Go to file
Philip Reames 9bfa5ab3d1 [LoopPred] Fix two subtle issues found by inspection
This patch fixes two issues noticed by inspection when going to enable the loop predication code in IndVarSimplify.

Issue 1 - Both the LoopPredication transform, and the already on by default optimizeLoopExits transform, modify the exit count of the exits they modify. (either to 0 or Infinity) Looking at the code more closely, this was not reflected into SCEV and we were instead running later transforms with incorrect SCEVs. Fixing this requires forgetting the loop, weakening a too strong assert, and updating SCEV to not pessimize results when a loop is provable untaken. I haven't been able to find a test case to demonstrate the miscompile.

Issue 2 - For modules without a data layout, we can end up with unsized pointer typed exit counts. Just bail out of this case.

I think these are the last two issues which need addressed before we enable this by default. The code has already survived a decent amount of fuzzing without revealing either of the above.

Differential Revision: https://reviews.llvm.org/D69695
2019-11-06 14:04:45 -08:00
clang [clang-format] [NFC] update the documentation in Format.h to allow dump_format_style.py to get a little closer to being correct. (part 2) 2019-11-06 20:03:05 +00:00
clang-tools-extra [clang-tidy] Update TransformerClangTidyCheck to use new Transformer bindings. 2019-11-06 10:13:33 -05:00
compiler-rt [CMake] Prevent adding lld to test dependency (TEST_DEPS) when lld project is not built 2019-11-05 16:42:30 -05:00
debuginfo-tests [dexter] Fix feature tests on Windows 2019-11-05 10:49:57 -08:00
libc Illustrate a redirector using the example of round function from math.h. 2019-11-01 11:06:12 -07:00
libclc [www] Change URLs to HTTPS. 2019-10-24 13:25:15 -07:00
libcxx [libcxx] Make generate_feature_test_macro_components script compatible with Python 3. 2019-11-06 16:45:47 +00:00
libcxxabi [demangle] NFC: get rid of NodeOrString 2019-11-04 12:17:12 -08:00
libunwind unwind: disable RTTI during the build of libunwind 2019-11-06 10:51:42 -08:00
lld ELF: Discard .ARM.exidx sections for empty functions instead of misordering them. 2019-11-04 09:11:14 -08:00
lldb lldb/docs: update the lldb-x86_64-debian bot url 2019-11-06 16:02:23 +01:00
llgo IR: Support parsing numeric block ids, and emit them in textual output. 2019-03-22 18:27:13 +00:00
llvm [LoopPred] Fix two subtle issues found by inspection 2019-11-06 14:04:45 -08:00
openmp [libomptarget] Revert all improvements to support 2019-11-06 15:44:10 +00:00
parallel-libs Fix typos throughout the license files that somehow I and my reviewers 2019-01-21 09:52:34 +00:00
polly [www] Change URLs to HTTPS. 2019-10-24 13:25:15 -07:00
pstl [pstl] Allow customizing whether per-TU insulation is provided 2019-08-13 12:49:00 +00:00
.arcconfig Update monorepo .arcconfig with new project callsign. 2019-01-31 14:34:59 +00:00
.clang-format Add .clang-tidy and .clang-format files to the toplevel of the 2019-01-29 16:43:16 +00:00
.clang-tidy Disable tidy checks with too many hits 2019-02-01 11:20:13 +00:00
.git-blame-ignore-revs Add LLDB reformatting to .git-blame-ignore-revs 2019-09-04 09:31:55 +00:00
.gitignore Add a newline at the end of the file 2019-09-04 06:33:46 +00:00
README.md Add beginning of LLVM's GettingStarted to GitHub readme 2019-10-23 18:03:37 -07:00

README.md

The LLVM Compiler Infrastructure

This directory and its subdirectories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and runtime environments.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and converts it into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective C, and Objective C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example workflow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related subprojects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • mkdir build

    • cd build

    • cmake -G <generator> [options] ../llvm

      Some common generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM subprojects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or debuginfo-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full pathname of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • Run your build tool of choice!

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate build targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use make -j NNN (NNN is the number of parallel jobs, use e.g. number of CPUs you have.)

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.