llvm-project/llvm/lib/Transforms/Scalar/LoopUnrollPass.cpp

1068 lines
42 KiB
C++

//===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass implements a simple loop unroller. It works best when loops have
// been canonicalized by the -indvars pass, allowing it to determine the trip
// counts of loops easily.
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Metadata.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/UnrollLoop.h"
#include <climits>
using namespace llvm;
#define DEBUG_TYPE "loop-unroll"
static cl::opt<unsigned>
UnrollThreshold("unroll-threshold", cl::init(150), cl::Hidden,
cl::desc("The baseline cost threshold for loop unrolling"));
static cl::opt<unsigned> UnrollPercentDynamicCostSavedThreshold(
"unroll-percent-dynamic-cost-saved-threshold", cl::init(20), cl::Hidden,
cl::desc("The percentage of estimated dynamic cost which must be saved by "
"unrolling to allow unrolling up to the max threshold."));
static cl::opt<unsigned> UnrollDynamicCostSavingsDiscount(
"unroll-dynamic-cost-savings-discount", cl::init(2000), cl::Hidden,
cl::desc("This is the amount discounted from the total unroll cost when "
"the unrolled form has a high dynamic cost savings (triggered by "
"the '-unroll-perecent-dynamic-cost-saved-threshold' flag)."));
static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
"unroll-max-iteration-count-to-analyze", cl::init(0), cl::Hidden,
cl::desc("Don't allow loop unrolling to simulate more than this number of"
"iterations when checking full unroll profitability"));
static cl::opt<unsigned>
UnrollCount("unroll-count", cl::init(0), cl::Hidden,
cl::desc("Use this unroll count for all loops including those with "
"unroll_count pragma values, for testing purposes"));
static cl::opt<bool>
UnrollAllowPartial("unroll-allow-partial", cl::init(false), cl::Hidden,
cl::desc("Allows loops to be partially unrolled until "
"-unroll-threshold loop size is reached."));
static cl::opt<bool>
UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::init(false), cl::Hidden,
cl::desc("Unroll loops with run-time trip counts"));
static cl::opt<unsigned>
PragmaUnrollThreshold("pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
cl::desc("Unrolled size limit for loops with an unroll(full) or "
"unroll_count pragma."));
namespace {
class LoopUnroll : public LoopPass {
public:
static char ID; // Pass ID, replacement for typeid
LoopUnroll(int T = -1, int C = -1, int P = -1, int R = -1) : LoopPass(ID) {
CurrentThreshold = (T == -1) ? UnrollThreshold : unsigned(T);
CurrentPercentDynamicCostSavedThreshold =
UnrollPercentDynamicCostSavedThreshold;
CurrentDynamicCostSavingsDiscount = UnrollDynamicCostSavingsDiscount;
CurrentCount = (C == -1) ? UnrollCount : unsigned(C);
CurrentAllowPartial = (P == -1) ? UnrollAllowPartial : (bool)P;
CurrentRuntime = (R == -1) ? UnrollRuntime : (bool)R;
UserThreshold = (T != -1) || (UnrollThreshold.getNumOccurrences() > 0);
UserPercentDynamicCostSavedThreshold =
(UnrollPercentDynamicCostSavedThreshold.getNumOccurrences() > 0);
UserDynamicCostSavingsDiscount =
(UnrollDynamicCostSavingsDiscount.getNumOccurrences() > 0);
UserAllowPartial = (P != -1) ||
(UnrollAllowPartial.getNumOccurrences() > 0);
UserRuntime = (R != -1) || (UnrollRuntime.getNumOccurrences() > 0);
UserCount = (C != -1) || (UnrollCount.getNumOccurrences() > 0);
initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
}
/// A magic value for use with the Threshold parameter to indicate
/// that the loop unroll should be performed regardless of how much
/// code expansion would result.
static const unsigned NoThreshold = UINT_MAX;
// Threshold to use when optsize is specified (and there is no
// explicit -unroll-threshold).
static const unsigned OptSizeUnrollThreshold = 50;
// Default unroll count for loops with run-time trip count if
// -unroll-count is not set
static const unsigned UnrollRuntimeCount = 8;
unsigned CurrentCount;
unsigned CurrentThreshold;
unsigned CurrentPercentDynamicCostSavedThreshold;
unsigned CurrentDynamicCostSavingsDiscount;
bool CurrentAllowPartial;
bool CurrentRuntime;
// Flags for whether the 'current' settings are user-specified.
bool UserCount;
bool UserThreshold;
bool UserPercentDynamicCostSavedThreshold;
bool UserDynamicCostSavingsDiscount;
bool UserAllowPartial;
bool UserRuntime;
bool runOnLoop(Loop *L, LPPassManager &LPM) override;
/// This transformation requires natural loop information & requires that
/// loop preheaders be inserted into the CFG...
///
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
AU.addRequiredID(LoopSimplifyID);
AU.addPreservedID(LoopSimplifyID);
AU.addRequiredID(LCSSAID);
AU.addPreservedID(LCSSAID);
AU.addRequired<ScalarEvolution>();
AU.addPreserved<ScalarEvolution>();
AU.addRequired<TargetTransformInfoWrapperPass>();
// FIXME: Loop unroll requires LCSSA. And LCSSA requires dom info.
// If loop unroll does not preserve dom info then LCSSA pass on next
// loop will receive invalid dom info.
// For now, recreate dom info, if loop is unrolled.
AU.addPreserved<DominatorTreeWrapperPass>();
}
// Fill in the UnrollingPreferences parameter with values from the
// TargetTransformationInfo.
void getUnrollingPreferences(Loop *L, const TargetTransformInfo &TTI,
TargetTransformInfo::UnrollingPreferences &UP) {
UP.Threshold = CurrentThreshold;
UP.PercentDynamicCostSavedThreshold =
CurrentPercentDynamicCostSavedThreshold;
UP.DynamicCostSavingsDiscount = CurrentDynamicCostSavingsDiscount;
UP.OptSizeThreshold = OptSizeUnrollThreshold;
UP.PartialThreshold = CurrentThreshold;
UP.PartialOptSizeThreshold = OptSizeUnrollThreshold;
UP.Count = CurrentCount;
UP.MaxCount = UINT_MAX;
UP.Partial = CurrentAllowPartial;
UP.Runtime = CurrentRuntime;
UP.AllowExpensiveTripCount = false;
TTI.getUnrollingPreferences(L, UP);
}
// Select and return an unroll count based on parameters from
// user, unroll preferences, unroll pragmas, or a heuristic.
// SetExplicitly is set to true if the unroll count is is set by
// the user or a pragma rather than selected heuristically.
unsigned
selectUnrollCount(const Loop *L, unsigned TripCount, bool PragmaFullUnroll,
unsigned PragmaCount,
const TargetTransformInfo::UnrollingPreferences &UP,
bool &SetExplicitly);
// Select threshold values used to limit unrolling based on a
// total unrolled size. Parameters Threshold and PartialThreshold
// are set to the maximum unrolled size for fully and partially
// unrolled loops respectively.
void selectThresholds(const Loop *L, bool HasPragma,
const TargetTransformInfo::UnrollingPreferences &UP,
unsigned &Threshold, unsigned &PartialThreshold,
unsigned &PercentDynamicCostSavedThreshold,
unsigned &DynamicCostSavingsDiscount) {
// Determine the current unrolling threshold. While this is
// normally set from UnrollThreshold, it is overridden to a
// smaller value if the current function is marked as
// optimize-for-size, and the unroll threshold was not user
// specified.
Threshold = UserThreshold ? CurrentThreshold : UP.Threshold;
PartialThreshold = UserThreshold ? CurrentThreshold : UP.PartialThreshold;
PercentDynamicCostSavedThreshold =
UserPercentDynamicCostSavedThreshold
? CurrentPercentDynamicCostSavedThreshold
: UP.PercentDynamicCostSavedThreshold;
DynamicCostSavingsDiscount = UserDynamicCostSavingsDiscount
? CurrentDynamicCostSavingsDiscount
: UP.DynamicCostSavingsDiscount;
if (!UserThreshold &&
// FIXME: Use Function::optForSize().
L->getHeader()->getParent()->hasFnAttribute(
Attribute::OptimizeForSize)) {
Threshold = UP.OptSizeThreshold;
PartialThreshold = UP.PartialOptSizeThreshold;
}
if (HasPragma) {
// If the loop has an unrolling pragma, we want to be more
// aggressive with unrolling limits. Set thresholds to at
// least the PragmaTheshold value which is larger than the
// default limits.
if (Threshold != NoThreshold)
Threshold = std::max<unsigned>(Threshold, PragmaUnrollThreshold);
if (PartialThreshold != NoThreshold)
PartialThreshold =
std::max<unsigned>(PartialThreshold, PragmaUnrollThreshold);
}
}
bool canUnrollCompletely(Loop *L, unsigned Threshold,
unsigned PercentDynamicCostSavedThreshold,
unsigned DynamicCostSavingsDiscount,
uint64_t UnrolledCost, uint64_t RolledDynamicCost);
};
}
char LoopUnroll::ID = 0;
INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LCSSA)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial,
int Runtime) {
return new LoopUnroll(Threshold, Count, AllowPartial, Runtime);
}
Pass *llvm::createSimpleLoopUnrollPass() {
return llvm::createLoopUnrollPass(-1, -1, 0, 0);
}
namespace {
// This class is used to get an estimate of the optimization effects that we
// could get from complete loop unrolling. It comes from the fact that some
// loads might be replaced with concrete constant values and that could trigger
// a chain of instruction simplifications.
//
// E.g. we might have:
// int a[] = {0, 1, 0};
// v = 0;
// for (i = 0; i < 3; i ++)
// v += b[i]*a[i];
// If we completely unroll the loop, we would get:
// v = b[0]*a[0] + b[1]*a[1] + b[2]*a[2]
// Which then will be simplified to:
// v = b[0]* 0 + b[1]* 1 + b[2]* 0
// And finally:
// v = b[1]
class UnrolledInstAnalyzer : private InstVisitor<UnrolledInstAnalyzer, bool> {
typedef InstVisitor<UnrolledInstAnalyzer, bool> Base;
friend class InstVisitor<UnrolledInstAnalyzer, bool>;
struct SimplifiedAddress {
Value *Base = nullptr;
ConstantInt *Offset = nullptr;
};
public:
UnrolledInstAnalyzer(unsigned Iteration,
DenseMap<Value *, Constant *> &SimplifiedValues,
const Loop *L, ScalarEvolution &SE)
: Iteration(Iteration), SimplifiedValues(SimplifiedValues), L(L), SE(SE) {
IterationNumber = SE.getConstant(APInt(64, Iteration));
}
// Allow access to the initial visit method.
using Base::visit;
private:
/// \brief A cache of pointer bases and constant-folded offsets corresponding
/// to GEP (or derived from GEP) instructions.
///
/// In order to find the base pointer one needs to perform non-trivial
/// traversal of the corresponding SCEV expression, so it's good to have the
/// results saved.
DenseMap<Value *, SimplifiedAddress> SimplifiedAddresses;
/// \brief Number of currently simulated iteration.
///
/// If an expression is ConstAddress+Constant, then the Constant is
/// Start + Iteration*Step, where Start and Step could be obtained from
/// SCEVGEPCache.
unsigned Iteration;
/// \brief SCEV expression corresponding to number of currently simulated
/// iteration.
const SCEV *IterationNumber;
/// \brief A Value->Constant map for keeping values that we managed to
/// constant-fold on the given iteration.
///
/// While we walk the loop instructions, we build up and maintain a mapping
/// of simplified values specific to this iteration. The idea is to propagate
/// any special information we have about loads that can be replaced with
/// constants after complete unrolling, and account for likely simplifications
/// post-unrolling.
DenseMap<Value *, Constant *> &SimplifiedValues;
const Loop *L;
ScalarEvolution &SE;
/// \brief Try to simplify instruction \param I using its SCEV expression.
///
/// The idea is that some AddRec expressions become constants, which then
/// could trigger folding of other instructions. However, that only happens
/// for expressions whose start value is also constant, which isn't always the
/// case. In another common and important case the start value is just some
/// address (i.e. SCEVUnknown) - in this case we compute the offset and save
/// it along with the base address instead.
bool simplifyInstWithSCEV(Instruction *I) {
if (!SE.isSCEVable(I->getType()))
return false;
const SCEV *S = SE.getSCEV(I);
if (auto *SC = dyn_cast<SCEVConstant>(S)) {
SimplifiedValues[I] = SC->getValue();
return true;
}
auto *AR = dyn_cast<SCEVAddRecExpr>(S);
if (!AR)
return false;
const SCEV *ValueAtIteration = AR->evaluateAtIteration(IterationNumber, SE);
// Check if the AddRec expression becomes a constant.
if (auto *SC = dyn_cast<SCEVConstant>(ValueAtIteration)) {
SimplifiedValues[I] = SC->getValue();
return true;
}
// Check if the offset from the base address becomes a constant.
auto *Base = dyn_cast<SCEVUnknown>(SE.getPointerBase(S));
if (!Base)
return false;
auto *Offset =
dyn_cast<SCEVConstant>(SE.getMinusSCEV(ValueAtIteration, Base));
if (!Offset)
return false;
SimplifiedAddress Address;
Address.Base = Base->getValue();
Address.Offset = Offset->getValue();
SimplifiedAddresses[I] = Address;
return true;
}
/// Base case for the instruction visitor.
bool visitInstruction(Instruction &I) {
return simplifyInstWithSCEV(&I);
}
/// Try to simplify binary operator I.
///
/// TODO: Probaly it's worth to hoist the code for estimating the
/// simplifications effects to a separate class, since we have a very similar
/// code in InlineCost already.
bool visitBinaryOperator(BinaryOperator &I) {
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
if (!isa<Constant>(LHS))
if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
LHS = SimpleLHS;
if (!isa<Constant>(RHS))
if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
RHS = SimpleRHS;
Value *SimpleV = nullptr;
const DataLayout &DL = I.getModule()->getDataLayout();
if (auto FI = dyn_cast<FPMathOperator>(&I))
SimpleV =
SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL);
else
SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL);
if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
SimplifiedValues[&I] = C;
if (SimpleV)
return true;
return Base::visitBinaryOperator(I);
}
/// Try to fold load I.
bool visitLoad(LoadInst &I) {
Value *AddrOp = I.getPointerOperand();
auto AddressIt = SimplifiedAddresses.find(AddrOp);
if (AddressIt == SimplifiedAddresses.end())
return false;
ConstantInt *SimplifiedAddrOp = AddressIt->second.Offset;
auto *GV = dyn_cast<GlobalVariable>(AddressIt->second.Base);
// We're only interested in loads that can be completely folded to a
// constant.
if (!GV || !GV->hasInitializer())
return false;
ConstantDataSequential *CDS =
dyn_cast<ConstantDataSequential>(GV->getInitializer());
if (!CDS)
return false;
int ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U;
assert(SimplifiedAddrOp->getValue().getActiveBits() < 64 &&
"Unexpectedly large index value.");
int64_t Index = SimplifiedAddrOp->getSExtValue() / ElemSize;
if (Index >= CDS->getNumElements()) {
// FIXME: For now we conservatively ignore out of bound accesses, but
// we're allowed to perform the optimization in this case.
return false;
}
Constant *CV = CDS->getElementAsConstant(Index);
assert(CV && "Constant expected.");
SimplifiedValues[&I] = CV;
return true;
}
bool visitCastInst(CastInst &I) {
// Propagate constants through casts.
Constant *COp = dyn_cast<Constant>(I.getOperand(0));
if (!COp)
COp = SimplifiedValues.lookup(I.getOperand(0));
if (COp)
if (Constant *C =
ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) {
SimplifiedValues[&I] = C;
return true;
}
return Base::visitCastInst(I);
}
bool visitCmpInst(CmpInst &I) {
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
// First try to handle simplified comparisons.
if (!isa<Constant>(LHS))
if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
LHS = SimpleLHS;
if (!isa<Constant>(RHS))
if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
RHS = SimpleRHS;
if (!isa<Constant>(LHS) && !isa<Constant>(RHS)) {
auto SimplifiedLHS = SimplifiedAddresses.find(LHS);
if (SimplifiedLHS != SimplifiedAddresses.end()) {
auto SimplifiedRHS = SimplifiedAddresses.find(RHS);
if (SimplifiedRHS != SimplifiedAddresses.end()) {
SimplifiedAddress &LHSAddr = SimplifiedLHS->second;
SimplifiedAddress &RHSAddr = SimplifiedRHS->second;
if (LHSAddr.Base == RHSAddr.Base) {
LHS = LHSAddr.Offset;
RHS = RHSAddr.Offset;
}
}
}
}
if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
if (Constant *C = ConstantExpr::getCompare(I.getPredicate(), CLHS, CRHS)) {
SimplifiedValues[&I] = C;
return true;
}
}
}
return Base::visitCmpInst(I);
}
};
} // namespace
namespace {
struct EstimatedUnrollCost {
/// \brief The estimated cost after unrolling.
int UnrolledCost;
/// \brief The estimated dynamic cost of executing the instructions in the
/// rolled form.
int RolledDynamicCost;
};
}
/// \brief Figure out if the loop is worth full unrolling.
///
/// Complete loop unrolling can make some loads constant, and we need to know
/// if that would expose any further optimization opportunities. This routine
/// estimates this optimization. It computes cost of unrolled loop
/// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
/// dynamic cost we mean that we won't count costs of blocks that are known not
/// to be executed (i.e. if we have a branch in the loop and we know that at the
/// given iteration its condition would be resolved to true, we won't add up the
/// cost of the 'false'-block).
/// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
/// the analysis failed (no benefits expected from the unrolling, or the loop is
/// too big to analyze), the returned value is None.
Optional<EstimatedUnrollCost>
analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT,
ScalarEvolution &SE, const TargetTransformInfo &TTI,
int MaxUnrolledLoopSize) {
// We want to be able to scale offsets by the trip count and add more offsets
// to them without checking for overflows, and we already don't want to
// analyze *massive* trip counts, so we force the max to be reasonably small.
assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) &&
"The unroll iterations max is too large!");
// Don't simulate loops with a big or unknown tripcount
if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
TripCount > UnrollMaxIterationsCountToAnalyze)
return None;
SmallSetVector<BasicBlock *, 16> BBWorklist;
DenseMap<Value *, Constant *> SimplifiedValues;
SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
// The estimated cost of the unrolled form of the loop. We try to estimate
// this by simplifying as much as we can while computing the estimate.
int UnrolledCost = 0;
// We also track the estimated dynamic (that is, actually executed) cost in
// the rolled form. This helps identify cases when the savings from unrolling
// aren't just exposing dead control flows, but actual reduced dynamic
// instructions due to the simplifications which we expect to occur after
// unrolling.
int RolledDynamicCost = 0;
// Ensure that we don't violate the loop structure invariants relied on by
// this analysis.
assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
assert(L->isLCSSAForm(DT) &&
"Must have loops in LCSSA form to track live-out values.");
DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
// Simulate execution of each iteration of the loop counting instructions,
// which would be simplified.
// Since the same load will take different values on different iterations,
// we literally have to go through all loop's iterations.
for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
// Prepare for the iteration by collecting any simplified entry or backedge
// inputs.
for (Instruction &I : *L->getHeader()) {
auto *PHI = dyn_cast<PHINode>(&I);
if (!PHI)
break;
// The loop header PHI nodes must have exactly two input: one from the
// loop preheader and one from the loop latch.
assert(
PHI->getNumIncomingValues() == 2 &&
"Must have an incoming value only for the preheader and the latch.");
Value *V = PHI->getIncomingValueForBlock(
Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
Constant *C = dyn_cast<Constant>(V);
if (Iteration != 0 && !C)
C = SimplifiedValues.lookup(V);
if (C)
SimplifiedInputValues.push_back({PHI, C});
}
// Now clear and re-populate the map for the next iteration.
SimplifiedValues.clear();
while (!SimplifiedInputValues.empty())
SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, L, SE);
BBWorklist.clear();
BBWorklist.insert(L->getHeader());
// Note that we *must not* cache the size, this loop grows the worklist.
for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
BasicBlock *BB = BBWorklist[Idx];
// Visit all instructions in the given basic block and try to simplify
// it. We don't change the actual IR, just count optimization
// opportunities.
for (Instruction &I : *BB) {
int InstCost = TTI.getUserCost(&I);
// Visit the instruction to analyze its loop cost after unrolling,
// and if the visitor returns false, include this instruction in the
// unrolled cost.
if (!Analyzer.visit(I))
UnrolledCost += InstCost;
else {
DEBUG(dbgs() << " " << I
<< " would be simplified if loop is unrolled.\n");
(void)0;
}
// Also track this instructions expected cost when executing the rolled
// loop form.
RolledDynamicCost += InstCost;
// If unrolled body turns out to be too big, bail out.
if (UnrolledCost > MaxUnrolledLoopSize) {
DEBUG(dbgs() << " Exceeded threshold.. exiting.\n"
<< " UnrolledCost: " << UnrolledCost
<< ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
<< "\n");
return None;
}
}
TerminatorInst *TI = BB->getTerminator();
// Add in the live successors by first checking whether we have terminator
// that may be simplified based on the values simplified by this call.
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
if (BI->isConditional()) {
if (Constant *SimpleCond =
SimplifiedValues.lookup(BI->getCondition())) {
BasicBlock *Succ = nullptr;
// Just take the first successor if condition is undef
if (isa<UndefValue>(SimpleCond))
Succ = BI->getSuccessor(0);
else
Succ = BI->getSuccessor(
cast<ConstantInt>(SimpleCond)->isZero() ? 1 : 0);
if (L->contains(Succ))
BBWorklist.insert(Succ);
continue;
}
}
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
if (Constant *SimpleCond =
SimplifiedValues.lookup(SI->getCondition())) {
BasicBlock *Succ = nullptr;
// Just take the first successor if condition is undef
if (isa<UndefValue>(SimpleCond))
Succ = SI->getSuccessor(0);
else
Succ = SI->findCaseValue(cast<ConstantInt>(SimpleCond))
.getCaseSuccessor();
if (L->contains(Succ))
BBWorklist.insert(Succ);
continue;
}
}
// Add BB's successors to the worklist.
for (BasicBlock *Succ : successors(BB))
if (L->contains(Succ))
BBWorklist.insert(Succ);
}
// If we found no optimization opportunities on the first iteration, we
// won't find them on later ones too.
if (UnrolledCost == RolledDynamicCost) {
DEBUG(dbgs() << " No opportunities found.. exiting.\n"
<< " UnrolledCost: " << UnrolledCost << "\n");
return None;
}
}
DEBUG(dbgs() << "Analysis finished:\n"
<< "UnrolledCost: " << UnrolledCost << ", "
<< "RolledDynamicCost: " << RolledDynamicCost << "\n");
return {{UnrolledCost, RolledDynamicCost}};
}
/// ApproximateLoopSize - Approximate the size of the loop.
static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
bool &NotDuplicatable,
const TargetTransformInfo &TTI,
AssumptionCache *AC) {
SmallPtrSet<const Value *, 32> EphValues;
CodeMetrics::collectEphemeralValues(L, AC, EphValues);
CodeMetrics Metrics;
for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
I != E; ++I)
Metrics.analyzeBasicBlock(*I, TTI, EphValues);
NumCalls = Metrics.NumInlineCandidates;
NotDuplicatable = Metrics.notDuplicatable;
unsigned LoopSize = Metrics.NumInsts;
// Don't allow an estimate of size zero. This would allows unrolling of loops
// with huge iteration counts, which is a compile time problem even if it's
// not a problem for code quality. Also, the code using this size may assume
// that each loop has at least three instructions (likely a conditional
// branch, a comparison feeding that branch, and some kind of loop increment
// feeding that comparison instruction).
LoopSize = std::max(LoopSize, 3u);
return LoopSize;
}
// Returns the loop hint metadata node with the given name (for example,
// "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is
// returned.
static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
if (MDNode *LoopID = L->getLoopID())
return GetUnrollMetadata(LoopID, Name);
return nullptr;
}
// Returns true if the loop has an unroll(full) pragma.
static bool HasUnrollFullPragma(const Loop *L) {
return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
}
// Returns true if the loop has an unroll(disable) pragma.
static bool HasUnrollDisablePragma(const Loop *L) {
return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable");
}
// Returns true if the loop has an runtime unroll(disable) pragma.
static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
}
// If loop has an unroll_count pragma return the (necessarily
// positive) value from the pragma. Otherwise return 0.
static unsigned UnrollCountPragmaValue(const Loop *L) {
MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
if (MD) {
assert(MD->getNumOperands() == 2 &&
"Unroll count hint metadata should have two operands.");
unsigned Count =
mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
assert(Count >= 1 && "Unroll count must be positive.");
return Count;
}
return 0;
}
// Remove existing unroll metadata and add unroll disable metadata to
// indicate the loop has already been unrolled. This prevents a loop
// from being unrolled more than is directed by a pragma if the loop
// unrolling pass is run more than once (which it generally is).
static void SetLoopAlreadyUnrolled(Loop *L) {
MDNode *LoopID = L->getLoopID();
if (!LoopID) return;
// First remove any existing loop unrolling metadata.
SmallVector<Metadata *, 4> MDs;
// Reserve first location for self reference to the LoopID metadata node.
MDs.push_back(nullptr);
for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
bool IsUnrollMetadata = false;
MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
if (MD) {
const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
}
if (!IsUnrollMetadata)
MDs.push_back(LoopID->getOperand(i));
}
// Add unroll(disable) metadata to disable future unrolling.
LLVMContext &Context = L->getHeader()->getContext();
SmallVector<Metadata *, 1> DisableOperands;
DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
MDNode *DisableNode = MDNode::get(Context, DisableOperands);
MDs.push_back(DisableNode);
MDNode *NewLoopID = MDNode::get(Context, MDs);
// Set operand 0 to refer to the loop id itself.
NewLoopID->replaceOperandWith(0, NewLoopID);
L->setLoopID(NewLoopID);
}
bool LoopUnroll::canUnrollCompletely(Loop *L, unsigned Threshold,
unsigned PercentDynamicCostSavedThreshold,
unsigned DynamicCostSavingsDiscount,
uint64_t UnrolledCost,
uint64_t RolledDynamicCost) {
if (Threshold == NoThreshold) {
DEBUG(dbgs() << " Can fully unroll, because no threshold is set.\n");
return true;
}
if (UnrolledCost <= Threshold) {
DEBUG(dbgs() << " Can fully unroll, because unrolled cost: "
<< UnrolledCost << "<" << Threshold << "\n");
return true;
}
assert(UnrolledCost && "UnrolledCost can't be 0 at this point.");
assert(RolledDynamicCost >= UnrolledCost &&
"Cannot have a higher unrolled cost than a rolled cost!");
// Compute the percentage of the dynamic cost in the rolled form that is
// saved when unrolled. If unrolling dramatically reduces the estimated
// dynamic cost of the loop, we use a higher threshold to allow more
// unrolling.
unsigned PercentDynamicCostSaved =
(uint64_t)(RolledDynamicCost - UnrolledCost) * 100ull / RolledDynamicCost;
if (PercentDynamicCostSaved >= PercentDynamicCostSavedThreshold &&
(int64_t)UnrolledCost - (int64_t)DynamicCostSavingsDiscount <=
(int64_t)Threshold) {
DEBUG(dbgs() << " Can fully unroll, because unrolling will reduce the "
"expected dynamic cost by " << PercentDynamicCostSaved
<< "% (threshold: " << PercentDynamicCostSavedThreshold
<< "%)\n"
<< " and the unrolled cost (" << UnrolledCost
<< ") is less than the max threshold ("
<< DynamicCostSavingsDiscount << ").\n");
return true;
}
DEBUG(dbgs() << " Too large to fully unroll:\n");
DEBUG(dbgs() << " Threshold: " << Threshold << "\n");
DEBUG(dbgs() << " Max threshold: " << DynamicCostSavingsDiscount << "\n");
DEBUG(dbgs() << " Percent cost saved threshold: "
<< PercentDynamicCostSavedThreshold << "%\n");
DEBUG(dbgs() << " Unrolled cost: " << UnrolledCost << "\n");
DEBUG(dbgs() << " Rolled dynamic cost: " << RolledDynamicCost << "\n");
DEBUG(dbgs() << " Percent cost saved: " << PercentDynamicCostSaved
<< "\n");
return false;
}
unsigned LoopUnroll::selectUnrollCount(
const Loop *L, unsigned TripCount, bool PragmaFullUnroll,
unsigned PragmaCount, const TargetTransformInfo::UnrollingPreferences &UP,
bool &SetExplicitly) {
SetExplicitly = true;
// User-specified count (either as a command-line option or
// constructor parameter) has highest precedence.
unsigned Count = UserCount ? CurrentCount : 0;
// If there is no user-specified count, unroll pragmas have the next
// highest precendence.
if (Count == 0) {
if (PragmaCount) {
Count = PragmaCount;
} else if (PragmaFullUnroll) {
Count = TripCount;
}
}
if (Count == 0)
Count = UP.Count;
if (Count == 0) {
SetExplicitly = false;
if (TripCount == 0)
// Runtime trip count.
Count = UnrollRuntimeCount;
else
// Conservative heuristic: if we know the trip count, see if we can
// completely unroll (subject to the threshold, checked below); otherwise
// try to find greatest modulo of the trip count which is still under
// threshold value.
Count = TripCount;
}
if (TripCount && Count > TripCount)
return TripCount;
return Count;
}
bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
if (skipOptnoneFunction(L))
return false;
Function &F = *L->getHeader()->getParent();
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
ScalarEvolution *SE = &getAnalysis<ScalarEvolution>();
const TargetTransformInfo &TTI =
getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
BasicBlock *Header = L->getHeader();
DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName()
<< "] Loop %" << Header->getName() << "\n");
if (HasUnrollDisablePragma(L)) {
return false;
}
bool PragmaFullUnroll = HasUnrollFullPragma(L);
unsigned PragmaCount = UnrollCountPragmaValue(L);
bool HasPragma = PragmaFullUnroll || PragmaCount > 0;
TargetTransformInfo::UnrollingPreferences UP;
getUnrollingPreferences(L, TTI, UP);
// Find trip count and trip multiple if count is not available
unsigned TripCount = 0;
unsigned TripMultiple = 1;
// If there are multiple exiting blocks but one of them is the latch, use the
// latch for the trip count estimation. Otherwise insist on a single exiting
// block for the trip count estimation.
BasicBlock *ExitingBlock = L->getLoopLatch();
if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
ExitingBlock = L->getExitingBlock();
if (ExitingBlock) {
TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
}
// Select an initial unroll count. This may be reduced later based
// on size thresholds.
bool CountSetExplicitly;
unsigned Count = selectUnrollCount(L, TripCount, PragmaFullUnroll,
PragmaCount, UP, CountSetExplicitly);
unsigned NumInlineCandidates;
bool notDuplicatable;
unsigned LoopSize =
ApproximateLoopSize(L, NumInlineCandidates, notDuplicatable, TTI, &AC);
DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n");
// When computing the unrolled size, note that the conditional branch on the
// backedge and the comparison feeding it are not replicated like the rest of
// the loop body (which is why 2 is subtracted).
uint64_t UnrolledSize = (uint64_t)(LoopSize-2) * Count + 2;
if (notDuplicatable) {
DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable"
<< " instructions.\n");
return false;
}
if (NumInlineCandidates != 0) {
DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n");
return false;
}
unsigned Threshold, PartialThreshold;
unsigned PercentDynamicCostSavedThreshold;
unsigned DynamicCostSavingsDiscount;
selectThresholds(L, HasPragma, UP, Threshold, PartialThreshold,
PercentDynamicCostSavedThreshold,
DynamicCostSavingsDiscount);
// Given Count, TripCount and thresholds determine the type of
// unrolling which is to be performed.
enum { Full = 0, Partial = 1, Runtime = 2 };
int Unrolling;
if (TripCount && Count == TripCount) {
Unrolling = Partial;
// If the loop is really small, we don't need to run an expensive analysis.
if (canUnrollCompletely(L, Threshold, 100, DynamicCostSavingsDiscount,
UnrolledSize, UnrolledSize)) {
Unrolling = Full;
} else {
// The loop isn't that small, but we still can fully unroll it if that
// helps to remove a significant number of instructions.
// To check that, run additional analysis on the loop.
if (Optional<EstimatedUnrollCost> Cost =
analyzeLoopUnrollCost(L, TripCount, DT, *SE, TTI,
Threshold + DynamicCostSavingsDiscount))
if (canUnrollCompletely(L, Threshold, PercentDynamicCostSavedThreshold,
DynamicCostSavingsDiscount, Cost->UnrolledCost,
Cost->RolledDynamicCost)) {
Unrolling = Full;
}
}
} else if (TripCount && Count < TripCount) {
Unrolling = Partial;
} else {
Unrolling = Runtime;
}
// Reduce count based on the type of unrolling and the threshold values.
unsigned OriginalCount = Count;
bool AllowRuntime =
(PragmaCount > 0) || (UserRuntime ? CurrentRuntime : UP.Runtime);
// Don't unroll a runtime trip count loop with unroll full pragma.
if (HasRuntimeUnrollDisablePragma(L) || PragmaFullUnroll) {
AllowRuntime = false;
}
if (Unrolling == Partial) {
bool AllowPartial = UserAllowPartial ? CurrentAllowPartial : UP.Partial;
if (!AllowPartial && !CountSetExplicitly) {
DEBUG(dbgs() << " will not try to unroll partially because "
<< "-unroll-allow-partial not given\n");
return false;
}
if (PartialThreshold != NoThreshold && UnrolledSize > PartialThreshold) {
// Reduce unroll count to be modulo of TripCount for partial unrolling.
Count = (std::max(PartialThreshold, 3u)-2) / (LoopSize-2);
while (Count != 0 && TripCount % Count != 0)
Count--;
}
} else if (Unrolling == Runtime) {
if (!AllowRuntime && !CountSetExplicitly) {
DEBUG(dbgs() << " will not try to unroll loop with runtime trip count "
<< "-unroll-runtime not given\n");
return false;
}
// Reduce unroll count to be the largest power-of-two factor of
// the original count which satisfies the threshold limit.
while (Count != 0 && UnrolledSize > PartialThreshold) {
Count >>= 1;
UnrolledSize = (LoopSize-2) * Count + 2;
}
if (Count > UP.MaxCount)
Count = UP.MaxCount;
DEBUG(dbgs() << " partially unrolling with count: " << Count << "\n");
}
if (HasPragma) {
if (PragmaCount != 0)
// If loop has an unroll count pragma mark loop as unrolled to prevent
// unrolling beyond that requested by the pragma.
SetLoopAlreadyUnrolled(L);
// Emit optimization remarks if we are unable to unroll the loop
// as directed by a pragma.
DebugLoc LoopLoc = L->getStartLoc();
Function *F = Header->getParent();
LLVMContext &Ctx = F->getContext();
if (PragmaFullUnroll && PragmaCount == 0) {
if (TripCount && Count != TripCount) {
emitOptimizationRemarkMissed(
Ctx, DEBUG_TYPE, *F, LoopLoc,
"Unable to fully unroll loop as directed by unroll(full) pragma "
"because unrolled size is too large.");
} else if (!TripCount) {
emitOptimizationRemarkMissed(
Ctx, DEBUG_TYPE, *F, LoopLoc,
"Unable to fully unroll loop as directed by unroll(full) pragma "
"because loop has a runtime trip count.");
}
} else if (PragmaCount > 0 && Count != OriginalCount) {
emitOptimizationRemarkMissed(
Ctx, DEBUG_TYPE, *F, LoopLoc,
"Unable to unroll loop the number of times directed by "
"unroll_count pragma because unrolled size is too large.");
}
}
if (Unrolling != Full && Count < 2) {
// Partial unrolling by 1 is a nop. For full unrolling, a factor
// of 1 makes sense because loop control can be eliminated.
return false;
}
// Unroll the loop.
if (!UnrollLoop(L, Count, TripCount, AllowRuntime, UP.AllowExpensiveTripCount,
TripMultiple, LI, this, &LPM, &AC))
return false;
return true;
}