llvm-project/llvm/lib/CodeGen/GlobalISel/MachineLegalizePass.cpp

182 lines
6.3 KiB
C++

//===-- llvm/CodeGen/GlobalISel/MachineLegalizePass.cpp -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file This file implements the LegalizeHelper class to legalize individual
/// instructions and the MachineLegalizePass wrapper pass for the primary
/// legalization.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/MachineLegalizePass.h"
#include "llvm/CodeGen/GlobalISel/MachineLegalizeHelper.h"
#include "llvm/CodeGen/GlobalISel/MachineLegalizer.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#define DEBUG_TYPE "legalize-mir"
using namespace llvm;
char MachineLegalizePass::ID = 0;
INITIALIZE_PASS_BEGIN(MachineLegalizePass, DEBUG_TYPE,
"Legalize the Machine IR a function's Machine IR", false,
false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(MachineLegalizePass, DEBUG_TYPE,
"Legalize the Machine IR a function's Machine IR", false,
false)
MachineLegalizePass::MachineLegalizePass() : MachineFunctionPass(ID) {
initializeMachineLegalizePassPass(*PassRegistry::getPassRegistry());
}
void MachineLegalizePass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetPassConfig>();
MachineFunctionPass::getAnalysisUsage(AU);
}
void MachineLegalizePass::init(MachineFunction &MF) {
}
bool MachineLegalizePass::combineExtracts(MachineInstr &MI,
MachineRegisterInfo &MRI,
const TargetInstrInfo &TII) {
bool Changed = false;
if (MI.getOpcode() != TargetOpcode::G_EXTRACT)
return Changed;
unsigned NumDefs = (MI.getNumOperands() - 1) / 2;
unsigned SrcReg = MI.getOperand(NumDefs).getReg();
MachineInstr &SeqI = *MRI.def_instr_begin(SrcReg);
if (SeqI.getOpcode() != TargetOpcode::G_SEQUENCE)
return Changed;
unsigned NumSeqSrcs = (SeqI.getNumOperands() - 1) / 2;
bool AllDefsReplaced = true;
// Try to match each register extracted with a corresponding insertion formed
// by the G_SEQUENCE.
for (unsigned Idx = 0, SeqIdx = 0; Idx < NumDefs; ++Idx) {
MachineOperand &ExtractMO = MI.getOperand(Idx);
assert(ExtractMO.isReg() && ExtractMO.isDef() &&
"unexpected extract operand");
unsigned ExtractReg = ExtractMO.getReg();
unsigned ExtractPos = MI.getOperand(NumDefs + Idx + 1).getImm();
while (SeqIdx < NumSeqSrcs &&
SeqI.getOperand(2 * SeqIdx + 2).getImm() < ExtractPos)
++SeqIdx;
if (SeqIdx == NumSeqSrcs) {
AllDefsReplaced = false;
continue;
}
unsigned OrigReg = SeqI.getOperand(2 * SeqIdx + 1).getReg();
if (SeqI.getOperand(2 * SeqIdx + 2).getImm() != ExtractPos ||
MRI.getType(OrigReg) != MRI.getType(ExtractReg)) {
AllDefsReplaced = false;
continue;
}
assert(!TargetRegisterInfo::isPhysicalRegister(OrigReg) &&
"unexpected physical register in G_SEQUENCE");
// Finally we can replace the uses.
for (auto &Use : MRI.use_operands(ExtractReg)) {
Changed = true;
Use.setReg(OrigReg);
}
}
if (AllDefsReplaced) {
// If SeqI was the next instruction in the BB and we removed it, we'd break
// the outer iteration.
assert(std::next(MachineBasicBlock::iterator(MI)) != SeqI &&
"G_SEQUENCE does not dominate G_EXTRACT");
MI.eraseFromParent();
if (MRI.use_empty(SrcReg))
SeqI.eraseFromParent();
Changed = true;
}
return Changed;
}
bool MachineLegalizePass::runOnMachineFunction(MachineFunction &MF) {
// If the ISel pipeline failed, do not bother running that pass.
if (MF.getProperties().hasProperty(
MachineFunctionProperties::Property::FailedISel))
return false;
DEBUG(dbgs() << "Legalize Machine IR for: " << MF.getName() << '\n');
init(MF);
const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
const MachineLegalizer &Legalizer = *MF.getSubtarget().getMachineLegalizer();
MachineLegalizeHelper Helper(MF);
// FIXME: an instruction may need more than one pass before it is legal. For
// example on most architectures <3 x i3> is doubly-illegal. It would
// typically proceed along a path like: <3 x i3> -> <3 x i8> -> <8 x i8>. We
// probably want a worklist of instructions rather than naive iterate until
// convergence for performance reasons.
bool Changed = false;
MachineBasicBlock::iterator NextMI;
for (auto &MBB : MF)
for (auto MI = MBB.begin(); MI != MBB.end(); MI = NextMI) {
// Get the next Instruction before we try to legalize, because there's a
// good chance MI will be deleted.
NextMI = std::next(MI);
// Only legalize pre-isel generic instructions: others don't have types
// and are assumed to be legal.
if (!isPreISelGenericOpcode(MI->getOpcode()))
continue;
auto Res = Helper.legalizeInstr(*MI, Legalizer);
// Error out if we couldn't legalize this instruction. We may want to fall
// back to DAG ISel instead in the future.
if (Res == MachineLegalizeHelper::UnableToLegalize) {
if (!TPC.isGlobalISelAbortEnabled()) {
MF.getProperties().set(
MachineFunctionProperties::Property::FailedISel);
return false;
}
std::string Msg;
raw_string_ostream OS(Msg);
OS << "unable to legalize instruction: ";
MI->print(OS);
report_fatal_error(OS.str());
}
Changed |= Res == MachineLegalizeHelper::Legalized;
}
MachineRegisterInfo &MRI = MF.getRegInfo();
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
for (auto &MBB : MF) {
for (auto MI = MBB.begin(); MI != MBB.end(); MI = NextMI) {
// Get the next Instruction before we try to legalize, because there's a
// good chance MI will be deleted.
NextMI = std::next(MI);
Changed |= combineExtracts(*MI, MRI, TII);
}
}
return Changed;
}