llvm-project/llvm/test/Transforms/LICM/sinking.ll

398 lines
9.9 KiB
LLVM

; RUN: opt < %s -basicaa -licm -S | FileCheck %s
declare i32 @strlen(i8*) readonly
declare void @foo()
; Sink readonly function.
define i32 @test1(i8* %P) {
br label %Loop
Loop: ; preds = %Loop, %0
%A = call i32 @strlen( i8* %P ) readonly
br i1 false, label %Loop, label %Out
Out: ; preds = %Loop
ret i32 %A
; CHECK-LABEL: @test1(
; CHECK: Out:
; CHECK-NEXT: call i32 @strlen
; CHECK-NEXT: ret i32 %A
}
declare double @sin(double) readnone
; Sink readnone function out of loop with unknown memory behavior.
define double @test2(double %X) {
br label %Loop
Loop: ; preds = %Loop, %0
call void @foo( )
%A = call double @sin( double %X ) readnone
br i1 true, label %Loop, label %Out
Out: ; preds = %Loop
ret double %A
; CHECK-LABEL: @test2(
; CHECK: Out:
; CHECK-NEXT: call double @sin
; CHECK-NEXT: ret double %A
}
; This testcase checks to make sure the sinker does not cause problems with
; critical edges.
define void @test3() {
Entry:
br i1 false, label %Loop, label %Exit
Loop:
%X = add i32 0, 1
br i1 false, label %Loop, label %Exit
Exit:
%Y = phi i32 [ 0, %Entry ], [ %X, %Loop ]
ret void
; CHECK-LABEL: @test3(
; CHECK: Exit.loopexit:
; CHECK-NEXT: %X.le = add i32 0, 1
; CHECK-NEXT: br label %Exit
}
; If the result of an instruction is only used outside of the loop, sink
; the instruction to the exit blocks instead of executing it on every
; iteration of the loop.
;
define i32 @test4(i32 %N) {
Entry:
br label %Loop
Loop: ; preds = %Loop, %Entry
%N_addr.0.pn = phi i32 [ %dec, %Loop ], [ %N, %Entry ]
%tmp.6 = mul i32 %N, %N_addr.0.pn ; <i32> [#uses=1]
%tmp.7 = sub i32 %tmp.6, %N ; <i32> [#uses=1]
%dec = add i32 %N_addr.0.pn, -1 ; <i32> [#uses=1]
%tmp.1 = icmp ne i32 %N_addr.0.pn, 1 ; <i1> [#uses=1]
br i1 %tmp.1, label %Loop, label %Out
Out: ; preds = %Loop
ret i32 %tmp.7
; CHECK-LABEL: @test4(
; CHECK: Out:
; CHECK-NEXT: %[[LCSSAPHI:.*]] = phi i32 [ %N_addr.0.pn
; CHECK-NEXT: mul i32 %N, %[[LCSSAPHI]]
; CHECK-NEXT: sub i32 %tmp.6.le, %N
; CHECK-NEXT: ret i32
}
; To reduce register pressure, if a load is hoistable out of the loop, and the
; result of the load is only used outside of the loop, sink the load instead of
; hoisting it!
;
@X = global i32 5 ; <i32*> [#uses=1]
define i32 @test5(i32 %N) {
Entry:
br label %Loop
Loop: ; preds = %Loop, %Entry
%N_addr.0.pn = phi i32 [ %dec, %Loop ], [ %N, %Entry ]
%tmp.6 = load i32, i32* @X ; <i32> [#uses=1]
%dec = add i32 %N_addr.0.pn, -1 ; <i32> [#uses=1]
%tmp.1 = icmp ne i32 %N_addr.0.pn, 1 ; <i1> [#uses=1]
br i1 %tmp.1, label %Loop, label %Out
Out: ; preds = %Loop
ret i32 %tmp.6
; CHECK-LABEL: @test5(
; CHECK: Out:
; CHECK-NEXT: %tmp.6.le = load i32, i32* @X
; CHECK-NEXT: ret i32 %tmp.6.le
}
; The loop sinker was running from the bottom of the loop to the top, causing
; it to miss opportunities to sink instructions that depended on sinking other
; instructions from the loop. Instead they got hoisted, which is better than
; leaving them in the loop, but increases register pressure pointlessly.
%Ty = type { i32, i32 }
@X2 = external global %Ty
define i32 @test6() {
br label %Loop
Loop:
%dead = getelementptr %Ty, %Ty* @X2, i64 0, i32 0
%sunk2 = load i32, i32* %dead
br i1 false, label %Loop, label %Out
Out: ; preds = %Loop
ret i32 %sunk2
; CHECK-LABEL: @test6(
; CHECK: Out:
; CHECK-NEXT: %dead.le = getelementptr %Ty, %Ty* @X2, i64 0, i32 0
; CHECK-NEXT: %sunk2.le = load i32, i32* %dead.le
; CHECK-NEXT: ret i32 %sunk2.le
}
; This testcase ensures that we can sink instructions from loops with
; multiple exits.
;
define i32 @test7(i32 %N, i1 %C) {
Entry:
br label %Loop
Loop: ; preds = %ContLoop, %Entry
%N_addr.0.pn = phi i32 [ %dec, %ContLoop ], [ %N, %Entry ]
%tmp.6 = mul i32 %N, %N_addr.0.pn
%tmp.7 = sub i32 %tmp.6, %N ; <i32> [#uses=2]
%dec = add i32 %N_addr.0.pn, -1 ; <i32> [#uses=1]
br i1 %C, label %ContLoop, label %Out1
ContLoop:
%tmp.1 = icmp ne i32 %N_addr.0.pn, 1
br i1 %tmp.1, label %Loop, label %Out2
Out1: ; preds = %Loop
ret i32 %tmp.7
Out2: ; preds = %ContLoop
ret i32 %tmp.7
; CHECK-LABEL: @test7(
; CHECK: Out1:
; CHECK-NEXT: %[[LCSSAPHI:.*]] = phi i32 [ %N_addr.0.pn
; CHECK-NEXT: mul i32 %N, %[[LCSSAPHI]]
; CHECK-NEXT: sub i32 %tmp.6.le, %N
; CHECK-NEXT: ret
; CHECK: Out2:
; CHECK-NEXT: %[[LCSSAPHI:.*]] = phi i32 [ %N_addr.0.pn
; CHECK-NEXT: mul i32 %N, %[[LCSSAPHI]]
; CHECK-NEXT: sub i32 %tmp.6.le4, %N
; CHECK-NEXT: ret
}
; This testcase checks to make sure we can sink values which are only live on
; some exits out of the loop, and that we can do so without breaking dominator
; info.
define i32 @test8(i1 %C1, i1 %C2, i32* %P, i32* %Q) {
Entry:
br label %Loop
Loop: ; preds = %Cont, %Entry
br i1 %C1, label %Cont, label %exit1
Cont: ; preds = %Loop
%X = load i32, i32* %P ; <i32> [#uses=2]
store i32 %X, i32* %Q
%V = add i32 %X, 1 ; <i32> [#uses=1]
br i1 %C2, label %Loop, label %exit2
exit1: ; preds = %Loop
ret i32 0
exit2: ; preds = %Cont
ret i32 %V
; CHECK-LABEL: @test8(
; CHECK: exit1:
; CHECK-NEXT: ret i32 0
; CHECK: exit2:
; CHECK-NEXT: %[[LCSSAPHI:.*]] = phi i32 [ %X
; CHECK-NEXT: %V.le = add i32 %[[LCSSAPHI]], 1
; CHECK-NEXT: ret i32 %V.le
}
define void @test9() {
loopentry.2.i:
br i1 false, label %no_exit.1.i.preheader, label %loopentry.3.i.preheader
no_exit.1.i.preheader: ; preds = %loopentry.2.i
br label %no_exit.1.i
no_exit.1.i: ; preds = %endif.8.i, %no_exit.1.i.preheader
br i1 false, label %return.i, label %endif.8.i
endif.8.i: ; preds = %no_exit.1.i
%inc.1.i = add i32 0, 1 ; <i32> [#uses=1]
br i1 false, label %no_exit.1.i, label %loopentry.3.i.preheader.loopexit
loopentry.3.i.preheader.loopexit: ; preds = %endif.8.i
br label %loopentry.3.i.preheader
loopentry.3.i.preheader: ; preds = %loopentry.3.i.preheader.loopexit, %loopentry.2.i
%arg_num.0.i.ph13000 = phi i32 [ 0, %loopentry.2.i ], [ %inc.1.i, %loopentry.3.i.preheader.loopexit ] ; <i32> [#uses=0]
ret void
return.i: ; preds = %no_exit.1.i
ret void
; CHECK-LABEL: @test9(
; CHECK: loopentry.3.i.preheader.loopexit:
; CHECK-NEXT: %inc.1.i.le = add i32 0, 1
; CHECK-NEXT: br label %loopentry.3.i.preheader
}
; Potentially trapping instructions may be sunk as long as they are guaranteed
; to be executed.
define i32 @test10(i32 %N) {
Entry:
br label %Loop
Loop: ; preds = %Loop, %Entry
%N_addr.0.pn = phi i32 [ %dec, %Loop ], [ %N, %Entry ] ; <i32> [#uses=3]
%tmp.6 = sdiv i32 %N, %N_addr.0.pn ; <i32> [#uses=1]
%dec = add i32 %N_addr.0.pn, -1 ; <i32> [#uses=1]
%tmp.1 = icmp ne i32 %N_addr.0.pn, 0 ; <i1> [#uses=1]
br i1 %tmp.1, label %Loop, label %Out
Out: ; preds = %Loop
ret i32 %tmp.6
; CHECK-LABEL: @test10(
; CHECK: Out:
; CHECK-NEXT: %[[LCSSAPHI:.*]] = phi i32 [ %N_addr.0.pn
; CHECK-NEXT: %tmp.6.le = sdiv i32 %N, %[[LCSSAPHI]]
; CHECK-NEXT: ret i32 %tmp.6.le
}
; Should delete, not sink, dead instructions.
define void @test11() {
br label %Loop
Loop:
%dead = getelementptr %Ty, %Ty* @X2, i64 0, i32 0
br i1 false, label %Loop, label %Out
Out:
ret void
; CHECK-LABEL: @test11(
; CHECK: Out:
; CHECK-NEXT: ret void
}
@c = common global [1 x i32] zeroinitializer, align 4
; Test a *many* way nested loop with multiple exit blocks both of which exit
; multiple loop nests. This exercises LCSSA corner cases.
define i32 @PR18753(i1* %a, i1* %b, i1* %c, i1* %d) {
entry:
br label %l1.header
l1.header:
%iv = phi i64 [ %iv.next, %l1.latch ], [ 0, %entry ]
%arrayidx.i = getelementptr inbounds [1 x i32], [1 x i32]* @c, i64 0, i64 %iv
br label %l2.header
l2.header:
%x0 = load i1, i1* %c, align 4
br i1 %x0, label %l1.latch, label %l3.preheader
l3.preheader:
br label %l3.header
l3.header:
%x1 = load i1, i1* %d, align 4
br i1 %x1, label %l2.latch, label %l4.preheader
l4.preheader:
br label %l4.header
l4.header:
%x2 = load i1, i1* %a
br i1 %x2, label %l3.latch, label %l4.body
l4.body:
call void @f(i32* %arrayidx.i)
%x3 = load i1, i1* %b
%l = trunc i64 %iv to i32
br i1 %x3, label %l4.latch, label %exit
l4.latch:
call void @g()
%x4 = load i1, i1* %b, align 4
br i1 %x4, label %l4.header, label %exit
l3.latch:
br label %l3.header
l2.latch:
br label %l2.header
l1.latch:
%iv.next = add nsw i64 %iv, 1
br label %l1.header
exit:
%lcssa = phi i32 [ %l, %l4.latch ], [ %l, %l4.body ]
; CHECK-LABEL: @PR18753(
; CHECK: exit:
; CHECK-NEXT: %[[LCSSAPHI:.*]] = phi i64 [ %iv, %l4.latch ], [ %iv, %l4.body ]
; CHECK-NEXT: %l.le = trunc i64 %[[LCSSAPHI]] to i32
; CHECK-NEXT: ret i32 %l.le
ret i32 %lcssa
}
; Can't sink stores out of exit blocks containing indirectbr instructions
; because loop simplify does not create dedicated exits for such blocks. Test
; that by sinking the store from lab21 to lab22, but not further.
define void @test12() {
; CHECK-LABEL: @test12
br label %lab4
lab4:
br label %lab20
lab5:
br label %lab20
lab6:
br label %lab4
lab7:
br i1 undef, label %lab8, label %lab13
lab8:
br i1 undef, label %lab13, label %lab10
lab10:
br label %lab7
lab13:
ret void
lab20:
br label %lab21
lab21:
; CHECK: lab21:
; CHECK-NOT: store
; CHECK: br i1 false, label %lab21, label %lab22
store i32 36127957, i32* undef, align 4
br i1 undef, label %lab21, label %lab22
lab22:
; CHECK: lab22:
; CHECK: store
; CHECK-NEXT: indirectbr i8* undef
indirectbr i8* undef, [label %lab5, label %lab6, label %lab7]
}
; Test that we don't crash when trying to sink stores and there's no preheader
; available (which is used for creating loads that may be used by the SSA
; updater)
define void @test13() {
; CHECK-LABEL: @test13
br label %lab59
lab19:
br i1 undef, label %lab20, label %lab38
lab20:
br label %lab60
lab21:
br i1 undef, label %lab22, label %lab38
lab22:
br label %lab38
lab38:
ret void
lab59:
indirectbr i8* undef, [label %lab60, label %lab38]
lab60:
; CHECK: lab60:
; CHECK: store
; CHECK-NEXT: indirectbr
store i32 2145244101, i32* undef, align 4
indirectbr i8* undef, [label %lab21, label %lab19]
}
declare void @f(i32*)
declare void @g()