llvm-project/polly
Michael Kruse 4b0c5aea78 [CodeGen] Add assertion for indirect array index expression generation. NFC.
Currently Polly cannot generate code for index expressions if the base pointer
is computed within the scop. The base pointer must be generated as well, but
there is no code that triggers that.

Add an assertion to detect when this would occur and miscompile. The IR verifier
should catch it as well.

llvm-svn: 282893
2016-09-30 18:29:37 +00:00
..
cmake Remove -fvisibility=hidden and FORCE_STATIC. 2016-09-12 18:25:00 +00:00
docs docs: Remove reference to PoCC 2016-05-17 19:44:16 +00:00
include/polly [Support] Complete ISL annotations to IslPtr<>. NFC. 2016-09-30 17:47:39 +00:00
lib [CodeGen] Add assertion for indirect array index expression generation. NFC. 2016-09-30 18:29:37 +00:00
test [ScopDetection] Remove redundant checks for endless loops 2016-09-20 17:05:22 +00:00
tools GPURuntime: ensure compilation with C99 2016-09-11 07:32:50 +00:00
unittests Add -polly-flatten-schedule pass. 2016-09-08 15:02:36 +00:00
utils Revise polly-{update|check}-format targets 2015-09-14 16:59:50 +00:00
www www: Add Loopy publication 2016-09-29 18:17:30 +00:00
.arcconfig Upgrade all the .arcconfigs to https. 2016-07-14 13:15:37 +00:00
.arclint Adjusted arc linter config for modern version of arcanist 2015-08-12 09:01:16 +00:00
.gitattributes
.gitignore Add git patch files to .gitignore 2015-06-23 20:55:01 +00:00
CMakeLists.txt Query llvm-config to get system libs required for linking. 2016-08-25 14:58:29 +00:00
CREDITS.txt Add myself to the credits 2014-08-10 03:37:29 +00:00
LICENSE.txt Update copyright year to 2016. 2016-03-30 22:41:38 +00:00
README

README

Polly - Polyhedral optimizations for LLVM
-----------------------------------------
http://polly.llvm.org/

Polly uses a mathematical representation, the polyhedral model, to represent and
transform loops and other control flow structures. Using an abstract
representation it is possible to reason about transformations in a more general
way and to use highly optimized linear programming libraries to figure out the
optimal loop structure. These transformations can be used to do constant
propagation through arrays, remove dead loop iterations, optimize loops for
cache locality, optimize arrays, apply advanced automatic parallelization, drive
vectorization, or they can be used to do software pipelining.