llvm-project/lld/ELF/Symbols.h

430 lines
14 KiB
C++

//===- Symbols.h ------------------------------------------------*- C++ -*-===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// All symbols are handled as SymbolBodies regardless of their types.
// This file defines various types of SymbolBodies.
//
//===----------------------------------------------------------------------===//
#ifndef LLD_ELF_SYMBOLS_H
#define LLD_ELF_SYMBOLS_H
#include "InputSection.h"
#include "lld/Core/LLVM.h"
#include "llvm/Object/Archive.h"
#include "llvm/Object/ELF.h"
namespace lld {
namespace elf {
class ArchiveFile;
class InputFile;
class SymbolBody;
template <class ELFT> class ObjectFile;
template <class ELFT> class OutputSection;
template <class ELFT> class OutputSectionBase;
template <class ELFT> class SharedFile;
// Returns a demangled C++ symbol name. If Name is not a mangled
// name or the system does not provide __cxa_demangle function,
// it returns the unmodified string.
std::string demangle(StringRef Name);
// A real symbol object, SymbolBody, is usually accessed indirectly
// through a Symbol. There's always one Symbol for each symbol name.
// The resolver updates SymbolBody pointers as it resolves symbols.
struct Symbol {
SymbolBody *Body;
};
// The base class for real symbol classes.
class SymbolBody {
void init();
public:
enum Kind {
DefinedFirst,
DefinedRegularKind = DefinedFirst,
SharedKind,
DefinedCommonKind,
DefinedBitcodeKind,
DefinedSyntheticKind,
DefinedLast = DefinedSyntheticKind,
UndefinedElfKind,
UndefinedBitcodeKind,
LazyArchiveKind,
LazyObjectKind,
};
Kind kind() const { return static_cast<Kind>(SymbolKind); }
bool isWeak() const { return Binding == llvm::ELF::STB_WEAK; }
bool isUndefined() const {
return SymbolKind == UndefinedBitcodeKind || SymbolKind == UndefinedElfKind;
}
bool isDefined() const { return SymbolKind <= DefinedLast; }
bool isCommon() const { return SymbolKind == DefinedCommonKind; }
bool isLazy() const {
return SymbolKind == LazyArchiveKind || SymbolKind == LazyObjectKind;
}
bool isShared() const { return SymbolKind == SharedKind; }
bool isLocal() const { return Binding == llvm::ELF::STB_LOCAL; }
bool isUsedInRegularObj() const { return IsUsedInRegularObj; }
bool isPreemptible() const;
// Returns the symbol name.
StringRef getName() const {
assert(!isLocal());
return StringRef(Name.S, Name.Len);
}
uint32_t getNameOffset() const {
assert(isLocal());
return NameOffset;
}
uint8_t getVisibility() const { return StOther & 0x3; }
unsigned DynsymIndex = 0;
uint32_t GlobalDynIndex = -1;
uint32_t GotIndex = -1;
uint32_t GotPltIndex = -1;
uint32_t PltIndex = -1;
uint32_t ThunkIndex = -1;
bool hasGlobalDynIndex() { return GlobalDynIndex != uint32_t(-1); }
bool isInGot() const { return GotIndex != -1U; }
bool isInPlt() const { return PltIndex != -1U; }
bool hasThunk() const { return ThunkIndex != -1U; }
void setUsedInRegularObj() { IsUsedInRegularObj = true; }
template <class ELFT>
typename ELFT::uint getVA(typename ELFT::uint Addend = 0) const;
template <class ELFT> typename ELFT::uint getGotOffset() const;
template <class ELFT> typename ELFT::uint getGotVA() const;
template <class ELFT> typename ELFT::uint getGotPltOffset() const;
template <class ELFT> typename ELFT::uint getGotPltVA() const;
template <class ELFT> typename ELFT::uint getPltVA() const;
template <class ELFT> typename ELFT::uint getThunkVA() const;
template <class ELFT> typename ELFT::uint getSize() const;
// A SymbolBody has a backreference to a Symbol. Originally they are
// doubly-linked. A backreference will never change. But the pointer
// in the Symbol may be mutated by the resolver. If you have a
// pointer P to a SymbolBody and are not sure whether the resolver
// has chosen the object among other objects having the same name,
// you can access P->Backref->Body to get the resolver's result.
void setBackref(Symbol *P) { Backref = P; }
SymbolBody &repl() { return Backref ? *Backref->Body : *this; }
Symbol *getSymbol() const { return Backref; }
// Decides which symbol should "win" in the symbol table, this or
// the Other. Returns 1 if this wins, -1 if the Other wins, or 0 if
// they are duplicate (conflicting) symbols.
int compare(SymbolBody *Other);
protected:
SymbolBody(Kind K, StringRef Name, uint8_t Binding, uint8_t StOther,
uint8_t Type);
SymbolBody(Kind K, uint32_t NameOffset, uint8_t StOther, uint8_t Type);
const unsigned SymbolKind : 8;
// True if the symbol was used for linking and thus need to be
// added to the output file's symbol table. It is usually true,
// but if it is a shared symbol that were not referenced by anyone,
// it can be false.
unsigned IsUsedInRegularObj : 1;
public:
// If true, the symbol is added to .dynsym symbol table.
unsigned MustBeInDynSym : 1;
// True if the linker has to generate a copy relocation for this shared
// symbol or if the symbol should point to its plt entry.
unsigned NeedsCopyOrPltAddr : 1;
unsigned CanKeepUndefined : 1;
// The following fields have the same meaning as the ELF symbol attributes.
uint8_t Type; // symbol type
uint8_t Binding; // symbol binding
uint8_t StOther; // st_other field value
bool isSection() const { return Type == llvm::ELF::STT_SECTION; }
bool isTls() const { return Type == llvm::ELF::STT_TLS; }
bool isFunc() const { return Type == llvm::ELF::STT_FUNC; }
bool isGnuIFunc() const { return Type == llvm::ELF::STT_GNU_IFUNC; }
bool isObject() const { return Type == llvm::ELF::STT_OBJECT; }
bool isFile() const { return Type == llvm::ELF::STT_FILE; }
void setVisibility(uint8_t V) { StOther = (StOther & ~0x3) | V; }
protected:
struct Str {
const char *S;
size_t Len;
};
union {
Str Name;
uint32_t NameOffset;
};
Symbol *Backref = nullptr;
};
// The base class for any defined symbols.
class Defined : public SymbolBody {
public:
Defined(Kind K, StringRef Name, uint8_t Binding, uint8_t StOther,
uint8_t Type);
Defined(Kind K, uint32_t NameOffset, uint8_t StOther, uint8_t Type);
static bool classof(const SymbolBody *S) { return S->isDefined(); }
};
// The defined symbol in LLVM bitcode files.
class DefinedBitcode : public Defined {
public:
DefinedBitcode(StringRef Name, bool IsWeak, uint8_t StOther);
static bool classof(const SymbolBody *S);
};
class DefinedCommon : public Defined {
public:
DefinedCommon(StringRef N, uint64_t Size, uint64_t Alignment, uint8_t Binding,
uint8_t StOther, uint8_t Type);
static bool classof(const SymbolBody *S) {
return S->kind() == SymbolBody::DefinedCommonKind;
}
// The output offset of this common symbol in the output bss. Computed by the
// writer.
uint64_t OffsetInBss;
// The maximum alignment we have seen for this symbol.
uint64_t Alignment;
uint64_t Size;
};
// Regular defined symbols read from object file symbol tables.
template <class ELFT> class DefinedRegular : public Defined {
typedef typename ELFT::Sym Elf_Sym;
typedef typename ELFT::uint uintX_t;
public:
DefinedRegular(StringRef Name, const Elf_Sym &Sym,
InputSectionBase<ELFT> *Section)
: Defined(SymbolBody::DefinedRegularKind, Name, Sym.getBinding(),
Sym.st_other, Sym.getType()),
Value(Sym.st_value), Size(Sym.st_size),
Section(Section ? Section->Repl : NullInputSection) {}
DefinedRegular(const Elf_Sym &Sym, InputSectionBase<ELFT> *Section)
: Defined(SymbolBody::DefinedRegularKind, Sym.st_name, Sym.st_other,
Sym.getType()),
Value(Sym.st_value), Size(Sym.st_size),
Section(Section ? Section->Repl : NullInputSection) {
assert(isLocal());
}
DefinedRegular(StringRef Name, uint8_t Binding, uint8_t StOther)
: Defined(SymbolBody::DefinedRegularKind, Name, Binding, StOther,
llvm::ELF::STT_NOTYPE),
Value(0), Size(0), Section(NullInputSection) {}
static bool classof(const SymbolBody *S) {
return S->kind() == SymbolBody::DefinedRegularKind;
}
uintX_t Value;
uintX_t Size;
// The input section this symbol belongs to. Notice that this is
// a reference to a pointer. We are using two levels of indirections
// because of ICF. If ICF decides two sections need to be merged, it
// manipulates this Section pointers so that they point to the same
// section. This is a bit tricky, so be careful to not be confused.
// If this is null, the symbol is an absolute symbol.
InputSectionBase<ELFT> *&Section;
private:
static InputSectionBase<ELFT> *NullInputSection;
};
template <class ELFT>
InputSectionBase<ELFT> *DefinedRegular<ELFT>::NullInputSection;
// DefinedSynthetic is a class to represent linker-generated ELF symbols.
// The difference from the regular symbol is that DefinedSynthetic symbols
// don't belong to any input files or sections. Thus, its constructor
// takes an output section to calculate output VA, etc.
template <class ELFT> class DefinedSynthetic : public Defined {
public:
typedef typename ELFT::uint uintX_t;
DefinedSynthetic(StringRef N, uintX_t Value,
OutputSectionBase<ELFT> &Section);
static bool classof(const SymbolBody *S) {
return S->kind() == SymbolBody::DefinedSyntheticKind;
}
// Special value designates that the symbol 'points'
// to the end of the section.
static const uintX_t SectionEnd = uintX_t(-1);
uintX_t Value;
const OutputSectionBase<ELFT> &Section;
};
class UndefinedBitcode : public SymbolBody {
public:
UndefinedBitcode(StringRef N, bool IsWeak, uint8_t StOther);
static bool classof(const SymbolBody *S) {
return S->kind() == UndefinedBitcodeKind;
}
};
template <class ELFT> class UndefinedElf : public SymbolBody {
typedef typename ELFT::uint uintX_t;
typedef typename ELFT::Sym Elf_Sym;
public:
UndefinedElf(StringRef N, const Elf_Sym &Sym);
UndefinedElf(const Elf_Sym &Sym);
UndefinedElf(StringRef Name, uint8_t Binding, uint8_t StOther, uint8_t Type,
bool CanKeepUndefined);
bool canKeepUndefined() const { return CanKeepUndefined; }
uintX_t Size;
static bool classof(const SymbolBody *S) {
return S->kind() == SymbolBody::UndefinedElfKind;
}
};
template <class ELFT> class SharedSymbol : public Defined {
typedef typename ELFT::Sym Elf_Sym;
typedef typename ELFT::uint uintX_t;
public:
static bool classof(const SymbolBody *S) {
return S->kind() == SymbolBody::SharedKind;
}
SharedSymbol(SharedFile<ELFT> *F, StringRef Name, const Elf_Sym &Sym)
: Defined(SymbolBody::SharedKind, Name, Sym.getBinding(), Sym.st_other,
Sym.getType()),
File(F), Sym(Sym) {}
SharedFile<ELFT> *File;
const Elf_Sym &Sym;
// OffsetInBss is significant only when needsCopy() is true.
uintX_t OffsetInBss = 0;
bool needsCopy() const { return this->NeedsCopyOrPltAddr && !this->isFunc(); }
};
// This class represents a symbol defined in an archive file. It is
// created from an archive file header, and it knows how to load an
// object file from an archive to replace itself with a defined
// symbol. If the resolver finds both Undefined and Lazy for
// the same name, it will ask the Lazy to load a file.
class Lazy : public SymbolBody {
public:
Lazy(SymbolBody::Kind K, StringRef Name)
: SymbolBody(K, Name, llvm::ELF::STB_GLOBAL, llvm::ELF::STV_DEFAULT,
/* Type */ 0) {}
static bool classof(const SymbolBody *S) { return S->isLazy(); }
// Returns an object file for this symbol, or a nullptr if the file
// was already returned.
std::unique_ptr<InputFile> getFile();
};
// LazyArchive symbols represents symbols in archive files.
class LazyArchive : public Lazy {
public:
LazyArchive(ArchiveFile *F, const llvm::object::Archive::Symbol S)
: Lazy(LazyArchiveKind, S.getName()), File(F), Sym(S) {}
static bool classof(const SymbolBody *S) {
return S->kind() == LazyArchiveKind;
}
std::unique_ptr<InputFile> getFile();
private:
ArchiveFile *File;
const llvm::object::Archive::Symbol Sym;
};
// LazyObject symbols represents symbols in object files between
// --start-lib and --end-lib options.
class LazyObject : public Lazy {
public:
LazyObject(StringRef Name, MemoryBufferRef M)
: Lazy(LazyObjectKind, Name), MBRef(M) {}
static bool classof(const SymbolBody *S) {
return S->kind() == LazyObjectKind;
}
std::unique_ptr<InputFile> getFile();
private:
MemoryBufferRef MBRef;
};
// Some linker-generated symbols need to be created as
// DefinedRegular symbols.
template <class ELFT> struct ElfSym {
typedef std::pair<DefinedRegular<ELFT> *, DefinedRegular<ELFT> *> SymPair;
// The content for _etext and etext symbols.
static SymPair Etext;
// The content for _edata and edata symbols.
static SymPair Edata;
// The content for _end and end symbols.
static SymPair End;
// The content for _gp symbol for MIPS target.
static SymbolBody *MipsGp;
static SymbolBody *MipsLocalGp;
static SymbolBody *MipsGpDisp;
// __rel_iplt_start/__rel_iplt_end for signaling
// where R_[*]_IRELATIVE relocations do live.
static SymbolBody *RelaIpltStart;
static SymbolBody *RelaIpltEnd;
};
template <class ELFT> typename ElfSym<ELFT>::SymPair ElfSym<ELFT>::Etext;
template <class ELFT> typename ElfSym<ELFT>::SymPair ElfSym<ELFT>::Edata;
template <class ELFT> typename ElfSym<ELFT>::SymPair ElfSym<ELFT>::End;
template <class ELFT> SymbolBody *ElfSym<ELFT>::MipsGp;
template <class ELFT> SymbolBody *ElfSym<ELFT>::MipsLocalGp;
template <class ELFT> SymbolBody *ElfSym<ELFT>::MipsGpDisp;
template <class ELFT> SymbolBody *ElfSym<ELFT>::RelaIpltStart;
template <class ELFT> SymbolBody *ElfSym<ELFT>::RelaIpltEnd;
} // namespace elf
} // namespace lld
#endif