llvm-project/clang/lib/Parse/ParseCXXInlineMethods.cpp

681 lines
25 KiB
C++

//===--- ParseCXXInlineMethods.cpp - C++ class inline methods parsing------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements parsing for C++ class inline methods.
//
//===----------------------------------------------------------------------===//
#include "clang/Parse/ParseDiagnostic.h"
#include "clang/Parse/Parser.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/Scope.h"
#include "clang/AST/DeclTemplate.h"
using namespace clang;
/// ParseCXXInlineMethodDef - We parsed and verified that the specified
/// Declarator is a well formed C++ inline method definition. Now lex its body
/// and store its tokens for parsing after the C++ class is complete.
Decl *Parser::ParseCXXInlineMethodDef(AccessSpecifier AS,
AttributeList *AccessAttrs,
ParsingDeclarator &D,
const ParsedTemplateInfo &TemplateInfo,
const VirtSpecifiers& VS,
FunctionDefinitionKind DefinitionKind,
ExprResult& Init) {
assert(D.isFunctionDeclarator() && "This isn't a function declarator!");
assert((Tok.is(tok::l_brace) || Tok.is(tok::colon) || Tok.is(tok::kw_try) ||
Tok.is(tok::equal)) &&
"Current token not a '{', ':', '=', or 'try'!");
MultiTemplateParamsArg TemplateParams(Actions,
TemplateInfo.TemplateParams ? TemplateInfo.TemplateParams->data() : 0,
TemplateInfo.TemplateParams ? TemplateInfo.TemplateParams->size() : 0);
Decl *FnD;
D.setFunctionDefinitionKind(DefinitionKind);
if (D.getDeclSpec().isFriendSpecified())
FnD = Actions.ActOnFriendFunctionDecl(getCurScope(), D,
move(TemplateParams));
else {
FnD = Actions.ActOnCXXMemberDeclarator(getCurScope(), AS, D,
move(TemplateParams), 0,
VS, /*HasDeferredInit=*/false);
if (FnD) {
Actions.ProcessDeclAttributeList(getCurScope(), FnD, AccessAttrs,
false, true);
bool TypeSpecContainsAuto
= D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
if (Init.isUsable())
Actions.AddInitializerToDecl(FnD, Init.get(), false,
TypeSpecContainsAuto);
else
Actions.ActOnUninitializedDecl(FnD, TypeSpecContainsAuto);
}
}
HandleMemberFunctionDefaultArgs(D, FnD);
D.complete(FnD);
if (Tok.is(tok::equal)) {
ConsumeToken();
if (!FnD) {
SkipUntil(tok::semi);
return 0;
}
bool Delete = false;
SourceLocation KWLoc;
if (Tok.is(tok::kw_delete)) {
Diag(Tok, getLang().CPlusPlus0x ?
diag::warn_cxx98_compat_deleted_function :
diag::ext_deleted_function);
KWLoc = ConsumeToken();
Actions.SetDeclDeleted(FnD, KWLoc);
Delete = true;
} else if (Tok.is(tok::kw_default)) {
Diag(Tok, getLang().CPlusPlus0x ?
diag::warn_cxx98_compat_defaulted_function :
diag::ext_defaulted_function);
KWLoc = ConsumeToken();
Actions.SetDeclDefaulted(FnD, KWLoc);
} else {
llvm_unreachable("function definition after = not 'delete' or 'default'");
}
if (Tok.is(tok::comma)) {
Diag(KWLoc, diag::err_default_delete_in_multiple_declaration)
<< Delete;
SkipUntil(tok::semi);
} else {
ExpectAndConsume(tok::semi, diag::err_expected_semi_after,
Delete ? "delete" : "default", tok::semi);
}
return FnD;
}
// In delayed template parsing mode, if we are within a class template
// or if we are about to parse function member template then consume
// the tokens and store them for parsing at the end of the translation unit.
if (getLang().DelayedTemplateParsing &&
((Actions.CurContext->isDependentContext() ||
TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate) &&
!Actions.IsInsideALocalClassWithinATemplateFunction())) {
if (FnD) {
LateParsedTemplatedFunction *LPT = new LateParsedTemplatedFunction(FnD);
FunctionDecl *FD = 0;
if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(FnD))
FD = FunTmpl->getTemplatedDecl();
else
FD = cast<FunctionDecl>(FnD);
Actions.CheckForFunctionRedefinition(FD);
LateParsedTemplateMap[FD] = LPT;
Actions.MarkAsLateParsedTemplate(FD);
LexTemplateFunctionForLateParsing(LPT->Toks);
} else {
CachedTokens Toks;
LexTemplateFunctionForLateParsing(Toks);
}
return FnD;
}
// Consume the tokens and store them for later parsing.
LexedMethod* LM = new LexedMethod(this, FnD);
getCurrentClass().LateParsedDeclarations.push_back(LM);
LM->TemplateScope = getCurScope()->isTemplateParamScope();
CachedTokens &Toks = LM->Toks;
tok::TokenKind kind = Tok.getKind();
// Consume everything up to (and including) the left brace of the
// function body.
if (ConsumeAndStoreFunctionPrologue(Toks)) {
// We didn't find the left-brace we expected after the
// constructor initializer; we already printed an error, and it's likely
// impossible to recover, so don't try to parse this method later.
// If we stopped at a semicolon, consume it to avoid an extra warning.
if (Tok.is(tok::semi))
ConsumeToken();
delete getCurrentClass().LateParsedDeclarations.back();
getCurrentClass().LateParsedDeclarations.pop_back();
return FnD;
} else {
// Consume everything up to (and including) the matching right brace.
ConsumeAndStoreUntil(tok::r_brace, Toks, /*StopAtSemi=*/false);
}
// If we're in a function-try-block, we need to store all the catch blocks.
if (kind == tok::kw_try) {
while (Tok.is(tok::kw_catch)) {
ConsumeAndStoreUntil(tok::l_brace, Toks, /*StopAtSemi=*/false);
ConsumeAndStoreUntil(tok::r_brace, Toks, /*StopAtSemi=*/false);
}
}
if (!FnD) {
// If semantic analysis could not build a function declaration,
// just throw away the late-parsed declaration.
delete getCurrentClass().LateParsedDeclarations.back();
getCurrentClass().LateParsedDeclarations.pop_back();
}
return FnD;
}
/// ParseCXXNonStaticMemberInitializer - We parsed and verified that the
/// specified Declarator is a well formed C++ non-static data member
/// declaration. Now lex its initializer and store its tokens for parsing
/// after the class is complete.
void Parser::ParseCXXNonStaticMemberInitializer(Decl *VarD) {
assert((Tok.is(tok::l_brace) || Tok.is(tok::equal)) &&
"Current token not a '{' or '='!");
LateParsedMemberInitializer *MI =
new LateParsedMemberInitializer(this, VarD);
getCurrentClass().LateParsedDeclarations.push_back(MI);
CachedTokens &Toks = MI->Toks;
tok::TokenKind kind = Tok.getKind();
if (kind == tok::equal) {
Toks.push_back(Tok);
ConsumeToken();
}
if (kind == tok::l_brace) {
// Begin by storing the '{' token.
Toks.push_back(Tok);
ConsumeBrace();
// Consume everything up to (and including) the matching right brace.
ConsumeAndStoreUntil(tok::r_brace, Toks, /*StopAtSemi=*/true);
} else {
// Consume everything up to (but excluding) the comma or semicolon.
ConsumeAndStoreUntil(tok::comma, Toks, /*StopAtSemi=*/true,
/*ConsumeFinalToken=*/false);
}
// Store an artificial EOF token to ensure that we don't run off the end of
// the initializer when we come to parse it.
Token Eof;
Eof.startToken();
Eof.setKind(tok::eof);
Eof.setLocation(Tok.getLocation());
Toks.push_back(Eof);
}
Parser::LateParsedDeclaration::~LateParsedDeclaration() {}
void Parser::LateParsedDeclaration::ParseLexedMethodDeclarations() {}
void Parser::LateParsedDeclaration::ParseLexedMemberInitializers() {}
void Parser::LateParsedDeclaration::ParseLexedMethodDefs() {}
Parser::LateParsedClass::LateParsedClass(Parser *P, ParsingClass *C)
: Self(P), Class(C) {}
Parser::LateParsedClass::~LateParsedClass() {
Self->DeallocateParsedClasses(Class);
}
void Parser::LateParsedClass::ParseLexedMethodDeclarations() {
Self->ParseLexedMethodDeclarations(*Class);
}
void Parser::LateParsedClass::ParseLexedMemberInitializers() {
Self->ParseLexedMemberInitializers(*Class);
}
void Parser::LateParsedClass::ParseLexedMethodDefs() {
Self->ParseLexedMethodDefs(*Class);
}
void Parser::LateParsedMethodDeclaration::ParseLexedMethodDeclarations() {
Self->ParseLexedMethodDeclaration(*this);
}
void Parser::LexedMethod::ParseLexedMethodDefs() {
Self->ParseLexedMethodDef(*this);
}
void Parser::LateParsedMemberInitializer::ParseLexedMemberInitializers() {
Self->ParseLexedMemberInitializer(*this);
}
/// ParseLexedMethodDeclarations - We finished parsing the member
/// specification of a top (non-nested) C++ class. Now go over the
/// stack of method declarations with some parts for which parsing was
/// delayed (such as default arguments) and parse them.
void Parser::ParseLexedMethodDeclarations(ParsingClass &Class) {
bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
ParseScope ClassTemplateScope(this, Scope::TemplateParamScope, HasTemplateScope);
if (HasTemplateScope)
Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
// The current scope is still active if we're the top-level class.
// Otherwise we'll need to push and enter a new scope.
bool HasClassScope = !Class.TopLevelClass;
ParseScope ClassScope(this, Scope::ClassScope|Scope::DeclScope,
HasClassScope);
if (HasClassScope)
Actions.ActOnStartDelayedMemberDeclarations(getCurScope(), Class.TagOrTemplate);
for (size_t i = 0; i < Class.LateParsedDeclarations.size(); ++i) {
Class.LateParsedDeclarations[i]->ParseLexedMethodDeclarations();
}
if (HasClassScope)
Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(), Class.TagOrTemplate);
}
void Parser::ParseLexedMethodDeclaration(LateParsedMethodDeclaration &LM) {
// If this is a member template, introduce the template parameter scope.
ParseScope TemplateScope(this, Scope::TemplateParamScope, LM.TemplateScope);
if (LM.TemplateScope)
Actions.ActOnReenterTemplateScope(getCurScope(), LM.Method);
// Start the delayed C++ method declaration
Actions.ActOnStartDelayedCXXMethodDeclaration(getCurScope(), LM.Method);
// Introduce the parameters into scope and parse their default
// arguments.
ParseScope PrototypeScope(this,
Scope::FunctionPrototypeScope|Scope::DeclScope);
for (unsigned I = 0, N = LM.DefaultArgs.size(); I != N; ++I) {
// Introduce the parameter into scope.
Actions.ActOnDelayedCXXMethodParameter(getCurScope(),
LM.DefaultArgs[I].Param);
if (CachedTokens *Toks = LM.DefaultArgs[I].Toks) {
// Save the current token position.
SourceLocation origLoc = Tok.getLocation();
// Parse the default argument from its saved token stream.
Toks->push_back(Tok); // So that the current token doesn't get lost
PP.EnterTokenStream(&Toks->front(), Toks->size(), true, false);
// Consume the previously-pushed token.
ConsumeAnyToken();
// Consume the '='.
assert(Tok.is(tok::equal) && "Default argument not starting with '='");
SourceLocation EqualLoc = ConsumeToken();
// The argument isn't actually potentially evaluated unless it is
// used.
EnterExpressionEvaluationContext Eval(Actions,
Sema::PotentiallyEvaluatedIfUsed,
LM.DefaultArgs[I].Param);
ExprResult DefArgResult(ParseAssignmentExpression());
if (DefArgResult.isInvalid())
Actions.ActOnParamDefaultArgumentError(LM.DefaultArgs[I].Param);
else {
if (Tok.is(tok::cxx_defaultarg_end))
ConsumeToken();
else
Diag(Tok.getLocation(), diag::err_default_arg_unparsed);
Actions.ActOnParamDefaultArgument(LM.DefaultArgs[I].Param, EqualLoc,
DefArgResult.take());
}
assert(!PP.getSourceManager().isBeforeInTranslationUnit(origLoc,
Tok.getLocation()) &&
"ParseAssignmentExpression went over the default arg tokens!");
// There could be leftover tokens (e.g. because of an error).
// Skip through until we reach the original token position.
while (Tok.getLocation() != origLoc && Tok.isNot(tok::eof))
ConsumeAnyToken();
delete Toks;
LM.DefaultArgs[I].Toks = 0;
}
}
PrototypeScope.Exit();
// Finish the delayed C++ method declaration.
Actions.ActOnFinishDelayedCXXMethodDeclaration(getCurScope(), LM.Method);
}
/// ParseLexedMethodDefs - We finished parsing the member specification of a top
/// (non-nested) C++ class. Now go over the stack of lexed methods that were
/// collected during its parsing and parse them all.
void Parser::ParseLexedMethodDefs(ParsingClass &Class) {
bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
ParseScope ClassTemplateScope(this, Scope::TemplateParamScope, HasTemplateScope);
if (HasTemplateScope)
Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
bool HasClassScope = !Class.TopLevelClass;
ParseScope ClassScope(this, Scope::ClassScope|Scope::DeclScope,
HasClassScope);
for (size_t i = 0; i < Class.LateParsedDeclarations.size(); ++i) {
Class.LateParsedDeclarations[i]->ParseLexedMethodDefs();
}
}
void Parser::ParseLexedMethodDef(LexedMethod &LM) {
// If this is a member template, introduce the template parameter scope.
ParseScope TemplateScope(this, Scope::TemplateParamScope, LM.TemplateScope);
if (LM.TemplateScope)
Actions.ActOnReenterTemplateScope(getCurScope(), LM.D);
// Save the current token position.
SourceLocation origLoc = Tok.getLocation();
assert(!LM.Toks.empty() && "Empty body!");
// Append the current token at the end of the new token stream so that it
// doesn't get lost.
LM.Toks.push_back(Tok);
PP.EnterTokenStream(LM.Toks.data(), LM.Toks.size(), true, false);
// Consume the previously pushed token.
ConsumeAnyToken();
assert((Tok.is(tok::l_brace) || Tok.is(tok::colon) || Tok.is(tok::kw_try))
&& "Inline method not starting with '{', ':' or 'try'");
// Parse the method body. Function body parsing code is similar enough
// to be re-used for method bodies as well.
ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope);
Actions.ActOnStartOfFunctionDef(getCurScope(), LM.D);
if (Tok.is(tok::kw_try)) {
ParseFunctionTryBlock(LM.D, FnScope);
assert(!PP.getSourceManager().isBeforeInTranslationUnit(origLoc,
Tok.getLocation()) &&
"ParseFunctionTryBlock went over the cached tokens!");
// There could be leftover tokens (e.g. because of an error).
// Skip through until we reach the original token position.
while (Tok.getLocation() != origLoc && Tok.isNot(tok::eof))
ConsumeAnyToken();
return;
}
if (Tok.is(tok::colon)) {
ParseConstructorInitializer(LM.D);
// Error recovery.
if (!Tok.is(tok::l_brace)) {
FnScope.Exit();
Actions.ActOnFinishFunctionBody(LM.D, 0);
while (Tok.getLocation() != origLoc && Tok.isNot(tok::eof))
ConsumeAnyToken();
return;
}
} else
Actions.ActOnDefaultCtorInitializers(LM.D);
ParseFunctionStatementBody(LM.D, FnScope);
if (Tok.getLocation() != origLoc) {
// Due to parsing error, we either went over the cached tokens or
// there are still cached tokens left. If it's the latter case skip the
// leftover tokens.
// Since this is an uncommon situation that should be avoided, use the
// expensive isBeforeInTranslationUnit call.
if (PP.getSourceManager().isBeforeInTranslationUnit(Tok.getLocation(),
origLoc))
while (Tok.getLocation() != origLoc && Tok.isNot(tok::eof))
ConsumeAnyToken();
}
}
/// ParseLexedMemberInitializers - We finished parsing the member specification
/// of a top (non-nested) C++ class. Now go over the stack of lexed data member
/// initializers that were collected during its parsing and parse them all.
void Parser::ParseLexedMemberInitializers(ParsingClass &Class) {
bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
ParseScope ClassTemplateScope(this, Scope::TemplateParamScope,
HasTemplateScope);
if (HasTemplateScope)
Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
// Set or update the scope flags to include Scope::ThisScope.
bool AlreadyHasClassScope = Class.TopLevelClass;
unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope|Scope::ThisScope;
ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope);
ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope);
if (!AlreadyHasClassScope)
Actions.ActOnStartDelayedMemberDeclarations(getCurScope(),
Class.TagOrTemplate);
for (size_t i = 0; i < Class.LateParsedDeclarations.size(); ++i) {
Class.LateParsedDeclarations[i]->ParseLexedMemberInitializers();
}
if (!AlreadyHasClassScope)
Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(),
Class.TagOrTemplate);
Actions.ActOnFinishDelayedMemberInitializers(Class.TagOrTemplate);
}
void Parser::ParseLexedMemberInitializer(LateParsedMemberInitializer &MI) {
if (!MI.Field || MI.Field->isInvalidDecl())
return;
// Append the current token at the end of the new token stream so that it
// doesn't get lost.
MI.Toks.push_back(Tok);
PP.EnterTokenStream(MI.Toks.data(), MI.Toks.size(), true, false);
// Consume the previously pushed token.
ConsumeAnyToken();
SourceLocation EqualLoc;
ExprResult Init = ParseCXXMemberInitializer(MI.Field, /*IsFunction=*/false,
EqualLoc);
Actions.ActOnCXXInClassMemberInitializer(MI.Field, EqualLoc, Init.release());
// The next token should be our artificial terminating EOF token.
if (Tok.isNot(tok::eof)) {
SourceLocation EndLoc = PP.getLocForEndOfToken(PrevTokLocation);
if (!EndLoc.isValid())
EndLoc = Tok.getLocation();
// No fixit; we can't recover as if there were a semicolon here.
Diag(EndLoc, diag::err_expected_semi_decl_list);
// Consume tokens until we hit the artificial EOF.
while (Tok.isNot(tok::eof))
ConsumeAnyToken();
}
ConsumeAnyToken();
}
/// ConsumeAndStoreUntil - Consume and store the token at the passed token
/// container until the token 'T' is reached (which gets
/// consumed/stored too, if ConsumeFinalToken).
/// If StopAtSemi is true, then we will stop early at a ';' character.
/// Returns true if token 'T1' or 'T2' was found.
/// NOTE: This is a specialized version of Parser::SkipUntil.
bool Parser::ConsumeAndStoreUntil(tok::TokenKind T1, tok::TokenKind T2,
CachedTokens &Toks,
bool StopAtSemi, bool ConsumeFinalToken) {
// We always want this function to consume at least one token if the first
// token isn't T and if not at EOF.
bool isFirstTokenConsumed = true;
while (1) {
// If we found one of the tokens, stop and return true.
if (Tok.is(T1) || Tok.is(T2)) {
if (ConsumeFinalToken) {
Toks.push_back(Tok);
ConsumeAnyToken();
}
return true;
}
switch (Tok.getKind()) {
case tok::eof:
// Ran out of tokens.
return false;
case tok::l_paren:
// Recursively consume properly-nested parens.
Toks.push_back(Tok);
ConsumeParen();
ConsumeAndStoreUntil(tok::r_paren, Toks, /*StopAtSemi=*/false);
break;
case tok::l_square:
// Recursively consume properly-nested square brackets.
Toks.push_back(Tok);
ConsumeBracket();
ConsumeAndStoreUntil(tok::r_square, Toks, /*StopAtSemi=*/false);
break;
case tok::l_brace:
// Recursively consume properly-nested braces.
Toks.push_back(Tok);
ConsumeBrace();
ConsumeAndStoreUntil(tok::r_brace, Toks, /*StopAtSemi=*/false);
break;
// Okay, we found a ']' or '}' or ')', which we think should be balanced.
// Since the user wasn't looking for this token (if they were, it would
// already be handled), this isn't balanced. If there is a LHS token at a
// higher level, we will assume that this matches the unbalanced token
// and return it. Otherwise, this is a spurious RHS token, which we skip.
case tok::r_paren:
if (ParenCount && !isFirstTokenConsumed)
return false; // Matches something.
Toks.push_back(Tok);
ConsumeParen();
break;
case tok::r_square:
if (BracketCount && !isFirstTokenConsumed)
return false; // Matches something.
Toks.push_back(Tok);
ConsumeBracket();
break;
case tok::r_brace:
if (BraceCount && !isFirstTokenConsumed)
return false; // Matches something.
Toks.push_back(Tok);
ConsumeBrace();
break;
case tok::code_completion:
Toks.push_back(Tok);
ConsumeCodeCompletionToken();
break;
case tok::string_literal:
case tok::wide_string_literal:
case tok::utf8_string_literal:
case tok::utf16_string_literal:
case tok::utf32_string_literal:
Toks.push_back(Tok);
ConsumeStringToken();
break;
case tok::semi:
if (StopAtSemi)
return false;
// FALL THROUGH.
default:
// consume this token.
Toks.push_back(Tok);
ConsumeToken();
break;
}
isFirstTokenConsumed = false;
}
}
/// \brief Consume tokens and store them in the passed token container until
/// we've passed the try keyword and constructor initializers and have consumed
/// the opening brace of the function body. The opening brace will be consumed
/// if and only if there was no error.
///
/// \return True on error.
bool Parser::ConsumeAndStoreFunctionPrologue(CachedTokens &Toks) {
if (Tok.is(tok::kw_try)) {
Toks.push_back(Tok);
ConsumeToken();
}
bool ReadInitializer = false;
if (Tok.is(tok::colon)) {
// Initializers can contain braces too.
Toks.push_back(Tok);
ConsumeToken();
while (Tok.is(tok::identifier) || Tok.is(tok::coloncolon)) {
if (Tok.is(tok::eof) || Tok.is(tok::semi))
return Diag(Tok.getLocation(), diag::err_expected_lbrace);
// Grab the identifier.
if (!ConsumeAndStoreUntil(tok::l_paren, tok::l_brace, Toks,
/*StopAtSemi=*/true,
/*ConsumeFinalToken=*/false))
return Diag(Tok.getLocation(), diag::err_expected_lparen);
tok::TokenKind kind = Tok.getKind();
Toks.push_back(Tok);
bool IsLParen = (kind == tok::l_paren);
SourceLocation LOpen = Tok.getLocation();
if (IsLParen) {
ConsumeParen();
} else {
assert(kind == tok::l_brace && "Must be left paren or brace here.");
ConsumeBrace();
// In C++03, this has to be the start of the function body, which
// means the initializer is malformed; we'll diagnose it later.
if (!getLang().CPlusPlus0x)
return false;
}
// Grab the initializer
if (!ConsumeAndStoreUntil(IsLParen ? tok::r_paren : tok::r_brace,
Toks, /*StopAtSemi=*/true)) {
Diag(Tok, IsLParen ? diag::err_expected_rparen :
diag::err_expected_rbrace);
Diag(LOpen, diag::note_matching) << (IsLParen ? "(" : "{");
return true;
}
// Grab pack ellipsis, if present
if (Tok.is(tok::ellipsis)) {
Toks.push_back(Tok);
ConsumeToken();
}
// Grab the separating comma, if any.
if (Tok.is(tok::comma)) {
Toks.push_back(Tok);
ConsumeToken();
} else if (Tok.isNot(tok::l_brace)) {
ReadInitializer = true;
break;
}
}
}
// Grab any remaining garbage to be diagnosed later. We stop when we reach a
// brace: an opening one is the function body, while a closing one probably
// means we've reached the end of the class.
ConsumeAndStoreUntil(tok::l_brace, tok::r_brace, Toks,
/*StopAtSemi=*/true,
/*ConsumeFinalToken=*/false);
if (Tok.isNot(tok::l_brace)) {
if (ReadInitializer)
return Diag(Tok.getLocation(), diag::err_expected_lbrace_or_comma);
return Diag(Tok.getLocation(), diag::err_expected_lbrace);
}
Toks.push_back(Tok);
ConsumeBrace();
return false;
}