forked from OSchip/llvm-project
492 lines
18 KiB
C++
492 lines
18 KiB
C++
//===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This is the LLVM vectorization plan. It represents a candidate for
|
|
/// vectorization, allowing to plan and optimize how to vectorize a given loop
|
|
/// before generating LLVM-IR.
|
|
/// The vectorizer uses vectorization plans to estimate the costs of potential
|
|
/// candidates and if profitable to execute the desired plan, generating vector
|
|
/// LLVM-IR code.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "VPlan.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/GraphWriter.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include <cassert>
|
|
#include <iterator>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "vplan"
|
|
|
|
raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
|
|
if (const VPInstruction *Instr = dyn_cast<VPInstruction>(&V))
|
|
Instr->print(OS);
|
|
else
|
|
V.printAsOperand(OS);
|
|
return OS;
|
|
}
|
|
|
|
/// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
|
|
const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
|
|
const VPBlockBase *Block = this;
|
|
while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
|
|
Block = Region->getEntry();
|
|
return cast<VPBasicBlock>(Block);
|
|
}
|
|
|
|
VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
|
|
VPBlockBase *Block = this;
|
|
while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
|
|
Block = Region->getEntry();
|
|
return cast<VPBasicBlock>(Block);
|
|
}
|
|
|
|
/// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
|
|
const VPBasicBlock *VPBlockBase::getExitBasicBlock() const {
|
|
const VPBlockBase *Block = this;
|
|
while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
|
|
Block = Region->getExit();
|
|
return cast<VPBasicBlock>(Block);
|
|
}
|
|
|
|
VPBasicBlock *VPBlockBase::getExitBasicBlock() {
|
|
VPBlockBase *Block = this;
|
|
while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
|
|
Block = Region->getExit();
|
|
return cast<VPBasicBlock>(Block);
|
|
}
|
|
|
|
VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
|
|
if (!Successors.empty() || !Parent)
|
|
return this;
|
|
assert(Parent->getExit() == this &&
|
|
"Block w/o successors not the exit of its parent.");
|
|
return Parent->getEnclosingBlockWithSuccessors();
|
|
}
|
|
|
|
VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
|
|
if (!Predecessors.empty() || !Parent)
|
|
return this;
|
|
assert(Parent->getEntry() == this &&
|
|
"Block w/o predecessors not the entry of its parent.");
|
|
return Parent->getEnclosingBlockWithPredecessors();
|
|
}
|
|
|
|
void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
|
|
SmallVector<VPBlockBase *, 8> Blocks;
|
|
for (VPBlockBase *Block : depth_first(Entry))
|
|
Blocks.push_back(Block);
|
|
|
|
for (VPBlockBase *Block : Blocks)
|
|
delete Block;
|
|
}
|
|
|
|
BasicBlock *
|
|
VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
|
|
// BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
|
|
// Pred stands for Predessor. Prev stands for Previous - last visited/created.
|
|
BasicBlock *PrevBB = CFG.PrevBB;
|
|
BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
|
|
PrevBB->getParent(), CFG.LastBB);
|
|
DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
|
|
|
|
// Hook up the new basic block to its predecessors.
|
|
for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
|
|
VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock();
|
|
auto &PredVPSuccessors = PredVPBB->getSuccessors();
|
|
BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
|
|
assert(PredBB && "Predecessor basic-block not found building successor.");
|
|
auto *PredBBTerminator = PredBB->getTerminator();
|
|
DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
|
|
if (isa<UnreachableInst>(PredBBTerminator)) {
|
|
assert(PredVPSuccessors.size() == 1 &&
|
|
"Predecessor ending w/o branch must have single successor.");
|
|
PredBBTerminator->eraseFromParent();
|
|
BranchInst::Create(NewBB, PredBB);
|
|
} else {
|
|
assert(PredVPSuccessors.size() == 2 &&
|
|
"Predecessor ending with branch must have two successors.");
|
|
unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
|
|
assert(!PredBBTerminator->getSuccessor(idx) &&
|
|
"Trying to reset an existing successor block.");
|
|
PredBBTerminator->setSuccessor(idx, NewBB);
|
|
}
|
|
}
|
|
return NewBB;
|
|
}
|
|
|
|
void VPBasicBlock::execute(VPTransformState *State) {
|
|
bool Replica = State->Instance &&
|
|
!(State->Instance->Part == 0 && State->Instance->Lane == 0);
|
|
VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
|
|
VPBlockBase *SingleHPred = nullptr;
|
|
BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
|
|
|
|
// 1. Create an IR basic block, or reuse the last one if possible.
|
|
// The last IR basic block is reused, as an optimization, in three cases:
|
|
// A. the first VPBB reuses the loop header BB - when PrevVPBB is null;
|
|
// B. when the current VPBB has a single (hierarchical) predecessor which
|
|
// is PrevVPBB and the latter has a single (hierarchical) successor; and
|
|
// C. when the current VPBB is an entry of a region replica - where PrevVPBB
|
|
// is the exit of this region from a previous instance, or the predecessor
|
|
// of this region.
|
|
if (PrevVPBB && /* A */
|
|
!((SingleHPred = getSingleHierarchicalPredecessor()) &&
|
|
SingleHPred->getExitBasicBlock() == PrevVPBB &&
|
|
PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */
|
|
!(Replica && getPredecessors().empty())) { /* C */
|
|
NewBB = createEmptyBasicBlock(State->CFG);
|
|
State->Builder.SetInsertPoint(NewBB);
|
|
// Temporarily terminate with unreachable until CFG is rewired.
|
|
UnreachableInst *Terminator = State->Builder.CreateUnreachable();
|
|
State->Builder.SetInsertPoint(Terminator);
|
|
// Register NewBB in its loop. In innermost loops its the same for all BB's.
|
|
Loop *L = State->LI->getLoopFor(State->CFG.LastBB);
|
|
L->addBasicBlockToLoop(NewBB, *State->LI);
|
|
State->CFG.PrevBB = NewBB;
|
|
}
|
|
|
|
// 2. Fill the IR basic block with IR instructions.
|
|
DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
|
|
<< " in BB:" << NewBB->getName() << '\n');
|
|
|
|
State->CFG.VPBB2IRBB[this] = NewBB;
|
|
State->CFG.PrevVPBB = this;
|
|
|
|
for (VPRecipeBase &Recipe : Recipes)
|
|
Recipe.execute(*State);
|
|
|
|
DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
|
|
}
|
|
|
|
void VPRegionBlock::execute(VPTransformState *State) {
|
|
ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry);
|
|
|
|
if (!isReplicator()) {
|
|
// Visit the VPBlocks connected to "this", starting from it.
|
|
for (VPBlockBase *Block : RPOT) {
|
|
DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
|
|
Block->execute(State);
|
|
}
|
|
return;
|
|
}
|
|
|
|
assert(!State->Instance && "Replicating a Region with non-null instance.");
|
|
|
|
// Enter replicating mode.
|
|
State->Instance = {0, 0};
|
|
|
|
for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
|
|
State->Instance->Part = Part;
|
|
for (unsigned Lane = 0, VF = State->VF; Lane < VF; ++Lane) {
|
|
State->Instance->Lane = Lane;
|
|
// Visit the VPBlocks connected to \p this, starting from it.
|
|
for (VPBlockBase *Block : RPOT) {
|
|
DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
|
|
Block->execute(State);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Exit replicating mode.
|
|
State->Instance.reset();
|
|
}
|
|
|
|
void VPInstruction::generateInstruction(VPTransformState &State,
|
|
unsigned Part) {
|
|
IRBuilder<> &Builder = State.Builder;
|
|
|
|
if (Instruction::isBinaryOp(getOpcode())) {
|
|
Value *A = State.get(getOperand(0), Part);
|
|
Value *B = State.get(getOperand(1), Part);
|
|
Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B);
|
|
State.set(this, V, Part);
|
|
return;
|
|
}
|
|
|
|
switch (getOpcode()) {
|
|
case VPInstruction::Not: {
|
|
Value *A = State.get(getOperand(0), Part);
|
|
Value *V = Builder.CreateNot(A);
|
|
State.set(this, V, Part);
|
|
break;
|
|
}
|
|
default:
|
|
llvm_unreachable("Unsupported opcode for instruction");
|
|
}
|
|
}
|
|
|
|
void VPInstruction::execute(VPTransformState &State) {
|
|
assert(!State.Instance && "VPInstruction executing an Instance");
|
|
for (unsigned Part = 0; Part < State.UF; ++Part)
|
|
generateInstruction(State, Part);
|
|
}
|
|
|
|
void VPInstruction::print(raw_ostream &O, const Twine &Indent) const {
|
|
O << " +\n" << Indent << "\"EMIT ";
|
|
print(O);
|
|
O << "\\l\"";
|
|
}
|
|
|
|
void VPInstruction::print(raw_ostream &O) const {
|
|
printAsOperand(O);
|
|
O << " = ";
|
|
|
|
switch (getOpcode()) {
|
|
case VPInstruction::Not:
|
|
O << "not";
|
|
break;
|
|
default:
|
|
O << Instruction::getOpcodeName(getOpcode());
|
|
}
|
|
|
|
for (const VPValue *Operand : operands()) {
|
|
O << " ";
|
|
Operand->printAsOperand(O);
|
|
}
|
|
}
|
|
|
|
/// Generate the code inside the body of the vectorized loop. Assumes a single
|
|
/// LoopVectorBody basic-block was created for this. Introduce additional
|
|
/// basic-blocks as needed, and fill them all.
|
|
void VPlan::execute(VPTransformState *State) {
|
|
// 0. Set the reverse mapping from VPValues to Values for code generation.
|
|
for (auto &Entry : Value2VPValue)
|
|
State->VPValue2Value[Entry.second] = Entry.first;
|
|
|
|
BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB;
|
|
BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor();
|
|
assert(VectorHeaderBB && "Loop preheader does not have a single successor.");
|
|
BasicBlock *VectorLatchBB = VectorHeaderBB;
|
|
|
|
// 1. Make room to generate basic-blocks inside loop body if needed.
|
|
VectorLatchBB = VectorHeaderBB->splitBasicBlock(
|
|
VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch");
|
|
Loop *L = State->LI->getLoopFor(VectorHeaderBB);
|
|
L->addBasicBlockToLoop(VectorLatchBB, *State->LI);
|
|
// Remove the edge between Header and Latch to allow other connections.
|
|
// Temporarily terminate with unreachable until CFG is rewired.
|
|
// Note: this asserts the generated code's assumption that
|
|
// getFirstInsertionPt() can be dereferenced into an Instruction.
|
|
VectorHeaderBB->getTerminator()->eraseFromParent();
|
|
State->Builder.SetInsertPoint(VectorHeaderBB);
|
|
UnreachableInst *Terminator = State->Builder.CreateUnreachable();
|
|
State->Builder.SetInsertPoint(Terminator);
|
|
|
|
// 2. Generate code in loop body.
|
|
State->CFG.PrevVPBB = nullptr;
|
|
State->CFG.PrevBB = VectorHeaderBB;
|
|
State->CFG.LastBB = VectorLatchBB;
|
|
|
|
for (VPBlockBase *Block : depth_first(Entry))
|
|
Block->execute(State);
|
|
|
|
// 3. Merge the temporary latch created with the last basic-block filled.
|
|
BasicBlock *LastBB = State->CFG.PrevBB;
|
|
// Connect LastBB to VectorLatchBB to facilitate their merge.
|
|
assert(isa<UnreachableInst>(LastBB->getTerminator()) &&
|
|
"Expected VPlan CFG to terminate with unreachable");
|
|
LastBB->getTerminator()->eraseFromParent();
|
|
BranchInst::Create(VectorLatchBB, LastBB);
|
|
|
|
// Merge LastBB with Latch.
|
|
bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI);
|
|
(void)Merged;
|
|
assert(Merged && "Could not merge last basic block with latch.");
|
|
VectorLatchBB = LastBB;
|
|
|
|
updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB);
|
|
}
|
|
|
|
void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB,
|
|
BasicBlock *LoopLatchBB) {
|
|
BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor();
|
|
assert(LoopHeaderBB && "Loop preheader does not have a single successor.");
|
|
DT->addNewBlock(LoopHeaderBB, LoopPreHeaderBB);
|
|
// The vector body may be more than a single basic-block by this point.
|
|
// Update the dominator tree information inside the vector body by propagating
|
|
// it from header to latch, expecting only triangular control-flow, if any.
|
|
BasicBlock *PostDomSucc = nullptr;
|
|
for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
|
|
// Get the list of successors of this block.
|
|
std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
|
|
assert(Succs.size() <= 2 &&
|
|
"Basic block in vector loop has more than 2 successors.");
|
|
PostDomSucc = Succs[0];
|
|
if (Succs.size() == 1) {
|
|
assert(PostDomSucc->getSinglePredecessor() &&
|
|
"PostDom successor has more than one predecessor.");
|
|
DT->addNewBlock(PostDomSucc, BB);
|
|
continue;
|
|
}
|
|
BasicBlock *InterimSucc = Succs[1];
|
|
if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
|
|
PostDomSucc = Succs[1];
|
|
InterimSucc = Succs[0];
|
|
}
|
|
assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
|
|
"One successor of a basic block does not lead to the other.");
|
|
assert(InterimSucc->getSinglePredecessor() &&
|
|
"Interim successor has more than one predecessor.");
|
|
assert(std::distance(pred_begin(PostDomSucc), pred_end(PostDomSucc)) == 2 &&
|
|
"PostDom successor has more than two predecessors.");
|
|
DT->addNewBlock(InterimSucc, BB);
|
|
DT->addNewBlock(PostDomSucc, BB);
|
|
}
|
|
}
|
|
|
|
const Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
|
|
return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
|
|
Twine(getOrCreateBID(Block));
|
|
}
|
|
|
|
const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
|
|
const std::string &Name = Block->getName();
|
|
if (!Name.empty())
|
|
return Name;
|
|
return "VPB" + Twine(getOrCreateBID(Block));
|
|
}
|
|
|
|
void VPlanPrinter::dump() {
|
|
Depth = 1;
|
|
bumpIndent(0);
|
|
OS << "digraph VPlan {\n";
|
|
OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
|
|
if (!Plan.getName().empty())
|
|
OS << "\\n" << DOT::EscapeString(Plan.getName());
|
|
if (!Plan.Value2VPValue.empty()) {
|
|
OS << ", where:";
|
|
for (auto Entry : Plan.Value2VPValue) {
|
|
OS << "\\n" << *Entry.second;
|
|
OS << DOT::EscapeString(" := ");
|
|
Entry.first->printAsOperand(OS, false);
|
|
}
|
|
}
|
|
OS << "\"]\n";
|
|
OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
|
|
OS << "edge [fontname=Courier, fontsize=30]\n";
|
|
OS << "compound=true\n";
|
|
|
|
for (VPBlockBase *Block : depth_first(Plan.getEntry()))
|
|
dumpBlock(Block);
|
|
|
|
OS << "}\n";
|
|
}
|
|
|
|
void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
|
|
if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
|
|
dumpBasicBlock(BasicBlock);
|
|
else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
|
|
dumpRegion(Region);
|
|
else
|
|
llvm_unreachable("Unsupported kind of VPBlock.");
|
|
}
|
|
|
|
void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
|
|
bool Hidden, const Twine &Label) {
|
|
// Due to "dot" we print an edge between two regions as an edge between the
|
|
// exit basic block and the entry basic of the respective regions.
|
|
const VPBlockBase *Tail = From->getExitBasicBlock();
|
|
const VPBlockBase *Head = To->getEntryBasicBlock();
|
|
OS << Indent << getUID(Tail) << " -> " << getUID(Head);
|
|
OS << " [ label=\"" << Label << '\"';
|
|
if (Tail != From)
|
|
OS << " ltail=" << getUID(From);
|
|
if (Head != To)
|
|
OS << " lhead=" << getUID(To);
|
|
if (Hidden)
|
|
OS << "; splines=none";
|
|
OS << "]\n";
|
|
}
|
|
|
|
void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
|
|
auto &Successors = Block->getSuccessors();
|
|
if (Successors.size() == 1)
|
|
drawEdge(Block, Successors.front(), false, "");
|
|
else if (Successors.size() == 2) {
|
|
drawEdge(Block, Successors.front(), false, "T");
|
|
drawEdge(Block, Successors.back(), false, "F");
|
|
} else {
|
|
unsigned SuccessorNumber = 0;
|
|
for (auto *Successor : Successors)
|
|
drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
|
|
}
|
|
}
|
|
|
|
void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
|
|
OS << Indent << getUID(BasicBlock) << " [label =\n";
|
|
bumpIndent(1);
|
|
OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\"";
|
|
bumpIndent(1);
|
|
for (const VPRecipeBase &Recipe : *BasicBlock)
|
|
Recipe.print(OS, Indent);
|
|
bumpIndent(-2);
|
|
OS << "\n" << Indent << "]\n";
|
|
dumpEdges(BasicBlock);
|
|
}
|
|
|
|
void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
|
|
OS << Indent << "subgraph " << getUID(Region) << " {\n";
|
|
bumpIndent(1);
|
|
OS << Indent << "fontname=Courier\n"
|
|
<< Indent << "label=\""
|
|
<< DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
|
|
<< DOT::EscapeString(Region->getName()) << "\"\n";
|
|
// Dump the blocks of the region.
|
|
assert(Region->getEntry() && "Region contains no inner blocks.");
|
|
for (const VPBlockBase *Block : depth_first(Region->getEntry()))
|
|
dumpBlock(Block);
|
|
bumpIndent(-1);
|
|
OS << Indent << "}\n";
|
|
dumpEdges(Region);
|
|
}
|
|
|
|
void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) {
|
|
std::string IngredientString;
|
|
raw_string_ostream RSO(IngredientString);
|
|
if (auto *Inst = dyn_cast<Instruction>(V)) {
|
|
if (!Inst->getType()->isVoidTy()) {
|
|
Inst->printAsOperand(RSO, false);
|
|
RSO << " = ";
|
|
}
|
|
RSO << Inst->getOpcodeName() << " ";
|
|
unsigned E = Inst->getNumOperands();
|
|
if (E > 0) {
|
|
Inst->getOperand(0)->printAsOperand(RSO, false);
|
|
for (unsigned I = 1; I < E; ++I)
|
|
Inst->getOperand(I)->printAsOperand(RSO << ", ", false);
|
|
}
|
|
} else // !Inst
|
|
V->printAsOperand(RSO, false);
|
|
RSO.flush();
|
|
O << DOT::EscapeString(IngredientString);
|
|
}
|