|
|
EnsureSizeClassHasAvailableChunks(sci, class_id);
|
|
CHECK(!sci->free_list.empty());
|
|
AllocatorListNode *node = sci->free_list.front();
|
|
sci->free_list.pop_front();
|
|
return reinterpret_cast<void*>(node);
|
|
}
|
|
|
|
void DeallocateBySizeClass(void *p, uptr class_id) {
|
|
CHECK_LT(class_id, kNumClasses);
|
|
SizeClassInfo *sci = GetSizeClassInfo(class_id);
|
|
SpinMutexLock l(&sci->mutex);
|
|
sci->free_list.push_front(reinterpret_cast<AllocatorListNode*>(p));
|
|
}
|
|
|
|
u8 possible_regions_[kNumPossibleRegions];
|
|
SizeClassInfo size_class_info_array_[kNumClasses];
|
|
};
|
|
|
|
// Objects of this type should be used as local caches for SizeClassAllocator64.
|
|
// Since the typical use of this class is to have one object per thread in TLS,
|
|
// is has to be POD.
|
|
template<class SizeClassAllocator>
|
|
struct SizeClassAllocatorLocalCache {
|
|
typedef SizeClassAllocator Allocator;
|
|
static const uptr kNumClasses = SizeClassAllocator::kNumClasses;
|
|
// Don't need to call Init if the object is a global (i.e. zero-initialized).
|
|
void Init() {
|
|
internal_memset(this, 0, sizeof(*this));
|
|
}
|
|
|
|
void *Allocate(SizeClassAllocator *allocator, uptr class_id) {
|
|
CHECK_LT(class_id, kNumClasses);
|
|
AllocatorFreeList *free_list = &free_lists_[class_id];
|
|
if (free_list->empty())
|
|
allocator->BulkAllocate(class_id, free_list);
|
|
CHECK(!free_list->empty());
|
|
void *res = free_list->front();
|
|
free_list->pop_front();
|
|
return res;
|
|
}
|
|
|
|
void Deallocate(SizeClassAllocator *allocator, uptr class_id, void *p) {
|
|
CHECK_LT(class_id, kNumClasses);
|
|
AllocatorFreeList *free_list = &free_lists_[class_id];
|
|
free_list->push_front(reinterpret_cast<AllocatorListNode*>(p));
|
|
if (free_list->size() >= 2 * SizeClassMap::MaxCached(class_id))
|
|
DrainHalf(allocator, class_id);
|
|
}
|
|
|
|
void Drain(SizeClassAllocator *allocator) {
|
|
for (uptr i = 0; i < kNumClasses; i++) {
|
|
allocator->BulkDeallocate(i, &free_lists_[i]);
|
|
CHECK(free_lists_[i].empty());
|
|
}
|
|
}
|
|
|
|
// private:
|
|
typedef typename SizeClassAllocator::SizeClassMapT SizeClassMap;
|
|
AllocatorFreeList free_lists_[kNumClasses];
|
|
|
|
void DrainHalf(SizeClassAllocator *allocator, uptr class_id) {
|
|
AllocatorFreeList *free_list = &free_lists_[class_id];
|
|
AllocatorFreeList half;
|
|
half.clear();
|
|
const uptr count = free_list->size() / 2;
|
|
for (uptr i = 0; i < count; i++) {
|
|
AllocatorListNode *node = free_list->front();
|
|
free_list->pop_front();
|
|
half.push_front(node);
|
|
}
|
|
allocator->BulkDeallocate(class_id, &half);
|
|
}
|
|
};
|
|
|
|
// This class can (de)allocate only large chunks of memory using mmap/unmap.
|
|
// The main purpose of this allocator is to cover large and rare allocation
|
|
// sizes not covered by more efficient allocators (e.g. SizeClassAllocator64).
|
|
class LargeMmapAllocator {
|
|
public:
|
|
void Init() {
|
|
internal_memset(this, 0, sizeof(*this));
|
|
page_size_ = GetPageSizeCached();
|
|
}
|
|
void *Allocate(uptr size, uptr alignment) {
|
|
CHECK(IsPowerOfTwo(alignment));
|
|
uptr map_size = RoundUpMapSize(size);
|
|
if (alignment > page_size_)
|
|
map_size += alignment;
|
|
if (map_size < size) return 0; // Overflow.
|
|
uptr map_beg = reinterpret_cast<uptr>(
|
|
MmapOrDie(map_size, "LargeMmapAllocator"));
|
|
uptr map_end = map_beg + map_size;
|
|
uptr res = map_beg + page_size_;
|
|
if (res & (alignment - 1)) // Align.
|
|
res += alignment - (res & (alignment - 1));
|
|
CHECK_EQ(0, res & (alignment - 1));
|
|
CHECK_LE(res + size, map_end);
|
|
Header *h = GetHeader(res);
|
|
h->size = size;
|
|
h->map_beg = map_beg;
|
|
h->map_size = map_size;
|
|
{
|
|
SpinMutexLock l(&mutex_);
|
|
h->next = list_;
|
|
h->prev = 0;
|
|
if (list_)
|
|
list_->prev = h;
|
|
list_ = h;
|
|
}
|
|
return reinterpret_cast<void*>(res);
|
|
}
|
|
|
|
void Deallocate(void *p) {
|
|
Header *h = GetHeader(p);
|
|
{
|
|
SpinMutexLock l(&mutex_);
|
|
Header *prev = h->prev;
|
|
Header *next = h->next;
|
|
if (prev)
|
|
prev->next = next;
|
|
if (next)
|
|
next->prev = prev;
|
|
if (h == list_)
|
|
list_ = next;
|
|
}
|
|
UnmapOrDie(reinterpret_cast<void*>(h->map_beg), h->map_size);
|
|
}
|
|
|
|
uptr TotalMemoryUsed() {
|
|
SpinMutexLock l(&mutex_);
|
|
uptr res = 0;
|
|
for (Header *l = list_; l; l = l->next) {
|
|
res += RoundUpMapSize(l->size);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
bool PointerIsMine(void *p) {
|
|
// Fast check.
|
|
if ((reinterpret_cast<uptr>(p) & (page_size_ - 1))) return false;
|
|
SpinMutexLock l(&mutex_);
|
|
for (Header *l = list_; l; l = l->next) {
|
|
if (GetUser(l) == p) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
uptr GetActuallyAllocatedSize(void *p) {
|
|
return RoundUpMapSize(GetHeader(p)->size) - page_size_;
|
|
}
|
|
|
|
// At least page_size_/2 metadata bytes is available.
|
|
void *GetMetaData(void *p) {
|
|
return GetHeader(p) + 1;
|
|
}
|
|
|
|
void *GetBlockBegin(void *p) {
|
|
SpinMutexLock l(&mutex_);
|
|
for (Header *l = list_; l; l = l->next) {
|
|
void *b = GetUser(l);
|
|
if (p >= b && p < (u8*)b + l->size)
|
|
return b;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
private:
|
|
struct Header {
|
|
uptr map_beg;
|
|
uptr map_size;
|
|
uptr size;
|
|
Header *next;
|
|
Header *prev;
|
|
};
|
|
|
|
Header *GetHeader(uptr p) {
|
|
CHECK_EQ(p % page_size_, 0);
|
|
return reinterpret_cast<Header*>(p - page_size_);
|
|
}
|
|
Header *GetHeader(void *p) { return GetHeader(reinterpret_cast<uptr>(p)); }
|
|
|
|
void *GetUser(Header *h) {
|
|
CHECK_EQ((uptr)h % page_size_, 0);
|
|
return reinterpret_cast<void*>(reinterpret_cast<uptr>(h) + page_size_);
|
|
}
|
|
|
|
uptr RoundUpMapSize(uptr size) {
|
|
return RoundUpTo(size, page_size_) + page_size_;
|
|
}
|
|
|
|
uptr page_size_;
|
|
Header *list_;
|
|
SpinMutex mutex_;
|
|
};
|
|
|
|
// This class implements a complete memory allocator by using two
|
|
// internal allocators:
|
|
// PrimaryAllocator is efficient, but may not allocate some sizes (alignments).
|
|
// When allocating 2^x bytes it should return 2^x aligned chunk.
|
|
// PrimaryAllocator is used via a local AllocatorCache.
|
|
// SecondaryAllocator can allocate anything, but is not efficient.
|
|
template <class PrimaryAllocator, class AllocatorCache,
|
|
class SecondaryAllocator> // NOLINT
|
|
class CombinedAllocator {
|
|
public:
|
|
void Init() {
|
|
primary_.Init();
|
|
secondary_.Init();
|
|
}
|
|
|
|
void *Allocate(AllocatorCache *cache, uptr size, uptr alignment,
|
|
bool cleared = false) {
|
|
// Returning 0 on malloc(0) may break a lot of code.
|
|
if (size == 0)
|
|
size = 1;
|
|
if (size + alignment < size)
|
|
return 0;
|
|
if (alignment > 8)
|
|
size = RoundUpTo(size, alignment);
|
|
void *res;
|
|
if (primary_.CanAllocate(size, alignment))
|
|
res = cache->Allocate(&primary_, primary_.ClassID(size));
|
|
else
|
|
res = secondary_.Allocate(size, alignment);
|
|
if (alignment > 8)
|
|
CHECK_EQ(reinterpret_cast<uptr>(res) & (alignment - 1), 0);
|
|
if (cleared && res)
|
|
internal_memset(res, 0, size);
|
|
return res;
|
|
}
|
|
|
|
void Deallocate(AllocatorCache *cache, void *p) {
|
|
if (!p) return;
|
|
if (primary_.PointerIsMine(p))
|
|
cache->Deallocate(&primary_, primary_.GetSizeClass(p), p);
|
|
else
|
|
secondary_.Deallocate(p);
|
|
}
|
|
|
|
void *Reallocate(AllocatorCache *cache, void *p, uptr new_size,
|
|
uptr alignment) {
|
|
if (!p)
|
|
return Allocate(cache, new_size, alignment);
|
|
if (!new_size) {
|
|
Deallocate(cache, p);
|
|
return 0;
|
|
}
|
|
CHECK(PointerIsMine(p));
|
|
uptr old_size = GetActuallyAllocatedSize(p);
|
|
uptr memcpy_size = Min(new_size, old_size);
|
|
void *new_p = Allocate(cache, new_size, alignment);
|
|
if (new_p)
|
|
internal_memcpy(new_p, p, memcpy_size);
|
|
Deallocate(cache, p);
|
|
return new_p;
|
|
}
|
|
|
|
bool PointerIsMine(void *p) {
|
|
if (primary_.PointerIsMine(p))
|
|
return true;
|
|
return secondary_.PointerIsMine(p);
|
|
}
|
|
|
|
void *GetMetaData(void *p) {
|
|
if (primary_.PointerIsMine(p))
|
|
return primary_.GetMetaData(p);
|
|
return secondary_.GetMetaData(p);
|
|
}
|
|
|
|
void *GetBlockBegin(void *p) {
|
|
if (primary_.PointerIsMine(p))
|
|
return primary_.GetBlockBegin(p);
|
|
return secondary_.GetBlockBegin(p);
|
|
}
|
|
|
|
uptr GetActuallyAllocatedSize(void *p) {
|
|
if (primary_.PointerIsMine(p))
|
|
return primary_.GetActuallyAllocatedSize(p);
|
|
return secondary_.GetActuallyAllocatedSize(p);
|
|
}
|
|
|
|
uptr TotalMemoryUsed() {
|
|
return primary_.TotalMemoryUsed() + secondary_.TotalMemoryUsed();
|
|
}
|
|
|
|
void TestOnlyUnmap() { primary_.TestOnlyUnmap(); }
|
|
|
|
void SwallowCache(AllocatorCache *cache) {
|
|
cache->Drain(&primary_);
|
|
}
|
|
|
|
private:
|
|
PrimaryAllocator primary_;
|
|
SecondaryAllocator secondary_;
|
|
};
|
|
|
|
} // namespace __sanitizer
|
|
|
|
#endif // SANITIZER_ALLOCATOR_H
|
|
|