forked from OSchip/llvm-project
3619 lines
120 KiB
C++
3619 lines
120 KiB
C++
//=-- GRExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ---*- C++ -*-=
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a meta-engine for path-sensitive dataflow analysis that
|
|
// is built on GREngine, but provides the boilerplate to execute transfer
|
|
// functions and build the ExplodedGraph at the expression level.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "GRExprEngineInternalChecks.h"
|
|
#include "clang/Checker/BugReporter/BugType.h"
|
|
#include "clang/Checker/PathSensitive/AnalysisManager.h"
|
|
#include "clang/Checker/PathSensitive/GRExprEngine.h"
|
|
#include "clang/Checker/PathSensitive/GRExprEngineBuilders.h"
|
|
#include "clang/Checker/PathSensitive/Checker.h"
|
|
#include "clang/AST/CharUnits.h"
|
|
#include "clang/AST/ParentMap.h"
|
|
#include "clang/AST/StmtObjC.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/Basic/Builtins.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/PrettyStackTrace.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/ADT/ImmutableList.h"
|
|
|
|
#ifndef NDEBUG
|
|
#include "llvm/Support/GraphWriter.h"
|
|
#endif
|
|
|
|
using namespace clang;
|
|
using llvm::dyn_cast;
|
|
using llvm::dyn_cast_or_null;
|
|
using llvm::cast;
|
|
using llvm::APSInt;
|
|
|
|
namespace {
|
|
// Trait class for recording returned expression in the state.
|
|
struct ReturnExpr {
|
|
static int TagInt;
|
|
typedef const Stmt *data_type;
|
|
};
|
|
int ReturnExpr::TagInt;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utility functions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) {
|
|
IdentifierInfo* II = &Ctx.Idents.get(name);
|
|
return Ctx.Selectors.getSelector(0, &II);
|
|
}
|
|
|
|
|
|
static QualType GetCalleeReturnType(const CallExpr *CE) {
|
|
const Expr *Callee = CE->getCallee();
|
|
QualType T = Callee->getType();
|
|
if (const PointerType *PT = T->getAs<PointerType>()) {
|
|
const FunctionType *FT = PT->getPointeeType()->getAs<FunctionType>();
|
|
T = FT->getResultType();
|
|
}
|
|
else {
|
|
const BlockPointerType *BT = T->getAs<BlockPointerType>();
|
|
T = BT->getPointeeType()->getAs<FunctionType>()->getResultType();
|
|
}
|
|
return T;
|
|
}
|
|
|
|
static bool CalleeReturnsReference(const CallExpr *CE) {
|
|
return (bool) GetCalleeReturnType(CE)->getAs<ReferenceType>();
|
|
}
|
|
|
|
static bool ReceiverReturnsReference(const ObjCMessageExpr *ME) {
|
|
const ObjCMethodDecl *MD = ME->getMethodDecl();
|
|
if (!MD)
|
|
return false;
|
|
return MD->getResultType()->getAs<ReferenceType>();
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
static bool ReceiverReturnsReferenceOrRecord(const ObjCMessageExpr *ME) {
|
|
const ObjCMethodDecl *MD = ME->getMethodDecl();
|
|
if (!MD)
|
|
return false;
|
|
QualType T = MD->getResultType();
|
|
return T->getAs<RecordType>() || T->getAs<ReferenceType>();
|
|
}
|
|
|
|
static bool CalleeReturnsReferenceOrRecord(const CallExpr *CE) {
|
|
QualType T = GetCalleeReturnType(CE);
|
|
return T->getAs<ReferenceType>() || T->getAs<RecordType>();
|
|
}
|
|
#endif
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Batch auditor. DEPRECATED.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class MappedBatchAuditor : public GRSimpleAPICheck {
|
|
typedef llvm::ImmutableList<GRSimpleAPICheck*> Checks;
|
|
typedef llvm::DenseMap<void*,Checks> MapTy;
|
|
|
|
MapTy M;
|
|
Checks::Factory F;
|
|
Checks AllStmts;
|
|
|
|
public:
|
|
MappedBatchAuditor(llvm::BumpPtrAllocator& Alloc) :
|
|
F(Alloc), AllStmts(F.GetEmptyList()) {}
|
|
|
|
virtual ~MappedBatchAuditor() {
|
|
llvm::DenseSet<GRSimpleAPICheck*> AlreadyVisited;
|
|
|
|
for (MapTy::iterator MI = M.begin(), ME = M.end(); MI != ME; ++MI)
|
|
for (Checks::iterator I=MI->second.begin(), E=MI->second.end(); I!=E;++I){
|
|
|
|
GRSimpleAPICheck* check = *I;
|
|
|
|
if (AlreadyVisited.count(check))
|
|
continue;
|
|
|
|
AlreadyVisited.insert(check);
|
|
delete check;
|
|
}
|
|
}
|
|
|
|
void AddCheck(GRSimpleAPICheck *A, Stmt::StmtClass C) {
|
|
assert (A && "Check cannot be null.");
|
|
void* key = reinterpret_cast<void*>((uintptr_t) C);
|
|
MapTy::iterator I = M.find(key);
|
|
M[key] = F.Concat(A, I == M.end() ? F.GetEmptyList() : I->second);
|
|
}
|
|
|
|
void AddCheck(GRSimpleAPICheck *A) {
|
|
assert (A && "Check cannot be null.");
|
|
AllStmts = F.Concat(A, AllStmts);
|
|
}
|
|
|
|
virtual bool Audit(ExplodedNode* N, GRStateManager& VMgr) {
|
|
// First handle the auditors that accept all statements.
|
|
bool isSink = false;
|
|
for (Checks::iterator I = AllStmts.begin(), E = AllStmts.end(); I!=E; ++I)
|
|
isSink |= (*I)->Audit(N, VMgr);
|
|
|
|
// Next handle the auditors that accept only specific statements.
|
|
const Stmt* S = cast<PostStmt>(N->getLocation()).getStmt();
|
|
void* key = reinterpret_cast<void*>((uintptr_t) S->getStmtClass());
|
|
MapTy::iterator MI = M.find(key);
|
|
if (MI != M.end()) {
|
|
for (Checks::iterator I=MI->second.begin(), E=MI->second.end(); I!=E; ++I)
|
|
isSink |= (*I)->Audit(N, VMgr);
|
|
}
|
|
|
|
return isSink;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Checker worklist routines.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void GRExprEngine::CheckerVisit(const Stmt *S, ExplodedNodeSet &Dst,
|
|
ExplodedNodeSet &Src, bool isPrevisit) {
|
|
|
|
// Determine if we already have a cached 'CheckersOrdered' vector
|
|
// specifically tailored for the provided <Stmt kind, isPrevisit>. This
|
|
// can reduce the number of checkers actually called.
|
|
CheckersOrdered *CO = &Checkers;
|
|
llvm::OwningPtr<CheckersOrdered> NewCO;
|
|
|
|
const std::pair<unsigned, unsigned> &K =
|
|
std::make_pair((unsigned)S->getStmtClass(), isPrevisit ? 1U : 0U);
|
|
|
|
CheckersOrdered *& CO_Ref = COCache[K];
|
|
|
|
if (!CO_Ref) {
|
|
// If we have no previously cached CheckersOrdered vector for this
|
|
// statement kind, then create one.
|
|
NewCO.reset(new CheckersOrdered);
|
|
}
|
|
else {
|
|
// Use the already cached set.
|
|
CO = CO_Ref;
|
|
}
|
|
|
|
if (CO->empty()) {
|
|
// If there are no checkers, return early without doing any
|
|
// more work.
|
|
Dst.insert(Src);
|
|
return;
|
|
}
|
|
|
|
ExplodedNodeSet Tmp;
|
|
ExplodedNodeSet *PrevSet = &Src;
|
|
unsigned checkersEvaluated = 0;
|
|
|
|
for (CheckersOrdered::iterator I=CO->begin(), E=CO->end(); I!=E; ++I){
|
|
ExplodedNodeSet *CurrSet = 0;
|
|
if (I+1 == E)
|
|
CurrSet = &Dst;
|
|
else {
|
|
CurrSet = (PrevSet == &Tmp) ? &Src : &Tmp;
|
|
CurrSet->clear();
|
|
}
|
|
void *tag = I->first;
|
|
Checker *checker = I->second;
|
|
bool respondsToCallback = true;
|
|
|
|
for (ExplodedNodeSet::iterator NI = PrevSet->begin(), NE = PrevSet->end();
|
|
NI != NE; ++NI) {
|
|
|
|
checker->GR_Visit(*CurrSet, *Builder, *this, S, *NI, tag, isPrevisit,
|
|
respondsToCallback);
|
|
|
|
}
|
|
|
|
PrevSet = CurrSet;
|
|
|
|
if (NewCO.get()) {
|
|
++checkersEvaluated;
|
|
if (respondsToCallback)
|
|
NewCO->push_back(*I);
|
|
}
|
|
}
|
|
|
|
// If we built NewCO, check if we called all the checkers. This is important
|
|
// so that we know that we accurately determined the entire set of checkers
|
|
// that responds to this callback.
|
|
if (NewCO.get() && checkersEvaluated == Checkers.size())
|
|
CO_Ref = NewCO.take();
|
|
|
|
// Don't autotransition. The CheckerContext objects should do this
|
|
// automatically.
|
|
}
|
|
|
|
void GRExprEngine::CheckerEvalNilReceiver(const ObjCMessageExpr *ME,
|
|
ExplodedNodeSet &Dst,
|
|
const GRState *state,
|
|
ExplodedNode *Pred) {
|
|
bool Evaluated = false;
|
|
ExplodedNodeSet DstTmp;
|
|
|
|
for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end();I!=E;++I) {
|
|
void *tag = I->first;
|
|
Checker *checker = I->second;
|
|
|
|
if (checker->GR_EvalNilReceiver(DstTmp, *Builder, *this, ME, Pred, state,
|
|
tag)) {
|
|
Evaluated = true;
|
|
break;
|
|
} else
|
|
// The checker didn't evaluate the expr. Restore the Dst.
|
|
DstTmp.clear();
|
|
}
|
|
|
|
if (Evaluated)
|
|
Dst.insert(DstTmp);
|
|
else
|
|
Dst.insert(Pred);
|
|
}
|
|
|
|
// CheckerEvalCall returns true if one of the checkers processed the node.
|
|
// This may return void when all call evaluation logic goes to some checker
|
|
// in the future.
|
|
bool GRExprEngine::CheckerEvalCall(const CallExpr *CE,
|
|
ExplodedNodeSet &Dst,
|
|
ExplodedNode *Pred) {
|
|
bool Evaluated = false;
|
|
ExplodedNodeSet DstTmp;
|
|
|
|
for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end();I!=E;++I) {
|
|
void *tag = I->first;
|
|
Checker *checker = I->second;
|
|
|
|
if (checker->GR_EvalCallExpr(DstTmp, *Builder, *this, CE, Pred, tag)) {
|
|
Evaluated = true;
|
|
break;
|
|
} else
|
|
// The checker didn't evaluate the expr. Restore the DstTmp set.
|
|
DstTmp.clear();
|
|
}
|
|
|
|
if (Evaluated)
|
|
Dst.insert(DstTmp);
|
|
else
|
|
Dst.insert(Pred);
|
|
|
|
return Evaluated;
|
|
}
|
|
|
|
// FIXME: This is largely copy-paste from CheckerVisit(). Need to
|
|
// unify.
|
|
void GRExprEngine::CheckerVisitBind(const Stmt *AssignE, const Stmt *StoreE,
|
|
ExplodedNodeSet &Dst,
|
|
ExplodedNodeSet &Src,
|
|
SVal location, SVal val, bool isPrevisit) {
|
|
|
|
if (Checkers.empty()) {
|
|
Dst.insert(Src);
|
|
return;
|
|
}
|
|
|
|
ExplodedNodeSet Tmp;
|
|
ExplodedNodeSet *PrevSet = &Src;
|
|
|
|
for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end(); I!=E; ++I)
|
|
{
|
|
ExplodedNodeSet *CurrSet = 0;
|
|
if (I+1 == E)
|
|
CurrSet = &Dst;
|
|
else {
|
|
CurrSet = (PrevSet == &Tmp) ? &Src : &Tmp;
|
|
CurrSet->clear();
|
|
}
|
|
|
|
void *tag = I->first;
|
|
Checker *checker = I->second;
|
|
|
|
for (ExplodedNodeSet::iterator NI = PrevSet->begin(), NE = PrevSet->end();
|
|
NI != NE; ++NI)
|
|
checker->GR_VisitBind(*CurrSet, *Builder, *this, AssignE, StoreE,
|
|
*NI, tag, location, val, isPrevisit);
|
|
|
|
// Update which NodeSet is the current one.
|
|
PrevSet = CurrSet;
|
|
}
|
|
|
|
// Don't autotransition. The CheckerContext objects should do this
|
|
// automatically.
|
|
}
|
|
//===----------------------------------------------------------------------===//
|
|
// Engine construction and deletion.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static void RegisterInternalChecks(GRExprEngine &Eng) {
|
|
// Register internal "built-in" BugTypes with the BugReporter. These BugTypes
|
|
// are different than what probably many checks will do since they don't
|
|
// create BugReports on-the-fly but instead wait until GRExprEngine finishes
|
|
// analyzing a function. Generation of BugReport objects is done via a call
|
|
// to 'FlushReports' from BugReporter.
|
|
// The following checks do not need to have their associated BugTypes
|
|
// explicitly registered with the BugReporter. If they issue any BugReports,
|
|
// their associated BugType will get registered with the BugReporter
|
|
// automatically. Note that the check itself is owned by the GRExprEngine
|
|
// object.
|
|
RegisterAdjustedReturnValueChecker(Eng);
|
|
// CallAndMessageChecker should be registered before AttrNonNullChecker,
|
|
// where we assume arguments are not undefined.
|
|
RegisterCallAndMessageChecker(Eng);
|
|
RegisterAttrNonNullChecker(Eng);
|
|
RegisterDereferenceChecker(Eng);
|
|
RegisterVLASizeChecker(Eng);
|
|
RegisterDivZeroChecker(Eng);
|
|
RegisterIdempotentOperationChecker(Eng);
|
|
RegisterReturnUndefChecker(Eng);
|
|
RegisterUndefinedArraySubscriptChecker(Eng);
|
|
RegisterUndefinedAssignmentChecker(Eng);
|
|
RegisterUndefBranchChecker(Eng);
|
|
RegisterUndefCapturedBlockVarChecker(Eng);
|
|
RegisterUndefResultChecker(Eng);
|
|
RegisterStackAddrLeakChecker(Eng);
|
|
|
|
// This is not a checker yet.
|
|
RegisterNoReturnFunctionChecker(Eng);
|
|
RegisterBuiltinFunctionChecker(Eng);
|
|
RegisterOSAtomicChecker(Eng);
|
|
RegisterUnixAPIChecker(Eng);
|
|
RegisterMacOSXAPIChecker(Eng);
|
|
}
|
|
|
|
GRExprEngine::GRExprEngine(AnalysisManager &mgr, GRTransferFuncs *tf)
|
|
: AMgr(mgr),
|
|
CoreEngine(*this),
|
|
G(CoreEngine.getGraph()),
|
|
Builder(NULL),
|
|
StateMgr(getContext(), mgr.getStoreManagerCreator(),
|
|
mgr.getConstraintManagerCreator(), G.getAllocator(),
|
|
*this),
|
|
SymMgr(StateMgr.getSymbolManager()),
|
|
ValMgr(StateMgr.getValueManager()),
|
|
SVator(ValMgr.getSValuator()),
|
|
CurrentStmt(NULL),
|
|
NSExceptionII(NULL), NSExceptionInstanceRaiseSelectors(NULL),
|
|
RaiseSel(GetNullarySelector("raise", getContext())),
|
|
BR(mgr, *this), TF(tf) {
|
|
// Register internal checks.
|
|
RegisterInternalChecks(*this);
|
|
|
|
// FIXME: Eventually remove the TF object entirely.
|
|
TF->RegisterChecks(*this);
|
|
TF->RegisterPrinters(getStateManager().Printers);
|
|
}
|
|
|
|
GRExprEngine::~GRExprEngine() {
|
|
BR.FlushReports();
|
|
delete [] NSExceptionInstanceRaiseSelectors;
|
|
|
|
// Delete the set of checkers.
|
|
for (CheckersOrdered::iterator I=Checkers.begin(), E=Checkers.end(); I!=E;++I)
|
|
delete I->second;
|
|
|
|
for (CheckersOrderedCache::iterator I=COCache.begin(), E=COCache.end();
|
|
I!=E;++I)
|
|
delete I->second;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utility methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void GRExprEngine::AddCheck(GRSimpleAPICheck* A, Stmt::StmtClass C) {
|
|
if (!BatchAuditor)
|
|
BatchAuditor.reset(new MappedBatchAuditor(getGraph().getAllocator()));
|
|
|
|
((MappedBatchAuditor*) BatchAuditor.get())->AddCheck(A, C);
|
|
}
|
|
|
|
void GRExprEngine::AddCheck(GRSimpleAPICheck *A) {
|
|
if (!BatchAuditor)
|
|
BatchAuditor.reset(new MappedBatchAuditor(getGraph().getAllocator()));
|
|
|
|
((MappedBatchAuditor*) BatchAuditor.get())->AddCheck(A);
|
|
}
|
|
|
|
const GRState* GRExprEngine::getInitialState(const LocationContext *InitLoc) {
|
|
const GRState *state = StateMgr.getInitialState(InitLoc);
|
|
|
|
// Preconditions.
|
|
|
|
// FIXME: It would be nice if we had a more general mechanism to add
|
|
// such preconditions. Some day.
|
|
do {
|
|
const Decl *D = InitLoc->getDecl();
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
// Precondition: the first argument of 'main' is an integer guaranteed
|
|
// to be > 0.
|
|
const IdentifierInfo *II = FD->getIdentifier();
|
|
if (!II || !(II->getName() == "main" && FD->getNumParams() > 0))
|
|
break;
|
|
|
|
const ParmVarDecl *PD = FD->getParamDecl(0);
|
|
QualType T = PD->getType();
|
|
if (!T->isIntegerType())
|
|
break;
|
|
|
|
const MemRegion *R = state->getRegion(PD, InitLoc);
|
|
if (!R)
|
|
break;
|
|
|
|
SVal V = state->getSVal(loc::MemRegionVal(R));
|
|
SVal Constraint_untested = EvalBinOp(state, BinaryOperator::GT, V,
|
|
ValMgr.makeZeroVal(T),
|
|
getContext().IntTy);
|
|
|
|
DefinedOrUnknownSVal *Constraint =
|
|
dyn_cast<DefinedOrUnknownSVal>(&Constraint_untested);
|
|
|
|
if (!Constraint)
|
|
break;
|
|
|
|
if (const GRState *newState = state->Assume(*Constraint, true))
|
|
state = newState;
|
|
|
|
break;
|
|
}
|
|
|
|
if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
|
|
// Precondition: 'self' is always non-null upon entry to an Objective-C
|
|
// method.
|
|
const ImplicitParamDecl *SelfD = MD->getSelfDecl();
|
|
const MemRegion *R = state->getRegion(SelfD, InitLoc);
|
|
SVal V = state->getSVal(loc::MemRegionVal(R));
|
|
|
|
if (const Loc *LV = dyn_cast<Loc>(&V)) {
|
|
// Assume that the pointer value in 'self' is non-null.
|
|
state = state->Assume(*LV, true);
|
|
assert(state && "'self' cannot be null");
|
|
}
|
|
}
|
|
} while (0);
|
|
|
|
return state;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top-level transfer function logic (Dispatcher).
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// EvalAssume - Called by ConstraintManager. Used to call checker-specific
|
|
/// logic for handling assumptions on symbolic values.
|
|
const GRState *GRExprEngine::ProcessAssume(const GRState *state, SVal cond,
|
|
bool assumption) {
|
|
for (CheckersOrdered::iterator I = Checkers.begin(), E = Checkers.end();
|
|
I != E; ++I) {
|
|
|
|
if (!state)
|
|
return NULL;
|
|
|
|
state = I->second->EvalAssume(state, cond, assumption);
|
|
}
|
|
|
|
if (!state)
|
|
return NULL;
|
|
|
|
return TF->EvalAssume(state, cond, assumption);
|
|
}
|
|
|
|
void GRExprEngine::ProcessEndWorklist(bool hasWorkRemaining) {
|
|
for (CheckersOrdered::iterator I = Checkers.begin(), E = Checkers.end();
|
|
I != E; ++I) {
|
|
I->second->VisitEndAnalysis(G, BR, hasWorkRemaining);
|
|
}
|
|
}
|
|
|
|
void GRExprEngine::ProcessStmt(const CFGElement CE,GRStmtNodeBuilder& builder) {
|
|
CurrentStmt = CE.getStmt();
|
|
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
|
|
CurrentStmt->getLocStart(),
|
|
"Error evaluating statement");
|
|
|
|
Builder = &builder;
|
|
EntryNode = builder.getBasePredecessor();
|
|
|
|
// Set up our simple checks.
|
|
if (BatchAuditor)
|
|
Builder->setAuditor(BatchAuditor.get());
|
|
|
|
// Create the cleaned state.
|
|
const ExplodedNode *BasePred = Builder->getBasePredecessor();
|
|
|
|
SymbolReaper SymReaper(BasePred->getLocationContext(), CurrentStmt, SymMgr);
|
|
|
|
CleanedState = AMgr.shouldPurgeDead()
|
|
? StateMgr.RemoveDeadBindings(EntryNode->getState(),
|
|
BasePred->getLocationContext()->getCurrentStackFrame(),
|
|
SymReaper)
|
|
: EntryNode->getState();
|
|
|
|
// Process any special transfer function for dead symbols.
|
|
ExplodedNodeSet Tmp;
|
|
|
|
if (!SymReaper.hasDeadSymbols())
|
|
Tmp.Add(EntryNode);
|
|
else {
|
|
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
|
|
SaveOr OldHasGen(Builder->HasGeneratedNode);
|
|
|
|
SaveAndRestore<bool> OldPurgeDeadSymbols(Builder->PurgingDeadSymbols);
|
|
Builder->PurgingDeadSymbols = true;
|
|
|
|
// FIXME: This should soon be removed.
|
|
ExplodedNodeSet Tmp2;
|
|
getTF().EvalDeadSymbols(Tmp2, *this, *Builder, EntryNode,
|
|
CleanedState, SymReaper);
|
|
|
|
if (Checkers.empty())
|
|
Tmp.insert(Tmp2);
|
|
else {
|
|
ExplodedNodeSet Tmp3;
|
|
ExplodedNodeSet *SrcSet = &Tmp2;
|
|
for (CheckersOrdered::iterator I = Checkers.begin(), E = Checkers.end();
|
|
I != E; ++I) {
|
|
ExplodedNodeSet *DstSet = 0;
|
|
if (I+1 == E)
|
|
DstSet = &Tmp;
|
|
else {
|
|
DstSet = (SrcSet == &Tmp2) ? &Tmp3 : &Tmp2;
|
|
DstSet->clear();
|
|
}
|
|
|
|
void *tag = I->first;
|
|
Checker *checker = I->second;
|
|
for (ExplodedNodeSet::iterator NI = SrcSet->begin(), NE = SrcSet->end();
|
|
NI != NE; ++NI)
|
|
checker->GR_EvalDeadSymbols(*DstSet, *Builder, *this, CurrentStmt,
|
|
*NI, SymReaper, tag);
|
|
SrcSet = DstSet;
|
|
}
|
|
}
|
|
|
|
if (!Builder->BuildSinks && !Builder->HasGeneratedNode)
|
|
Tmp.Add(EntryNode);
|
|
}
|
|
|
|
bool HasAutoGenerated = false;
|
|
|
|
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
|
|
|
|
ExplodedNodeSet Dst;
|
|
|
|
// Set the cleaned state.
|
|
Builder->SetCleanedState(*I == EntryNode ? CleanedState : GetState(*I));
|
|
|
|
// Visit the statement.
|
|
if (CE.asLValue())
|
|
VisitLValue(cast<Expr>(CurrentStmt), *I, Dst);
|
|
else
|
|
Visit(CurrentStmt, *I, Dst);
|
|
|
|
// Do we need to auto-generate a node? We only need to do this to generate
|
|
// a node with a "cleaned" state; GRCoreEngine will actually handle
|
|
// auto-transitions for other cases.
|
|
if (Dst.size() == 1 && *Dst.begin() == EntryNode
|
|
&& !Builder->HasGeneratedNode && !HasAutoGenerated) {
|
|
HasAutoGenerated = true;
|
|
builder.generateNode(CurrentStmt, GetState(EntryNode), *I);
|
|
}
|
|
}
|
|
|
|
// NULL out these variables to cleanup.
|
|
CleanedState = NULL;
|
|
EntryNode = NULL;
|
|
|
|
CurrentStmt = 0;
|
|
|
|
Builder = NULL;
|
|
}
|
|
|
|
void GRExprEngine::Visit(const Stmt* S, ExplodedNode* Pred,
|
|
ExplodedNodeSet& Dst) {
|
|
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
|
|
S->getLocStart(),
|
|
"Error evaluating statement");
|
|
|
|
// FIXME: add metadata to the CFG so that we can disable
|
|
// this check when we KNOW that there is no block-level subexpression.
|
|
// The motivation is that this check requires a hashtable lookup.
|
|
|
|
if (S != CurrentStmt && Pred->getLocationContext()->getCFG()->isBlkExpr(S)) {
|
|
Dst.Add(Pred);
|
|
return;
|
|
}
|
|
|
|
switch (S->getStmtClass()) {
|
|
// C++ stuff we don't support yet.
|
|
case Stmt::CXXBindReferenceExprClass:
|
|
case Stmt::CXXBindTemporaryExprClass:
|
|
case Stmt::CXXCatchStmtClass:
|
|
case Stmt::CXXConstructExprClass:
|
|
case Stmt::CXXDefaultArgExprClass:
|
|
case Stmt::CXXDependentScopeMemberExprClass:
|
|
case Stmt::CXXExprWithTemporariesClass:
|
|
case Stmt::CXXNullPtrLiteralExprClass:
|
|
case Stmt::CXXPseudoDestructorExprClass:
|
|
case Stmt::CXXTemporaryObjectExprClass:
|
|
case Stmt::CXXThrowExprClass:
|
|
case Stmt::CXXTryStmtClass:
|
|
case Stmt::CXXTypeidExprClass:
|
|
case Stmt::CXXUnresolvedConstructExprClass:
|
|
case Stmt::CXXScalarValueInitExprClass:
|
|
case Stmt::DependentScopeDeclRefExprClass:
|
|
case Stmt::UnaryTypeTraitExprClass:
|
|
case Stmt::UnresolvedLookupExprClass:
|
|
case Stmt::UnresolvedMemberExprClass:
|
|
{
|
|
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
|
|
Builder->BuildSinks = true;
|
|
MakeNode(Dst, S, Pred, GetState(Pred));
|
|
break;
|
|
}
|
|
|
|
// Cases that should never be evaluated simply because they shouldn't
|
|
// appear in the CFG.
|
|
case Stmt::BreakStmtClass:
|
|
case Stmt::CaseStmtClass:
|
|
case Stmt::CompoundStmtClass:
|
|
case Stmt::ContinueStmtClass:
|
|
case Stmt::DefaultStmtClass:
|
|
case Stmt::DoStmtClass:
|
|
case Stmt::GotoStmtClass:
|
|
case Stmt::IndirectGotoStmtClass:
|
|
case Stmt::LabelStmtClass:
|
|
case Stmt::NoStmtClass:
|
|
case Stmt::NullStmtClass:
|
|
case Stmt::SwitchCaseClass:
|
|
llvm_unreachable("Stmt should not be in analyzer evaluation loop");
|
|
break;
|
|
|
|
case Stmt::GNUNullExprClass: {
|
|
MakeNode(Dst, S, Pred, GetState(Pred)->BindExpr(S, ValMgr.makeNull()));
|
|
break;
|
|
}
|
|
|
|
// Cases not handled yet; but will handle some day.
|
|
case Stmt::DesignatedInitExprClass:
|
|
case Stmt::ExtVectorElementExprClass:
|
|
case Stmt::ImaginaryLiteralClass:
|
|
case Stmt::ImplicitValueInitExprClass:
|
|
case Stmt::ObjCAtCatchStmtClass:
|
|
case Stmt::ObjCAtFinallyStmtClass:
|
|
case Stmt::ObjCAtSynchronizedStmtClass:
|
|
case Stmt::ObjCAtTryStmtClass:
|
|
case Stmt::ObjCEncodeExprClass:
|
|
case Stmt::ObjCImplicitSetterGetterRefExprClass:
|
|
case Stmt::ObjCIsaExprClass:
|
|
case Stmt::ObjCPropertyRefExprClass:
|
|
case Stmt::ObjCProtocolExprClass:
|
|
case Stmt::ObjCSelectorExprClass:
|
|
case Stmt::ObjCStringLiteralClass:
|
|
case Stmt::ObjCSuperExprClass:
|
|
case Stmt::ParenListExprClass:
|
|
case Stmt::PredefinedExprClass:
|
|
case Stmt::ShuffleVectorExprClass:
|
|
case Stmt::TypesCompatibleExprClass:
|
|
case Stmt::VAArgExprClass:
|
|
// Fall through.
|
|
|
|
// Cases we intentionally don't evaluate, since they don't need
|
|
// to be explicitly evaluated.
|
|
case Stmt::AddrLabelExprClass:
|
|
case Stmt::IntegerLiteralClass:
|
|
case Stmt::CharacterLiteralClass:
|
|
case Stmt::CXXBoolLiteralExprClass:
|
|
case Stmt::FloatingLiteralClass:
|
|
Dst.Add(Pred); // No-op. Simply propagate the current state unchanged.
|
|
break;
|
|
|
|
case Stmt::ArraySubscriptExprClass:
|
|
VisitArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Pred, Dst, false);
|
|
break;
|
|
|
|
case Stmt::AsmStmtClass:
|
|
VisitAsmStmt(cast<AsmStmt>(S), Pred, Dst);
|
|
break;
|
|
|
|
case Stmt::BlockDeclRefExprClass:
|
|
VisitBlockDeclRefExpr(cast<BlockDeclRefExpr>(S), Pred, Dst, false);
|
|
break;
|
|
|
|
case Stmt::BlockExprClass:
|
|
VisitBlockExpr(cast<BlockExpr>(S), Pred, Dst);
|
|
break;
|
|
|
|
case Stmt::BinaryOperatorClass: {
|
|
const BinaryOperator* B = cast<BinaryOperator>(S);
|
|
|
|
if (B->isLogicalOp()) {
|
|
VisitLogicalExpr(B, Pred, Dst);
|
|
break;
|
|
}
|
|
else if (B->getOpcode() == BinaryOperator::Comma) {
|
|
const GRState* state = GetState(Pred);
|
|
MakeNode(Dst, B, Pred, state->BindExpr(B, state->getSVal(B->getRHS())));
|
|
break;
|
|
}
|
|
|
|
if (AMgr.shouldEagerlyAssume() &&
|
|
(B->isRelationalOp() || B->isEqualityOp())) {
|
|
ExplodedNodeSet Tmp;
|
|
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Tmp, false);
|
|
EvalEagerlyAssume(Dst, Tmp, cast<Expr>(S));
|
|
}
|
|
else
|
|
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst, false);
|
|
|
|
break;
|
|
}
|
|
|
|
case Stmt::CallExprClass:
|
|
case Stmt::CXXOperatorCallExprClass: {
|
|
const CallExpr* C = cast<CallExpr>(S);
|
|
VisitCall(C, Pred, C->arg_begin(), C->arg_end(), Dst, false);
|
|
break;
|
|
}
|
|
|
|
case Stmt::CXXMemberCallExprClass: {
|
|
const CXXMemberCallExpr *MCE = cast<CXXMemberCallExpr>(S);
|
|
VisitCXXMemberCallExpr(MCE, Pred, Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::CXXNewExprClass: {
|
|
const CXXNewExpr *NE = cast<CXXNewExpr>(S);
|
|
VisitCXXNewExpr(NE, Pred, Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::CXXDeleteExprClass: {
|
|
const CXXDeleteExpr *CDE = cast<CXXDeleteExpr>(S);
|
|
VisitCXXDeleteExpr(CDE, Pred, Dst);
|
|
break;
|
|
}
|
|
// FIXME: ChooseExpr is really a constant. We need to fix
|
|
// the CFG do not model them as explicit control-flow.
|
|
|
|
case Stmt::ChooseExprClass: { // __builtin_choose_expr
|
|
const ChooseExpr* C = cast<ChooseExpr>(S);
|
|
VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::CompoundAssignOperatorClass:
|
|
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst, false);
|
|
break;
|
|
|
|
case Stmt::CompoundLiteralExprClass:
|
|
VisitCompoundLiteralExpr(cast<CompoundLiteralExpr>(S), Pred, Dst, false);
|
|
break;
|
|
|
|
case Stmt::ConditionalOperatorClass: { // '?' operator
|
|
const ConditionalOperator* C = cast<ConditionalOperator>(S);
|
|
VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::CXXThisExprClass:
|
|
VisitCXXThisExpr(cast<CXXThisExpr>(S), Pred, Dst);
|
|
break;
|
|
|
|
case Stmt::DeclRefExprClass:
|
|
VisitDeclRefExpr(cast<DeclRefExpr>(S), Pred, Dst, false);
|
|
break;
|
|
|
|
case Stmt::DeclStmtClass:
|
|
VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst);
|
|
break;
|
|
|
|
case Stmt::ForStmtClass:
|
|
// This case isn't for branch processing, but for handling the
|
|
// initialization of a condition variable.
|
|
VisitCondInit(cast<ForStmt>(S)->getConditionVariable(), S, Pred, Dst);
|
|
break;
|
|
|
|
case Stmt::ImplicitCastExprClass:
|
|
case Stmt::CStyleCastExprClass:
|
|
case Stmt::CXXStaticCastExprClass:
|
|
case Stmt::CXXDynamicCastExprClass:
|
|
case Stmt::CXXReinterpretCastExprClass:
|
|
case Stmt::CXXConstCastExprClass:
|
|
case Stmt::CXXFunctionalCastExprClass: {
|
|
const CastExpr* C = cast<CastExpr>(S);
|
|
VisitCast(C, C->getSubExpr(), Pred, Dst, false);
|
|
break;
|
|
}
|
|
|
|
case Stmt::IfStmtClass:
|
|
// This case isn't for branch processing, but for handling the
|
|
// initialization of a condition variable.
|
|
VisitCondInit(cast<IfStmt>(S)->getConditionVariable(), S, Pred, Dst);
|
|
break;
|
|
|
|
case Stmt::InitListExprClass:
|
|
VisitInitListExpr(cast<InitListExpr>(S), Pred, Dst);
|
|
break;
|
|
|
|
case Stmt::MemberExprClass:
|
|
VisitMemberExpr(cast<MemberExpr>(S), Pred, Dst, false);
|
|
break;
|
|
|
|
case Stmt::ObjCIvarRefExprClass:
|
|
VisitObjCIvarRefExpr(cast<ObjCIvarRefExpr>(S), Pred, Dst, false);
|
|
break;
|
|
|
|
case Stmt::ObjCForCollectionStmtClass:
|
|
VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S), Pred, Dst);
|
|
break;
|
|
|
|
case Stmt::ObjCMessageExprClass:
|
|
VisitObjCMessageExpr(cast<ObjCMessageExpr>(S), Pred, Dst, false);
|
|
break;
|
|
|
|
case Stmt::ObjCAtThrowStmtClass: {
|
|
// FIXME: This is not complete. We basically treat @throw as
|
|
// an abort.
|
|
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
|
|
Builder->BuildSinks = true;
|
|
MakeNode(Dst, S, Pred, GetState(Pred));
|
|
break;
|
|
}
|
|
|
|
case Stmt::ParenExprClass:
|
|
Visit(cast<ParenExpr>(S)->getSubExpr()->IgnoreParens(), Pred, Dst);
|
|
break;
|
|
|
|
case Stmt::ReturnStmtClass:
|
|
VisitReturnStmt(cast<ReturnStmt>(S), Pred, Dst);
|
|
break;
|
|
|
|
case Stmt::OffsetOfExprClass:
|
|
VisitOffsetOfExpr(cast<OffsetOfExpr>(S), Pred, Dst);
|
|
break;
|
|
|
|
case Stmt::SizeOfAlignOfExprClass:
|
|
VisitSizeOfAlignOfExpr(cast<SizeOfAlignOfExpr>(S), Pred, Dst);
|
|
break;
|
|
|
|
case Stmt::StmtExprClass: {
|
|
const StmtExpr* SE = cast<StmtExpr>(S);
|
|
|
|
if (SE->getSubStmt()->body_empty()) {
|
|
// Empty statement expression.
|
|
assert(SE->getType() == getContext().VoidTy
|
|
&& "Empty statement expression must have void type.");
|
|
Dst.Add(Pred);
|
|
break;
|
|
}
|
|
|
|
if (Expr* LastExpr = dyn_cast<Expr>(*SE->getSubStmt()->body_rbegin())) {
|
|
const GRState* state = GetState(Pred);
|
|
MakeNode(Dst, SE, Pred, state->BindExpr(SE, state->getSVal(LastExpr)));
|
|
}
|
|
else
|
|
Dst.Add(Pred);
|
|
|
|
break;
|
|
}
|
|
|
|
case Stmt::StringLiteralClass:
|
|
VisitLValue(cast<StringLiteral>(S), Pred, Dst);
|
|
break;
|
|
|
|
case Stmt::SwitchStmtClass:
|
|
// This case isn't for branch processing, but for handling the
|
|
// initialization of a condition variable.
|
|
VisitCondInit(cast<SwitchStmt>(S)->getConditionVariable(), S, Pred, Dst);
|
|
break;
|
|
|
|
case Stmt::UnaryOperatorClass: {
|
|
const UnaryOperator *U = cast<UnaryOperator>(S);
|
|
if (AMgr.shouldEagerlyAssume()&&(U->getOpcode() == UnaryOperator::LNot)) {
|
|
ExplodedNodeSet Tmp;
|
|
VisitUnaryOperator(U, Pred, Tmp, false);
|
|
EvalEagerlyAssume(Dst, Tmp, U);
|
|
}
|
|
else
|
|
VisitUnaryOperator(U, Pred, Dst, false);
|
|
break;
|
|
}
|
|
|
|
case Stmt::WhileStmtClass:
|
|
// This case isn't for branch processing, but for handling the
|
|
// initialization of a condition variable.
|
|
VisitCondInit(cast<WhileStmt>(S)->getConditionVariable(), S, Pred, Dst);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void GRExprEngine::VisitLValue(const Expr* Ex, ExplodedNode* Pred,
|
|
ExplodedNodeSet& Dst) {
|
|
|
|
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
|
|
Ex->getLocStart(),
|
|
"Error evaluating statement");
|
|
|
|
|
|
Ex = Ex->IgnoreParens();
|
|
|
|
if (Ex != CurrentStmt && Pred->getLocationContext()->getCFG()->isBlkExpr(Ex)){
|
|
Dst.Add(Pred);
|
|
return;
|
|
}
|
|
|
|
switch (Ex->getStmtClass()) {
|
|
// C++ stuff we don't support yet.
|
|
case Stmt::CXXExprWithTemporariesClass:
|
|
case Stmt::CXXMemberCallExprClass:
|
|
case Stmt::CXXScalarValueInitExprClass: {
|
|
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
|
|
Builder->BuildSinks = true;
|
|
MakeNode(Dst, Ex, Pred, GetState(Pred));
|
|
break;
|
|
}
|
|
|
|
case Stmt::ArraySubscriptExprClass:
|
|
VisitArraySubscriptExpr(cast<ArraySubscriptExpr>(Ex), Pred, Dst, true);
|
|
return;
|
|
|
|
case Stmt::BinaryOperatorClass:
|
|
case Stmt::CompoundAssignOperatorClass:
|
|
VisitBinaryOperator(cast<BinaryOperator>(Ex), Pred, Dst, true);
|
|
return;
|
|
|
|
case Stmt::BlockDeclRefExprClass:
|
|
VisitBlockDeclRefExpr(cast<BlockDeclRefExpr>(Ex), Pred, Dst, true);
|
|
return;
|
|
|
|
case Stmt::CallExprClass:
|
|
case Stmt::CXXOperatorCallExprClass: {
|
|
const CallExpr *C = cast<CallExpr>(Ex);
|
|
assert(CalleeReturnsReferenceOrRecord(C));
|
|
VisitCall(C, Pred, C->arg_begin(), C->arg_end(), Dst, true);
|
|
break;
|
|
}
|
|
|
|
case Stmt::CompoundLiteralExprClass:
|
|
VisitCompoundLiteralExpr(cast<CompoundLiteralExpr>(Ex), Pred, Dst, true);
|
|
return;
|
|
|
|
case Stmt::DeclRefExprClass:
|
|
VisitDeclRefExpr(cast<DeclRefExpr>(Ex), Pred, Dst, true);
|
|
return;
|
|
|
|
case Stmt::ImplicitCastExprClass:
|
|
case Stmt::CStyleCastExprClass: {
|
|
const CastExpr *C = cast<CastExpr>(Ex);
|
|
QualType T = Ex->getType();
|
|
VisitCast(C, C->getSubExpr(), Pred, Dst, true);
|
|
break;
|
|
}
|
|
|
|
case Stmt::MemberExprClass:
|
|
VisitMemberExpr(cast<MemberExpr>(Ex), Pred, Dst, true);
|
|
return;
|
|
|
|
case Stmt::ObjCIvarRefExprClass:
|
|
VisitObjCIvarRefExpr(cast<ObjCIvarRefExpr>(Ex), Pred, Dst, true);
|
|
return;
|
|
|
|
case Stmt::ObjCMessageExprClass: {
|
|
const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(Ex);
|
|
assert(ReceiverReturnsReferenceOrRecord(ME));
|
|
VisitObjCMessageExpr(ME, Pred, Dst, true);
|
|
return;
|
|
}
|
|
|
|
case Stmt::ObjCIsaExprClass:
|
|
// FIXME: Do something more intelligent with 'x->isa = ...'.
|
|
// For now, just ignore the assignment.
|
|
return;
|
|
|
|
case Stmt::ObjCPropertyRefExprClass:
|
|
case Stmt::ObjCImplicitSetterGetterRefExprClass:
|
|
// FIXME: Property assignments are lvalues, but not really "locations".
|
|
// e.g.: self.x = something;
|
|
// Here the "self.x" really can translate to a method call (setter) when
|
|
// the assignment is made. Moreover, the entire assignment expression
|
|
// evaluate to whatever "something" is, not calling the "getter" for
|
|
// the property (which would make sense since it can have side effects).
|
|
// We'll probably treat this as a location, but not one that we can
|
|
// take the address of. Perhaps we need a new SVal class for cases
|
|
// like thsis?
|
|
// Note that we have a similar problem for bitfields, since they don't
|
|
// have "locations" in the sense that we can take their address.
|
|
Dst.Add(Pred);
|
|
return;
|
|
|
|
case Stmt::StringLiteralClass: {
|
|
const GRState* state = GetState(Pred);
|
|
SVal V = state->getLValue(cast<StringLiteral>(Ex));
|
|
MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V));
|
|
return;
|
|
}
|
|
|
|
case Stmt::UnaryOperatorClass:
|
|
VisitUnaryOperator(cast<UnaryOperator>(Ex), Pred, Dst, true);
|
|
return;
|
|
|
|
// In C++, binding an rvalue to a reference requires to create an object.
|
|
case Stmt::CXXBoolLiteralExprClass:
|
|
case Stmt::IntegerLiteralClass:
|
|
CreateCXXTemporaryObject(Ex, Pred, Dst);
|
|
return;
|
|
|
|
default: {
|
|
// Arbitrary subexpressions can return aggregate temporaries that
|
|
// can be used in a lvalue context. We need to enhance our support
|
|
// of such temporaries in both the environment and the store, so right
|
|
// now we just do a regular visit.
|
|
|
|
// NOTE: Do not use 'isAggregateType()' here as CXXRecordDecls that
|
|
// are non-pod are not aggregates.
|
|
assert ((isa<RecordType>(Ex->getType().getDesugaredType()) ||
|
|
isa<ArrayType>(Ex->getType().getDesugaredType())) &&
|
|
"Other kinds of expressions with non-aggregate/union/class types"
|
|
" do not have lvalues.");
|
|
|
|
Visit(Ex, Pred, Dst);
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Block entrance. (Update counters).
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool GRExprEngine::ProcessBlockEntrance(const CFGBlock* B,
|
|
const ExplodedNode *Pred,
|
|
GRBlockCounter BC) {
|
|
return BC.getNumVisited(Pred->getLocationContext()->getCurrentStackFrame(),
|
|
B->getBlockID()) < AMgr.getMaxLoop();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Generic node creation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ExplodedNode* GRExprEngine::MakeNode(ExplodedNodeSet& Dst, const Stmt* S,
|
|
ExplodedNode* Pred, const GRState* St,
|
|
ProgramPoint::Kind K, const void *tag) {
|
|
assert (Builder && "GRStmtNodeBuilder not present.");
|
|
SaveAndRestore<const void*> OldTag(Builder->Tag);
|
|
Builder->Tag = tag;
|
|
return Builder->MakeNode(Dst, S, Pred, St, K);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Branch processing.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
const GRState* GRExprEngine::MarkBranch(const GRState* state,
|
|
const Stmt* Terminator,
|
|
bool branchTaken) {
|
|
|
|
switch (Terminator->getStmtClass()) {
|
|
default:
|
|
return state;
|
|
|
|
case Stmt::BinaryOperatorClass: { // '&&' and '||'
|
|
|
|
const BinaryOperator* B = cast<BinaryOperator>(Terminator);
|
|
BinaryOperator::Opcode Op = B->getOpcode();
|
|
|
|
assert (Op == BinaryOperator::LAnd || Op == BinaryOperator::LOr);
|
|
|
|
// For &&, if we take the true branch, then the value of the whole
|
|
// expression is that of the RHS expression.
|
|
//
|
|
// For ||, if we take the false branch, then the value of the whole
|
|
// expression is that of the RHS expression.
|
|
|
|
const Expr* Ex = (Op == BinaryOperator::LAnd && branchTaken) ||
|
|
(Op == BinaryOperator::LOr && !branchTaken)
|
|
? B->getRHS() : B->getLHS();
|
|
|
|
return state->BindExpr(B, UndefinedVal(Ex));
|
|
}
|
|
|
|
case Stmt::ConditionalOperatorClass: { // ?:
|
|
|
|
const ConditionalOperator* C = cast<ConditionalOperator>(Terminator);
|
|
|
|
// For ?, if branchTaken == true then the value is either the LHS or
|
|
// the condition itself. (GNU extension).
|
|
|
|
const Expr* Ex;
|
|
|
|
if (branchTaken)
|
|
Ex = C->getLHS() ? C->getLHS() : C->getCond();
|
|
else
|
|
Ex = C->getRHS();
|
|
|
|
return state->BindExpr(C, UndefinedVal(Ex));
|
|
}
|
|
|
|
case Stmt::ChooseExprClass: { // ?:
|
|
|
|
const ChooseExpr* C = cast<ChooseExpr>(Terminator);
|
|
|
|
const Expr* Ex = branchTaken ? C->getLHS() : C->getRHS();
|
|
return state->BindExpr(C, UndefinedVal(Ex));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// RecoverCastedSymbol - A helper function for ProcessBranch that is used
|
|
/// to try to recover some path-sensitivity for casts of symbolic
|
|
/// integers that promote their values (which are currently not tracked well).
|
|
/// This function returns the SVal bound to Condition->IgnoreCasts if all the
|
|
// cast(s) did was sign-extend the original value.
|
|
static SVal RecoverCastedSymbol(GRStateManager& StateMgr, const GRState* state,
|
|
const Stmt* Condition, ASTContext& Ctx) {
|
|
|
|
const Expr *Ex = dyn_cast<Expr>(Condition);
|
|
if (!Ex)
|
|
return UnknownVal();
|
|
|
|
uint64_t bits = 0;
|
|
bool bitsInit = false;
|
|
|
|
while (const CastExpr *CE = dyn_cast<CastExpr>(Ex)) {
|
|
QualType T = CE->getType();
|
|
|
|
if (!T->isIntegerType())
|
|
return UnknownVal();
|
|
|
|
uint64_t newBits = Ctx.getTypeSize(T);
|
|
if (!bitsInit || newBits < bits) {
|
|
bitsInit = true;
|
|
bits = newBits;
|
|
}
|
|
|
|
Ex = CE->getSubExpr();
|
|
}
|
|
|
|
// We reached a non-cast. Is it a symbolic value?
|
|
QualType T = Ex->getType();
|
|
|
|
if (!bitsInit || !T->isIntegerType() || Ctx.getTypeSize(T) > bits)
|
|
return UnknownVal();
|
|
|
|
return state->getSVal(Ex);
|
|
}
|
|
|
|
void GRExprEngine::ProcessBranch(const Stmt* Condition, const Stmt* Term,
|
|
GRBranchNodeBuilder& builder) {
|
|
|
|
// Check for NULL conditions; e.g. "for(;;)"
|
|
if (!Condition) {
|
|
builder.markInfeasible(false);
|
|
return;
|
|
}
|
|
|
|
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
|
|
Condition->getLocStart(),
|
|
"Error evaluating branch");
|
|
|
|
for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end();I!=E;++I) {
|
|
void *tag = I->first;
|
|
Checker *checker = I->second;
|
|
checker->VisitBranchCondition(builder, *this, Condition, tag);
|
|
}
|
|
|
|
// If the branch condition is undefined, return;
|
|
if (!builder.isFeasible(true) && !builder.isFeasible(false))
|
|
return;
|
|
|
|
const GRState* PrevState = builder.getState();
|
|
SVal X = PrevState->getSVal(Condition);
|
|
|
|
if (X.isUnknown()) {
|
|
// Give it a chance to recover from unknown.
|
|
if (const Expr *Ex = dyn_cast<Expr>(Condition)) {
|
|
if (Ex->getType()->isIntegerType()) {
|
|
// Try to recover some path-sensitivity. Right now casts of symbolic
|
|
// integers that promote their values are currently not tracked well.
|
|
// If 'Condition' is such an expression, try and recover the
|
|
// underlying value and use that instead.
|
|
SVal recovered = RecoverCastedSymbol(getStateManager(),
|
|
builder.getState(), Condition,
|
|
getContext());
|
|
|
|
if (!recovered.isUnknown()) {
|
|
X = recovered;
|
|
}
|
|
}
|
|
}
|
|
// If the condition is still unknown, give up.
|
|
if (X.isUnknown()) {
|
|
builder.generateNode(MarkBranch(PrevState, Term, true), true);
|
|
builder.generateNode(MarkBranch(PrevState, Term, false), false);
|
|
return;
|
|
}
|
|
}
|
|
|
|
DefinedSVal V = cast<DefinedSVal>(X);
|
|
|
|
// Process the true branch.
|
|
if (builder.isFeasible(true)) {
|
|
if (const GRState *state = PrevState->Assume(V, true))
|
|
builder.generateNode(MarkBranch(state, Term, true), true);
|
|
else
|
|
builder.markInfeasible(true);
|
|
}
|
|
|
|
// Process the false branch.
|
|
if (builder.isFeasible(false)) {
|
|
if (const GRState *state = PrevState->Assume(V, false))
|
|
builder.generateNode(MarkBranch(state, Term, false), false);
|
|
else
|
|
builder.markInfeasible(false);
|
|
}
|
|
}
|
|
|
|
/// ProcessIndirectGoto - Called by GRCoreEngine. Used to generate successor
|
|
/// nodes by processing the 'effects' of a computed goto jump.
|
|
void GRExprEngine::ProcessIndirectGoto(GRIndirectGotoNodeBuilder& builder) {
|
|
|
|
const GRState *state = builder.getState();
|
|
SVal V = state->getSVal(builder.getTarget());
|
|
|
|
// Three possibilities:
|
|
//
|
|
// (1) We know the computed label.
|
|
// (2) The label is NULL (or some other constant), or Undefined.
|
|
// (3) We have no clue about the label. Dispatch to all targets.
|
|
//
|
|
|
|
typedef GRIndirectGotoNodeBuilder::iterator iterator;
|
|
|
|
if (isa<loc::GotoLabel>(V)) {
|
|
const LabelStmt* L = cast<loc::GotoLabel>(V).getLabel();
|
|
|
|
for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) {
|
|
if (I.getLabel() == L) {
|
|
builder.generateNode(I, state);
|
|
return;
|
|
}
|
|
}
|
|
|
|
assert (false && "No block with label.");
|
|
return;
|
|
}
|
|
|
|
if (isa<loc::ConcreteInt>(V) || isa<UndefinedVal>(V)) {
|
|
// Dispatch to the first target and mark it as a sink.
|
|
//ExplodedNode* N = builder.generateNode(builder.begin(), state, true);
|
|
// FIXME: add checker visit.
|
|
// UndefBranches.insert(N);
|
|
return;
|
|
}
|
|
|
|
// This is really a catch-all. We don't support symbolics yet.
|
|
// FIXME: Implement dispatch for symbolic pointers.
|
|
|
|
for (iterator I=builder.begin(), E=builder.end(); I != E; ++I)
|
|
builder.generateNode(I, state);
|
|
}
|
|
|
|
|
|
void GRExprEngine::VisitGuardedExpr(const Expr* Ex, const Expr* L,
|
|
const Expr* R,
|
|
ExplodedNode* Pred, ExplodedNodeSet& Dst) {
|
|
|
|
assert(Ex == CurrentStmt &&
|
|
Pred->getLocationContext()->getCFG()->isBlkExpr(Ex));
|
|
|
|
const GRState* state = GetState(Pred);
|
|
SVal X = state->getSVal(Ex);
|
|
|
|
assert (X.isUndef());
|
|
|
|
const Expr *SE = (Expr*) cast<UndefinedVal>(X).getData();
|
|
assert(SE);
|
|
X = state->getSVal(SE);
|
|
|
|
// Make sure that we invalidate the previous binding.
|
|
MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, X, true));
|
|
}
|
|
|
|
/// ProcessEndPath - Called by GRCoreEngine. Used to generate end-of-path
|
|
/// nodes when the control reaches the end of a function.
|
|
void GRExprEngine::ProcessEndPath(GREndPathNodeBuilder& builder) {
|
|
getTF().EvalEndPath(*this, builder);
|
|
StateMgr.EndPath(builder.getState());
|
|
for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end(); I!=E;++I){
|
|
void *tag = I->first;
|
|
Checker *checker = I->second;
|
|
checker->EvalEndPath(builder, tag, *this);
|
|
}
|
|
}
|
|
|
|
/// ProcessSwitch - Called by GRCoreEngine. Used to generate successor
|
|
/// nodes by processing the 'effects' of a switch statement.
|
|
void GRExprEngine::ProcessSwitch(GRSwitchNodeBuilder& builder) {
|
|
typedef GRSwitchNodeBuilder::iterator iterator;
|
|
const GRState* state = builder.getState();
|
|
const Expr* CondE = builder.getCondition();
|
|
SVal CondV_untested = state->getSVal(CondE);
|
|
|
|
if (CondV_untested.isUndef()) {
|
|
//ExplodedNode* N = builder.generateDefaultCaseNode(state, true);
|
|
// FIXME: add checker
|
|
//UndefBranches.insert(N);
|
|
|
|
return;
|
|
}
|
|
DefinedOrUnknownSVal CondV = cast<DefinedOrUnknownSVal>(CondV_untested);
|
|
|
|
const GRState *DefaultSt = state;
|
|
bool defaultIsFeasible = false;
|
|
|
|
for (iterator I = builder.begin(), EI = builder.end(); I != EI; ++I) {
|
|
const CaseStmt* Case = cast<CaseStmt>(I.getCase());
|
|
|
|
// Evaluate the LHS of the case value.
|
|
Expr::EvalResult V1;
|
|
bool b = Case->getLHS()->Evaluate(V1, getContext());
|
|
|
|
// Sanity checks. These go away in Release builds.
|
|
assert(b && V1.Val.isInt() && !V1.HasSideEffects
|
|
&& "Case condition must evaluate to an integer constant.");
|
|
b = b; // silence unused variable warning
|
|
assert(V1.Val.getInt().getBitWidth() ==
|
|
getContext().getTypeSize(CondE->getType()));
|
|
|
|
// Get the RHS of the case, if it exists.
|
|
Expr::EvalResult V2;
|
|
|
|
if (const Expr* E = Case->getRHS()) {
|
|
b = E->Evaluate(V2, getContext());
|
|
assert(b && V2.Val.isInt() && !V2.HasSideEffects
|
|
&& "Case condition must evaluate to an integer constant.");
|
|
b = b; // silence unused variable warning
|
|
}
|
|
else
|
|
V2 = V1;
|
|
|
|
// FIXME: Eventually we should replace the logic below with a range
|
|
// comparison, rather than concretize the values within the range.
|
|
// This should be easy once we have "ranges" for NonLVals.
|
|
|
|
do {
|
|
nonloc::ConcreteInt CaseVal(getBasicVals().getValue(V1.Val.getInt()));
|
|
DefinedOrUnknownSVal Res = SVator.EvalEQ(DefaultSt ? DefaultSt : state,
|
|
CondV, CaseVal);
|
|
|
|
// Now "assume" that the case matches.
|
|
if (const GRState* stateNew = state->Assume(Res, true)) {
|
|
builder.generateCaseStmtNode(I, stateNew);
|
|
|
|
// If CondV evaluates to a constant, then we know that this
|
|
// is the *only* case that we can take, so stop evaluating the
|
|
// others.
|
|
if (isa<nonloc::ConcreteInt>(CondV))
|
|
return;
|
|
}
|
|
|
|
// Now "assume" that the case doesn't match. Add this state
|
|
// to the default state (if it is feasible).
|
|
if (DefaultSt) {
|
|
if (const GRState *stateNew = DefaultSt->Assume(Res, false)) {
|
|
defaultIsFeasible = true;
|
|
DefaultSt = stateNew;
|
|
}
|
|
else {
|
|
defaultIsFeasible = false;
|
|
DefaultSt = NULL;
|
|
}
|
|
}
|
|
|
|
// Concretize the next value in the range.
|
|
if (V1.Val.getInt() == V2.Val.getInt())
|
|
break;
|
|
|
|
++V1.Val.getInt();
|
|
assert (V1.Val.getInt() <= V2.Val.getInt());
|
|
|
|
} while (true);
|
|
}
|
|
|
|
// If we reach here, than we know that the default branch is
|
|
// possible.
|
|
if (defaultIsFeasible) builder.generateDefaultCaseNode(DefaultSt);
|
|
}
|
|
|
|
void GRExprEngine::ProcessCallEnter(GRCallEnterNodeBuilder &B) {
|
|
const StackFrameContext *LocCtx
|
|
= AMgr.getStackFrame(const_cast<AnalysisContext *>(B.getCalleeContext()),
|
|
B.getLocationContext(),
|
|
B.getCallExpr(),
|
|
B.getBlock(),
|
|
B.getIndex());
|
|
|
|
const GRState *state = B.getState();
|
|
state = getStoreManager().EnterStackFrame(state, LocCtx);
|
|
|
|
B.GenerateNode(state, LocCtx);
|
|
}
|
|
|
|
void GRExprEngine::ProcessCallExit(GRCallExitNodeBuilder &B) {
|
|
const GRState *state = B.getState();
|
|
const ExplodedNode *Pred = B.getPredecessor();
|
|
const StackFrameContext *LocCtx =
|
|
cast<StackFrameContext>(Pred->getLocationContext());
|
|
const Stmt *CE = LocCtx->getCallSite();
|
|
|
|
// If the callee returns an expression, bind its value to CallExpr.
|
|
const Stmt *ReturnedExpr = state->get<ReturnExpr>();
|
|
if (ReturnedExpr) {
|
|
SVal RetVal = state->getSVal(ReturnedExpr);
|
|
state = state->BindExpr(CE, RetVal);
|
|
// Clear the return expr GDM.
|
|
state = state->remove<ReturnExpr>();
|
|
}
|
|
|
|
// Bind the constructed object value to CXXConstructExpr.
|
|
if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(CE)) {
|
|
const CXXThisRegion *ThisR = getCXXThisRegion(CCE->getConstructor(),LocCtx);
|
|
// We might not have 'this' region in the binding if we didn't inline
|
|
// the ctor call.
|
|
SVal ThisV = state->getSVal(ThisR);
|
|
loc::MemRegionVal *V = dyn_cast<loc::MemRegionVal>(&ThisV);
|
|
if (V) {
|
|
SVal ObjVal = state->getSVal(V->getRegion());
|
|
assert(isa<nonloc::LazyCompoundVal>(ObjVal));
|
|
state = state->BindExpr(CCE, ObjVal);
|
|
}
|
|
}
|
|
|
|
B.GenerateNode(state);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Transfer functions: logical operations ('&&', '||').
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void GRExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode* Pred,
|
|
ExplodedNodeSet& Dst) {
|
|
|
|
assert(B->getOpcode() == BinaryOperator::LAnd ||
|
|
B->getOpcode() == BinaryOperator::LOr);
|
|
|
|
assert(B==CurrentStmt && Pred->getLocationContext()->getCFG()->isBlkExpr(B));
|
|
|
|
const GRState* state = GetState(Pred);
|
|
SVal X = state->getSVal(B);
|
|
assert(X.isUndef());
|
|
|
|
const Expr *Ex = (const Expr*) cast<UndefinedVal>(X).getData();
|
|
assert(Ex);
|
|
|
|
if (Ex == B->getRHS()) {
|
|
X = state->getSVal(Ex);
|
|
|
|
// Handle undefined values.
|
|
if (X.isUndef()) {
|
|
MakeNode(Dst, B, Pred, state->BindExpr(B, X));
|
|
return;
|
|
}
|
|
|
|
DefinedOrUnknownSVal XD = cast<DefinedOrUnknownSVal>(X);
|
|
|
|
// We took the RHS. Because the value of the '&&' or '||' expression must
|
|
// evaluate to 0 or 1, we must assume the value of the RHS evaluates to 0
|
|
// or 1. Alternatively, we could take a lazy approach, and calculate this
|
|
// value later when necessary. We don't have the machinery in place for
|
|
// this right now, and since most logical expressions are used for branches,
|
|
// the payoff is not likely to be large. Instead, we do eager evaluation.
|
|
if (const GRState *newState = state->Assume(XD, true))
|
|
MakeNode(Dst, B, Pred,
|
|
newState->BindExpr(B, ValMgr.makeIntVal(1U, B->getType())));
|
|
|
|
if (const GRState *newState = state->Assume(XD, false))
|
|
MakeNode(Dst, B, Pred,
|
|
newState->BindExpr(B, ValMgr.makeIntVal(0U, B->getType())));
|
|
}
|
|
else {
|
|
// We took the LHS expression. Depending on whether we are '&&' or
|
|
// '||' we know what the value of the expression is via properties of
|
|
// the short-circuiting.
|
|
X = ValMgr.makeIntVal(B->getOpcode() == BinaryOperator::LAnd ? 0U : 1U,
|
|
B->getType());
|
|
MakeNode(Dst, B, Pred, state->BindExpr(B, X));
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Transfer functions: Loads and stores.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void GRExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
|
|
ExplodedNodeSet Tmp;
|
|
|
|
CanQualType T = getContext().getCanonicalType(BE->getType());
|
|
SVal V = ValMgr.getBlockPointer(BE->getBlockDecl(), T,
|
|
Pred->getLocationContext());
|
|
|
|
MakeNode(Tmp, BE, Pred, GetState(Pred)->BindExpr(BE, V),
|
|
ProgramPoint::PostLValueKind);
|
|
|
|
// Post-visit the BlockExpr.
|
|
CheckerVisit(BE, Dst, Tmp, false);
|
|
}
|
|
|
|
void GRExprEngine::VisitDeclRefExpr(const DeclRefExpr *Ex, ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst, bool asLValue) {
|
|
VisitCommonDeclRefExpr(Ex, Ex->getDecl(), Pred, Dst, asLValue);
|
|
}
|
|
|
|
void GRExprEngine::VisitBlockDeclRefExpr(const BlockDeclRefExpr *Ex,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst, bool asLValue) {
|
|
VisitCommonDeclRefExpr(Ex, Ex->getDecl(), Pred, Dst, asLValue);
|
|
}
|
|
|
|
void GRExprEngine::VisitCommonDeclRefExpr(const Expr *Ex, const NamedDecl *D,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst, bool asLValue) {
|
|
|
|
const GRState *state = GetState(Pred);
|
|
|
|
if (const VarDecl* VD = dyn_cast<VarDecl>(D)) {
|
|
|
|
SVal V = state->getLValue(VD, Pred->getLocationContext());
|
|
|
|
if (asLValue) {
|
|
// For references, the 'lvalue' is the pointer address stored in the
|
|
// reference region.
|
|
if (VD->getType()->isReferenceType()) {
|
|
if (const MemRegion *R = V.getAsRegion())
|
|
V = state->getSVal(R);
|
|
else
|
|
V = UnknownVal();
|
|
}
|
|
|
|
MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V),
|
|
ProgramPoint::PostLValueKind);
|
|
}
|
|
else
|
|
EvalLoad(Dst, Ex, Pred, state, V);
|
|
|
|
return;
|
|
} else if (const EnumConstantDecl* ED = dyn_cast<EnumConstantDecl>(D)) {
|
|
assert(!asLValue && "EnumConstantDecl does not have lvalue.");
|
|
|
|
SVal V = ValMgr.makeIntVal(ED->getInitVal());
|
|
MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V));
|
|
return;
|
|
|
|
} else if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(D)) {
|
|
// This code is valid regardless of the value of 'isLValue'.
|
|
SVal V = ValMgr.getFunctionPointer(FD);
|
|
MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V),
|
|
ProgramPoint::PostLValueKind);
|
|
return;
|
|
}
|
|
|
|
assert (false &&
|
|
"ValueDecl support for this ValueDecl not implemented.");
|
|
}
|
|
|
|
/// VisitArraySubscriptExpr - Transfer function for array accesses
|
|
void GRExprEngine::VisitArraySubscriptExpr(const ArraySubscriptExpr* A,
|
|
ExplodedNode* Pred,
|
|
ExplodedNodeSet& Dst, bool asLValue){
|
|
|
|
const Expr* Base = A->getBase()->IgnoreParens();
|
|
const Expr* Idx = A->getIdx()->IgnoreParens();
|
|
ExplodedNodeSet Tmp;
|
|
|
|
if (Base->getType()->isVectorType()) {
|
|
// For vector types get its lvalue.
|
|
// FIXME: This may not be correct. Is the rvalue of a vector its location?
|
|
// In fact, I think this is just a hack. We need to get the right
|
|
// semantics.
|
|
VisitLValue(Base, Pred, Tmp);
|
|
}
|
|
else
|
|
Visit(Base, Pred, Tmp); // Get Base's rvalue, which should be an LocVal.
|
|
|
|
for (ExplodedNodeSet::iterator I1=Tmp.begin(), E1=Tmp.end(); I1!=E1; ++I1) {
|
|
ExplodedNodeSet Tmp2;
|
|
Visit(Idx, *I1, Tmp2); // Evaluate the index.
|
|
|
|
ExplodedNodeSet Tmp3;
|
|
CheckerVisit(A, Tmp3, Tmp2, true);
|
|
|
|
for (ExplodedNodeSet::iterator I2=Tmp3.begin(),E2=Tmp3.end();I2!=E2; ++I2) {
|
|
const GRState* state = GetState(*I2);
|
|
SVal V = state->getLValue(A->getType(), state->getSVal(Idx),
|
|
state->getSVal(Base));
|
|
|
|
if (asLValue)
|
|
MakeNode(Dst, A, *I2, state->BindExpr(A, V),
|
|
ProgramPoint::PostLValueKind);
|
|
else
|
|
EvalLoad(Dst, A, *I2, state, V);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// VisitMemberExpr - Transfer function for member expressions.
|
|
void GRExprEngine::VisitMemberExpr(const MemberExpr* M, ExplodedNode* Pred,
|
|
ExplodedNodeSet& Dst, bool asLValue) {
|
|
|
|
Expr* Base = M->getBase()->IgnoreParens();
|
|
ExplodedNodeSet Tmp;
|
|
|
|
if (M->isArrow())
|
|
Visit(Base, Pred, Tmp); // p->f = ... or ... = p->f
|
|
else
|
|
VisitLValue(Base, Pred, Tmp); // x.f = ... or ... = x.f
|
|
|
|
FieldDecl *Field = dyn_cast<FieldDecl>(M->getMemberDecl());
|
|
if (!Field) // FIXME: skipping member expressions for non-fields
|
|
return;
|
|
|
|
for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; ++I) {
|
|
const GRState* state = GetState(*I);
|
|
// FIXME: Should we insert some assumption logic in here to determine
|
|
// if "Base" is a valid piece of memory? Before we put this assumption
|
|
// later when using FieldOffset lvals (which we no longer have).
|
|
SVal L = state->getLValue(Field, state->getSVal(Base));
|
|
|
|
if (asLValue)
|
|
MakeNode(Dst, M, *I, state->BindExpr(M, L), ProgramPoint::PostLValueKind);
|
|
else
|
|
EvalLoad(Dst, M, *I, state, L);
|
|
}
|
|
}
|
|
|
|
/// EvalBind - Handle the semantics of binding a value to a specific location.
|
|
/// This method is used by EvalStore and (soon) VisitDeclStmt, and others.
|
|
void GRExprEngine::EvalBind(ExplodedNodeSet& Dst, const Stmt *AssignE,
|
|
const Stmt* StoreE, ExplodedNode* Pred,
|
|
const GRState* state, SVal location, SVal Val,
|
|
bool atDeclInit) {
|
|
|
|
|
|
// Do a previsit of the bind.
|
|
ExplodedNodeSet CheckedSet, Src;
|
|
Src.Add(Pred);
|
|
CheckerVisitBind(AssignE, StoreE, CheckedSet, Src, location, Val, true);
|
|
|
|
for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
|
|
I!=E; ++I) {
|
|
|
|
if (Pred != *I)
|
|
state = GetState(*I);
|
|
|
|
const GRState* newState = 0;
|
|
|
|
if (atDeclInit) {
|
|
const VarRegion *VR =
|
|
cast<VarRegion>(cast<loc::MemRegionVal>(location).getRegion());
|
|
|
|
newState = state->bindDecl(VR, Val);
|
|
}
|
|
else {
|
|
if (location.isUnknown()) {
|
|
// We know that the new state will be the same as the old state since
|
|
// the location of the binding is "unknown". Consequently, there
|
|
// is no reason to just create a new node.
|
|
newState = state;
|
|
}
|
|
else {
|
|
// We are binding to a value other than 'unknown'. Perform the binding
|
|
// using the StoreManager.
|
|
newState = state->bindLoc(cast<Loc>(location), Val);
|
|
}
|
|
}
|
|
|
|
// The next thing to do is check if the GRTransferFuncs object wants to
|
|
// update the state based on the new binding. If the GRTransferFunc object
|
|
// doesn't do anything, just auto-propagate the current state.
|
|
GRStmtNodeBuilderRef BuilderRef(Dst, *Builder, *this, *I, newState, StoreE,
|
|
newState != state);
|
|
|
|
getTF().EvalBind(BuilderRef, location, Val);
|
|
}
|
|
}
|
|
|
|
/// EvalStore - Handle the semantics of a store via an assignment.
|
|
/// @param Dst The node set to store generated state nodes
|
|
/// @param Ex The expression representing the location of the store
|
|
/// @param state The current simulation state
|
|
/// @param location The location to store the value
|
|
/// @param Val The value to be stored
|
|
void GRExprEngine::EvalStore(ExplodedNodeSet& Dst, const Expr *AssignE,
|
|
const Expr* StoreE,
|
|
ExplodedNode* Pred,
|
|
const GRState* state, SVal location, SVal Val,
|
|
const void *tag) {
|
|
|
|
assert(Builder && "GRStmtNodeBuilder must be defined.");
|
|
|
|
// Evaluate the location (checks for bad dereferences).
|
|
ExplodedNodeSet Tmp;
|
|
EvalLocation(Tmp, StoreE, Pred, state, location, tag, false);
|
|
|
|
if (Tmp.empty())
|
|
return;
|
|
|
|
assert(!location.isUndef());
|
|
|
|
SaveAndRestore<ProgramPoint::Kind> OldSPointKind(Builder->PointKind,
|
|
ProgramPoint::PostStoreKind);
|
|
SaveAndRestore<const void*> OldTag(Builder->Tag, tag);
|
|
|
|
// Proceed with the store.
|
|
for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI)
|
|
EvalBind(Dst, AssignE, StoreE, *NI, GetState(*NI), location, Val);
|
|
}
|
|
|
|
void GRExprEngine::EvalLoad(ExplodedNodeSet& Dst, const Expr *Ex,
|
|
ExplodedNode* Pred,
|
|
const GRState* state, SVal location,
|
|
const void *tag, QualType LoadTy) {
|
|
|
|
// Are we loading from a region? This actually results in two loads; one
|
|
// to fetch the address of the referenced value and one to fetch the
|
|
// referenced value.
|
|
if (const TypedRegion *TR =
|
|
dyn_cast_or_null<TypedRegion>(location.getAsRegion())) {
|
|
|
|
QualType ValTy = TR->getValueType(getContext());
|
|
if (const ReferenceType *RT = ValTy->getAs<ReferenceType>()) {
|
|
static int loadReferenceTag = 0;
|
|
ExplodedNodeSet Tmp;
|
|
EvalLoadCommon(Tmp, Ex, Pred, state, location, &loadReferenceTag,
|
|
getContext().getPointerType(RT->getPointeeType()));
|
|
|
|
// Perform the load from the referenced value.
|
|
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end() ; I!=E; ++I) {
|
|
state = GetState(*I);
|
|
location = state->getSVal(Ex);
|
|
EvalLoadCommon(Dst, Ex, *I, state, location, tag, LoadTy);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
EvalLoadCommon(Dst, Ex, Pred, state, location, tag, LoadTy);
|
|
}
|
|
|
|
void GRExprEngine::EvalLoadCommon(ExplodedNodeSet& Dst, const Expr *Ex,
|
|
ExplodedNode* Pred,
|
|
const GRState* state, SVal location,
|
|
const void *tag, QualType LoadTy) {
|
|
|
|
// Evaluate the location (checks for bad dereferences).
|
|
ExplodedNodeSet Tmp;
|
|
EvalLocation(Tmp, Ex, Pred, state, location, tag, true);
|
|
|
|
if (Tmp.empty())
|
|
return;
|
|
|
|
assert(!location.isUndef());
|
|
|
|
SaveAndRestore<ProgramPoint::Kind> OldSPointKind(Builder->PointKind);
|
|
SaveAndRestore<const void*> OldTag(Builder->Tag);
|
|
|
|
// Proceed with the load.
|
|
for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) {
|
|
state = GetState(*NI);
|
|
if (location.isUnknown()) {
|
|
// This is important. We must nuke the old binding.
|
|
MakeNode(Dst, Ex, *NI, state->BindExpr(Ex, UnknownVal()),
|
|
ProgramPoint::PostLoadKind, tag);
|
|
}
|
|
else {
|
|
SVal V = state->getSVal(cast<Loc>(location), LoadTy.isNull() ?
|
|
Ex->getType() : LoadTy);
|
|
MakeNode(Dst, Ex, *NI, state->BindExpr(Ex, V), ProgramPoint::PostLoadKind,
|
|
tag);
|
|
}
|
|
}
|
|
}
|
|
|
|
void GRExprEngine::EvalLocation(ExplodedNodeSet &Dst, const Stmt *S,
|
|
ExplodedNode* Pred,
|
|
const GRState* state, SVal location,
|
|
const void *tag, bool isLoad) {
|
|
// Early checks for performance reason.
|
|
if (location.isUnknown() || Checkers.empty()) {
|
|
Dst.Add(Pred);
|
|
return;
|
|
}
|
|
|
|
ExplodedNodeSet Src, Tmp;
|
|
Src.Add(Pred);
|
|
ExplodedNodeSet *PrevSet = &Src;
|
|
|
|
for (CheckersOrdered::iterator I=Checkers.begin(),E=Checkers.end(); I!=E; ++I)
|
|
{
|
|
ExplodedNodeSet *CurrSet = 0;
|
|
if (I+1 == E)
|
|
CurrSet = &Dst;
|
|
else {
|
|
CurrSet = (PrevSet == &Tmp) ? &Src : &Tmp;
|
|
CurrSet->clear();
|
|
}
|
|
|
|
void *tag = I->first;
|
|
Checker *checker = I->second;
|
|
|
|
for (ExplodedNodeSet::iterator NI = PrevSet->begin(), NE = PrevSet->end();
|
|
NI != NE; ++NI) {
|
|
// Use the 'state' argument only when the predecessor node is the
|
|
// same as Pred. This allows us to catch updates to the state.
|
|
checker->GR_VisitLocation(*CurrSet, *Builder, *this, S, *NI,
|
|
*NI == Pred ? state : GetState(*NI),
|
|
location, tag, isLoad);
|
|
}
|
|
|
|
// Update which NodeSet is the current one.
|
|
PrevSet = CurrSet;
|
|
}
|
|
}
|
|
|
|
bool GRExprEngine::InlineCall(ExplodedNodeSet &Dst, const CallExpr *CE,
|
|
ExplodedNode *Pred) {
|
|
const GRState *state = GetState(Pred);
|
|
const Expr *Callee = CE->getCallee();
|
|
SVal L = state->getSVal(Callee);
|
|
|
|
const FunctionDecl *FD = L.getAsFunctionDecl();
|
|
if (!FD)
|
|
return false;
|
|
|
|
// Check if the function definition is in the same translation unit.
|
|
if (FD->hasBody(FD)) {
|
|
// Now we have the definition of the callee, create a CallEnter node.
|
|
CallEnter Loc(CE, AMgr.getAnalysisContext(FD), Pred->getLocationContext());
|
|
|
|
ExplodedNode *N = Builder->generateNode(Loc, state, Pred);
|
|
Dst.Add(N);
|
|
return true;
|
|
}
|
|
|
|
// Check if we can find the function definition in other translation units.
|
|
if (AMgr.hasIndexer()) {
|
|
const AnalysisContext *C = AMgr.getAnalysisContextInAnotherTU(FD);
|
|
if (C == 0)
|
|
return false;
|
|
|
|
CallEnter Loc(CE, C, Pred->getLocationContext());
|
|
ExplodedNode *N = Builder->generateNode(Loc, state, Pred);
|
|
Dst.Add(N);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void GRExprEngine::VisitCall(const CallExpr* CE, ExplodedNode* Pred,
|
|
CallExpr::const_arg_iterator AI,
|
|
CallExpr::const_arg_iterator AE,
|
|
ExplodedNodeSet& Dst, bool asLValue) {
|
|
|
|
// Determine the type of function we're calling (if available).
|
|
const FunctionProtoType *Proto = NULL;
|
|
QualType FnType = CE->getCallee()->IgnoreParens()->getType();
|
|
if (const PointerType *FnTypePtr = FnType->getAs<PointerType>())
|
|
Proto = FnTypePtr->getPointeeType()->getAs<FunctionProtoType>();
|
|
|
|
// Create a worklist to process the arguments.
|
|
llvm::SmallVector<CallExprWLItem, 20> WorkList;
|
|
WorkList.reserve(AE - AI);
|
|
WorkList.push_back(CallExprWLItem(AI, Pred));
|
|
|
|
ExplodedNodeSet ArgsEvaluated;
|
|
|
|
while (!WorkList.empty()) {
|
|
CallExprWLItem Item = WorkList.back();
|
|
WorkList.pop_back();
|
|
|
|
if (Item.I == AE) {
|
|
ArgsEvaluated.insert(Item.N);
|
|
continue;
|
|
}
|
|
|
|
// Evaluate the argument.
|
|
ExplodedNodeSet Tmp;
|
|
const unsigned ParamIdx = Item.I - AI;
|
|
|
|
bool VisitAsLvalue = false;
|
|
if (Proto && ParamIdx < Proto->getNumArgs())
|
|
VisitAsLvalue = Proto->getArgType(ParamIdx)->isReferenceType();
|
|
|
|
if (VisitAsLvalue)
|
|
VisitLValue(*Item.I, Item.N, Tmp);
|
|
else
|
|
Visit(*Item.I, Item.N, Tmp);
|
|
|
|
// Enqueue evaluating the next argument on the worklist.
|
|
++(Item.I);
|
|
|
|
for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI)
|
|
WorkList.push_back(CallExprWLItem(Item.I, *NI));
|
|
}
|
|
|
|
// Now process the call itself.
|
|
ExplodedNodeSet DstTmp;
|
|
const Expr* Callee = CE->getCallee()->IgnoreParens();
|
|
|
|
for (ExplodedNodeSet::iterator NI=ArgsEvaluated.begin(),
|
|
NE=ArgsEvaluated.end(); NI != NE; ++NI) {
|
|
// Evaluate the callee.
|
|
ExplodedNodeSet DstTmp2;
|
|
Visit(Callee, *NI, DstTmp2);
|
|
// Perform the previsit of the CallExpr, storing the results in DstTmp.
|
|
CheckerVisit(CE, DstTmp, DstTmp2, true);
|
|
}
|
|
|
|
// Finally, evaluate the function call. We try each of the checkers
|
|
// to see if the can evaluate the function call.
|
|
ExplodedNodeSet DstTmp3;
|
|
|
|
|
|
for (ExplodedNodeSet::iterator DI = DstTmp.begin(), DE = DstTmp.end();
|
|
DI != DE; ++DI) {
|
|
|
|
const GRState* state = GetState(*DI);
|
|
SVal L = state->getSVal(Callee);
|
|
|
|
// FIXME: Add support for symbolic function calls (calls involving
|
|
// function pointer values that are symbolic).
|
|
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
|
|
ExplodedNodeSet DstChecker;
|
|
|
|
// If the callee is processed by a checker, skip the rest logic.
|
|
if (CheckerEvalCall(CE, DstChecker, *DI))
|
|
DstTmp3.insert(DstChecker);
|
|
else if (AMgr.shouldInlineCall() && InlineCall(Dst, CE, *DI)) {
|
|
// Callee is inlined. We shouldn't do post call checking.
|
|
return;
|
|
}
|
|
else {
|
|
for (ExplodedNodeSet::iterator DI_Checker = DstChecker.begin(),
|
|
DE_Checker = DstChecker.end();
|
|
DI_Checker != DE_Checker; ++DI_Checker) {
|
|
|
|
// Dispatch to the plug-in transfer function.
|
|
unsigned OldSize = DstTmp3.size();
|
|
SaveOr OldHasGen(Builder->HasGeneratedNode);
|
|
Pred = *DI_Checker;
|
|
|
|
// Dispatch to transfer function logic to handle the call itself.
|
|
// FIXME: Allow us to chain together transfer functions.
|
|
assert(Builder && "GRStmtNodeBuilder must be defined.");
|
|
getTF().EvalCall(DstTmp3, *this, *Builder, CE, L, Pred);
|
|
|
|
// Handle the case where no nodes where generated. Auto-generate that
|
|
// contains the updated state if we aren't generating sinks.
|
|
if (!Builder->BuildSinks && DstTmp3.size() == OldSize &&
|
|
!Builder->HasGeneratedNode)
|
|
MakeNode(DstTmp3, CE, Pred, state);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Finally, perform the post-condition check of the CallExpr and store
|
|
// the created nodes in 'Dst'.
|
|
// If the callee returns a reference and we want an rvalue, skip this check
|
|
// and do the load.
|
|
if (!(!asLValue && CalleeReturnsReference(CE))) {
|
|
CheckerVisit(CE, Dst, DstTmp3, false);
|
|
return;
|
|
}
|
|
|
|
// Handle the case where the called function returns a reference but
|
|
// we expect an rvalue. For such cases, convert the reference to
|
|
// an rvalue.
|
|
// FIXME: This conversion doesn't actually happen unless the result
|
|
// of CallExpr is consumed by another expression.
|
|
ExplodedNodeSet DstTmp4;
|
|
CheckerVisit(CE, DstTmp4, DstTmp3, false);
|
|
QualType LoadTy = CE->getType();
|
|
|
|
static int *ConvertToRvalueTag = 0;
|
|
for (ExplodedNodeSet::iterator NI = DstTmp4.begin(), NE = DstTmp4.end();
|
|
NI!=NE; ++NI) {
|
|
const GRState *state = GetState(*NI);
|
|
EvalLoad(Dst, CE, *NI, state, state->getSVal(CE),
|
|
&ConvertToRvalueTag, LoadTy);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Transfer function: Objective-C ivar references.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static std::pair<const void*,const void*> EagerlyAssumeTag
|
|
= std::pair<const void*,const void*>(&EagerlyAssumeTag,static_cast<void*>(0));
|
|
|
|
void GRExprEngine::EvalEagerlyAssume(ExplodedNodeSet &Dst, ExplodedNodeSet &Src,
|
|
const Expr *Ex) {
|
|
for (ExplodedNodeSet::iterator I=Src.begin(), E=Src.end(); I!=E; ++I) {
|
|
ExplodedNode *Pred = *I;
|
|
|
|
// Test if the previous node was as the same expression. This can happen
|
|
// when the expression fails to evaluate to anything meaningful and
|
|
// (as an optimization) we don't generate a node.
|
|
ProgramPoint P = Pred->getLocation();
|
|
if (!isa<PostStmt>(P) || cast<PostStmt>(P).getStmt() != Ex) {
|
|
Dst.Add(Pred);
|
|
continue;
|
|
}
|
|
|
|
const GRState* state = GetState(Pred);
|
|
SVal V = state->getSVal(Ex);
|
|
if (nonloc::SymExprVal *SEV = dyn_cast<nonloc::SymExprVal>(&V)) {
|
|
// First assume that the condition is true.
|
|
if (const GRState *stateTrue = state->Assume(*SEV, true)) {
|
|
stateTrue = stateTrue->BindExpr(Ex,
|
|
ValMgr.makeIntVal(1U, Ex->getType()));
|
|
Dst.Add(Builder->generateNode(PostStmtCustom(Ex,
|
|
&EagerlyAssumeTag, Pred->getLocationContext()),
|
|
stateTrue, Pred));
|
|
}
|
|
|
|
// Next, assume that the condition is false.
|
|
if (const GRState *stateFalse = state->Assume(*SEV, false)) {
|
|
stateFalse = stateFalse->BindExpr(Ex,
|
|
ValMgr.makeIntVal(0U, Ex->getType()));
|
|
Dst.Add(Builder->generateNode(PostStmtCustom(Ex, &EagerlyAssumeTag,
|
|
Pred->getLocationContext()),
|
|
stateFalse, Pred));
|
|
}
|
|
}
|
|
else
|
|
Dst.Add(Pred);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Transfer function: Objective-C ivar references.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void GRExprEngine::VisitObjCIvarRefExpr(const ObjCIvarRefExpr* Ex,
|
|
ExplodedNode* Pred,
|
|
ExplodedNodeSet& Dst, bool asLValue) {
|
|
|
|
const Expr* Base = cast<Expr>(Ex->getBase());
|
|
ExplodedNodeSet Tmp;
|
|
Visit(Base, Pred, Tmp);
|
|
|
|
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
|
|
const GRState* state = GetState(*I);
|
|
SVal BaseVal = state->getSVal(Base);
|
|
SVal location = state->getLValue(Ex->getDecl(), BaseVal);
|
|
|
|
if (asLValue)
|
|
MakeNode(Dst, Ex, *I, state->BindExpr(Ex, location));
|
|
else
|
|
EvalLoad(Dst, Ex, *I, state, location);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Transfer function: Objective-C fast enumeration 'for' statements.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void GRExprEngine::VisitObjCForCollectionStmt(const ObjCForCollectionStmt* S,
|
|
ExplodedNode* Pred, ExplodedNodeSet& Dst) {
|
|
|
|
// ObjCForCollectionStmts are processed in two places. This method
|
|
// handles the case where an ObjCForCollectionStmt* occurs as one of the
|
|
// statements within a basic block. This transfer function does two things:
|
|
//
|
|
// (1) binds the next container value to 'element'. This creates a new
|
|
// node in the ExplodedGraph.
|
|
//
|
|
// (2) binds the value 0/1 to the ObjCForCollectionStmt* itself, indicating
|
|
// whether or not the container has any more elements. This value
|
|
// will be tested in ProcessBranch. We need to explicitly bind
|
|
// this value because a container can contain nil elements.
|
|
//
|
|
// FIXME: Eventually this logic should actually do dispatches to
|
|
// 'countByEnumeratingWithState:objects:count:' (NSFastEnumeration).
|
|
// This will require simulating a temporary NSFastEnumerationState, either
|
|
// through an SVal or through the use of MemRegions. This value can
|
|
// be affixed to the ObjCForCollectionStmt* instead of 0/1; when the loop
|
|
// terminates we reclaim the temporary (it goes out of scope) and we
|
|
// we can test if the SVal is 0 or if the MemRegion is null (depending
|
|
// on what approach we take).
|
|
//
|
|
// For now: simulate (1) by assigning either a symbol or nil if the
|
|
// container is empty. Thus this transfer function will by default
|
|
// result in state splitting.
|
|
|
|
const Stmt* elem = S->getElement();
|
|
SVal ElementV;
|
|
|
|
if (const DeclStmt* DS = dyn_cast<DeclStmt>(elem)) {
|
|
const VarDecl* ElemD = cast<VarDecl>(DS->getSingleDecl());
|
|
assert (ElemD->getInit() == 0);
|
|
ElementV = GetState(Pred)->getLValue(ElemD, Pred->getLocationContext());
|
|
VisitObjCForCollectionStmtAux(S, Pred, Dst, ElementV);
|
|
return;
|
|
}
|
|
|
|
ExplodedNodeSet Tmp;
|
|
VisitLValue(cast<Expr>(elem), Pred, Tmp);
|
|
|
|
for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) {
|
|
const GRState* state = GetState(*I);
|
|
VisitObjCForCollectionStmtAux(S, *I, Dst, state->getSVal(elem));
|
|
}
|
|
}
|
|
|
|
void GRExprEngine::VisitObjCForCollectionStmtAux(const ObjCForCollectionStmt* S,
|
|
ExplodedNode* Pred, ExplodedNodeSet& Dst,
|
|
SVal ElementV) {
|
|
|
|
// Check if the location we are writing back to is a null pointer.
|
|
const Stmt* elem = S->getElement();
|
|
ExplodedNodeSet Tmp;
|
|
EvalLocation(Tmp, elem, Pred, GetState(Pred), ElementV, NULL, false);
|
|
|
|
if (Tmp.empty())
|
|
return;
|
|
|
|
for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) {
|
|
Pred = *NI;
|
|
const GRState *state = GetState(Pred);
|
|
|
|
// Handle the case where the container still has elements.
|
|
SVal TrueV = ValMgr.makeTruthVal(1);
|
|
const GRState *hasElems = state->BindExpr(S, TrueV);
|
|
|
|
// Handle the case where the container has no elements.
|
|
SVal FalseV = ValMgr.makeTruthVal(0);
|
|
const GRState *noElems = state->BindExpr(S, FalseV);
|
|
|
|
if (loc::MemRegionVal* MV = dyn_cast<loc::MemRegionVal>(&ElementV))
|
|
if (const TypedRegion* R = dyn_cast<TypedRegion>(MV->getRegion())) {
|
|
// FIXME: The proper thing to do is to really iterate over the
|
|
// container. We will do this with dispatch logic to the store.
|
|
// For now, just 'conjure' up a symbolic value.
|
|
QualType T = R->getValueType(getContext());
|
|
assert(Loc::IsLocType(T));
|
|
unsigned Count = Builder->getCurrentBlockCount();
|
|
SymbolRef Sym = SymMgr.getConjuredSymbol(elem, T, Count);
|
|
SVal V = ValMgr.makeLoc(Sym);
|
|
hasElems = hasElems->bindLoc(ElementV, V);
|
|
|
|
// Bind the location to 'nil' on the false branch.
|
|
SVal nilV = ValMgr.makeIntVal(0, T);
|
|
noElems = noElems->bindLoc(ElementV, nilV);
|
|
}
|
|
|
|
// Create the new nodes.
|
|
MakeNode(Dst, S, Pred, hasElems);
|
|
MakeNode(Dst, S, Pred, noElems);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Transfer function: Objective-C message expressions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class ObjCMsgWLItem {
|
|
public:
|
|
ObjCMessageExpr::const_arg_iterator I;
|
|
ExplodedNode *N;
|
|
|
|
ObjCMsgWLItem(const ObjCMessageExpr::const_arg_iterator &i, ExplodedNode *n)
|
|
: I(i), N(n) {}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
void GRExprEngine::VisitObjCMessageExpr(const ObjCMessageExpr* ME,
|
|
ExplodedNode* Pred,
|
|
ExplodedNodeSet& Dst, bool asLValue){
|
|
|
|
// Create a worklist to process both the arguments.
|
|
llvm::SmallVector<ObjCMsgWLItem, 20> WL;
|
|
|
|
// But first evaluate the receiver (if any).
|
|
ObjCMessageExpr::const_arg_iterator AI = ME->arg_begin(), AE = ME->arg_end();
|
|
if (const Expr *Receiver = ME->getInstanceReceiver()) {
|
|
ExplodedNodeSet Tmp;
|
|
Visit(Receiver, Pred, Tmp);
|
|
|
|
if (Tmp.empty())
|
|
return;
|
|
|
|
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I)
|
|
WL.push_back(ObjCMsgWLItem(AI, *I));
|
|
}
|
|
else
|
|
WL.push_back(ObjCMsgWLItem(AI, Pred));
|
|
|
|
// Evaluate the arguments.
|
|
ExplodedNodeSet ArgsEvaluated;
|
|
while (!WL.empty()) {
|
|
ObjCMsgWLItem Item = WL.back();
|
|
WL.pop_back();
|
|
|
|
if (Item.I == AE) {
|
|
ArgsEvaluated.insert(Item.N);
|
|
continue;
|
|
}
|
|
|
|
// Evaluate the subexpression.
|
|
ExplodedNodeSet Tmp;
|
|
|
|
// FIXME: [Objective-C++] handle arguments that are references
|
|
Visit(*Item.I, Item.N, Tmp);
|
|
|
|
// Enqueue evaluating the next argument on the worklist.
|
|
++(Item.I);
|
|
for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI)
|
|
WL.push_back(ObjCMsgWLItem(Item.I, *NI));
|
|
}
|
|
|
|
// Now that the arguments are processed, handle the previsits checks.
|
|
ExplodedNodeSet DstPrevisit;
|
|
CheckerVisit(ME, DstPrevisit, ArgsEvaluated, true);
|
|
|
|
// Proceed with evaluate the message expression.
|
|
ExplodedNodeSet DstEval;
|
|
|
|
for (ExplodedNodeSet::iterator DI = DstPrevisit.begin(),
|
|
DE = DstPrevisit.end(); DI != DE; ++DI) {
|
|
|
|
Pred = *DI;
|
|
bool RaisesException = false;
|
|
unsigned OldSize = DstEval.size();
|
|
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
|
|
SaveOr OldHasGen(Builder->HasGeneratedNode);
|
|
|
|
if (const Expr *Receiver = ME->getInstanceReceiver()) {
|
|
const GRState *state = GetState(Pred);
|
|
|
|
// Bifurcate the state into nil and non-nil ones.
|
|
DefinedOrUnknownSVal receiverVal =
|
|
cast<DefinedOrUnknownSVal>(state->getSVal(Receiver));
|
|
|
|
const GRState *notNilState, *nilState;
|
|
llvm::tie(notNilState, nilState) = state->Assume(receiverVal);
|
|
|
|
// There are three cases: can be nil or non-nil, must be nil, must be
|
|
// non-nil. We handle must be nil, and merge the rest two into non-nil.
|
|
if (nilState && !notNilState) {
|
|
CheckerEvalNilReceiver(ME, DstEval, nilState, Pred);
|
|
continue;
|
|
}
|
|
|
|
// Check if the "raise" message was sent.
|
|
assert(notNilState);
|
|
if (ME->getSelector() == RaiseSel)
|
|
RaisesException = true;
|
|
|
|
// Check if we raise an exception. For now treat these as sinks.
|
|
// Eventually we will want to handle exceptions properly.
|
|
if (RaisesException)
|
|
Builder->BuildSinks = true;
|
|
|
|
// Dispatch to plug-in transfer function.
|
|
EvalObjCMessageExpr(DstEval, ME, Pred, notNilState);
|
|
}
|
|
else if (ObjCInterfaceDecl *Iface = ME->getReceiverInterface()) {
|
|
IdentifierInfo* ClsName = Iface->getIdentifier();
|
|
Selector S = ME->getSelector();
|
|
|
|
// Check for special instance methods.
|
|
if (!NSExceptionII) {
|
|
ASTContext& Ctx = getContext();
|
|
NSExceptionII = &Ctx.Idents.get("NSException");
|
|
}
|
|
|
|
if (ClsName == NSExceptionII) {
|
|
enum { NUM_RAISE_SELECTORS = 2 };
|
|
|
|
// Lazily create a cache of the selectors.
|
|
if (!NSExceptionInstanceRaiseSelectors) {
|
|
ASTContext& Ctx = getContext();
|
|
NSExceptionInstanceRaiseSelectors =
|
|
new Selector[NUM_RAISE_SELECTORS];
|
|
llvm::SmallVector<IdentifierInfo*, NUM_RAISE_SELECTORS> II;
|
|
unsigned idx = 0;
|
|
|
|
// raise:format:
|
|
II.push_back(&Ctx.Idents.get("raise"));
|
|
II.push_back(&Ctx.Idents.get("format"));
|
|
NSExceptionInstanceRaiseSelectors[idx++] =
|
|
Ctx.Selectors.getSelector(II.size(), &II[0]);
|
|
|
|
// raise:format::arguments:
|
|
II.push_back(&Ctx.Idents.get("arguments"));
|
|
NSExceptionInstanceRaiseSelectors[idx++] =
|
|
Ctx.Selectors.getSelector(II.size(), &II[0]);
|
|
}
|
|
|
|
for (unsigned i = 0; i < NUM_RAISE_SELECTORS; ++i)
|
|
if (S == NSExceptionInstanceRaiseSelectors[i]) {
|
|
RaisesException = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Check if we raise an exception. For now treat these as sinks.
|
|
// Eventually we will want to handle exceptions properly.
|
|
if (RaisesException)
|
|
Builder->BuildSinks = true;
|
|
|
|
// Dispatch to plug-in transfer function.
|
|
EvalObjCMessageExpr(DstEval, ME, Pred, Builder->GetState(Pred));
|
|
}
|
|
|
|
// Handle the case where no nodes where generated. Auto-generate that
|
|
// contains the updated state if we aren't generating sinks.
|
|
if (!Builder->BuildSinks && DstEval.size() == OldSize &&
|
|
!Builder->HasGeneratedNode)
|
|
MakeNode(DstEval, ME, Pred, GetState(Pred));
|
|
}
|
|
|
|
// Finally, perform the post-condition check of the ObjCMessageExpr and store
|
|
// the created nodes in 'Dst'.
|
|
if (!(!asLValue && ReceiverReturnsReference(ME))) {
|
|
CheckerVisit(ME, Dst, DstEval, false);
|
|
return;
|
|
}
|
|
|
|
// Handle the case where the message expression returns a reference but
|
|
// we expect an rvalue. For such cases, convert the reference to
|
|
// an rvalue.
|
|
// FIXME: This conversion doesn't actually happen unless the result
|
|
// of ObjCMessageExpr is consumed by another expression.
|
|
ExplodedNodeSet DstRValueConvert;
|
|
CheckerVisit(ME, DstRValueConvert, DstEval, false);
|
|
QualType LoadTy = ME->getType();
|
|
|
|
static int *ConvertToRvalueTag = 0;
|
|
for (ExplodedNodeSet::iterator NI = DstRValueConvert.begin(),
|
|
NE = DstRValueConvert.end(); NI != NE; ++NI) {
|
|
const GRState *state = GetState(*NI);
|
|
EvalLoad(Dst, ME, *NI, state, state->getSVal(ME),
|
|
&ConvertToRvalueTag, LoadTy);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Transfer functions: Miscellaneous statements.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void GRExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
|
|
ExplodedNode *Pred, ExplodedNodeSet &Dst,
|
|
bool asLValue) {
|
|
ExplodedNodeSet S1;
|
|
QualType T = CastE->getType();
|
|
QualType ExTy = Ex->getType();
|
|
|
|
if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
|
|
T = ExCast->getTypeAsWritten();
|
|
|
|
if (ExTy->isArrayType() || ExTy->isFunctionType() || T->isReferenceType() ||
|
|
asLValue)
|
|
VisitLValue(Ex, Pred, S1);
|
|
else
|
|
Visit(Ex, Pred, S1);
|
|
|
|
ExplodedNodeSet S2;
|
|
CheckerVisit(CastE, S2, S1, true);
|
|
|
|
// If we are evaluating the cast in an lvalue context, we implicitly want
|
|
// the cast to evaluate to a location.
|
|
if (asLValue) {
|
|
ASTContext &Ctx = getContext();
|
|
T = Ctx.getPointerType(Ctx.getCanonicalType(T));
|
|
ExTy = Ctx.getPointerType(Ctx.getCanonicalType(ExTy));
|
|
}
|
|
|
|
switch (CastE->getCastKind()) {
|
|
case CastExpr::CK_ToVoid:
|
|
assert(!asLValue);
|
|
for (ExplodedNodeSet::iterator I = S2.begin(), E = S2.end(); I != E; ++I)
|
|
Dst.Add(*I);
|
|
return;
|
|
|
|
case CastExpr::CK_NoOp:
|
|
case CastExpr::CK_FunctionToPointerDecay:
|
|
for (ExplodedNodeSet::iterator I = S2.begin(), E = S2.end(); I != E; ++I) {
|
|
// Copy the SVal of Ex to CastE.
|
|
ExplodedNode *N = *I;
|
|
const GRState *state = GetState(N);
|
|
SVal V = state->getSVal(Ex);
|
|
state = state->BindExpr(CastE, V);
|
|
MakeNode(Dst, CastE, N, state);
|
|
}
|
|
return;
|
|
|
|
case CastExpr::CK_Unknown:
|
|
case CastExpr::CK_ArrayToPointerDecay:
|
|
case CastExpr::CK_BitCast:
|
|
case CastExpr::CK_LValueBitCast:
|
|
case CastExpr::CK_IntegralCast:
|
|
case CastExpr::CK_IntegralToPointer:
|
|
case CastExpr::CK_PointerToIntegral:
|
|
case CastExpr::CK_IntegralToFloating:
|
|
case CastExpr::CK_FloatingToIntegral:
|
|
case CastExpr::CK_FloatingCast:
|
|
case CastExpr::CK_AnyPointerToObjCPointerCast:
|
|
case CastExpr::CK_AnyPointerToBlockPointerCast:
|
|
case CastExpr::CK_DerivedToBase:
|
|
case CastExpr::CK_UncheckedDerivedToBase: {
|
|
// Delegate to SValuator to process.
|
|
for (ExplodedNodeSet::iterator I = S2.begin(), E = S2.end(); I != E; ++I) {
|
|
ExplodedNode* N = *I;
|
|
const GRState* state = GetState(N);
|
|
SVal V = state->getSVal(Ex);
|
|
V = SVator.EvalCast(V, T, ExTy);
|
|
state = state->BindExpr(CastE, V);
|
|
MakeNode(Dst, CastE, N, state);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Various C++ casts that are not handled yet.
|
|
case CastExpr::CK_Dynamic:
|
|
case CastExpr::CK_ToUnion:
|
|
case CastExpr::CK_BaseToDerived:
|
|
case CastExpr::CK_NullToMemberPointer:
|
|
case CastExpr::CK_BaseToDerivedMemberPointer:
|
|
case CastExpr::CK_DerivedToBaseMemberPointer:
|
|
case CastExpr::CK_UserDefinedConversion:
|
|
case CastExpr::CK_ConstructorConversion:
|
|
case CastExpr::CK_VectorSplat:
|
|
case CastExpr::CK_MemberPointerToBoolean: {
|
|
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
|
|
Builder->BuildSinks = true;
|
|
MakeNode(Dst, CastE, Pred, GetState(Pred));
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void GRExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr* CL,
|
|
ExplodedNode* Pred,
|
|
ExplodedNodeSet& Dst,
|
|
bool asLValue) {
|
|
const InitListExpr* ILE
|
|
= cast<InitListExpr>(CL->getInitializer()->IgnoreParens());
|
|
ExplodedNodeSet Tmp;
|
|
Visit(ILE, Pred, Tmp);
|
|
|
|
for (ExplodedNodeSet::iterator I = Tmp.begin(), EI = Tmp.end(); I!=EI; ++I) {
|
|
const GRState* state = GetState(*I);
|
|
SVal ILV = state->getSVal(ILE);
|
|
const LocationContext *LC = (*I)->getLocationContext();
|
|
state = state->bindCompoundLiteral(CL, LC, ILV);
|
|
|
|
if (asLValue) {
|
|
MakeNode(Dst, CL, *I, state->BindExpr(CL, state->getLValue(CL, LC)));
|
|
}
|
|
else
|
|
MakeNode(Dst, CL, *I, state->BindExpr(CL, ILV));
|
|
}
|
|
}
|
|
|
|
void GRExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
|
|
ExplodedNodeSet& Dst) {
|
|
|
|
// The CFG has one DeclStmt per Decl.
|
|
const Decl* D = *DS->decl_begin();
|
|
|
|
if (!D || !isa<VarDecl>(D))
|
|
return;
|
|
|
|
const VarDecl* VD = dyn_cast<VarDecl>(D);
|
|
const Expr* InitEx = const_cast<Expr*>(VD->getInit());
|
|
|
|
// FIXME: static variables may have an initializer, but the second
|
|
// time a function is called those values may not be current.
|
|
ExplodedNodeSet Tmp;
|
|
|
|
if (InitEx) {
|
|
QualType InitTy = InitEx->getType();
|
|
if (getContext().getLangOptions().CPlusPlus && InitTy->isRecordType()) {
|
|
// Delegate expressions of C++ record type evaluation to AggExprVisitor.
|
|
VisitAggExpr(InitEx, GetState(Pred)->getLValue(VD,
|
|
Pred->getLocationContext()), Pred, Dst);
|
|
return;
|
|
} else if (VD->getType()->isReferenceType())
|
|
VisitLValue(InitEx, Pred, Tmp);
|
|
else
|
|
Visit(InitEx, Pred, Tmp);
|
|
}
|
|
else
|
|
Tmp.Add(Pred);
|
|
|
|
ExplodedNodeSet Tmp2;
|
|
CheckerVisit(DS, Tmp2, Tmp, true);
|
|
|
|
for (ExplodedNodeSet::iterator I=Tmp2.begin(), E=Tmp2.end(); I!=E; ++I) {
|
|
ExplodedNode *N = *I;
|
|
const GRState *state = GetState(N);
|
|
|
|
// Decls without InitExpr are not initialized explicitly.
|
|
const LocationContext *LC = N->getLocationContext();
|
|
|
|
if (InitEx) {
|
|
SVal InitVal = state->getSVal(InitEx);
|
|
|
|
// Recover some path-sensitivity if a scalar value evaluated to
|
|
// UnknownVal.
|
|
if ((InitVal.isUnknown() ||
|
|
!getConstraintManager().canReasonAbout(InitVal)) &&
|
|
!VD->getType()->isReferenceType()) {
|
|
InitVal = ValMgr.getConjuredSymbolVal(NULL, InitEx,
|
|
Builder->getCurrentBlockCount());
|
|
}
|
|
|
|
EvalBind(Dst, DS, DS, *I, state,
|
|
loc::MemRegionVal(state->getRegion(VD, LC)), InitVal, true);
|
|
}
|
|
else {
|
|
state = state->bindDeclWithNoInit(state->getRegion(VD, LC));
|
|
MakeNode(Dst, DS, *I, state);
|
|
}
|
|
}
|
|
}
|
|
|
|
void GRExprEngine::VisitCondInit(const VarDecl *VD, const Stmt *S,
|
|
ExplodedNode *Pred, ExplodedNodeSet& Dst) {
|
|
|
|
const Expr* InitEx = VD->getInit();
|
|
ExplodedNodeSet Tmp;
|
|
Visit(InitEx, Pred, Tmp);
|
|
|
|
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
|
|
ExplodedNode *N = *I;
|
|
const GRState *state = GetState(N);
|
|
|
|
const LocationContext *LC = N->getLocationContext();
|
|
SVal InitVal = state->getSVal(InitEx);
|
|
|
|
// Recover some path-sensitivity if a scalar value evaluated to
|
|
// UnknownVal.
|
|
if (InitVal.isUnknown() ||
|
|
!getConstraintManager().canReasonAbout(InitVal)) {
|
|
InitVal = ValMgr.getConjuredSymbolVal(NULL, InitEx,
|
|
Builder->getCurrentBlockCount());
|
|
}
|
|
|
|
EvalBind(Dst, S, S, N, state,
|
|
loc::MemRegionVal(state->getRegion(VD, LC)), InitVal, true);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
// This class is used by VisitInitListExpr as an item in a worklist
|
|
// for processing the values contained in an InitListExpr.
|
|
class InitListWLItem {
|
|
public:
|
|
llvm::ImmutableList<SVal> Vals;
|
|
ExplodedNode* N;
|
|
InitListExpr::const_reverse_iterator Itr;
|
|
|
|
InitListWLItem(ExplodedNode* n, llvm::ImmutableList<SVal> vals,
|
|
InitListExpr::const_reverse_iterator itr)
|
|
: Vals(vals), N(n), Itr(itr) {}
|
|
};
|
|
}
|
|
|
|
|
|
void GRExprEngine::VisitInitListExpr(const InitListExpr* E, ExplodedNode* Pred,
|
|
ExplodedNodeSet& Dst) {
|
|
|
|
const GRState* state = GetState(Pred);
|
|
QualType T = getContext().getCanonicalType(E->getType());
|
|
unsigned NumInitElements = E->getNumInits();
|
|
|
|
if (T->isArrayType() || T->isRecordType() || T->isVectorType()) {
|
|
llvm::ImmutableList<SVal> StartVals = getBasicVals().getEmptySValList();
|
|
|
|
// Handle base case where the initializer has no elements.
|
|
// e.g: static int* myArray[] = {};
|
|
if (NumInitElements == 0) {
|
|
SVal V = ValMgr.makeCompoundVal(T, StartVals);
|
|
MakeNode(Dst, E, Pred, state->BindExpr(E, V));
|
|
return;
|
|
}
|
|
|
|
// Create a worklist to process the initializers.
|
|
llvm::SmallVector<InitListWLItem, 10> WorkList;
|
|
WorkList.reserve(NumInitElements);
|
|
WorkList.push_back(InitListWLItem(Pred, StartVals, E->rbegin()));
|
|
InitListExpr::const_reverse_iterator ItrEnd = E->rend();
|
|
assert(!(E->rbegin() == E->rend()));
|
|
|
|
// Process the worklist until it is empty.
|
|
while (!WorkList.empty()) {
|
|
InitListWLItem X = WorkList.back();
|
|
WorkList.pop_back();
|
|
|
|
ExplodedNodeSet Tmp;
|
|
Visit(*X.Itr, X.N, Tmp);
|
|
|
|
InitListExpr::const_reverse_iterator NewItr = X.Itr + 1;
|
|
|
|
for (ExplodedNodeSet::iterator NI=Tmp.begin(),NE=Tmp.end();NI!=NE;++NI) {
|
|
// Get the last initializer value.
|
|
state = GetState(*NI);
|
|
SVal InitV = state->getSVal(cast<Expr>(*X.Itr));
|
|
|
|
// Construct the new list of values by prepending the new value to
|
|
// the already constructed list.
|
|
llvm::ImmutableList<SVal> NewVals =
|
|
getBasicVals().consVals(InitV, X.Vals);
|
|
|
|
if (NewItr == ItrEnd) {
|
|
// Now we have a list holding all init values. Make CompoundValData.
|
|
SVal V = ValMgr.makeCompoundVal(T, NewVals);
|
|
|
|
// Make final state and node.
|
|
MakeNode(Dst, E, *NI, state->BindExpr(E, V));
|
|
}
|
|
else {
|
|
// Still some initializer values to go. Push them onto the worklist.
|
|
WorkList.push_back(InitListWLItem(*NI, NewVals, NewItr));
|
|
}
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (Loc::IsLocType(T) || T->isIntegerType()) {
|
|
assert (E->getNumInits() == 1);
|
|
ExplodedNodeSet Tmp;
|
|
const Expr* Init = E->getInit(0);
|
|
Visit(Init, Pred, Tmp);
|
|
for (ExplodedNodeSet::iterator I=Tmp.begin(), EI=Tmp.end(); I != EI; ++I) {
|
|
state = GetState(*I);
|
|
MakeNode(Dst, E, *I, state->BindExpr(E, state->getSVal(Init)));
|
|
}
|
|
return;
|
|
}
|
|
|
|
assert(0 && "unprocessed InitListExpr type");
|
|
}
|
|
|
|
/// VisitSizeOfAlignOfExpr - Transfer function for sizeof(type).
|
|
void GRExprEngine::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr* Ex,
|
|
ExplodedNode* Pred,
|
|
ExplodedNodeSet& Dst) {
|
|
QualType T = Ex->getTypeOfArgument();
|
|
CharUnits amt;
|
|
|
|
if (Ex->isSizeOf()) {
|
|
if (T == getContext().VoidTy) {
|
|
// sizeof(void) == 1 byte.
|
|
amt = CharUnits::One();
|
|
}
|
|
else if (!T->isConstantSizeType()) {
|
|
assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
|
|
|
|
// FIXME: Add support for VLA type arguments, not just VLA expressions.
|
|
// When that happens, we should probably refactor VLASizeChecker's code.
|
|
if (Ex->isArgumentType()) {
|
|
Dst.Add(Pred);
|
|
return;
|
|
}
|
|
|
|
// Get the size by getting the extent of the sub-expression.
|
|
// First, visit the sub-expression to find its region.
|
|
const Expr *Arg = Ex->getArgumentExpr();
|
|
ExplodedNodeSet Tmp;
|
|
VisitLValue(Arg, Pred, Tmp);
|
|
|
|
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
|
|
const GRState* state = GetState(*I);
|
|
const MemRegion *MR = state->getSVal(Arg).getAsRegion();
|
|
|
|
// If the subexpression can't be resolved to a region, we don't know
|
|
// anything about its size. Just leave the state as is and continue.
|
|
if (!MR) {
|
|
Dst.Add(*I);
|
|
continue;
|
|
}
|
|
|
|
// The result is the extent of the VLA.
|
|
SVal Extent = cast<SubRegion>(MR)->getExtent(ValMgr);
|
|
MakeNode(Dst, Ex, *I, state->BindExpr(Ex, Extent));
|
|
}
|
|
|
|
return;
|
|
}
|
|
else if (T->getAs<ObjCObjectType>()) {
|
|
// Some code tries to take the sizeof an ObjCObjectType, relying that
|
|
// the compiler has laid out its representation. Just report Unknown
|
|
// for these.
|
|
Dst.Add(Pred);
|
|
return;
|
|
}
|
|
else {
|
|
// All other cases.
|
|
amt = getContext().getTypeSizeInChars(T);
|
|
}
|
|
}
|
|
else // Get alignment of the type.
|
|
amt = getContext().getTypeAlignInChars(T);
|
|
|
|
MakeNode(Dst, Ex, Pred,
|
|
GetState(Pred)->BindExpr(Ex,
|
|
ValMgr.makeIntVal(amt.getQuantity(), Ex->getType())));
|
|
}
|
|
|
|
void GRExprEngine::VisitOffsetOfExpr(const OffsetOfExpr* OOE,
|
|
ExplodedNode* Pred, ExplodedNodeSet& Dst) {
|
|
Expr::EvalResult Res;
|
|
if (OOE->Evaluate(Res, getContext()) && Res.Val.isInt()) {
|
|
const APSInt &IV = Res.Val.getInt();
|
|
assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
|
|
assert(OOE->getType()->isIntegerType());
|
|
assert(IV.isSigned() == OOE->getType()->isSignedIntegerType());
|
|
SVal X = ValMgr.makeIntVal(IV);
|
|
MakeNode(Dst, OOE, Pred, GetState(Pred)->BindExpr(OOE, X));
|
|
return;
|
|
}
|
|
// FIXME: Handle the case where __builtin_offsetof is not a constant.
|
|
Dst.Add(Pred);
|
|
}
|
|
|
|
void GRExprEngine::VisitUnaryOperator(const UnaryOperator* U,
|
|
ExplodedNode* Pred,
|
|
ExplodedNodeSet& Dst, bool asLValue) {
|
|
|
|
switch (U->getOpcode()) {
|
|
|
|
default:
|
|
break;
|
|
|
|
case UnaryOperator::Deref: {
|
|
|
|
const Expr* Ex = U->getSubExpr()->IgnoreParens();
|
|
ExplodedNodeSet Tmp;
|
|
Visit(Ex, Pred, Tmp);
|
|
|
|
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
|
|
|
|
const GRState* state = GetState(*I);
|
|
SVal location = state->getSVal(Ex);
|
|
|
|
if (asLValue)
|
|
MakeNode(Dst, U, *I, state->BindExpr(U, location),
|
|
ProgramPoint::PostLValueKind);
|
|
else
|
|
EvalLoad(Dst, U, *I, state, location);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
case UnaryOperator::Real: {
|
|
|
|
const Expr* Ex = U->getSubExpr()->IgnoreParens();
|
|
ExplodedNodeSet Tmp;
|
|
Visit(Ex, Pred, Tmp);
|
|
|
|
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
|
|
|
|
// FIXME: We don't have complex SValues yet.
|
|
if (Ex->getType()->isAnyComplexType()) {
|
|
// Just report "Unknown."
|
|
Dst.Add(*I);
|
|
continue;
|
|
}
|
|
|
|
// For all other types, UnaryOperator::Real is an identity operation.
|
|
assert (U->getType() == Ex->getType());
|
|
const GRState* state = GetState(*I);
|
|
MakeNode(Dst, U, *I, state->BindExpr(U, state->getSVal(Ex)));
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
case UnaryOperator::Imag: {
|
|
|
|
const Expr* Ex = U->getSubExpr()->IgnoreParens();
|
|
ExplodedNodeSet Tmp;
|
|
Visit(Ex, Pred, Tmp);
|
|
|
|
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
|
|
// FIXME: We don't have complex SValues yet.
|
|
if (Ex->getType()->isAnyComplexType()) {
|
|
// Just report "Unknown."
|
|
Dst.Add(*I);
|
|
continue;
|
|
}
|
|
|
|
// For all other types, UnaryOperator::Imag returns 0.
|
|
const GRState* state = GetState(*I);
|
|
SVal X = ValMgr.makeZeroVal(Ex->getType());
|
|
MakeNode(Dst, U, *I, state->BindExpr(U, X));
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
case UnaryOperator::OffsetOf: {
|
|
Expr::EvalResult Res;
|
|
if (U->Evaluate(Res, getContext()) && Res.Val.isInt()) {
|
|
const APSInt &IV = Res.Val.getInt();
|
|
assert(IV.getBitWidth() == getContext().getTypeSize(U->getType()));
|
|
assert(U->getType()->isIntegerType());
|
|
assert(IV.isSigned() == U->getType()->isSignedIntegerType());
|
|
SVal X = ValMgr.makeIntVal(IV);
|
|
MakeNode(Dst, U, Pred, GetState(Pred)->BindExpr(U, X));
|
|
return;
|
|
}
|
|
// FIXME: Handle the case where __builtin_offsetof is not a constant.
|
|
Dst.Add(Pred);
|
|
return;
|
|
}
|
|
|
|
case UnaryOperator::Plus: assert(!asLValue); // FALL-THROUGH.
|
|
case UnaryOperator::Extension: {
|
|
|
|
// Unary "+" is a no-op, similar to a parentheses. We still have places
|
|
// where it may be a block-level expression, so we need to
|
|
// generate an extra node that just propagates the value of the
|
|
// subexpression.
|
|
|
|
const Expr* Ex = U->getSubExpr()->IgnoreParens();
|
|
ExplodedNodeSet Tmp;
|
|
|
|
if (asLValue)
|
|
VisitLValue(Ex, Pred, Tmp);
|
|
else
|
|
Visit(Ex, Pred, Tmp);
|
|
|
|
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
|
|
const GRState* state = GetState(*I);
|
|
MakeNode(Dst, U, *I, state->BindExpr(U, state->getSVal(Ex)));
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
case UnaryOperator::AddrOf: {
|
|
|
|
assert(!asLValue);
|
|
const Expr* Ex = U->getSubExpr()->IgnoreParens();
|
|
ExplodedNodeSet Tmp;
|
|
VisitLValue(Ex, Pred, Tmp);
|
|
|
|
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
|
|
const GRState* state = GetState(*I);
|
|
SVal V = state->getSVal(Ex);
|
|
state = state->BindExpr(U, V);
|
|
MakeNode(Dst, U, *I, state);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
case UnaryOperator::LNot:
|
|
case UnaryOperator::Minus:
|
|
case UnaryOperator::Not: {
|
|
|
|
assert (!asLValue);
|
|
const Expr* Ex = U->getSubExpr()->IgnoreParens();
|
|
ExplodedNodeSet Tmp;
|
|
Visit(Ex, Pred, Tmp);
|
|
|
|
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
|
|
const GRState* state = GetState(*I);
|
|
|
|
// Get the value of the subexpression.
|
|
SVal V = state->getSVal(Ex);
|
|
|
|
if (V.isUnknownOrUndef()) {
|
|
MakeNode(Dst, U, *I, state->BindExpr(U, V));
|
|
continue;
|
|
}
|
|
|
|
// QualType DstT = getContext().getCanonicalType(U->getType());
|
|
// QualType SrcT = getContext().getCanonicalType(Ex->getType());
|
|
//
|
|
// if (DstT != SrcT) // Perform promotions.
|
|
// V = EvalCast(V, DstT);
|
|
//
|
|
// if (V.isUnknownOrUndef()) {
|
|
// MakeNode(Dst, U, *I, BindExpr(St, U, V));
|
|
// continue;
|
|
// }
|
|
|
|
switch (U->getOpcode()) {
|
|
default:
|
|
assert(false && "Invalid Opcode.");
|
|
break;
|
|
|
|
case UnaryOperator::Not:
|
|
// FIXME: Do we need to handle promotions?
|
|
state = state->BindExpr(U, EvalComplement(cast<NonLoc>(V)));
|
|
break;
|
|
|
|
case UnaryOperator::Minus:
|
|
// FIXME: Do we need to handle promotions?
|
|
state = state->BindExpr(U, EvalMinus(cast<NonLoc>(V)));
|
|
break;
|
|
|
|
case UnaryOperator::LNot:
|
|
|
|
// C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
|
|
//
|
|
// Note: technically we do "E == 0", but this is the same in the
|
|
// transfer functions as "0 == E".
|
|
SVal Result;
|
|
|
|
if (isa<Loc>(V)) {
|
|
Loc X = ValMgr.makeNull();
|
|
Result = EvalBinOp(state, BinaryOperator::EQ, cast<Loc>(V), X,
|
|
U->getType());
|
|
}
|
|
else {
|
|
nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
|
|
Result = EvalBinOp(state, BinaryOperator::EQ, cast<NonLoc>(V), X,
|
|
U->getType());
|
|
}
|
|
|
|
state = state->BindExpr(U, Result);
|
|
|
|
break;
|
|
}
|
|
|
|
MakeNode(Dst, U, *I, state);
|
|
}
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Handle ++ and -- (both pre- and post-increment).
|
|
|
|
assert (U->isIncrementDecrementOp());
|
|
ExplodedNodeSet Tmp;
|
|
const Expr* Ex = U->getSubExpr()->IgnoreParens();
|
|
VisitLValue(Ex, Pred, Tmp);
|
|
|
|
for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) {
|
|
|
|
const GRState* state = GetState(*I);
|
|
SVal V1 = state->getSVal(Ex);
|
|
|
|
// Perform a load.
|
|
ExplodedNodeSet Tmp2;
|
|
EvalLoad(Tmp2, Ex, *I, state, V1);
|
|
|
|
for (ExplodedNodeSet::iterator I2=Tmp2.begin(), E2=Tmp2.end();I2!=E2;++I2) {
|
|
|
|
state = GetState(*I2);
|
|
SVal V2_untested = state->getSVal(Ex);
|
|
|
|
// Propagate unknown and undefined values.
|
|
if (V2_untested.isUnknownOrUndef()) {
|
|
MakeNode(Dst, U, *I2, state->BindExpr(U, V2_untested));
|
|
continue;
|
|
}
|
|
DefinedSVal V2 = cast<DefinedSVal>(V2_untested);
|
|
|
|
// Handle all other values.
|
|
BinaryOperator::Opcode Op = U->isIncrementOp() ? BinaryOperator::Add
|
|
: BinaryOperator::Sub;
|
|
|
|
// If the UnaryOperator has non-location type, use its type to create the
|
|
// constant value. If the UnaryOperator has location type, create the
|
|
// constant with int type and pointer width.
|
|
SVal RHS;
|
|
|
|
if (U->getType()->isAnyPointerType())
|
|
RHS = ValMgr.makeIntValWithPtrWidth(1, false);
|
|
else
|
|
RHS = ValMgr.makeIntVal(1, U->getType());
|
|
|
|
SVal Result = EvalBinOp(state, Op, V2, RHS, U->getType());
|
|
|
|
// Conjure a new symbol if necessary to recover precision.
|
|
if (Result.isUnknown() || !getConstraintManager().canReasonAbout(Result)){
|
|
DefinedOrUnknownSVal SymVal =
|
|
ValMgr.getConjuredSymbolVal(NULL, Ex,
|
|
Builder->getCurrentBlockCount());
|
|
Result = SymVal;
|
|
|
|
// If the value is a location, ++/-- should always preserve
|
|
// non-nullness. Check if the original value was non-null, and if so
|
|
// propagate that constraint.
|
|
if (Loc::IsLocType(U->getType())) {
|
|
DefinedOrUnknownSVal Constraint =
|
|
SVator.EvalEQ(state, V2, ValMgr.makeZeroVal(U->getType()));
|
|
|
|
if (!state->Assume(Constraint, true)) {
|
|
// It isn't feasible for the original value to be null.
|
|
// Propagate this constraint.
|
|
Constraint = SVator.EvalEQ(state, SymVal,
|
|
ValMgr.makeZeroVal(U->getType()));
|
|
|
|
|
|
state = state->Assume(Constraint, false);
|
|
assert(state);
|
|
}
|
|
}
|
|
}
|
|
|
|
state = state->BindExpr(U, U->isPostfix() ? V2 : Result);
|
|
|
|
// Perform the store.
|
|
EvalStore(Dst, NULL, U, *I2, state, V1, Result);
|
|
}
|
|
}
|
|
}
|
|
|
|
void GRExprEngine::VisitAsmStmt(const AsmStmt* A, ExplodedNode* Pred,
|
|
ExplodedNodeSet& Dst) {
|
|
VisitAsmStmtHelperOutputs(A, A->begin_outputs(), A->end_outputs(), Pred, Dst);
|
|
}
|
|
|
|
void GRExprEngine::VisitAsmStmtHelperOutputs(const AsmStmt* A,
|
|
AsmStmt::const_outputs_iterator I,
|
|
AsmStmt::const_outputs_iterator E,
|
|
ExplodedNode* Pred, ExplodedNodeSet& Dst) {
|
|
if (I == E) {
|
|
VisitAsmStmtHelperInputs(A, A->begin_inputs(), A->end_inputs(), Pred, Dst);
|
|
return;
|
|
}
|
|
|
|
ExplodedNodeSet Tmp;
|
|
VisitLValue(*I, Pred, Tmp);
|
|
|
|
++I;
|
|
|
|
for (ExplodedNodeSet::iterator NI = Tmp.begin(), NE = Tmp.end();NI != NE;++NI)
|
|
VisitAsmStmtHelperOutputs(A, I, E, *NI, Dst);
|
|
}
|
|
|
|
void GRExprEngine::VisitAsmStmtHelperInputs(const AsmStmt* A,
|
|
AsmStmt::const_inputs_iterator I,
|
|
AsmStmt::const_inputs_iterator E,
|
|
ExplodedNode* Pred,
|
|
ExplodedNodeSet& Dst) {
|
|
if (I == E) {
|
|
|
|
// We have processed both the inputs and the outputs. All of the outputs
|
|
// should evaluate to Locs. Nuke all of their values.
|
|
|
|
// FIXME: Some day in the future it would be nice to allow a "plug-in"
|
|
// which interprets the inline asm and stores proper results in the
|
|
// outputs.
|
|
|
|
const GRState* state = GetState(Pred);
|
|
|
|
for (AsmStmt::const_outputs_iterator OI = A->begin_outputs(),
|
|
OE = A->end_outputs(); OI != OE; ++OI) {
|
|
|
|
SVal X = state->getSVal(*OI);
|
|
assert (!isa<NonLoc>(X)); // Should be an Lval, or unknown, undef.
|
|
|
|
if (isa<Loc>(X))
|
|
state = state->bindLoc(cast<Loc>(X), UnknownVal());
|
|
}
|
|
|
|
MakeNode(Dst, A, Pred, state);
|
|
return;
|
|
}
|
|
|
|
ExplodedNodeSet Tmp;
|
|
Visit(*I, Pred, Tmp);
|
|
|
|
++I;
|
|
|
|
for (ExplodedNodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI!=NE; ++NI)
|
|
VisitAsmStmtHelperInputs(A, I, E, *NI, Dst);
|
|
}
|
|
|
|
void GRExprEngine::VisitReturnStmt(const ReturnStmt *RS, ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
ExplodedNodeSet Src;
|
|
if (const Expr *RetE = RS->getRetValue()) {
|
|
// Record the returned expression in the state. It will be used in
|
|
// ProcessCallExit to bind the return value to the call expr.
|
|
{
|
|
static int Tag = 0;
|
|
SaveAndRestore<const void *> OldTag(Builder->Tag, &Tag);
|
|
const GRState *state = GetState(Pred);
|
|
state = state->set<ReturnExpr>(RetE);
|
|
Pred = Builder->generateNode(RetE, state, Pred);
|
|
}
|
|
// We may get a NULL Pred because we generated a cached node.
|
|
if (Pred)
|
|
Visit(RetE, Pred, Src);
|
|
}
|
|
else {
|
|
Src.Add(Pred);
|
|
}
|
|
|
|
ExplodedNodeSet CheckedSet;
|
|
CheckerVisit(RS, CheckedSet, Src, true);
|
|
|
|
for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
|
|
I != E; ++I) {
|
|
|
|
assert(Builder && "GRStmtNodeBuilder must be defined.");
|
|
|
|
Pred = *I;
|
|
unsigned size = Dst.size();
|
|
|
|
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
|
|
SaveOr OldHasGen(Builder->HasGeneratedNode);
|
|
|
|
getTF().EvalReturn(Dst, *this, *Builder, RS, Pred);
|
|
|
|
// Handle the case where no nodes where generated.
|
|
if (!Builder->BuildSinks && Dst.size() == size &&
|
|
!Builder->HasGeneratedNode)
|
|
MakeNode(Dst, RS, Pred, GetState(Pred));
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Transfer functions: Binary operators.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void GRExprEngine::VisitBinaryOperator(const BinaryOperator* B,
|
|
ExplodedNode* Pred,
|
|
ExplodedNodeSet& Dst, bool asLValue) {
|
|
|
|
ExplodedNodeSet Tmp1;
|
|
Expr* LHS = B->getLHS()->IgnoreParens();
|
|
Expr* RHS = B->getRHS()->IgnoreParens();
|
|
|
|
// FIXME: Add proper support for ObjCImplicitSetterGetterRefExpr.
|
|
if (isa<ObjCImplicitSetterGetterRefExpr>(LHS)) {
|
|
Visit(RHS, Pred, Dst);
|
|
return;
|
|
}
|
|
|
|
if (B->isAssignmentOp())
|
|
VisitLValue(LHS, Pred, Tmp1);
|
|
else
|
|
Visit(LHS, Pred, Tmp1);
|
|
|
|
ExplodedNodeSet Tmp3;
|
|
|
|
for (ExplodedNodeSet::iterator I1=Tmp1.begin(), E1=Tmp1.end(); I1!=E1; ++I1) {
|
|
SVal LeftV = GetState(*I1)->getSVal(LHS);
|
|
ExplodedNodeSet Tmp2;
|
|
Visit(RHS, *I1, Tmp2);
|
|
|
|
ExplodedNodeSet CheckedSet;
|
|
CheckerVisit(B, CheckedSet, Tmp2, true);
|
|
|
|
// With both the LHS and RHS evaluated, process the operation itself.
|
|
|
|
for (ExplodedNodeSet::iterator I2=CheckedSet.begin(), E2=CheckedSet.end();
|
|
I2 != E2; ++I2) {
|
|
|
|
const GRState *state = GetState(*I2);
|
|
const GRState *OldSt = state;
|
|
SVal RightV = state->getSVal(RHS);
|
|
|
|
BinaryOperator::Opcode Op = B->getOpcode();
|
|
|
|
if (Op == BinaryOperator::Assign) {
|
|
// EXPERIMENTAL: "Conjured" symbols.
|
|
// FIXME: Handle structs.
|
|
QualType T = RHS->getType();
|
|
|
|
if ((RightV.isUnknown()||!getConstraintManager().canReasonAbout(RightV))
|
|
&& (Loc::IsLocType(T) || (T->isScalarType()&&T->isIntegerType()))) {
|
|
unsigned Count = Builder->getCurrentBlockCount();
|
|
RightV = ValMgr.getConjuredSymbolVal(NULL, B->getRHS(), Count);
|
|
}
|
|
|
|
SVal ExprVal = asLValue ? LeftV : RightV;
|
|
|
|
// Simulate the effects of a "store": bind the value of the RHS
|
|
// to the L-Value represented by the LHS.
|
|
EvalStore(Tmp3, B, LHS, *I2, state->BindExpr(B, ExprVal), LeftV,RightV);
|
|
continue;
|
|
}
|
|
|
|
if (!B->isAssignmentOp()) {
|
|
// Process non-assignments except commas or short-circuited
|
|
// logical expressions (LAnd and LOr).
|
|
SVal Result = EvalBinOp(state, Op, LeftV, RightV, B->getType());
|
|
|
|
if (Result.isUnknown()) {
|
|
if (OldSt != state) {
|
|
// Generate a new node if we have already created a new state.
|
|
MakeNode(Tmp3, B, *I2, state);
|
|
}
|
|
else
|
|
Tmp3.Add(*I2);
|
|
|
|
continue;
|
|
}
|
|
|
|
state = state->BindExpr(B, Result);
|
|
|
|
MakeNode(Tmp3, B, *I2, state);
|
|
continue;
|
|
}
|
|
|
|
assert (B->isCompoundAssignmentOp());
|
|
|
|
switch (Op) {
|
|
default:
|
|
assert(0 && "Invalid opcode for compound assignment.");
|
|
case BinaryOperator::MulAssign: Op = BinaryOperator::Mul; break;
|
|
case BinaryOperator::DivAssign: Op = BinaryOperator::Div; break;
|
|
case BinaryOperator::RemAssign: Op = BinaryOperator::Rem; break;
|
|
case BinaryOperator::AddAssign: Op = BinaryOperator::Add; break;
|
|
case BinaryOperator::SubAssign: Op = BinaryOperator::Sub; break;
|
|
case BinaryOperator::ShlAssign: Op = BinaryOperator::Shl; break;
|
|
case BinaryOperator::ShrAssign: Op = BinaryOperator::Shr; break;
|
|
case BinaryOperator::AndAssign: Op = BinaryOperator::And; break;
|
|
case BinaryOperator::XorAssign: Op = BinaryOperator::Xor; break;
|
|
case BinaryOperator::OrAssign: Op = BinaryOperator::Or; break;
|
|
}
|
|
|
|
// Perform a load (the LHS). This performs the checks for
|
|
// null dereferences, and so on.
|
|
ExplodedNodeSet Tmp4;
|
|
SVal location = state->getSVal(LHS);
|
|
EvalLoad(Tmp4, LHS, *I2, state, location);
|
|
|
|
for (ExplodedNodeSet::iterator I4=Tmp4.begin(), E4=Tmp4.end(); I4!=E4;
|
|
++I4) {
|
|
state = GetState(*I4);
|
|
SVal V = state->getSVal(LHS);
|
|
|
|
// Get the computation type.
|
|
QualType CTy =
|
|
cast<CompoundAssignOperator>(B)->getComputationResultType();
|
|
CTy = getContext().getCanonicalType(CTy);
|
|
|
|
QualType CLHSTy =
|
|
cast<CompoundAssignOperator>(B)->getComputationLHSType();
|
|
CLHSTy = getContext().getCanonicalType(CLHSTy);
|
|
|
|
QualType LTy = getContext().getCanonicalType(LHS->getType());
|
|
QualType RTy = getContext().getCanonicalType(RHS->getType());
|
|
|
|
// Promote LHS.
|
|
V = SVator.EvalCast(V, CLHSTy, LTy);
|
|
|
|
// Compute the result of the operation.
|
|
SVal Result = SVator.EvalCast(EvalBinOp(state, Op, V, RightV, CTy),
|
|
B->getType(), CTy);
|
|
|
|
// EXPERIMENTAL: "Conjured" symbols.
|
|
// FIXME: Handle structs.
|
|
|
|
SVal LHSVal;
|
|
|
|
if ((Result.isUnknown() ||
|
|
!getConstraintManager().canReasonAbout(Result))
|
|
&& (Loc::IsLocType(CTy)
|
|
|| (CTy->isScalarType() && CTy->isIntegerType()))) {
|
|
|
|
unsigned Count = Builder->getCurrentBlockCount();
|
|
|
|
// The symbolic value is actually for the type of the left-hand side
|
|
// expression, not the computation type, as this is the value the
|
|
// LValue on the LHS will bind to.
|
|
LHSVal = ValMgr.getConjuredSymbolVal(NULL, B->getRHS(), LTy, Count);
|
|
|
|
// However, we need to convert the symbol to the computation type.
|
|
Result = SVator.EvalCast(LHSVal, CTy, LTy);
|
|
}
|
|
else {
|
|
// The left-hand side may bind to a different value then the
|
|
// computation type.
|
|
LHSVal = SVator.EvalCast(Result, LTy, CTy);
|
|
}
|
|
|
|
EvalStore(Tmp3, B, LHS, *I4, state->BindExpr(B, Result),
|
|
location, LHSVal);
|
|
}
|
|
}
|
|
}
|
|
|
|
CheckerVisit(B, Dst, Tmp3, false);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Checker registration/lookup.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Checker *GRExprEngine::lookupChecker(void *tag) const {
|
|
CheckerMap::const_iterator I = CheckerM.find(tag);
|
|
return (I == CheckerM.end()) ? NULL : Checkers[I->second].second;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Visualization.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef NDEBUG
|
|
static GRExprEngine* GraphPrintCheckerState;
|
|
static SourceManager* GraphPrintSourceManager;
|
|
|
|
namespace llvm {
|
|
template<>
|
|
struct DOTGraphTraits<ExplodedNode*> :
|
|
public DefaultDOTGraphTraits {
|
|
|
|
DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
|
|
|
|
// FIXME: Since we do not cache error nodes in GRExprEngine now, this does not
|
|
// work.
|
|
static std::string getNodeAttributes(const ExplodedNode* N, void*) {
|
|
|
|
#if 0
|
|
// FIXME: Replace with a general scheme to tell if the node is
|
|
// an error node.
|
|
if (GraphPrintCheckerState->isImplicitNullDeref(N) ||
|
|
GraphPrintCheckerState->isExplicitNullDeref(N) ||
|
|
GraphPrintCheckerState->isUndefDeref(N) ||
|
|
GraphPrintCheckerState->isUndefStore(N) ||
|
|
GraphPrintCheckerState->isUndefControlFlow(N) ||
|
|
GraphPrintCheckerState->isUndefResult(N) ||
|
|
GraphPrintCheckerState->isBadCall(N) ||
|
|
GraphPrintCheckerState->isUndefArg(N))
|
|
return "color=\"red\",style=\"filled\"";
|
|
|
|
if (GraphPrintCheckerState->isNoReturnCall(N))
|
|
return "color=\"blue\",style=\"filled\"";
|
|
#endif
|
|
return "";
|
|
}
|
|
|
|
static std::string getNodeLabel(const ExplodedNode* N, void*){
|
|
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream Out(sbuf);
|
|
|
|
// Program Location.
|
|
ProgramPoint Loc = N->getLocation();
|
|
|
|
switch (Loc.getKind()) {
|
|
case ProgramPoint::BlockEntranceKind:
|
|
Out << "Block Entrance: B"
|
|
<< cast<BlockEntrance>(Loc).getBlock()->getBlockID();
|
|
break;
|
|
|
|
case ProgramPoint::BlockExitKind:
|
|
assert (false);
|
|
break;
|
|
|
|
case ProgramPoint::CallEnterKind:
|
|
Out << "CallEnter";
|
|
break;
|
|
|
|
case ProgramPoint::CallExitKind:
|
|
Out << "CallExit";
|
|
break;
|
|
|
|
default: {
|
|
if (StmtPoint *L = dyn_cast<StmtPoint>(&Loc)) {
|
|
const Stmt* S = L->getStmt();
|
|
SourceLocation SLoc = S->getLocStart();
|
|
|
|
Out << S->getStmtClassName() << ' ' << (void*) S << ' ';
|
|
LangOptions LO; // FIXME.
|
|
S->printPretty(Out, 0, PrintingPolicy(LO));
|
|
|
|
if (SLoc.isFileID()) {
|
|
Out << "\\lline="
|
|
<< GraphPrintSourceManager->getInstantiationLineNumber(SLoc)
|
|
<< " col="
|
|
<< GraphPrintSourceManager->getInstantiationColumnNumber(SLoc)
|
|
<< "\\l";
|
|
}
|
|
|
|
if (isa<PreStmt>(Loc))
|
|
Out << "\\lPreStmt\\l;";
|
|
else if (isa<PostLoad>(Loc))
|
|
Out << "\\lPostLoad\\l;";
|
|
else if (isa<PostStore>(Loc))
|
|
Out << "\\lPostStore\\l";
|
|
else if (isa<PostLValue>(Loc))
|
|
Out << "\\lPostLValue\\l";
|
|
|
|
#if 0
|
|
// FIXME: Replace with a general scheme to determine
|
|
// the name of the check.
|
|
if (GraphPrintCheckerState->isImplicitNullDeref(N))
|
|
Out << "\\|Implicit-Null Dereference.\\l";
|
|
else if (GraphPrintCheckerState->isExplicitNullDeref(N))
|
|
Out << "\\|Explicit-Null Dereference.\\l";
|
|
else if (GraphPrintCheckerState->isUndefDeref(N))
|
|
Out << "\\|Dereference of undefialied value.\\l";
|
|
else if (GraphPrintCheckerState->isUndefStore(N))
|
|
Out << "\\|Store to Undefined Loc.";
|
|
else if (GraphPrintCheckerState->isUndefResult(N))
|
|
Out << "\\|Result of operation is undefined.";
|
|
else if (GraphPrintCheckerState->isNoReturnCall(N))
|
|
Out << "\\|Call to function marked \"noreturn\".";
|
|
else if (GraphPrintCheckerState->isBadCall(N))
|
|
Out << "\\|Call to NULL/Undefined.";
|
|
else if (GraphPrintCheckerState->isUndefArg(N))
|
|
Out << "\\|Argument in call is undefined";
|
|
#endif
|
|
|
|
break;
|
|
}
|
|
|
|
const BlockEdge& E = cast<BlockEdge>(Loc);
|
|
Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B"
|
|
<< E.getDst()->getBlockID() << ')';
|
|
|
|
if (const Stmt* T = E.getSrc()->getTerminator()) {
|
|
|
|
SourceLocation SLoc = T->getLocStart();
|
|
|
|
Out << "\\|Terminator: ";
|
|
LangOptions LO; // FIXME.
|
|
E.getSrc()->printTerminator(Out, LO);
|
|
|
|
if (SLoc.isFileID()) {
|
|
Out << "\\lline="
|
|
<< GraphPrintSourceManager->getInstantiationLineNumber(SLoc)
|
|
<< " col="
|
|
<< GraphPrintSourceManager->getInstantiationColumnNumber(SLoc);
|
|
}
|
|
|
|
if (isa<SwitchStmt>(T)) {
|
|
const Stmt* Label = E.getDst()->getLabel();
|
|
|
|
if (Label) {
|
|
if (const CaseStmt* C = dyn_cast<CaseStmt>(Label)) {
|
|
Out << "\\lcase ";
|
|
LangOptions LO; // FIXME.
|
|
C->getLHS()->printPretty(Out, 0, PrintingPolicy(LO));
|
|
|
|
if (const Stmt* RHS = C->getRHS()) {
|
|
Out << " .. ";
|
|
RHS->printPretty(Out, 0, PrintingPolicy(LO));
|
|
}
|
|
|
|
Out << ":";
|
|
}
|
|
else {
|
|
assert (isa<DefaultStmt>(Label));
|
|
Out << "\\ldefault:";
|
|
}
|
|
}
|
|
else
|
|
Out << "\\l(implicit) default:";
|
|
}
|
|
else if (isa<IndirectGotoStmt>(T)) {
|
|
// FIXME
|
|
}
|
|
else {
|
|
Out << "\\lCondition: ";
|
|
if (*E.getSrc()->succ_begin() == E.getDst())
|
|
Out << "true";
|
|
else
|
|
Out << "false";
|
|
}
|
|
|
|
Out << "\\l";
|
|
}
|
|
|
|
#if 0
|
|
// FIXME: Replace with a general scheme to determine
|
|
// the name of the check.
|
|
if (GraphPrintCheckerState->isUndefControlFlow(N)) {
|
|
Out << "\\|Control-flow based on\\lUndefined value.\\l";
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
Out << "\\|StateID: " << (void*) N->getState() << "\\|";
|
|
|
|
const GRState *state = N->getState();
|
|
state->printDOT(Out, *N->getLocationContext()->getCFG());
|
|
|
|
Out << "\\l";
|
|
return Out.str();
|
|
}
|
|
};
|
|
} // end llvm namespace
|
|
#endif
|
|
|
|
#ifndef NDEBUG
|
|
template <typename ITERATOR>
|
|
ExplodedNode* GetGraphNode(ITERATOR I) { return *I; }
|
|
|
|
template <> ExplodedNode*
|
|
GetGraphNode<llvm::DenseMap<ExplodedNode*, Expr*>::iterator>
|
|
(llvm::DenseMap<ExplodedNode*, Expr*>::iterator I) {
|
|
return I->first;
|
|
}
|
|
#endif
|
|
|
|
void GRExprEngine::ViewGraph(bool trim) {
|
|
#ifndef NDEBUG
|
|
if (trim) {
|
|
std::vector<ExplodedNode*> Src;
|
|
|
|
// Flush any outstanding reports to make sure we cover all the nodes.
|
|
// This does not cause them to get displayed.
|
|
for (BugReporter::iterator I=BR.begin(), E=BR.end(); I!=E; ++I)
|
|
const_cast<BugType*>(*I)->FlushReports(BR);
|
|
|
|
// Iterate through the reports and get their nodes.
|
|
for (BugReporter::iterator I=BR.begin(), E=BR.end(); I!=E; ++I) {
|
|
for (BugType::const_iterator I2=(*I)->begin(), E2=(*I)->end();
|
|
I2!=E2; ++I2) {
|
|
const BugReportEquivClass& EQ = *I2;
|
|
const BugReport &R = **EQ.begin();
|
|
ExplodedNode *N = const_cast<ExplodedNode*>(R.getEndNode());
|
|
if (N) Src.push_back(N);
|
|
}
|
|
}
|
|
|
|
ViewGraph(&Src[0], &Src[0]+Src.size());
|
|
}
|
|
else {
|
|
GraphPrintCheckerState = this;
|
|
GraphPrintSourceManager = &getContext().getSourceManager();
|
|
|
|
llvm::ViewGraph(*G.roots_begin(), "GRExprEngine");
|
|
|
|
GraphPrintCheckerState = NULL;
|
|
GraphPrintSourceManager = NULL;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void GRExprEngine::ViewGraph(ExplodedNode** Beg, ExplodedNode** End) {
|
|
#ifndef NDEBUG
|
|
GraphPrintCheckerState = this;
|
|
GraphPrintSourceManager = &getContext().getSourceManager();
|
|
|
|
std::auto_ptr<ExplodedGraph> TrimmedG(G.Trim(Beg, End).first);
|
|
|
|
if (!TrimmedG.get())
|
|
llvm::errs() << "warning: Trimmed ExplodedGraph is empty.\n";
|
|
else
|
|
llvm::ViewGraph(*TrimmedG->roots_begin(), "TrimmedGRExprEngine");
|
|
|
|
GraphPrintCheckerState = NULL;
|
|
GraphPrintSourceManager = NULL;
|
|
#endif
|
|
}
|