forked from OSchip/llvm-project
135 lines
3.8 KiB
C
135 lines
3.8 KiB
C
//===-- lib/comparetf2.c - Quad-precision comparisons -------------*- C -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// // This file implements the following soft-float comparison routines:
|
|
//
|
|
// __eqtf2 __getf2 __unordtf2
|
|
// __letf2 __gttf2
|
|
// __lttf2
|
|
// __netf2
|
|
//
|
|
// The semantics of the routines grouped in each column are identical, so there
|
|
// is a single implementation for each, and wrappers to provide the other names.
|
|
//
|
|
// The main routines behave as follows:
|
|
//
|
|
// __letf2(a,b) returns -1 if a < b
|
|
// 0 if a == b
|
|
// 1 if a > b
|
|
// 1 if either a or b is NaN
|
|
//
|
|
// __getf2(a,b) returns -1 if a < b
|
|
// 0 if a == b
|
|
// 1 if a > b
|
|
// -1 if either a or b is NaN
|
|
//
|
|
// __unordtf2(a,b) returns 0 if both a and b are numbers
|
|
// 1 if either a or b is NaN
|
|
//
|
|
// Note that __letf2( ) and __getf2( ) are identical except in their handling of
|
|
// NaN values.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define QUAD_PRECISION
|
|
#include "fp_lib.h"
|
|
|
|
#if defined(CRT_HAS_128BIT) && defined(CRT_LDBL_128BIT)
|
|
enum LE_RESULT { LE_LESS = -1, LE_EQUAL = 0, LE_GREATER = 1, LE_UNORDERED = 1 };
|
|
|
|
COMPILER_RT_ABI enum LE_RESULT __letf2(fp_t a, fp_t b) {
|
|
|
|
const srep_t aInt = toRep(a);
|
|
const srep_t bInt = toRep(b);
|
|
const rep_t aAbs = aInt & absMask;
|
|
const rep_t bAbs = bInt & absMask;
|
|
|
|
// If either a or b is NaN, they are unordered.
|
|
if (aAbs > infRep || bAbs > infRep)
|
|
return LE_UNORDERED;
|
|
|
|
// If a and b are both zeros, they are equal.
|
|
if ((aAbs | bAbs) == 0)
|
|
return LE_EQUAL;
|
|
|
|
// If at least one of a and b is positive, we get the same result comparing
|
|
// a and b as signed integers as we would with a floating-point compare.
|
|
if ((aInt & bInt) >= 0) {
|
|
if (aInt < bInt)
|
|
return LE_LESS;
|
|
else if (aInt == bInt)
|
|
return LE_EQUAL;
|
|
else
|
|
return LE_GREATER;
|
|
} else {
|
|
// Otherwise, both are negative, so we need to flip the sense of the
|
|
// comparison to get the correct result. (This assumes a twos- or ones-
|
|
// complement integer representation; if integers are represented in a
|
|
// sign-magnitude representation, then this flip is incorrect).
|
|
if (aInt > bInt)
|
|
return LE_LESS;
|
|
else if (aInt == bInt)
|
|
return LE_EQUAL;
|
|
else
|
|
return LE_GREATER;
|
|
}
|
|
}
|
|
|
|
#if defined(__ELF__)
|
|
// Alias for libgcc compatibility
|
|
COMPILER_RT_ALIAS(__letf2, __cmptf2)
|
|
#endif
|
|
COMPILER_RT_ALIAS(__letf2, __eqtf2)
|
|
COMPILER_RT_ALIAS(__letf2, __lttf2)
|
|
COMPILER_RT_ALIAS(__letf2, __netf2)
|
|
|
|
enum GE_RESULT {
|
|
GE_LESS = -1,
|
|
GE_EQUAL = 0,
|
|
GE_GREATER = 1,
|
|
GE_UNORDERED = -1 // Note: different from LE_UNORDERED
|
|
};
|
|
|
|
COMPILER_RT_ABI enum GE_RESULT __getf2(fp_t a, fp_t b) {
|
|
|
|
const srep_t aInt = toRep(a);
|
|
const srep_t bInt = toRep(b);
|
|
const rep_t aAbs = aInt & absMask;
|
|
const rep_t bAbs = bInt & absMask;
|
|
|
|
if (aAbs > infRep || bAbs > infRep)
|
|
return GE_UNORDERED;
|
|
if ((aAbs | bAbs) == 0)
|
|
return GE_EQUAL;
|
|
if ((aInt & bInt) >= 0) {
|
|
if (aInt < bInt)
|
|
return GE_LESS;
|
|
else if (aInt == bInt)
|
|
return GE_EQUAL;
|
|
else
|
|
return GE_GREATER;
|
|
} else {
|
|
if (aInt > bInt)
|
|
return GE_LESS;
|
|
else if (aInt == bInt)
|
|
return GE_EQUAL;
|
|
else
|
|
return GE_GREATER;
|
|
}
|
|
}
|
|
|
|
COMPILER_RT_ALIAS(__getf2, __gttf2)
|
|
|
|
COMPILER_RT_ABI int __unordtf2(fp_t a, fp_t b) {
|
|
const rep_t aAbs = toRep(a) & absMask;
|
|
const rep_t bAbs = toRep(b) & absMask;
|
|
return aAbs > infRep || bAbs > infRep;
|
|
}
|
|
|
|
#endif
|