llvm-project/clang/test/SemaCXX/cxx1y-generic-lambdas-captu...

1379 lines
28 KiB
C++

// RUN: %clang_cc1 -std=c++1y -verify -fsyntax-only -fblocks -emit-llvm-only %s
// DONTRUNYET: %clang_cc1 -std=c++1y -verify -fsyntax-only -fblocks -fdelayed-template-parsing %s -DDELAYED_TEMPLATE_PARSING
// DONTRUNYET: %clang_cc1 -std=c++1y -verify -fsyntax-only -fblocks -fms-extensions %s -DMS_EXTENSIONS
// DONTRUNYET: %clang_cc1 -std=c++1y -verify -fsyntax-only -fblocks -fdelayed-template-parsing -fms-extensions %s -DMS_EXTENSIONS -DDELAYED_TEMPLATE_PARSING
constexpr int ODRUSE_SZ = sizeof(char);
template<class T, int N>
void f(T, const int (&)[N]) { }
template<class T>
void f(const T&, const int (&)[ODRUSE_SZ]) { }
#define DEFINE_SELECTOR(x) \
int selector_ ## x[sizeof(x) == ODRUSE_SZ ? ODRUSE_SZ : ODRUSE_SZ + 5]
#define F_CALL(x, a) f(x, selector_ ## a)
// This is a risky assumption, because if an empty class gets captured by value
// the lambda's size will still be '1'
#define ASSERT_NO_CAPTURES(L) static_assert(sizeof(L) == 1, "size of closure with no captures must be 1")
#define ASSERT_CLOSURE_SIZE_EXACT(L, N) static_assert(sizeof(L) == (N), "size of closure must be " #N)
#define ASSERT_CLOSURE_SIZE(L, N) static_assert(sizeof(L) >= (N), "size of closure must be >=" #N)
namespace sample {
struct X {
int i;
X(int i) : i(i) { }
};
}
namespace test_transformations_in_templates {
template<class T> void foo(T t) {
auto L = [](auto a) { return a; };
}
template<class T> void foo2(T t) {
auto L = [](auto a) -> void {
auto M = [](char b) -> void {
auto N = [](auto c) -> void {
int selector[sizeof(c) == 1 ?
(sizeof(b) == 1 ? 1 : 2)
: 2
]{};
};
N('a');
};
};
L(3.14);
}
void doit() {
foo(3);
foo('a');
foo2('A');
}
}
namespace test_return_type_deduction {
void doit() {
auto L = [](auto a, auto b) {
if ( a > b ) return a;
return b;
};
L(2, 4);
{
auto L2 = [](auto a, int i) {
return a + i;
};
L2(3.14, 2);
}
{
int a; //expected-note{{declared here}}
auto B = []() { return ^{ return a; }; }; //expected-error{{cannot be implicitly capture}}\
//expected-note{{begins here}}
//[](){ return ({int b = 5; return 'c'; 'x';}); };
//auto X = ^{ return a; };
//auto Y = []() -> auto { return 3; return 'c'; };
}
}
}
namespace test_no_capture{
void doit() {
const int x = 10; //expected-note{{declared here}}
{
// should not capture 'x' - variable undergoes lvalue-to-rvalue
auto L = [=](auto a) {
int y = x;
return a + y;
};
ASSERT_NO_CAPTURES(L);
}
{
// should not capture 'x' - even though certain instantiations require
auto L = [](auto a) { //expected-note{{begins here}}
DEFINE_SELECTOR(a);
F_CALL(x, a); //expected-error{{'x' cannot be implicitly captured}}
};
ASSERT_NO_CAPTURES(L);
L('s'); //expected-note{{in instantiation of}}
}
{
// Does not capture because no default capture in inner most lambda 'b'
auto L = [=](auto a) {
return [=](int p) {
return [](auto b) {
DEFINE_SELECTOR(a);
F_CALL(x, a);
return 0;
};
};
};
ASSERT_NO_CAPTURES(L);
}
} // doit
} // namespace
namespace test_capture_of_potentially_evaluated_expression {
void doit() {
const int x = 5;
{
auto L = [=](auto a) {
DEFINE_SELECTOR(a);
F_CALL(x, a);
};
static_assert(sizeof(L) == 4, "Must be captured");
}
{
int j = 0; //expected-note{{declared}}
auto L = [](auto a) { //expected-note{{begins here}}
return j + 1; //expected-error{{cannot be implicitly captured}}
};
}
{
const int x = 10;
auto L = [](auto a) {
//const int y = 20;
return [](int p) {
return [](auto b) {
DEFINE_SELECTOR(a);
F_CALL(x, a);
return 0;
};
};
};
auto M = L(3);
auto N = M(5);
}
{ // if the nested capture does not implicitly or explicitly allow any captures
// nothing should capture - and instantiations will create errors if needed.
const int x = 0;
auto L = [=](auto a) { // <-- #A
const int y = 0;
return [](auto b) { // <-- #B
int c[sizeof(b)];
f(x, c);
f(y, c);
int i = x;
};
};
ASSERT_NO_CAPTURES(L);
auto M_int = L(2);
ASSERT_NO_CAPTURES(M_int);
}
{ // Permutations of this example must be thoroughly tested!
const int x = 0;
sample::X cx{5};
auto L = [=](auto a) {
const int z = 3;
return [&,a](auto b) {
const int y = 5;
return [=](auto c) {
int d[sizeof(a) == sizeof(c) || sizeof(c) == sizeof(b) ? 2 : 1];
f(x, d);
f(y, d);
f(z, d);
decltype(a) A = a;
decltype(b) B = b;
const int &i = cx.i;
};
};
};
auto M = L(3)(3.5);
M(3.14);
}
}
namespace Test_no_capture_of_clearly_no_odr_use {
auto foo() {
const int x = 10;
auto L = [=](auto a) {
return [=](auto b) {
return [=](auto c) {
int A = x;
return A;
};
};
};
auto M = L(1);
auto N = M(2.14);
ASSERT_NO_CAPTURES(L);
ASSERT_NO_CAPTURES(N);
return 0;
}
}
namespace Test_capture_of_odr_use_var {
auto foo() {
const int x = 10;
auto L = [=](auto a) {
return [=](auto b) {
return [=](auto c) {
int A = x;
const int &i = x;
decltype(a) A2 = a;
return A;
};
};
};
auto M_int = L(1);
auto N_int_int = M_int(2);
ASSERT_CLOSURE_SIZE_EXACT(L, sizeof(x));
// M_int captures both a & x
ASSERT_CLOSURE_SIZE_EXACT(M_int, sizeof(x) + sizeof(int));
// N_int_int captures both a & x
ASSERT_CLOSURE_SIZE_EXACT(N_int_int, sizeof(x) + sizeof(int));
auto M_double = L(3.14);
ASSERT_CLOSURE_SIZE(M_double, sizeof(x) + sizeof(double));
return 0;
}
auto run = foo();
}
}
namespace more_nested_captures_1 {
template<class T> struct Y {
static void f(int, double, ...) { }
template<class R>
static void f(const int&, R, ...) { }
template<class R>
void foo(R t) {
const int x = 10; //expected-note{{declared here}}
auto L = [](auto a) {
return [=](auto b) {
return [=](auto c) {
f(x, c, b, a); //expected-error{{reference to local variable 'x'}}
return 0;
};
};
};
auto M = L(t);
auto N = M('b');
N(3.14);
N(5); //expected-note{{in instantiation of}}
}
};
Y<int> yi;
int run = (yi.foo(3.14), 0); //expected-note{{in instantiation of}}
}
namespace more_nested_captures_1_1 {
template<class T> struct Y {
static void f(int, double, ...) { }
template<class R>
static void f(const int&, R, ...) { }
template<class R>
void foo(R t) {
const int x = 10; //expected-note{{declared here}}
auto L = [](auto a) {
return [=](char b) {
return [=](auto c) {
f(x, c, b, a); //expected-error{{reference to local variable 'x'}}
return 0;
};
};
};
auto M = L(t);
auto N = M('b');
N(3.14);
N(5); //expected-note{{in instantiation of}}
}
};
Y<int> yi;
int run = (yi.foo(3.14), 0); //expected-note{{in instantiation of}}
}
namespace more_nested_captures_1_2 {
template<class T> struct Y {
static void f(int, double, ...) { }
template<class R>
static void f(const int&, R, ...) { }
template<class R>
void foo(R t) {
const int x = 10;
auto L = [=](auto a) {
return [=](char b) {
return [=](auto c) {
f(x, c, b, a);
return 0;
};
};
};
auto M = L(t);
auto N = M('b');
N(3.14);
N(5);
}
};
Y<int> yi;
int run = (yi.foo(3.14), 0);
}
namespace more_nested_captures_1_3 {
template<class T> struct Y {
static void f(int, double, ...) { }
template<class R>
static void f(const int&, R, ...) { }
template<class R>
void foo(R t) {
const int x = 10; //expected-note{{declared here}}
auto L = [=](auto a) {
return [](auto b) {
const int y = 0;
return [=](auto c) {
f(x, c, b); //expected-error{{reference to local variable 'x'}}
f(y, b, c);
return 0;
};
};
};
auto M = L(t);
auto N = M('b');
N(3.14);
N(5); //expected-note{{in instantiation of}}
}
};
Y<int> yi;
int run = (yi.foo(3.14), 0); //expected-note{{in instantiation of}}
}
namespace more_nested_captures_1_4 {
template<class T> struct Y {
static void f(int, double, ...) { }
template<class R>
static void f(const int&, R, ...) { }
template<class R>
void foo(R t) {
const int x = 10; //expected-note{{declared here}}
auto L = [=](auto a) {
T t2{t};
return [](auto b) {
const int y = 0; //expected-note{{declared here}}
return [](auto c) { //expected-note 2{{lambda expression begins here}}
f(x, c); //expected-error{{variable 'x'}}
f(y, c); //expected-error{{variable 'y'}}
return 0;
};
};
};
auto M = L(t);
auto N_char = M('b');
N_char(3.14);
auto N_double = M(3.14);
N_double(3.14);
N_char(3); //expected-note{{in instantiation of}}
}
};
Y<int> yi;
int run = (yi.foo('a'), 0); //expected-note{{in instantiation of}}
}
namespace more_nested_captures_2 {
template<class T> struct Y {
static void f(int, double) { }
template<class R>
static void f(const int&, R) { }
template<class R>
void foo(R t) {
const int x = 10;
auto L = [=](auto a) {
return [=](auto b) {
return [=](auto c) {
f(x, c);
return 0;
};
};
};
auto M = L(t);
auto N = M('b');
N(3);
N(3.14);
}
};
Y<int> yi;
int run = (yi.foo(3.14), 0);
}
namespace more_nested_captures_3 {
template<class T> struct Y {
static void f(int, double) { }
template<class R>
static void f(const int&, R) { }
template<class R>
void foo(R t) {
const int x = 10; //expected-note{{declared here}}
auto L = [](auto a) {
return [=](auto b) {
return [=](auto c) {
f(x, c); //expected-error{{reference to local variable 'x'}}
return 0;
};
};
};
auto M = L(t);
auto N = M('b');
N(3); //expected-note{{in instantiation of}}
N(3.14);
}
};
Y<int> yi;
int run = (yi.foo(3.14), 0); //expected-note{{in instantiation of}}
}
namespace more_nested_captures_4 {
template<class T> struct Y {
static void f(int, double) { }
template<class R>
static void f(const int&, R) { }
template<class R>
void foo(R t) {
const int x = 10; //expected-note{{'x' declared here}}
auto L = [](auto a) {
return [=](char b) {
return [=](auto c) {
f(x, c); //expected-error{{reference to local variable 'x'}}
return 0;
};
};
};
auto M = L(t);
auto N = M('b');
N(3); //expected-note{{in instantiation of}}
N(3.14);
}
};
Y<int> yi;
int run = (yi.foo(3.14), 0); //expected-note{{in instantiation of}}
}
namespace more_nested_captures_5 {
template<class T> struct Y {
static void f(int, double) { }
template<class R>
static void f(const int&, R) { }
template<class R>
void foo(R t) {
const int x = 10;
auto L = [=](auto a) {
return [=](char b) {
return [=](auto c) {
f(x, c);
return 0;
};
};
};
auto M = L(t);
auto N = M('b');
N(3);
N(3.14);
}
};
Y<int> yi;
int run = (yi.foo(3.14), 0);
}
namespace lambdas_in_NSDMIs {
template<class T>
struct L {
T t{};
T t2 = ([](auto a) { return [](auto b) { return b; };})(t)(t);
T t3 = ([](auto a) { return a; })(t);
};
L<int> l;
int run = l.t2;
}
namespace test_nested_decltypes_in_trailing_return_types {
int foo() {
auto L = [](auto a) {
return [](auto b, decltype(a) b2) -> decltype(a) {
return decltype(a){};
};
};
auto M = L(3.14);
M('a', 6.26);
return 0;
}
}
namespace more_this_capture_1 {
struct X {
void f(int) { }
static void f(double) { }
void foo() {
{
auto L = [=](auto a) {
f(a);
};
L(3);
L(3.13);
}
{
auto L = [](auto a) {
f(a); //expected-error{{this}}
};
L(3.13);
L(2); //expected-note{{in instantiation}}
}
}
int g() {
auto L = [=](auto a) {
return [](int i) {
return [=](auto b) {
f(b);
int x = i;
};
};
};
auto M = L(0.0);
auto N = M(3);
N(5.32); // OK
return 0;
}
};
int run = X{}.g();
}
namespace more_this_capture_1_1 {
struct X {
void f(int) { }
static void f(double) { }
int g() {
auto L = [=](auto a) {
return [](int i) {
return [=](auto b) {
f(decltype(a){}); //expected-error{{this}}
int x = i;
};
};
};
auto M = L(0.0);
auto N = M(3);
N(5.32); // OK
L(3); // expected-note{{instantiation}}
return 0;
}
};
int run = X{}.g();
}
namespace more_this_capture_1_1_1 {
struct X {
void f(int) { }
static void f(double) { }
int g() {
auto L = [=](auto a) {
return [](auto b) {
return [=](int i) {
f(b);
f(decltype(a){}); //expected-error{{this}}
};
};
};
auto M = L(0.0); // OK
auto N = M(3.3); //OK
auto M_int = L(0); //expected-note{{instantiation}}
return 0;
}
};
int run = X{}.g();
}
namespace more_this_capture_1_1_1_1 {
struct X {
void f(int) { }
static void f(double) { }
int g() {
auto L = [=](auto a) {
return [](auto b) {
return [=](int i) {
f(b); //expected-error{{this}}
f(decltype(a){});
};
};
};
auto M_double = L(0.0); // OK
auto N = M_double(3); //expected-note{{instantiation}}
return 0;
}
};
int run = X{}.g();
}
namespace more_this_capture_2 {
struct X {
void f(int) { }
static void f(double) { }
int g() {
auto L = [=](auto a) {
return [](int i) {
return [=](auto b) {
f(b); //expected-error{{'this' cannot}}
int x = i;
};
};
};
auto M = L(0.0);
auto N = M(3);
N(5); // NOT OK expected-note{{in instantiation of}}
return 0;
}
};
int run = X{}.g();
}
namespace diagnose_errors_early_in_generic_lambdas {
int foo()
{
{ // This variable is used and must be caught early, do not need instantiation
const int x = 0; //expected-note{{declared}}
auto L = [](auto a) { //expected-note{{begins}}
const int &r = x; //expected-error{{variable}}
};
}
{ // This variable is not used
const int x = 0;
auto L = [](auto a) {
int i = x;
};
}
{
const int x = 0; //expected-note{{declared}}
auto L = [=](auto a) { // <-- #A
const int y = 0;
return [](auto b) { //expected-note{{begins}}
int c[sizeof(b)];
f(x, c);
f(y, c);
int i = x;
// This use will always be an error regardless of instantatiation
// so diagnose this early.
const int &r = x; //expected-error{{variable}}
};
};
}
return 0;
}
int run = foo();
}
namespace generic_nongenerics_interleaved_1 {
int foo() {
{
auto L = [](int a) {
int y = 10;
return [=](auto b) {
return a + y;
};
};
auto M = L(3);
M(5);
}
{
int x;
auto L = [](int a) {
int y = 10;
return [=](auto b) {
return a + y;
};
};
auto M = L(3);
M(5);
}
{
// FIXME: why are there 2 error messages here?
int x;
auto L = [](auto a) { //expected-note {{declared here}}
int y = 10; //expected-note {{declared here}}
return [](int b) { //expected-note 2{{expression begins here}}
return [=] (auto c) {
return a + y; //expected-error 2{{cannot be implicitly captured}}
};
};
};
}
{
int x;
auto L = [](auto a) {
int y = 10;
return [=](int b) {
return [=] (auto c) {
return a + y;
};
};
};
}
return 1;
}
int run = foo();
}
namespace dont_capture_refs_if_initialized_with_constant_expressions {
auto foo(int i) {
// This is surprisingly not odr-used within the lambda!
static int j;
j = i;
int &ref_j = j;
return [](auto a) { return ref_j; }; // ok
}
template<class T>
auto foo2(T t) {
// This is surprisingly not odr-used within the lambda!
static T j;
j = t;
T &ref_j = j;
return [](auto a) { return ref_j; }; // ok
}
int do_test() {
auto L = foo(3);
auto L_int = L(3);
auto L_char = L('a');
auto L1 = foo2(3.14);
auto L1_int = L1(3);
auto L1_char = L1('a');
return 0;
}
} // dont_capture_refs_if_initialized_with_constant_expressions
namespace test_conversion_to_fptr {
template<class T> struct X {
T (*fp)(T) = [](auto a) { return a; };
};
X<int> xi;
template<class T>
void fooT(T t, T (*fp)(T) = [](auto a) { return a; }) {
fp(t);
}
int test() {
{
auto L = [](auto a) { return a; };
int (*fp)(int) = L;
fp(5);
L(3);
char (*fc)(char) = L;
fc('b');
L('c');
double (*fd)(double) = L;
fd(3.14);
fd(6.26);
L(4.25);
}
{
auto L = [](auto a) ->int { return a; }; //expected-note 2{{candidate template ignored}}
int (*fp)(int) = L;
char (*fc)(char) = L; //expected-error{{no viable conversion}}
double (*fd)(double) = L; //expected-error{{no viable conversion}}
}
{
int x = 5;
auto L = [=](auto b, char c = 'x') {
int i = x;
return [](auto a) ->decltype(a) { return a; };
};
int (*fp)(int) = L(8);
fp(5);
L(3);
char (*fc)(char) = L('a');
fc('b');
L('c');
double (*fd)(double) = L(3.14);
fd(3.14);
fd(6.26);
}
{
auto L = [=](auto b) {
return [](auto a) ->decltype(b)* { return (decltype(b)*)0; };
};
int* (*fp)(int) = L(8);
fp(5);
L(3);
char* (*fc)(char) = L('a');
fc('b');
L('c');
double* (*fd)(double) = L(3.14);
fd(3.14);
fd(6.26);
}
{
auto L = [=](auto b) {
return [](auto a) ->decltype(b)* { return (decltype(b)*)0; }; //expected-note{{candidate template ignored}}
};
char* (*fp)(int) = L('8');
fp(5);
char* (*fc)(char) = L('a');
fc('b');
double* (*fi)(int) = L(3.14);
fi(5);
int* (*fi2)(int) = L(3.14); //expected-error{{no viable conversion}}
}
{
auto L = [=](auto b) {
return [](auto a) {
return [=](auto c) {
return [](auto d) ->decltype(a + b + c + d) { return d; };
};
};
};
int (*fp)(int) = L('8')(3)(short{});
double (*fs)(char) = L(3.14)(short{})('4');
}
fooT(3);
fooT('a');
fooT(3.14);
fooT("abcdefg");
return 0;
}
int run2 = test();
}
namespace this_capture {
void f(char, int) { }
template<class T>
void f(T, const int&) { }
struct X {
int x = 0;
void foo() {
auto L = [=](auto a) {
return [=](auto b) {
//f(a, x++);
x++;
};
};
L('a')(5);
L('b')(4);
L(3.14)('3');
}
};
int run = (X{}.foo(), 0);
namespace this_capture_unresolvable {
struct X {
void f(int) { }
static void f(double) { }
int g() {
auto lam = [=](auto a) { f(a); }; // captures 'this'
lam(0); // ok.
lam(0.0); // ok.
return 0;
}
int g2() {
auto lam = [](auto a) { f(a); }; // expected-error{{'this'}}
lam(0); // expected-note{{in instantiation of}}
lam(0.0); // ok.
return 0;
}
double (*fd)(double) = [](auto a) { f(a); return a; };
};
int run = X{}.g();
}
namespace check_nsdmi_and_this_capture_of_member_functions {
struct FunctorDouble {
template<class T> FunctorDouble(T t) { t(2.14); };
};
struct FunctorInt {
template<class T> FunctorInt(T t) { t(2); }; //expected-note{{in instantiation of}}
};
template<class T> struct YUnresolvable {
void f(int) { }
static void f(double) { }
T t = [](auto a) { f(a); return a; };
T t2 = [=](auto b) { f(b); return b; };
};
template<class T> struct YUnresolvable2 {
void f(int) { }
static void f(double) { }
T t = [](auto a) { f(a); return a; }; //expected-error{{'this'}} \
//expected-note{{in instantiation of}}
T t2 = [=](auto b) { f(b); return b; };
};
YUnresolvable<FunctorDouble> yud;
// This will cause an error since it call's with an int and calls a member function.
YUnresolvable2<FunctorInt> yui;
template<class T> struct YOnlyStatic {
static void f(double) { }
T t = [](auto a) { f(a); return a; };
};
YOnlyStatic<FunctorDouble> yos;
template<class T> struct YOnlyNonStatic {
void f(int) { }
T t = [](auto a) { f(a); return a; }; //expected-error{{'this'}}
};
}
namespace check_nsdmi_and_this_capture_of_data_members {
struct FunctorDouble {
template<class T> FunctorDouble(T t) { t(2.14); };
};
struct FunctorInt {
template<class T> FunctorInt(T t) { t(2); };
};
template<class T> struct YThisCapture {
const int x = 10;
static double d;
T t = [](auto a) { return x; }; //expected-error{{'this'}}
T t2 = [](auto b) { return d; };
T t3 = [this](auto a) {
return [=](auto b) {
return x;
};
};
T t4 = [=](auto a) {
return [=](auto b) {
return x;
};
};
T t5 = [](auto a) {
return [=](auto b) {
return x; //expected-error{{'this'}}
};
};
};
template<class T> double YThisCapture<T>::d = 3.14;
}
#ifdef DELAYED_TEMPLATE_PARSING
template<class T> void foo_no_error(T t) {
auto L = []()
{ return t; };
}
template<class T> void foo(T t) { //expected-note 2{{declared here}}
auto L = []() //expected-note 2{{begins here}}
{ return t; }; //expected-error 2{{cannot be implicitly captured}}
}
template void foo(int); //expected-note{{in instantiation of}}
#else
template<class T> void foo(T t) { //expected-note{{declared here}}
auto L = []() //expected-note{{begins here}}
{ return t; }; //expected-error{{cannot be implicitly captured}}
}
#endif
}
namespace no_this_capture_for_static {
struct X {
static void f(double) { }
int g() {
auto lam = [=](auto a) { f(a); };
lam(0); // ok.
ASSERT_NO_CAPTURES(lam);
return 0;
}
};
int run = X{}.g();
}
namespace this_capture_for_non_static {
struct X {
void f(double) { }
int g() {
auto L = [=](auto a) { f(a); };
L(0);
auto L2 = [](auto a) { f(a); }; //expected-error {{cannot be implicitly captured}}
return 0;
}
};
int run = X{}.g();
}
namespace this_captures_with_num_args_disambiguation {
struct X {
void f(int) { }
static void f(double, int i) { }
int g() {
auto lam = [](auto a) { f(a, a); };
lam(0);
return 0;
}
};
int run = X{}.g();
}
namespace enclosing_function_is_template_this_capture {
// Only error if the instantiation tries to use the member function.
struct X {
void f(int) { }
static void f(double) { }
template<class T>
int g(T t) {
auto L = [](auto a) { f(a); }; //expected-error{{'this'}}
L(t); // expected-note{{in instantiation of}}
return 0;
}
};
int run = X{}.g(0.0); // OK.
int run2 = X{}.g(0); // expected-note{{in instantiation of}}
}
namespace enclosing_function_is_template_this_capture_2 {
// This should error, even if not instantiated, since
// this would need to be captured.
struct X {
void f(int) { }
template<class T>
int g(T t) {
auto L = [](auto a) { f(a); }; //expected-error{{'this'}}
L(t);
return 0;
}
};
}
namespace enclosing_function_is_template_this_capture_3 {
// This should not error, this does not need to be captured.
struct X {
static void f(int) { }
template<class T>
int g(T t) {
auto L = [](auto a) { f(a); };
L(t);
return 0;
}
};
int run = X{}.g(0.0); // OK.
int run2 = X{}.g(0); // OK.
}
namespace nested_this_capture_1 {
struct X {
void f(int) { }
static void f(double) { }
int g() {
auto L = [=](auto a) {
return [this]() {
return [=](auto b) {
f(b);
};
};
};
auto M = L(0);
auto N = M();
N(5);
return 0;
}
};
int run = X{}.g();
}
namespace nested_this_capture_2 {
struct X {
void f(int) { }
static void f(double) { }
int g() {
auto L = [=](auto a) {
return [&]() {
return [=](auto b) {
f(b);
};
};
};
auto M = L(0);
auto N = M();
N(5);
N(3.14);
return 0;
}
};
int run = X{}.g();
}
namespace nested_this_capture_3_1 {
struct X {
template<class T>
void f(int, T t) { }
template<class T>
static void f(double, T t) { }
int g() {
auto L = [=](auto a) {
return [&](auto c) {
return [=](auto b) {
f(b, c);
};
};
};
auto M = L(0);
auto N = M('a');
N(5);
N(3.14);
return 0;
}
};
int run = X{}.g();
}
namespace nested_this_capture_3_2 {
struct X {
void f(int) { }
static void f(double) { }
int g() {
auto L = [=](auto a) {
return [](int i) {
return [=](auto b) {
f(b); //expected-error {{'this' cannot}}
int x = i;
};
};
};
auto M = L(0.0);
auto N = M(3);
N(5); //expected-note {{in instantiation of}}
N(3.14); // OK.
return 0;
}
};
int run = X{}.g();
}
namespace nested_this_capture_4 {
struct X {
void f(int) { }
static void f(double) { }
int g() {
auto L = [](auto a) {
return [=](auto i) {
return [=](auto b) {
f(b); //expected-error {{'this' cannot}}
int x = i;
};
};
};
auto M = L(0.0);
auto N = M(3);
N(5); //expected-note {{in instantiation of}}
N(3.14); // OK.
return 0;
}
};
int run = X{}.g();
}
namespace capture_enclosing_function_parameters {
inline auto foo(int x) {
int i = 10;
auto lambda = [=](auto z) { return x + z; };
return lambda;
}
int foo2() {
auto L = foo(3);
L(4);
L('a');
L(3.14);
return 0;
}
inline auto foo3(int x) {
int local = 1;
auto L = [=](auto a) {
int i = a[local];
return [=](auto b) mutable {
auto n = b;
return [&, n](auto c) mutable {
++local;
return ++x;
};
};
};
auto M = L("foo-abc");
auto N = M("foo-def");
auto O = N("foo-ghi");
return L;
}
int main() {
auto L3 = foo3(3);
auto M3 = L3("L3-1");
auto N3 = M3("M3-1");
auto O3 = N3("N3-1");
N3("N3-2");
M3("M3-2");
M3("M3-3");
L3("L3-2");
}
} // end ns
namespace capture_arrays {
inline int sum_array(int n) {
int array2[5] = { 1, 2, 3, 4, 5};
auto L = [=](auto N) -> int {
int sum = 0;
int array[5] = { 1, 2, 3, 4, 5 };
sum += array2[sum];
sum += array2[N];
return 0;
};
L(2);
return L(n);
}
}
namespace capture_non_odr_used_variable_because_named_in_instantiation_dependent_expressions {
// even though 'x' is not odr-used, it should be captured.
int test() {
const int x = 10;
auto L = [=](auto a) {
(void) +x + a;
};
ASSERT_CLOSURE_SIZE_EXACT(L, sizeof(x));
}
} //end ns
#ifdef MS_EXTENSIONS
namespace explicit_spec {
template<class R> struct X {
template<class T> int foo(T t) {
auto L = [](auto a) { return a; };
L(&t);
return 0;
}
template<> int foo<char>(char c) { //expected-warning{{explicit specialization}}
const int x = 10;
auto LC = [](auto a) { return a; };
R r;
LC(&r);
auto L = [=](auto a) {
return [=](auto b) {
int d[sizeof(a)];
f(x, d);
};
};
auto M = L(1);
ASSERT_NO_CAPTURES(M);
return 0;
}
};
int run_char = X<int>{}.foo('a');
int run_int = X<double>{}.foo(4);
}
#endif // MS_EXTENSIONS
namespace nsdmi_capturing_this {
struct X {
int m = 10;
int n = [this](auto) { return m; }(20);
};
template<class T>
struct XT {
T m = 10;
T n = [this](auto) { return m; }(20);
};
XT<int> xt{};
}