llvm-project/llvm/lib/Target/Hexagon/HexagonInstrInfoV4.td

3398 lines
129 KiB
TableGen

//=- HexagonInstrInfoV4.td - Target Desc. for Hexagon Target -*- tablegen -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the Hexagon V4 instructions in TableGen format.
//
//===----------------------------------------------------------------------===//
let neverHasSideEffects = 1 in
class T_Immext<dag ins> :
EXTENDERInst<(outs), ins, "immext(#$imm)", []>,
Requires<[HasV4T]>;
def IMMEXT_b : T_Immext<(ins brtarget:$imm)>;
def IMMEXT_c : T_Immext<(ins calltarget:$imm)>;
def IMMEXT_g : T_Immext<(ins globaladdress:$imm)>;
def IMMEXT_i : T_Immext<(ins u26_6Imm:$imm)>;
// Fold (add (CONST32 tglobaladdr:$addr) <offset>) into a global address.
def FoldGlobalAddr : ComplexPattern<i32, 1, "foldGlobalAddress", [], []>;
// Fold (add (CONST32_GP tglobaladdr:$addr) <offset>) into a global address.
def FoldGlobalAddrGP : ComplexPattern<i32, 1, "foldGlobalAddressGP", [], []>;
def NumUsesBelowThresCONST32 : PatFrag<(ops node:$addr),
(HexagonCONST32 node:$addr), [{
return hasNumUsesBelowThresGA(N->getOperand(0).getNode());
}]>;
// Hexagon V4 Architecture spec defines 8 instruction classes:
// LD ST ALU32 XTYPE J JR MEMOP NV CR SYSTEM(system is not implemented in the
// compiler)
// LD Instructions:
// ========================================
// Loads (8/16/32/64 bit)
// Deallocframe
// ST Instructions:
// ========================================
// Stores (8/16/32/64 bit)
// Allocframe
// ALU32 Instructions:
// ========================================
// Arithmetic / Logical (32 bit)
// Vector Halfword
// XTYPE Instructions (32/64 bit):
// ========================================
// Arithmetic, Logical, Bit Manipulation
// Multiply (Integer, Fractional, Complex)
// Permute / Vector Permute Operations
// Predicate Operations
// Shift / Shift with Add/Sub/Logical
// Vector Byte ALU
// Vector Halfword (ALU, Shift, Multiply)
// Vector Word (ALU, Shift)
// J Instructions:
// ========================================
// Jump/Call PC-relative
// JR Instructions:
// ========================================
// Jump/Call Register
// MEMOP Instructions:
// ========================================
// Operation on memory (8/16/32 bit)
// NV Instructions:
// ========================================
// New-value Jumps
// New-value Stores
// CR Instructions:
// ========================================
// Control-Register Transfers
// Hardware Loop Setup
// Predicate Logicals & Reductions
// SYSTEM Instructions (not implemented in the compiler):
// ========================================
// Prefetch
// Cache Maintenance
// Bus Operations
//===----------------------------------------------------------------------===//
// ALU32 +
//===----------------------------------------------------------------------===//
// Generate frame index addresses.
let neverHasSideEffects = 1, isReMaterializable = 1,
isExtended = 1, opExtendable = 2, validSubTargets = HasV4SubT in
def TFR_FI_immext_V4 : ALU32_ri<(outs IntRegs:$dst),
(ins IntRegs:$src1, s32Imm:$offset),
"$dst = add($src1, ##$offset)",
[]>,
Requires<[HasV4T]>;
// Rd=cmp.eq(Rs,#s8)
let validSubTargets = HasV4SubT, isExtendable = 1, opExtendable = 2,
isExtentSigned = 1, opExtentBits = 8 in
def V4_A4_rcmpeqi : ALU32_ri<(outs IntRegs:$Rd),
(ins IntRegs:$Rs, s8Ext:$s8),
"$Rd = cmp.eq($Rs, #$s8)",
[(set (i32 IntRegs:$Rd),
(i32 (zext (i1 (seteq (i32 IntRegs:$Rs),
s8ExtPred:$s8)))))]>,
Requires<[HasV4T]>;
// Preserve the TSTBIT generation
def : Pat <(i32 (zext (i1 (setne (i32 (and (i32 (shl 1, (i32 IntRegs:$src2))),
(i32 IntRegs:$src1))), 0)))),
(i32 (MUX_ii (i1 (TSTBIT_rr (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
1, 0))>;
// Interfered with tstbit generation, above pattern preserves, see : tstbit.ll
// Rd=cmp.ne(Rs,#s8)
let validSubTargets = HasV4SubT, isExtendable = 1, opExtendable = 2,
isExtentSigned = 1, opExtentBits = 8 in
def V4_A4_rcmpneqi : ALU32_ri<(outs IntRegs:$Rd),
(ins IntRegs:$Rs, s8Ext:$s8),
"$Rd = !cmp.eq($Rs, #$s8)",
[(set (i32 IntRegs:$Rd),
(i32 (zext (i1 (setne (i32 IntRegs:$Rs),
s8ExtPred:$s8)))))]>,
Requires<[HasV4T]>;
// Rd=cmp.eq(Rs,Rt)
let validSubTargets = HasV4SubT in
def V4_A4_rcmpeq : ALU32_ri<(outs IntRegs:$Rd),
(ins IntRegs:$Rs, IntRegs:$Rt),
"$Rd = cmp.eq($Rs, $Rt)",
[(set (i32 IntRegs:$Rd),
(i32 (zext (i1 (seteq (i32 IntRegs:$Rs),
IntRegs:$Rt)))))]>,
Requires<[HasV4T]>;
// Rd=cmp.ne(Rs,Rt)
let validSubTargets = HasV4SubT in
def V4_A4_rcmpneq : ALU32_ri<(outs IntRegs:$Rd),
(ins IntRegs:$Rs, IntRegs:$Rt),
"$Rd = !cmp.eq($Rs, $Rt)",
[(set (i32 IntRegs:$Rd),
(i32 (zext (i1 (setne (i32 IntRegs:$Rs),
IntRegs:$Rt)))))]>,
Requires<[HasV4T]>;
//===----------------------------------------------------------------------===//
// ALU32 -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// ALU32/PERM +
//===----------------------------------------------------------------------===//
// Combine
// Rdd=combine(Rs, #s8)
let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8,
neverHasSideEffects = 1, validSubTargets = HasV4SubT in
def COMBINE_rI_V4 : ALU32_ri<(outs DoubleRegs:$dst),
(ins IntRegs:$src1, s8Ext:$src2),
"$dst = combine($src1, #$src2)",
[]>,
Requires<[HasV4T]>;
// Rdd=combine(#s8, Rs)
let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 8,
neverHasSideEffects = 1, validSubTargets = HasV4SubT in
def COMBINE_Ir_V4 : ALU32_ir<(outs DoubleRegs:$dst),
(ins s8Ext:$src1, IntRegs:$src2),
"$dst = combine(#$src1, $src2)",
[]>,
Requires<[HasV4T]>;
def HexagonWrapperCombineRI_V4 :
SDNode<"HexagonISD::WrapperCombineRI_V4", SDTHexagonI64I32I32>;
def HexagonWrapperCombineIR_V4 :
SDNode<"HexagonISD::WrapperCombineIR_V4", SDTHexagonI64I32I32>;
def : Pat <(HexagonWrapperCombineRI_V4 IntRegs:$r, s8ExtPred:$i),
(COMBINE_rI_V4 IntRegs:$r, s8ExtPred:$i)>,
Requires<[HasV4T]>;
def : Pat <(HexagonWrapperCombineIR_V4 s8ExtPred:$i, IntRegs:$r),
(COMBINE_Ir_V4 s8ExtPred:$i, IntRegs:$r)>,
Requires<[HasV4T]>;
let isExtendable = 1, opExtendable = 2, isExtentSigned = 0, opExtentBits = 6,
neverHasSideEffects = 1, validSubTargets = HasV4SubT in
def COMBINE_iI_V4 : ALU32_ii<(outs DoubleRegs:$dst),
(ins s8Imm:$src1, u6Ext:$src2),
"$dst = combine(#$src1, #$src2)",
[]>,
Requires<[HasV4T]>;
//===----------------------------------------------------------------------===//
// ALU32/PERM +
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// LD +
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Template class for load instructions with Absolute set addressing mode.
//===----------------------------------------------------------------------===//
let isExtended = 1, opExtendable = 2, neverHasSideEffects = 1,
validSubTargets = HasV4SubT, addrMode = AbsoluteSet in
class T_LD_abs_set<string mnemonic, RegisterClass RC>:
LDInst2<(outs RC:$dst1, IntRegs:$dst2),
(ins u0AlwaysExt:$addr),
"$dst1 = "#mnemonic#"($dst2=##$addr)",
[]>,
Requires<[HasV4T]>;
def LDrid_abs_set_V4 : T_LD_abs_set <"memd", DoubleRegs>;
def LDrib_abs_set_V4 : T_LD_abs_set <"memb", IntRegs>;
def LDriub_abs_set_V4 : T_LD_abs_set <"memub", IntRegs>;
def LDrih_abs_set_V4 : T_LD_abs_set <"memh", IntRegs>;
def LDriw_abs_set_V4 : T_LD_abs_set <"memw", IntRegs>;
def LDriuh_abs_set_V4 : T_LD_abs_set <"memuh", IntRegs>;
// multiclass for load instructions with base + register offset
// addressing mode
multiclass ld_idxd_shl_pbase<string mnemonic, RegisterClass RC, bit isNot,
bit isPredNew> {
let isPredicatedNew = isPredNew in
def NAME : LDInst2<(outs RC:$dst),
(ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, u2Imm:$offset),
!if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
") ")#"$dst = "#mnemonic#"($src2+$src3<<#$offset)",
[]>, Requires<[HasV4T]>;
}
multiclass ld_idxd_shl_pred<string mnemonic, RegisterClass RC, bit PredNot> {
let isPredicatedFalse = PredNot in {
defm _c#NAME : ld_idxd_shl_pbase<mnemonic, RC, PredNot, 0>;
// Predicate new
defm _cdn#NAME : ld_idxd_shl_pbase<mnemonic, RC, PredNot, 1>;
}
}
let neverHasSideEffects = 1 in
multiclass ld_idxd_shl<string mnemonic, string CextOp, RegisterClass RC> {
let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed_shl in {
let isPredicable = 1 in
def NAME#_V4 : LDInst2<(outs RC:$dst),
(ins IntRegs:$src1, IntRegs:$src2, u2Imm:$offset),
"$dst = "#mnemonic#"($src1+$src2<<#$offset)",
[]>, Requires<[HasV4T]>;
let isPredicated = 1 in {
defm Pt_V4 : ld_idxd_shl_pred<mnemonic, RC, 0 >;
defm NotPt_V4 : ld_idxd_shl_pred<mnemonic, RC, 1>;
}
}
}
let addrMode = BaseRegOffset in {
let accessSize = ByteAccess in {
defm LDrib_indexed_shl: ld_idxd_shl<"memb", "LDrib", IntRegs>,
AddrModeRel;
defm LDriub_indexed_shl: ld_idxd_shl<"memub", "LDriub", IntRegs>,
AddrModeRel;
}
let accessSize = HalfWordAccess in {
defm LDrih_indexed_shl: ld_idxd_shl<"memh", "LDrih", IntRegs>, AddrModeRel;
defm LDriuh_indexed_shl: ld_idxd_shl<"memuh", "LDriuh", IntRegs>,
AddrModeRel;
}
let accessSize = WordAccess in
defm LDriw_indexed_shl: ld_idxd_shl<"memw", "LDriw", IntRegs>, AddrModeRel;
let accessSize = DoubleWordAccess in
defm LDrid_indexed_shl: ld_idxd_shl<"memd", "LDrid", DoubleRegs>,
AddrModeRel;
}
// 'def pats' for load instructions with base + register offset and non-zero
// immediate value. Immediate value is used to left-shift the second
// register operand.
let AddedComplexity = 40 in {
def : Pat <(i32 (sextloadi8 (add IntRegs:$src1,
(shl IntRegs:$src2, u2ImmPred:$offset)))),
(LDrib_indexed_shl_V4 IntRegs:$src1,
IntRegs:$src2, u2ImmPred:$offset)>,
Requires<[HasV4T]>;
def : Pat <(i32 (zextloadi8 (add IntRegs:$src1,
(shl IntRegs:$src2, u2ImmPred:$offset)))),
(LDriub_indexed_shl_V4 IntRegs:$src1,
IntRegs:$src2, u2ImmPred:$offset)>,
Requires<[HasV4T]>;
def : Pat <(i32 (extloadi8 (add IntRegs:$src1,
(shl IntRegs:$src2, u2ImmPred:$offset)))),
(LDriub_indexed_shl_V4 IntRegs:$src1,
IntRegs:$src2, u2ImmPred:$offset)>,
Requires<[HasV4T]>;
def : Pat <(i32 (sextloadi16 (add IntRegs:$src1,
(shl IntRegs:$src2, u2ImmPred:$offset)))),
(LDrih_indexed_shl_V4 IntRegs:$src1,
IntRegs:$src2, u2ImmPred:$offset)>,
Requires<[HasV4T]>;
def : Pat <(i32 (zextloadi16 (add IntRegs:$src1,
(shl IntRegs:$src2, u2ImmPred:$offset)))),
(LDriuh_indexed_shl_V4 IntRegs:$src1,
IntRegs:$src2, u2ImmPred:$offset)>,
Requires<[HasV4T]>;
def : Pat <(i32 (extloadi16 (add IntRegs:$src1,
(shl IntRegs:$src2, u2ImmPred:$offset)))),
(LDriuh_indexed_shl_V4 IntRegs:$src1,
IntRegs:$src2, u2ImmPred:$offset)>,
Requires<[HasV4T]>;
def : Pat <(i32 (load (add IntRegs:$src1,
(shl IntRegs:$src2, u2ImmPred:$offset)))),
(LDriw_indexed_shl_V4 IntRegs:$src1,
IntRegs:$src2, u2ImmPred:$offset)>,
Requires<[HasV4T]>;
def : Pat <(i64 (load (add IntRegs:$src1,
(shl IntRegs:$src2, u2ImmPred:$offset)))),
(LDrid_indexed_shl_V4 IntRegs:$src1,
IntRegs:$src2, u2ImmPred:$offset)>,
Requires<[HasV4T]>;
}
// 'def pats' for load instruction base + register offset and
// zero immediate value.
let AddedComplexity = 10 in {
def : Pat <(i64 (load (add IntRegs:$src1, IntRegs:$src2))),
(LDrid_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2, 0)>,
Requires<[HasV4T]>;
def : Pat <(i32 (sextloadi8 (add IntRegs:$src1, IntRegs:$src2))),
(LDrib_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2, 0)>,
Requires<[HasV4T]>;
def : Pat <(i32 (zextloadi8 (add IntRegs:$src1, IntRegs:$src2))),
(LDriub_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2, 0)>,
Requires<[HasV4T]>;
def : Pat <(i32 (extloadi8 (add IntRegs:$src1, IntRegs:$src2))),
(LDriub_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2, 0)>,
Requires<[HasV4T]>;
def : Pat <(i32 (sextloadi16 (add IntRegs:$src1, IntRegs:$src2))),
(LDrih_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2, 0)>,
Requires<[HasV4T]>;
def : Pat <(i32 (zextloadi16 (add IntRegs:$src1, IntRegs:$src2))),
(LDriuh_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2, 0)>,
Requires<[HasV4T]>;
def : Pat <(i32 (extloadi16 (add IntRegs:$src1, IntRegs:$src2))),
(LDriuh_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2, 0)>,
Requires<[HasV4T]>;
def : Pat <(i32 (load (add IntRegs:$src1, IntRegs:$src2))),
(LDriw_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2, 0)>,
Requires<[HasV4T]>;
}
// zext i1->i64
def : Pat <(i64 (zext (i1 PredRegs:$src1))),
(i64 (COMBINE_Ir_V4 0, (MUX_ii (i1 PredRegs:$src1), 1, 0)))>,
Requires<[HasV4T]>;
// zext i32->i64
def : Pat <(i64 (zext (i32 IntRegs:$src1))),
(i64 (COMBINE_Ir_V4 0, (i32 IntRegs:$src1)))>,
Requires<[HasV4T]>;
// zext i8->i64
def: Pat <(i64 (zextloadi8 ADDRriS11_0:$src1)),
(i64 (COMBINE_Ir_V4 0, (LDriub ADDRriS11_0:$src1)))>,
Requires<[HasV4T]>;
let AddedComplexity = 20 in
def: Pat <(i64 (zextloadi8 (add (i32 IntRegs:$src1),
s11_0ExtPred:$offset))),
(i64 (COMBINE_Ir_V4 0, (LDriub_indexed IntRegs:$src1,
s11_0ExtPred:$offset)))>,
Requires<[HasV4T]>;
// zext i1->i64
def: Pat <(i64 (zextloadi1 ADDRriS11_0:$src1)),
(i64 (COMBINE_Ir_V4 0, (LDriub ADDRriS11_0:$src1)))>,
Requires<[HasV4T]>;
let AddedComplexity = 20 in
def: Pat <(i64 (zextloadi1 (add (i32 IntRegs:$src1),
s11_0ExtPred:$offset))),
(i64 (COMBINE_Ir_V4 0, (LDriub_indexed IntRegs:$src1,
s11_0ExtPred:$offset)))>,
Requires<[HasV4T]>;
// zext i16->i64
def: Pat <(i64 (zextloadi16 ADDRriS11_1:$src1)),
(i64 (COMBINE_Ir_V4 0, (LDriuh ADDRriS11_1:$src1)))>,
Requires<[HasV4T]>;
let AddedComplexity = 20 in
def: Pat <(i64 (zextloadi16 (add (i32 IntRegs:$src1),
s11_1ExtPred:$offset))),
(i64 (COMBINE_Ir_V4 0, (LDriuh_indexed IntRegs:$src1,
s11_1ExtPred:$offset)))>,
Requires<[HasV4T]>;
// anyext i16->i64
def: Pat <(i64 (extloadi16 ADDRriS11_2:$src1)),
(i64 (COMBINE_Ir_V4 0, (LDrih ADDRriS11_2:$src1)))>,
Requires<[HasV4T]>;
let AddedComplexity = 20 in
def: Pat <(i64 (extloadi16 (add (i32 IntRegs:$src1),
s11_1ExtPred:$offset))),
(i64 (COMBINE_Ir_V4 0, (LDrih_indexed IntRegs:$src1,
s11_1ExtPred:$offset)))>,
Requires<[HasV4T]>;
// zext i32->i64
def: Pat <(i64 (zextloadi32 ADDRriS11_2:$src1)),
(i64 (COMBINE_Ir_V4 0, (LDriw ADDRriS11_2:$src1)))>,
Requires<[HasV4T]>;
let AddedComplexity = 100 in
def: Pat <(i64 (zextloadi32 (i32 (add IntRegs:$src1, s11_2ExtPred:$offset)))),
(i64 (COMBINE_Ir_V4 0, (LDriw_indexed IntRegs:$src1,
s11_2ExtPred:$offset)))>,
Requires<[HasV4T]>;
// anyext i32->i64
def: Pat <(i64 (extloadi32 ADDRriS11_2:$src1)),
(i64 (COMBINE_Ir_V4 0, (LDriw ADDRriS11_2:$src1)))>,
Requires<[HasV4T]>;
let AddedComplexity = 100 in
def: Pat <(i64 (extloadi32 (i32 (add IntRegs:$src1, s11_2ExtPred:$offset)))),
(i64 (COMBINE_Ir_V4 0, (LDriw_indexed IntRegs:$src1,
s11_2ExtPred:$offset)))>,
Requires<[HasV4T]>;
//===----------------------------------------------------------------------===//
// LD -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// ST +
//===----------------------------------------------------------------------===//
///
//===----------------------------------------------------------------------===//
// Template class for store instructions with Absolute set addressing mode.
//===----------------------------------------------------------------------===//
let isExtended = 1, opExtendable = 2, validSubTargets = HasV4SubT,
addrMode = AbsoluteSet in
class T_ST_abs_set<string mnemonic, RegisterClass RC>:
STInst2<(outs IntRegs:$dst1),
(ins RC:$src1, u0AlwaysExt:$src2),
mnemonic#"($dst1=##$src2) = $src1",
[]>,
Requires<[HasV4T]>;
def STrid_abs_set_V4 : T_ST_abs_set <"memd", DoubleRegs>;
def STrib_abs_set_V4 : T_ST_abs_set <"memb", IntRegs>;
def STrih_abs_set_V4 : T_ST_abs_set <"memh", IntRegs>;
def STriw_abs_set_V4 : T_ST_abs_set <"memw", IntRegs>;
//===----------------------------------------------------------------------===//
// multiclass for store instructions with base + register offset addressing
// mode
//===----------------------------------------------------------------------===//
multiclass ST_Idxd_shl_Pbase<string mnemonic, RegisterClass RC, bit isNot,
bit isPredNew> {
let isPredicatedNew = isPredNew in
def NAME : STInst2<(outs),
(ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, u2Imm:$src4,
RC:$src5),
!if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
") ")#mnemonic#"($src2+$src3<<#$src4) = $src5",
[]>,
Requires<[HasV4T]>;
}
multiclass ST_Idxd_shl_Pred<string mnemonic, RegisterClass RC, bit PredNot> {
let isPredicatedFalse = PredNot in {
defm _c#NAME : ST_Idxd_shl_Pbase<mnemonic, RC, PredNot, 0>;
// Predicate new
defm _cdn#NAME : ST_Idxd_shl_Pbase<mnemonic, RC, PredNot, 1>;
}
}
let isNVStorable = 1 in
multiclass ST_Idxd_shl<string mnemonic, string CextOp, RegisterClass RC> {
let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed_shl in {
let isPredicable = 1 in
def NAME#_V4 : STInst2<(outs),
(ins IntRegs:$src1, IntRegs:$src2, u2Imm:$src3, RC:$src4),
mnemonic#"($src1+$src2<<#$src3) = $src4",
[]>,
Requires<[HasV4T]>;
let isPredicated = 1 in {
defm Pt_V4 : ST_Idxd_shl_Pred<mnemonic, RC, 0 >;
defm NotPt_V4 : ST_Idxd_shl_Pred<mnemonic, RC, 1>;
}
}
}
// multiclass for new-value store instructions with base + register offset
// addressing mode.
multiclass ST_Idxd_shl_Pbase_nv<string mnemonic, RegisterClass RC, bit isNot,
bit isPredNew> {
let isPredicatedNew = isPredNew in
def NAME#_nv_V4 : NVInst_V4<(outs),
(ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, u2Imm:$src4,
RC:$src5),
!if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
") ")#mnemonic#"($src2+$src3<<#$src4) = $src5.new",
[]>,
Requires<[HasV4T]>;
}
multiclass ST_Idxd_shl_Pred_nv<string mnemonic, RegisterClass RC, bit PredNot> {
let isPredicatedFalse = PredNot in {
defm _c#NAME : ST_Idxd_shl_Pbase_nv<mnemonic, RC, PredNot, 0>;
// Predicate new
defm _cdn#NAME : ST_Idxd_shl_Pbase_nv<mnemonic, RC, PredNot, 1>;
}
}
let mayStore = 1, isNVStore = 1 in
multiclass ST_Idxd_shl_nv<string mnemonic, string CextOp, RegisterClass RC> {
let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed_shl in {
let isPredicable = 1 in
def NAME#_nv_V4 : NVInst_V4<(outs),
(ins IntRegs:$src1, IntRegs:$src2, u2Imm:$src3, RC:$src4),
mnemonic#"($src1+$src2<<#$src3) = $src4.new",
[]>,
Requires<[HasV4T]>;
let isPredicated = 1 in {
defm Pt : ST_Idxd_shl_Pred_nv<mnemonic, RC, 0 >;
defm NotPt : ST_Idxd_shl_Pred_nv<mnemonic, RC, 1>;
}
}
}
let addrMode = BaseRegOffset, neverHasSideEffects = 1,
validSubTargets = HasV4SubT in {
let accessSize = ByteAccess in
defm STrib_indexed_shl: ST_Idxd_shl<"memb", "STrib", IntRegs>,
ST_Idxd_shl_nv<"memb", "STrib", IntRegs>, AddrModeRel;
let accessSize = HalfWordAccess in
defm STrih_indexed_shl: ST_Idxd_shl<"memh", "STrih", IntRegs>,
ST_Idxd_shl_nv<"memh", "STrih", IntRegs>, AddrModeRel;
let accessSize = WordAccess in
defm STriw_indexed_shl: ST_Idxd_shl<"memw", "STriw", IntRegs>,
ST_Idxd_shl_nv<"memw", "STriw", IntRegs>, AddrModeRel;
let isNVStorable = 0, accessSize = DoubleWordAccess in
defm STrid_indexed_shl: ST_Idxd_shl<"memd", "STrid", DoubleRegs>, AddrModeRel;
}
let Predicates = [HasV4T], AddedComplexity = 10 in {
def : Pat<(truncstorei8 (i32 IntRegs:$src4),
(add IntRegs:$src1, (shl IntRegs:$src2,
u2ImmPred:$src3))),
(STrib_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2,
u2ImmPred:$src3, IntRegs:$src4)>;
def : Pat<(truncstorei16 (i32 IntRegs:$src4),
(add IntRegs:$src1, (shl IntRegs:$src2,
u2ImmPred:$src3))),
(STrih_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2,
u2ImmPred:$src3, IntRegs:$src4)>;
def : Pat<(store (i32 IntRegs:$src4),
(add IntRegs:$src1, (shl IntRegs:$src2, u2ImmPred:$src3))),
(STriw_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2,
u2ImmPred:$src3, IntRegs:$src4)>;
def : Pat<(store (i64 DoubleRegs:$src4),
(add IntRegs:$src1, (shl IntRegs:$src2, u2ImmPred:$src3))),
(STrid_indexed_shl_V4 IntRegs:$src1, IntRegs:$src2,
u2ImmPred:$src3, DoubleRegs:$src4)>;
}
let isExtended = 1, opExtendable = 2 in
class T_ST_LongOff <string mnemonic, PatFrag stOp, RegisterClass RC, ValueType VT> :
STInst<(outs),
(ins IntRegs:$src1, u2Imm:$src2, u0AlwaysExt:$src3, RC:$src4),
mnemonic#"($src1<<#$src2+##$src3) = $src4",
[(stOp (VT RC:$src4),
(add (shl (i32 IntRegs:$src1), u2ImmPred:$src2),
u0AlwaysExtPred:$src3))]>,
Requires<[HasV4T]>;
let isExtended = 1, opExtendable = 2, mayStore = 1, isNVStore = 1 in
class T_ST_LongOff_nv <string mnemonic> :
NVInst_V4<(outs),
(ins IntRegs:$src1, u2Imm:$src2, u0AlwaysExt:$src3, IntRegs:$src4),
mnemonic#"($src1<<#$src2+##$src3) = $src4.new",
[]>,
Requires<[HasV4T]>;
multiclass ST_LongOff <string mnemonic, string BaseOp, PatFrag stOp> {
let BaseOpcode = BaseOp#"_shl" in {
let isNVStorable = 1 in
def NAME#_V4 : T_ST_LongOff<mnemonic, stOp, IntRegs, i32>;
def NAME#_nv_V4 : T_ST_LongOff_nv<mnemonic>;
}
}
let AddedComplexity = 10, validSubTargets = HasV4SubT in {
def STrid_shl_V4 : T_ST_LongOff<"memd", store, DoubleRegs, i64>;
defm STrib_shl : ST_LongOff <"memb", "STrib", truncstorei8>, NewValueRel;
defm STrih_shl : ST_LongOff <"memh", "Strih", truncstorei16>, NewValueRel;
defm STriw_shl : ST_LongOff <"memw", "STriw", store>, NewValueRel;
}
let AddedComplexity = 40 in
multiclass T_ST_LOff_Pats <InstHexagon I, RegisterClass RC, ValueType VT,
PatFrag stOp> {
def : Pat<(stOp (VT RC:$src4),
(add (shl IntRegs:$src1, u2ImmPred:$src2),
(NumUsesBelowThresCONST32 tglobaladdr:$src3))),
(I IntRegs:$src1, u2ImmPred:$src2, tglobaladdr:$src3, RC:$src4)>;
def : Pat<(stOp (VT RC:$src4),
(add IntRegs:$src1,
(NumUsesBelowThresCONST32 tglobaladdr:$src3))),
(I IntRegs:$src1, 0, tglobaladdr:$src3, RC:$src4)>;
}
defm : T_ST_LOff_Pats<STrid_shl_V4, DoubleRegs, i64, store>;
defm : T_ST_LOff_Pats<STriw_shl_V4, IntRegs, i32, store>;
defm : T_ST_LOff_Pats<STrib_shl_V4, IntRegs, i32, truncstorei8>;
defm : T_ST_LOff_Pats<STrih_shl_V4, IntRegs, i32, truncstorei16>;
// memd(Rx++#s4:3)=Rtt
// memd(Rx++#s4:3:circ(Mu))=Rtt
// memd(Rx++I:circ(Mu))=Rtt
// memd(Rx++Mu)=Rtt
// memd(Rx++Mu:brev)=Rtt
// memd(gp+#u16:3)=Rtt
// Store doubleword conditionally.
// if ([!]Pv[.new]) memd(#u6)=Rtt
// TODO: needs to be implemented.
//===----------------------------------------------------------------------===//
// multiclass for store instructions with base + immediate offset
// addressing mode and immediate stored value.
// mem[bhw](Rx++#s4:3)=#s8
// if ([!]Pv[.new]) mem[bhw](Rx++#s4:3)=#s6
//===----------------------------------------------------------------------===//
multiclass ST_Imm_Pbase<string mnemonic, Operand OffsetOp, bit isNot,
bit isPredNew> {
let isPredicatedNew = isPredNew in
def NAME : STInst2<(outs),
(ins PredRegs:$src1, IntRegs:$src2, OffsetOp:$src3, s6Ext:$src4),
!if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
") ")#mnemonic#"($src2+#$src3) = #$src4",
[]>,
Requires<[HasV4T]>;
}
multiclass ST_Imm_Pred<string mnemonic, Operand OffsetOp, bit PredNot> {
let isPredicatedFalse = PredNot in {
defm _c#NAME : ST_Imm_Pbase<mnemonic, OffsetOp, PredNot, 0>;
// Predicate new
defm _cdn#NAME : ST_Imm_Pbase<mnemonic, OffsetOp, PredNot, 1>;
}
}
let isExtendable = 1, isExtentSigned = 1, neverHasSideEffects = 1 in
multiclass ST_Imm<string mnemonic, string CextOp, Operand OffsetOp> {
let CextOpcode = CextOp, BaseOpcode = CextOp#_imm in {
let opExtendable = 2, opExtentBits = 8, isPredicable = 1 in
def NAME#_V4 : STInst2<(outs),
(ins IntRegs:$src1, OffsetOp:$src2, s8Ext:$src3),
mnemonic#"($src1+#$src2) = #$src3",
[]>,
Requires<[HasV4T]>;
let opExtendable = 3, opExtentBits = 6, isPredicated = 1 in {
defm Pt_V4 : ST_Imm_Pred<mnemonic, OffsetOp, 0>;
defm NotPt_V4 : ST_Imm_Pred<mnemonic, OffsetOp, 1 >;
}
}
}
let addrMode = BaseImmOffset, InputType = "imm",
validSubTargets = HasV4SubT in {
let accessSize = ByteAccess in
defm STrib_imm : ST_Imm<"memb", "STrib", u6_0Imm>, ImmRegRel, PredNewRel;
let accessSize = HalfWordAccess in
defm STrih_imm : ST_Imm<"memh", "STrih", u6_1Imm>, ImmRegRel, PredNewRel;
let accessSize = WordAccess in
defm STriw_imm : ST_Imm<"memw", "STriw", u6_2Imm>, ImmRegRel, PredNewRel;
}
let Predicates = [HasV4T], AddedComplexity = 10 in {
def: Pat<(truncstorei8 s8ExtPred:$src3, (add IntRegs:$src1, u6_0ImmPred:$src2)),
(STrib_imm_V4 IntRegs:$src1, u6_0ImmPred:$src2, s8ExtPred:$src3)>;
def: Pat<(truncstorei16 s8ExtPred:$src3, (add IntRegs:$src1,
u6_1ImmPred:$src2)),
(STrih_imm_V4 IntRegs:$src1, u6_1ImmPred:$src2, s8ExtPred:$src3)>;
def: Pat<(store s8ExtPred:$src3, (add IntRegs:$src1, u6_2ImmPred:$src2)),
(STriw_imm_V4 IntRegs:$src1, u6_2ImmPred:$src2, s8ExtPred:$src3)>;
}
let AddedComplexity = 6 in
def : Pat <(truncstorei8 s8ExtPred:$src2, (i32 IntRegs:$src1)),
(STrib_imm_V4 IntRegs:$src1, 0, s8ExtPred:$src2)>,
Requires<[HasV4T]>;
// memb(Rx++#s4:0:circ(Mu))=Rt
// memb(Rx++I:circ(Mu))=Rt
// memb(Rx++Mu)=Rt
// memb(Rx++Mu:brev)=Rt
// memb(gp+#u16:0)=Rt
// Store halfword.
// TODO: needs to be implemented
// memh(Re=#U6)=Rt.H
// memh(Rs+#s11:1)=Rt.H
let AddedComplexity = 6 in
def : Pat <(truncstorei16 s8ExtPred:$src2, (i32 IntRegs:$src1)),
(STrih_imm_V4 IntRegs:$src1, 0, s8ExtPred:$src2)>,
Requires<[HasV4T]>;
// memh(Rs+Ru<<#u2)=Rt.H
// TODO: needs to be implemented.
// memh(Ru<<#u2+#U6)=Rt.H
// memh(Rx++#s4:1:circ(Mu))=Rt.H
// memh(Rx++#s4:1:circ(Mu))=Rt
// memh(Rx++I:circ(Mu))=Rt.H
// memh(Rx++I:circ(Mu))=Rt
// memh(Rx++Mu)=Rt.H
// memh(Rx++Mu)=Rt
// memh(Rx++Mu:brev)=Rt.H
// memh(Rx++Mu:brev)=Rt
// memh(gp+#u16:1)=Rt
// if ([!]Pv[.new]) memh(#u6)=Rt.H
// if ([!]Pv[.new]) memh(#u6)=Rt
// if ([!]Pv[.new]) memh(Rs+#u6:1)=Rt.H
// TODO: needs to be implemented.
// if ([!]Pv[.new]) memh(Rx++#s4:1)=Rt.H
// TODO: Needs to be implemented.
// Store word.
// memw(Re=#U6)=Rt
// TODO: Needs to be implemented.
// Store predicate:
let neverHasSideEffects = 1 in
def STriw_pred_V4 : STInst2<(outs),
(ins MEMri:$addr, PredRegs:$src1),
"Error; should not emit",
[]>,
Requires<[HasV4T]>;
let AddedComplexity = 6 in
def : Pat <(store s8ExtPred:$src2, (i32 IntRegs:$src1)),
(STriw_imm_V4 IntRegs:$src1, 0, s8ExtPred:$src2)>,
Requires<[HasV4T]>;
// memw(Rx++#s4:2)=Rt
// memw(Rx++#s4:2:circ(Mu))=Rt
// memw(Rx++I:circ(Mu))=Rt
// memw(Rx++Mu)=Rt
// memw(Rx++Mu:brev)=Rt
//===----------------------------------------------------------------------===
// ST -
//===----------------------------------------------------------------------===
//===----------------------------------------------------------------------===//
// NV/ST +
//===----------------------------------------------------------------------===//
// multiclass for new-value store instructions with base + immediate offset.
//
multiclass ST_Idxd_Pbase_nv<string mnemonic, RegisterClass RC,
Operand predImmOp, bit isNot, bit isPredNew> {
let isPredicatedNew = isPredNew in
def NAME#_nv_V4 : NVInst_V4<(outs),
(ins PredRegs:$src1, IntRegs:$src2, predImmOp:$src3, RC: $src4),
!if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
") ")#mnemonic#"($src2+#$src3) = $src4.new",
[]>,
Requires<[HasV4T]>;
}
multiclass ST_Idxd_Pred_nv<string mnemonic, RegisterClass RC, Operand predImmOp,
bit PredNot> {
let isPredicatedFalse = PredNot in {
defm _c#NAME : ST_Idxd_Pbase_nv<mnemonic, RC, predImmOp, PredNot, 0>;
// Predicate new
defm _cdn#NAME : ST_Idxd_Pbase_nv<mnemonic, RC, predImmOp, PredNot, 1>;
}
}
let mayStore = 1, isNVStore = 1, neverHasSideEffects = 1, isExtendable = 1 in
multiclass ST_Idxd_nv<string mnemonic, string CextOp, RegisterClass RC,
Operand ImmOp, Operand predImmOp, bits<5> ImmBits,
bits<5> PredImmBits> {
let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in {
let opExtendable = 1, isExtentSigned = 1, opExtentBits = ImmBits,
isPredicable = 1 in
def NAME#_nv_V4 : NVInst_V4<(outs),
(ins IntRegs:$src1, ImmOp:$src2, RC:$src3),
mnemonic#"($src1+#$src2) = $src3.new",
[]>,
Requires<[HasV4T]>;
let opExtendable = 2, isExtentSigned = 0, opExtentBits = PredImmBits,
isPredicated = 1 in {
defm Pt : ST_Idxd_Pred_nv<mnemonic, RC, predImmOp, 0>;
defm NotPt : ST_Idxd_Pred_nv<mnemonic, RC, predImmOp, 1>;
}
}
}
let addrMode = BaseImmOffset, validSubTargets = HasV4SubT in {
let accessSize = ByteAccess in
defm STrib_indexed: ST_Idxd_nv<"memb", "STrib", IntRegs, s11_0Ext,
u6_0Ext, 11, 6>, AddrModeRel;
let accessSize = HalfWordAccess in
defm STrih_indexed: ST_Idxd_nv<"memh", "STrih", IntRegs, s11_1Ext,
u6_1Ext, 12, 7>, AddrModeRel;
let accessSize = WordAccess in
defm STriw_indexed: ST_Idxd_nv<"memw", "STriw", IntRegs, s11_2Ext,
u6_2Ext, 13, 8>, AddrModeRel;
}
// multiclass for new-value store instructions with base + immediate offset.
// and MEMri operand.
multiclass ST_MEMri_Pbase_nv<string mnemonic, RegisterClass RC, bit isNot,
bit isPredNew> {
let isPredicatedNew = isPredNew in
def NAME#_nv_V4 : NVInst_V4<(outs),
(ins PredRegs:$src1, MEMri:$addr, RC: $src2),
!if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
") ")#mnemonic#"($addr) = $src2.new",
[]>,
Requires<[HasV4T]>;
}
multiclass ST_MEMri_Pred_nv<string mnemonic, RegisterClass RC, bit PredNot> {
let isPredicatedFalse = PredNot in {
defm _c#NAME : ST_MEMri_Pbase_nv<mnemonic, RC, PredNot, 0>;
// Predicate new
defm _cdn#NAME : ST_MEMri_Pbase_nv<mnemonic, RC, PredNot, 1>;
}
}
let mayStore = 1, isNVStore = 1, isExtendable = 1, neverHasSideEffects = 1 in
multiclass ST_MEMri_nv<string mnemonic, string CextOp, RegisterClass RC,
bits<5> ImmBits, bits<5> PredImmBits> {
let CextOpcode = CextOp, BaseOpcode = CextOp in {
let opExtendable = 1, isExtentSigned = 1, opExtentBits = ImmBits,
isPredicable = 1 in
def NAME#_nv_V4 : NVInst_V4<(outs),
(ins MEMri:$addr, RC:$src),
mnemonic#"($addr) = $src.new",
[]>,
Requires<[HasV4T]>;
let opExtendable = 2, isExtentSigned = 0, opExtentBits = PredImmBits,
neverHasSideEffects = 1, isPredicated = 1 in {
defm Pt : ST_MEMri_Pred_nv<mnemonic, RC, 0>;
defm NotPt : ST_MEMri_Pred_nv<mnemonic, RC, 1>;
}
}
}
let addrMode = BaseImmOffset, isMEMri = "true", validSubTargets = HasV4SubT,
mayStore = 1 in {
let accessSize = ByteAccess in
defm STrib: ST_MEMri_nv<"memb", "STrib", IntRegs, 11, 6>, AddrModeRel;
let accessSize = HalfWordAccess in
defm STrih: ST_MEMri_nv<"memh", "STrih", IntRegs, 12, 7>, AddrModeRel;
let accessSize = WordAccess in
defm STriw: ST_MEMri_nv<"memw", "STriw", IntRegs, 13, 8>, AddrModeRel;
}
//===----------------------------------------------------------------------===//
// Post increment store
// mem[bhwd](Rx++#s4:[0123])=Nt.new
//===----------------------------------------------------------------------===//
multiclass ST_PostInc_Pbase_nv<string mnemonic, RegisterClass RC, Operand ImmOp,
bit isNot, bit isPredNew> {
let isPredicatedNew = isPredNew in
def NAME#_nv_V4 : NVInstPI_V4<(outs IntRegs:$dst),
(ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset, RC:$src3),
!if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
") ")#mnemonic#"($src2++#$offset) = $src3.new",
[],
"$src2 = $dst">,
Requires<[HasV4T]>;
}
multiclass ST_PostInc_Pred_nv<string mnemonic, RegisterClass RC,
Operand ImmOp, bit PredNot> {
let isPredicatedFalse = PredNot in {
defm _c#NAME : ST_PostInc_Pbase_nv<mnemonic, RC, ImmOp, PredNot, 0>;
// Predicate new
let Predicates = [HasV4T], validSubTargets = HasV4SubT in
defm _cdn#NAME : ST_PostInc_Pbase_nv<mnemonic, RC, ImmOp, PredNot, 1>;
}
}
let hasCtrlDep = 1, isNVStore = 1, neverHasSideEffects = 1 in
multiclass ST_PostInc_nv<string mnemonic, string BaseOp, RegisterClass RC,
Operand ImmOp> {
let BaseOpcode = "POST_"#BaseOp in {
let isPredicable = 1 in
def NAME#_nv_V4 : NVInstPI_V4<(outs IntRegs:$dst),
(ins IntRegs:$src1, ImmOp:$offset, RC:$src2),
mnemonic#"($src1++#$offset) = $src2.new",
[],
"$src1 = $dst">,
Requires<[HasV4T]>;
let isPredicated = 1 in {
defm Pt : ST_PostInc_Pred_nv<mnemonic, RC, ImmOp, 0 >;
defm NotPt : ST_PostInc_Pred_nv<mnemonic, RC, ImmOp, 1 >;
}
}
}
let addrMode = PostInc, validSubTargets = HasV4SubT in {
defm POST_STbri: ST_PostInc_nv <"memb", "STrib", IntRegs, s4_0Imm>, AddrModeRel;
defm POST_SThri: ST_PostInc_nv <"memh", "STrih", IntRegs, s4_1Imm>, AddrModeRel;
defm POST_STwri: ST_PostInc_nv <"memw", "STriw", IntRegs, s4_2Imm>, AddrModeRel;
}
// memb(Rx++#s4:0:circ(Mu))=Nt.new
// memb(Rx++I:circ(Mu))=Nt.new
// memb(Rx++Mu)=Nt.new
// memb(Rx++Mu:brev)=Nt.new
// memh(Rx++#s4:1:circ(Mu))=Nt.new
// memh(Rx++I:circ(Mu))=Nt.new
// memh(Rx++Mu)=Nt.new
// memh(Rx++Mu:brev)=Nt.new
// memw(Rx++#s4:2:circ(Mu))=Nt.new
// memw(Rx++I:circ(Mu))=Nt.new
// memw(Rx++Mu)=Nt.new
// memw(Rx++Mu:brev)=Nt.new
//===----------------------------------------------------------------------===//
// NV/ST -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// NV/J +
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// multiclass/template class for the new-value compare jumps with the register
// operands.
//===----------------------------------------------------------------------===//
let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 11 in
class NVJrr_template<string mnemonic, bits<3> majOp, bit NvOpNum,
bit isNegCond, bit isTak>
: NVInst_V4<(outs),
(ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset),
"if ("#!if(isNegCond, "!","")#mnemonic#
"($src1"#!if(!eq(NvOpNum, 0),".new, ",", ")#
"$src2"#!if(!eq(NvOpNum, 1),".new))","))")#" jump:"
#!if(isTak, "t","nt")#" $offset",
[]>, Requires<[HasV4T]> {
bits<5> src1;
bits<5> src2;
bits<3> Ns; // New-Value Operand
bits<5> RegOp; // Non-New-Value Operand
bits<11> offset;
let isTaken = isTak;
let isBrTaken = !if(isTaken, "true", "false");
let isPredicatedFalse = isNegCond;
let Ns = !if(!eq(NvOpNum, 0), src1{2-0}, src2{2-0});
let RegOp = !if(!eq(NvOpNum, 0), src2, src1);
let IClass = 0b0010;
let Inst{26} = 0b0;
let Inst{25-23} = majOp;
let Inst{22} = isNegCond;
let Inst{18-16} = Ns;
let Inst{13} = isTak;
let Inst{12-8} = RegOp;
let Inst{21-20} = offset{10-9};
let Inst{7-1} = offset{8-2};
}
multiclass NVJrr_cond<string mnemonic, bits<3> majOp, bit NvOpNum,
bit isNegCond> {
// Branch not taken:
def _nt_V4: NVJrr_template<mnemonic, majOp, NvOpNum, isNegCond, 0>;
// Branch taken:
def _t_V4: NVJrr_template<mnemonic, majOp, NvOpNum, isNegCond, 1>;
}
// NvOpNum = 0 -> First Operand is a new-value Register
// NvOpNum = 1 -> Second Operand is a new-value Register
multiclass NVJrr_base<string mnemonic, string BaseOp, bits<3> majOp,
bit NvOpNum> {
let BaseOpcode = BaseOp#_NVJ in {
defm _t_Jumpnv : NVJrr_cond<mnemonic, majOp, NvOpNum, 0>; // True cond
defm _f_Jumpnv : NVJrr_cond<mnemonic, majOp, NvOpNum, 1>; // False cond
}
}
// if ([!]cmp.eq(Ns.new,Rt)) jump:[n]t #r9:2
// if ([!]cmp.gt(Ns.new,Rt)) jump:[n]t #r9:2
// if ([!]cmp.gtu(Ns.new,Rt)) jump:[n]t #r9:2
// if ([!]cmp.gt(Rt,Ns.new)) jump:[n]t #r9:2
// if ([!]cmp.gtu(Rt,Ns.new)) jump:[n]t #r9:2
let isPredicated = 1, isBranch = 1, isNewValue = 1, isTerminator = 1,
Defs = [PC], neverHasSideEffects = 1, validSubTargets = HasV4SubT in {
defm CMPEQrr : NVJrr_base<"cmp.eq", "CMPEQ", 0b000, 0>, PredRel;
defm CMPGTrr : NVJrr_base<"cmp.gt", "CMPGT", 0b001, 0>, PredRel;
defm CMPGTUrr : NVJrr_base<"cmp.gtu", "CMPGTU", 0b010, 0>, PredRel;
defm CMPLTrr : NVJrr_base<"cmp.gt", "CMPLT", 0b011, 1>, PredRel;
defm CMPLTUrr : NVJrr_base<"cmp.gtu", "CMPLTU", 0b100, 1>, PredRel;
}
//===----------------------------------------------------------------------===//
// multiclass/template class for the new-value compare jumps instruction
// with a register and an unsigned immediate (U5) operand.
//===----------------------------------------------------------------------===//
let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 11 in
class NVJri_template<string mnemonic, bits<3> majOp, bit isNegCond,
bit isTak>
: NVInst_V4<(outs),
(ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset),
"if ("#!if(isNegCond, "!","")#mnemonic#"($src1.new, #$src2)) jump:"
#!if(isTak, "t","nt")#" $offset",
[]>, Requires<[HasV4T]> {
let isTaken = isTak;
let isPredicatedFalse = isNegCond;
let isBrTaken = !if(isTaken, "true", "false");
bits<3> src1;
bits<5> src2;
bits<11> offset;
let IClass = 0b0010;
let Inst{26} = 0b1;
let Inst{25-23} = majOp;
let Inst{22} = isNegCond;
let Inst{18-16} = src1;
let Inst{13} = isTak;
let Inst{12-8} = src2;
let Inst{21-20} = offset{10-9};
let Inst{7-1} = offset{8-2};
}
multiclass NVJri_cond<string mnemonic, bits<3> majOp, bit isNegCond> {
// Branch not taken:
def _nt_V4: NVJri_template<mnemonic, majOp, isNegCond, 0>;
// Branch taken:
def _t_V4: NVJri_template<mnemonic, majOp, isNegCond, 1>;
}
multiclass NVJri_base<string mnemonic, string BaseOp, bits<3> majOp> {
let BaseOpcode = BaseOp#_NVJri in {
defm _t_Jumpnv : NVJri_cond<mnemonic, majOp, 0>; // True Cond
defm _f_Jumpnv : NVJri_cond<mnemonic, majOp, 1>; // False cond
}
}
// if ([!]cmp.eq(Ns.new,#U5)) jump:[n]t #r9:2
// if ([!]cmp.gt(Ns.new,#U5)) jump:[n]t #r9:2
// if ([!]cmp.gtu(Ns.new,#U5)) jump:[n]t #r9:2
let isPredicated = 1, isBranch = 1, isNewValue = 1, isTerminator = 1,
Defs = [PC], neverHasSideEffects = 1, validSubTargets = HasV4SubT in {
defm CMPEQri : NVJri_base<"cmp.eq", "CMPEQ", 0b000>, PredRel;
defm CMPGTri : NVJri_base<"cmp.gt", "CMPGT", 0b001>, PredRel;
defm CMPGTUri : NVJri_base<"cmp.gtu", "CMPGTU", 0b010>, PredRel;
}
//===----------------------------------------------------------------------===//
// multiclass/template class for the new-value compare jumps instruction
// with a register and an hardcoded 0/-1 immediate value.
//===----------------------------------------------------------------------===//
let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 11 in
class NVJ_ConstImm_template<string mnemonic, bits<3> majOp, string ImmVal,
bit isNegCond, bit isTak>
: NVInst_V4<(outs),
(ins IntRegs:$src1, brtarget:$offset),
"if ("#!if(isNegCond, "!","")#mnemonic
#"($src1.new, #"#ImmVal#")) jump:"
#!if(isTak, "t","nt")#" $offset",
[]>, Requires<[HasV4T]> {
let isTaken = isTak;
let isPredicatedFalse = isNegCond;
let isBrTaken = !if(isTaken, "true", "false");
bits<3> src1;
bits<11> offset;
let IClass = 0b0010;
let Inst{26} = 0b1;
let Inst{25-23} = majOp;
let Inst{22} = isNegCond;
let Inst{18-16} = src1;
let Inst{13} = isTak;
let Inst{21-20} = offset{10-9};
let Inst{7-1} = offset{8-2};
}
multiclass NVJ_ConstImm_cond<string mnemonic, bits<3> majOp, string ImmVal,
bit isNegCond> {
// Branch not taken:
def _nt_V4: NVJ_ConstImm_template<mnemonic, majOp, ImmVal, isNegCond, 0>;
// Branch taken:
def _t_V4: NVJ_ConstImm_template<mnemonic, majOp, ImmVal, isNegCond, 1>;
}
multiclass NVJ_ConstImm_base<string mnemonic, string BaseOp, bits<3> majOp,
string ImmVal> {
let BaseOpcode = BaseOp#_NVJ_ConstImm in {
defm _t_Jumpnv : NVJ_ConstImm_cond<mnemonic, majOp, ImmVal, 0>; // True cond
defm _f_Jumpnv : NVJ_ConstImm_cond<mnemonic, majOp, ImmVal, 1>; // False Cond
}
}
// if ([!]tstbit(Ns.new,#0)) jump:[n]t #r9:2
// if ([!]cmp.eq(Ns.new,#-1)) jump:[n]t #r9:2
// if ([!]cmp.gt(Ns.new,#-1)) jump:[n]t #r9:2
let isPredicated = 1, isBranch = 1, isNewValue = 1, isTerminator=1,
Defs = [PC], neverHasSideEffects = 1 in {
defm TSTBIT0 : NVJ_ConstImm_base<"tstbit", "TSTBIT", 0b011, "0">, PredRel;
defm CMPEQn1 : NVJ_ConstImm_base<"cmp.eq", "CMPEQ", 0b100, "-1">, PredRel;
defm CMPGTn1 : NVJ_ConstImm_base<"cmp.gt", "CMPGT", 0b101, "-1">, PredRel;
}
//===----------------------------------------------------------------------===//
// XTYPE/ALU +
//===----------------------------------------------------------------------===//
// Add and accumulate.
// Rd=add(Rs,add(Ru,#s6))
let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 6,
validSubTargets = HasV4SubT in
def ADDr_ADDri_V4 : MInst<(outs IntRegs:$dst),
(ins IntRegs:$src1, IntRegs:$src2, s6Ext:$src3),
"$dst = add($src1, add($src2, #$src3))",
[(set (i32 IntRegs:$dst),
(add (i32 IntRegs:$src1), (add (i32 IntRegs:$src2),
s6_16ExtPred:$src3)))]>,
Requires<[HasV4T]>;
// Rd=add(Rs,sub(#s6,Ru))
let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 6,
validSubTargets = HasV4SubT in
def ADDr_SUBri_V4 : MInst<(outs IntRegs:$dst),
(ins IntRegs:$src1, s6Ext:$src2, IntRegs:$src3),
"$dst = add($src1, sub(#$src2, $src3))",
[(set (i32 IntRegs:$dst),
(add (i32 IntRegs:$src1), (sub s6_10ExtPred:$src2,
(i32 IntRegs:$src3))))]>,
Requires<[HasV4T]>;
// Generates the same instruction as ADDr_SUBri_V4 but matches different
// pattern.
// Rd=add(Rs,sub(#s6,Ru))
let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 6,
validSubTargets = HasV4SubT in
def ADDri_SUBr_V4 : MInst<(outs IntRegs:$dst),
(ins IntRegs:$src1, s6Ext:$src2, IntRegs:$src3),
"$dst = add($src1, sub(#$src2, $src3))",
[(set (i32 IntRegs:$dst),
(sub (add (i32 IntRegs:$src1), s6_10ExtPred:$src2),
(i32 IntRegs:$src3)))]>,
Requires<[HasV4T]>;
// Add or subtract doublewords with carry.
//TODO:
// Rdd=add(Rss,Rtt,Px):carry
//TODO:
// Rdd=sub(Rss,Rtt,Px):carry
// Logical doublewords.
// Rdd=and(Rtt,~Rss)
let validSubTargets = HasV4SubT in
def ANDd_NOTd_V4 : MInst<(outs DoubleRegs:$dst),
(ins DoubleRegs:$src1, DoubleRegs:$src2),
"$dst = and($src1, ~$src2)",
[(set (i64 DoubleRegs:$dst), (and (i64 DoubleRegs:$src1),
(not (i64 DoubleRegs:$src2))))]>,
Requires<[HasV4T]>;
// Rdd=or(Rtt,~Rss)
let validSubTargets = HasV4SubT in
def ORd_NOTd_V4 : MInst<(outs DoubleRegs:$dst),
(ins DoubleRegs:$src1, DoubleRegs:$src2),
"$dst = or($src1, ~$src2)",
[(set (i64 DoubleRegs:$dst),
(or (i64 DoubleRegs:$src1), (not (i64 DoubleRegs:$src2))))]>,
Requires<[HasV4T]>;
// Logical-logical doublewords.
// Rxx^=xor(Rss,Rtt)
let validSubTargets = HasV4SubT in
def XORd_XORdd: MInst_acc<(outs DoubleRegs:$dst),
(ins DoubleRegs:$src1, DoubleRegs:$src2, DoubleRegs:$src3),
"$dst ^= xor($src2, $src3)",
[(set (i64 DoubleRegs:$dst),
(xor (i64 DoubleRegs:$src1), (xor (i64 DoubleRegs:$src2),
(i64 DoubleRegs:$src3))))],
"$src1 = $dst">,
Requires<[HasV4T]>;
// Logical-logical words.
// Rx=or(Ru,and(Rx,#s10))
let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 10,
validSubTargets = HasV4SubT in
def ORr_ANDri_V4 : MInst_acc<(outs IntRegs:$dst),
(ins IntRegs:$src1, IntRegs: $src2, s10Ext:$src3),
"$dst = or($src1, and($src2, #$src3))",
[(set (i32 IntRegs:$dst),
(or (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
s10ExtPred:$src3)))],
"$src2 = $dst">,
Requires<[HasV4T]>;
// Rx[&|^]=and(Rs,Rt)
// Rx&=and(Rs,Rt)
let validSubTargets = HasV4SubT in
def ANDr_ANDrr_V4 : MInst_acc<(outs IntRegs:$dst),
(ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
"$dst &= and($src2, $src3)",
[(set (i32 IntRegs:$dst),
(and (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
(i32 IntRegs:$src3))))],
"$src1 = $dst">,
Requires<[HasV4T]>;
// Rx|=and(Rs,Rt)
let validSubTargets = HasV4SubT, CextOpcode = "ORr_ANDr", InputType = "reg" in
def ORr_ANDrr_V4 : MInst_acc<(outs IntRegs:$dst),
(ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
"$dst |= and($src2, $src3)",
[(set (i32 IntRegs:$dst),
(or (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
(i32 IntRegs:$src3))))],
"$src1 = $dst">,
Requires<[HasV4T]>, ImmRegRel;
// Rx^=and(Rs,Rt)
let validSubTargets = HasV4SubT in
def XORr_ANDrr_V4 : MInst_acc<(outs IntRegs:$dst),
(ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
"$dst ^= and($src2, $src3)",
[(set (i32 IntRegs:$dst),
(xor (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
(i32 IntRegs:$src3))))],
"$src1 = $dst">,
Requires<[HasV4T]>;
// Rx[&|^]=and(Rs,~Rt)
// Rx&=and(Rs,~Rt)
let validSubTargets = HasV4SubT in
def ANDr_ANDr_NOTr_V4 : MInst_acc<(outs IntRegs:$dst),
(ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
"$dst &= and($src2, ~$src3)",
[(set (i32 IntRegs:$dst),
(and (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
(not (i32 IntRegs:$src3)))))],
"$src1 = $dst">,
Requires<[HasV4T]>;
// Rx|=and(Rs,~Rt)
let validSubTargets = HasV4SubT in
def ORr_ANDr_NOTr_V4 : MInst_acc<(outs IntRegs:$dst),
(ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
"$dst |= and($src2, ~$src3)",
[(set (i32 IntRegs:$dst),
(or (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
(not (i32 IntRegs:$src3)))))],
"$src1 = $dst">,
Requires<[HasV4T]>;
// Rx^=and(Rs,~Rt)
let validSubTargets = HasV4SubT in
def XORr_ANDr_NOTr_V4 : MInst_acc<(outs IntRegs:$dst),
(ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
"$dst ^= and($src2, ~$src3)",
[(set (i32 IntRegs:$dst),
(xor (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
(not (i32 IntRegs:$src3)))))],
"$src1 = $dst">,
Requires<[HasV4T]>;
// Rx[&|^]=or(Rs,Rt)
// Rx&=or(Rs,Rt)
let validSubTargets = HasV4SubT in
def ANDr_ORrr_V4 : MInst_acc<(outs IntRegs:$dst),
(ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
"$dst &= or($src2, $src3)",
[(set (i32 IntRegs:$dst),
(and (i32 IntRegs:$src1), (or (i32 IntRegs:$src2),
(i32 IntRegs:$src3))))],
"$src1 = $dst">,
Requires<[HasV4T]>;
// Rx|=or(Rs,Rt)
let validSubTargets = HasV4SubT, CextOpcode = "ORr_ORr", InputType = "reg" in
def ORr_ORrr_V4 : MInst_acc<(outs IntRegs:$dst),
(ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
"$dst |= or($src2, $src3)",
[(set (i32 IntRegs:$dst),
(or (i32 IntRegs:$src1), (or (i32 IntRegs:$src2),
(i32 IntRegs:$src3))))],
"$src1 = $dst">,
Requires<[HasV4T]>, ImmRegRel;
// Rx^=or(Rs,Rt)
let validSubTargets = HasV4SubT in
def XORr_ORrr_V4 : MInst_acc<(outs IntRegs:$dst),
(ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
"$dst ^= or($src2, $src3)",
[(set (i32 IntRegs:$dst),
(xor (i32 IntRegs:$src1), (or (i32 IntRegs:$src2),
(i32 IntRegs:$src3))))],
"$src1 = $dst">,
Requires<[HasV4T]>;
// Rx[&|^]=xor(Rs,Rt)
// Rx&=xor(Rs,Rt)
let validSubTargets = HasV4SubT in
def ANDr_XORrr_V4 : MInst_acc<(outs IntRegs:$dst),
(ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
"$dst &= xor($src2, $src3)",
[(set (i32 IntRegs:$dst),
(and (i32 IntRegs:$src1), (xor (i32 IntRegs:$src2),
(i32 IntRegs:$src3))))],
"$src1 = $dst">,
Requires<[HasV4T]>;
// Rx|=xor(Rs,Rt)
let validSubTargets = HasV4SubT in
def ORr_XORrr_V4 : MInst_acc<(outs IntRegs:$dst),
(ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
"$dst |= xor($src2, $src3)",
[(set (i32 IntRegs:$dst),
(and (i32 IntRegs:$src1), (xor (i32 IntRegs:$src2),
(i32 IntRegs:$src3))))],
"$src1 = $dst">,
Requires<[HasV4T]>;
// Rx^=xor(Rs,Rt)
let validSubTargets = HasV4SubT in
def XORr_XORrr_V4 : MInst_acc<(outs IntRegs:$dst),
(ins IntRegs:$src1, IntRegs: $src2, IntRegs:$src3),
"$dst ^= xor($src2, $src3)",
[(set (i32 IntRegs:$dst),
(and (i32 IntRegs:$src1), (xor (i32 IntRegs:$src2),
(i32 IntRegs:$src3))))],
"$src1 = $dst">,
Requires<[HasV4T]>;
// Rx|=and(Rs,#s10)
let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 10,
validSubTargets = HasV4SubT, CextOpcode = "ORr_ANDr", InputType = "imm" in
def ORr_ANDri2_V4 : MInst_acc<(outs IntRegs:$dst),
(ins IntRegs:$src1, IntRegs: $src2, s10Ext:$src3),
"$dst |= and($src2, #$src3)",
[(set (i32 IntRegs:$dst),
(or (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
s10ExtPred:$src3)))],
"$src1 = $dst">,
Requires<[HasV4T]>, ImmRegRel;
// Rx|=or(Rs,#s10)
let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 10,
validSubTargets = HasV4SubT, CextOpcode = "ORr_ORr", InputType = "imm" in
def ORr_ORri_V4 : MInst_acc<(outs IntRegs:$dst),
(ins IntRegs:$src1, IntRegs: $src2, s10Ext:$src3),
"$dst |= or($src2, #$src3)",
[(set (i32 IntRegs:$dst),
(or (i32 IntRegs:$src1), (and (i32 IntRegs:$src2),
s10ExtPred:$src3)))],
"$src1 = $dst">,
Requires<[HasV4T]>, ImmRegRel;
// Modulo wrap
// Rd=modwrap(Rs,Rt)
// Round
// Rd=cround(Rs,#u5)
// Rd=cround(Rs,Rt)
// Rd=round(Rs,#u5)[:sat]
// Rd=round(Rs,Rt)[:sat]
// Vector reduce add unsigned halfwords
// Rd=vraddh(Rss,Rtt)
// Vector add bytes
// Rdd=vaddb(Rss,Rtt)
// Vector conditional negate
// Rdd=vcnegh(Rss,Rt)
// Rxx+=vrcnegh(Rss,Rt)
// Vector maximum bytes
// Rdd=vmaxb(Rtt,Rss)
// Vector reduce maximum halfwords
// Rxx=vrmaxh(Rss,Ru)
// Rxx=vrmaxuh(Rss,Ru)
// Vector reduce maximum words
// Rxx=vrmaxuw(Rss,Ru)
// Rxx=vrmaxw(Rss,Ru)
// Vector minimum bytes
// Rdd=vminb(Rtt,Rss)
// Vector reduce minimum halfwords
// Rxx=vrminh(Rss,Ru)
// Rxx=vrminuh(Rss,Ru)
// Vector reduce minimum words
// Rxx=vrminuw(Rss,Ru)
// Rxx=vrminw(Rss,Ru)
// Vector subtract bytes
// Rdd=vsubb(Rss,Rtt)
//===----------------------------------------------------------------------===//
// XTYPE/ALU -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// XTYPE/MPY +
//===----------------------------------------------------------------------===//
// Multiply and user lower result.
// Rd=add(#u6,mpyi(Rs,#U6))
let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 6,
validSubTargets = HasV4SubT in
def ADDi_MPYri_V4 : MInst<(outs IntRegs:$dst),
(ins u6Ext:$src1, IntRegs:$src2, u6Imm:$src3),
"$dst = add(#$src1, mpyi($src2, #$src3))",
[(set (i32 IntRegs:$dst),
(add (mul (i32 IntRegs:$src2), u6ImmPred:$src3),
u6ExtPred:$src1))]>,
Requires<[HasV4T]>;
// Rd=add(##,mpyi(Rs,#U6))
def : Pat <(add (mul (i32 IntRegs:$src2), u6ImmPred:$src3),
(HexagonCONST32 tglobaladdr:$src1)),
(i32 (ADDi_MPYri_V4 tglobaladdr:$src1, IntRegs:$src2,
u6ImmPred:$src3))>;
// Rd=add(#u6,mpyi(Rs,Rt))
let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 6,
validSubTargets = HasV4SubT, InputType = "imm", CextOpcode = "ADD_MPY" in
def ADDi_MPYrr_V4 : MInst<(outs IntRegs:$dst),
(ins u6Ext:$src1, IntRegs:$src2, IntRegs:$src3),
"$dst = add(#$src1, mpyi($src2, $src3))",
[(set (i32 IntRegs:$dst),
(add (mul (i32 IntRegs:$src2), (i32 IntRegs:$src3)),
u6ExtPred:$src1))]>,
Requires<[HasV4T]>, ImmRegRel;
// Rd=add(##,mpyi(Rs,Rt))
def : Pat <(add (mul (i32 IntRegs:$src2), (i32 IntRegs:$src3)),
(HexagonCONST32 tglobaladdr:$src1)),
(i32 (ADDi_MPYrr_V4 tglobaladdr:$src1, IntRegs:$src2,
IntRegs:$src3))>;
// Rd=add(Ru,mpyi(#u6:2,Rs))
let validSubTargets = HasV4SubT in
def ADDr_MPYir_V4 : MInst<(outs IntRegs:$dst),
(ins IntRegs:$src1, u6Imm:$src2, IntRegs:$src3),
"$dst = add($src1, mpyi(#$src2, $src3))",
[(set (i32 IntRegs:$dst),
(add (i32 IntRegs:$src1), (mul (i32 IntRegs:$src3),
u6_2ImmPred:$src2)))]>,
Requires<[HasV4T]>;
// Rd=add(Ru,mpyi(Rs,#u6))
let isExtendable = 1, opExtendable = 3, isExtentSigned = 0, opExtentBits = 6,
validSubTargets = HasV4SubT, InputType = "imm", CextOpcode = "ADD_MPY" in
def ADDr_MPYri_V4 : MInst<(outs IntRegs:$dst),
(ins IntRegs:$src1, IntRegs:$src2, u6Ext:$src3),
"$dst = add($src1, mpyi($src2, #$src3))",
[(set (i32 IntRegs:$dst),
(add (i32 IntRegs:$src1), (mul (i32 IntRegs:$src2),
u6ExtPred:$src3)))]>,
Requires<[HasV4T]>, ImmRegRel;
// Rx=add(Ru,mpyi(Rx,Rs))
let validSubTargets = HasV4SubT, InputType = "reg", CextOpcode = "ADD_MPY" in
def ADDr_MPYrr_V4 : MInst_acc<(outs IntRegs:$dst),
(ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3),
"$dst = add($src1, mpyi($src2, $src3))",
[(set (i32 IntRegs:$dst),
(add (i32 IntRegs:$src1), (mul (i32 IntRegs:$src2),
(i32 IntRegs:$src3))))],
"$src2 = $dst">,
Requires<[HasV4T]>, ImmRegRel;
// Polynomial multiply words
// Rdd=pmpyw(Rs,Rt)
// Rxx^=pmpyw(Rs,Rt)
// Vector reduce multiply word by signed half (32x16)
// Rdd=vrmpyweh(Rss,Rtt)[:<<1]
// Rdd=vrmpywoh(Rss,Rtt)[:<<1]
// Rxx+=vrmpyweh(Rss,Rtt)[:<<1]
// Rxx+=vrmpywoh(Rss,Rtt)[:<<1]
// Multiply and use upper result
// Rd=mpy(Rs,Rt.H):<<1:sat
// Rd=mpy(Rs,Rt.L):<<1:sat
// Rd=mpy(Rs,Rt):<<1
// Rd=mpy(Rs,Rt):<<1:sat
// Rd=mpysu(Rs,Rt)
// Rx+=mpy(Rs,Rt):<<1:sat
// Rx-=mpy(Rs,Rt):<<1:sat
// Vector multiply bytes
// Rdd=vmpybsu(Rs,Rt)
// Rdd=vmpybu(Rs,Rt)
// Rxx+=vmpybsu(Rs,Rt)
// Rxx+=vmpybu(Rs,Rt)
// Vector polynomial multiply halfwords
// Rdd=vpmpyh(Rs,Rt)
// Rxx^=vpmpyh(Rs,Rt)
//===----------------------------------------------------------------------===//
// XTYPE/MPY -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// XTYPE/SHIFT +
//===----------------------------------------------------------------------===//
// Shift by immediate and accumulate.
// Rx=add(#u8,asl(Rx,#U5))
let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
validSubTargets = HasV4SubT in
def ADDi_ASLri_V4 : MInst_acc<(outs IntRegs:$dst),
(ins u8Ext:$src1, IntRegs:$src2, u5Imm:$src3),
"$dst = add(#$src1, asl($src2, #$src3))",
[(set (i32 IntRegs:$dst),
(add (shl (i32 IntRegs:$src2), u5ImmPred:$src3),
u8ExtPred:$src1))],
"$src2 = $dst">,
Requires<[HasV4T]>;
// Rx=add(#u8,lsr(Rx,#U5))
let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
validSubTargets = HasV4SubT in
def ADDi_LSRri_V4 : MInst_acc<(outs IntRegs:$dst),
(ins u8Ext:$src1, IntRegs:$src2, u5Imm:$src3),
"$dst = add(#$src1, lsr($src2, #$src3))",
[(set (i32 IntRegs:$dst),
(add (srl (i32 IntRegs:$src2), u5ImmPred:$src3),
u8ExtPred:$src1))],
"$src2 = $dst">,
Requires<[HasV4T]>;
// Rx=sub(#u8,asl(Rx,#U5))
let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
validSubTargets = HasV4SubT in
def SUBi_ASLri_V4 : MInst_acc<(outs IntRegs:$dst),
(ins u8Ext:$src1, IntRegs:$src2, u5Imm:$src3),
"$dst = sub(#$src1, asl($src2, #$src3))",
[(set (i32 IntRegs:$dst),
(sub (shl (i32 IntRegs:$src2), u5ImmPred:$src3),
u8ExtPred:$src1))],
"$src2 = $dst">,
Requires<[HasV4T]>;
// Rx=sub(#u8,lsr(Rx,#U5))
let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
validSubTargets = HasV4SubT in
def SUBi_LSRri_V4 : MInst_acc<(outs IntRegs:$dst),
(ins u8Ext:$src1, IntRegs:$src2, u5Imm:$src3),
"$dst = sub(#$src1, lsr($src2, #$src3))",
[(set (i32 IntRegs:$dst),
(sub (srl (i32 IntRegs:$src2), u5ImmPred:$src3),
u8ExtPred:$src1))],
"$src2 = $dst">,
Requires<[HasV4T]>;
//Shift by immediate and logical.
//Rx=and(#u8,asl(Rx,#U5))
let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
validSubTargets = HasV4SubT in
def ANDi_ASLri_V4 : MInst_acc<(outs IntRegs:$dst),
(ins u8Ext:$src1, IntRegs:$src2, u5Imm:$src3),
"$dst = and(#$src1, asl($src2, #$src3))",
[(set (i32 IntRegs:$dst),
(and (shl (i32 IntRegs:$src2), u5ImmPred:$src3),
u8ExtPred:$src1))],
"$src2 = $dst">,
Requires<[HasV4T]>;
//Rx=and(#u8,lsr(Rx,#U5))
let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
validSubTargets = HasV4SubT in
def ANDi_LSRri_V4 : MInst_acc<(outs IntRegs:$dst),
(ins u8Ext:$src1, IntRegs:$src2, u5Imm:$src3),
"$dst = and(#$src1, lsr($src2, #$src3))",
[(set (i32 IntRegs:$dst),
(and (srl (i32 IntRegs:$src2), u5ImmPred:$src3),
u8ExtPred:$src1))],
"$src2 = $dst">,
Requires<[HasV4T]>;
//Rx=or(#u8,asl(Rx,#U5))
let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
AddedComplexity = 30, validSubTargets = HasV4SubT in
def ORi_ASLri_V4 : MInst_acc<(outs IntRegs:$dst),
(ins u8Ext:$src1, IntRegs:$src2, u5Imm:$src3),
"$dst = or(#$src1, asl($src2, #$src3))",
[(set (i32 IntRegs:$dst),
(or (shl (i32 IntRegs:$src2), u5ImmPred:$src3),
u8ExtPred:$src1))],
"$src2 = $dst">,
Requires<[HasV4T]>;
//Rx=or(#u8,lsr(Rx,#U5))
let isExtendable = 1, opExtendable = 1, isExtentSigned = 0, opExtentBits = 8,
AddedComplexity = 30, validSubTargets = HasV4SubT in
def ORi_LSRri_V4 : MInst_acc<(outs IntRegs:$dst),
(ins u8Ext:$src1, IntRegs:$src2, u5Imm:$src3),
"$dst = or(#$src1, lsr($src2, #$src3))",
[(set (i32 IntRegs:$dst),
(or (srl (i32 IntRegs:$src2), u5ImmPred:$src3),
u8ExtPred:$src1))],
"$src2 = $dst">,
Requires<[HasV4T]>;
//Shift by register.
//Rd=lsl(#s6,Rt)
let validSubTargets = HasV4SubT in {
def LSLi_V4 : MInst<(outs IntRegs:$dst), (ins s6Imm:$src1, IntRegs:$src2),
"$dst = lsl(#$src1, $src2)",
[(set (i32 IntRegs:$dst), (shl s6ImmPred:$src1,
(i32 IntRegs:$src2)))]>,
Requires<[HasV4T]>;
//Shift by register and logical.
//Rxx^=asl(Rss,Rt)
def ASLd_rr_xor_V4 : MInst_acc<(outs DoubleRegs:$dst),
(ins DoubleRegs:$src1, DoubleRegs:$src2, IntRegs:$src3),
"$dst ^= asl($src2, $src3)",
[(set (i64 DoubleRegs:$dst),
(xor (i64 DoubleRegs:$src1), (shl (i64 DoubleRegs:$src2),
(i32 IntRegs:$src3))))],
"$src1 = $dst">,
Requires<[HasV4T]>;
//Rxx^=asr(Rss,Rt)
def ASRd_rr_xor_V4 : MInst_acc<(outs DoubleRegs:$dst),
(ins DoubleRegs:$src1, DoubleRegs:$src2, IntRegs:$src3),
"$dst ^= asr($src2, $src3)",
[(set (i64 DoubleRegs:$dst),
(xor (i64 DoubleRegs:$src1), (sra (i64 DoubleRegs:$src2),
(i32 IntRegs:$src3))))],
"$src1 = $dst">,
Requires<[HasV4T]>;
//Rxx^=lsl(Rss,Rt)
def LSLd_rr_xor_V4 : MInst_acc<(outs DoubleRegs:$dst),
(ins DoubleRegs:$src1, DoubleRegs:$src2, IntRegs:$src3),
"$dst ^= lsl($src2, $src3)",
[(set (i64 DoubleRegs:$dst), (xor (i64 DoubleRegs:$src1),
(shl (i64 DoubleRegs:$src2),
(i32 IntRegs:$src3))))],
"$src1 = $dst">,
Requires<[HasV4T]>;
//Rxx^=lsr(Rss,Rt)
def LSRd_rr_xor_V4 : MInst_acc<(outs DoubleRegs:$dst),
(ins DoubleRegs:$src1, DoubleRegs:$src2, IntRegs:$src3),
"$dst ^= lsr($src2, $src3)",
[(set (i64 DoubleRegs:$dst),
(xor (i64 DoubleRegs:$src1), (srl (i64 DoubleRegs:$src2),
(i32 IntRegs:$src3))))],
"$src1 = $dst">,
Requires<[HasV4T]>;
}
//===----------------------------------------------------------------------===//
// XTYPE/SHIFT -
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// MEMOP: Word, Half, Byte
//===----------------------------------------------------------------------===//
def MEMOPIMM : SDNodeXForm<imm, [{
// Call the transformation function XformM5ToU5Imm to get the negative
// immediate's positive counterpart.
int32_t imm = N->getSExtValue();
return XformM5ToU5Imm(imm);
}]>;
def MEMOPIMM_HALF : SDNodeXForm<imm, [{
// -1 .. -31 represented as 65535..65515
// assigning to a short restores our desired signed value.
// Call the transformation function XformM5ToU5Imm to get the negative
// immediate's positive counterpart.
int16_t imm = N->getSExtValue();
return XformM5ToU5Imm(imm);
}]>;
def MEMOPIMM_BYTE : SDNodeXForm<imm, [{
// -1 .. -31 represented as 255..235
// assigning to a char restores our desired signed value.
// Call the transformation function XformM5ToU5Imm to get the negative
// immediate's positive counterpart.
int8_t imm = N->getSExtValue();
return XformM5ToU5Imm(imm);
}]>;
def SETMEMIMM : SDNodeXForm<imm, [{
// Return the bit position we will set [0-31].
// As an SDNode.
int32_t imm = N->getSExtValue();
return XformMskToBitPosU5Imm(imm);
}]>;
def CLRMEMIMM : SDNodeXForm<imm, [{
// Return the bit position we will clear [0-31].
// As an SDNode.
// we bit negate the value first
int32_t imm = ~(N->getSExtValue());
return XformMskToBitPosU5Imm(imm);
}]>;
def SETMEMIMM_SHORT : SDNodeXForm<imm, [{
// Return the bit position we will set [0-15].
// As an SDNode.
int16_t imm = N->getSExtValue();
return XformMskToBitPosU4Imm(imm);
}]>;
def CLRMEMIMM_SHORT : SDNodeXForm<imm, [{
// Return the bit position we will clear [0-15].
// As an SDNode.
// we bit negate the value first
int16_t imm = ~(N->getSExtValue());
return XformMskToBitPosU4Imm(imm);
}]>;
def SETMEMIMM_BYTE : SDNodeXForm<imm, [{
// Return the bit position we will set [0-7].
// As an SDNode.
int8_t imm = N->getSExtValue();
return XformMskToBitPosU3Imm(imm);
}]>;
def CLRMEMIMM_BYTE : SDNodeXForm<imm, [{
// Return the bit position we will clear [0-7].
// As an SDNode.
// we bit negate the value first
int8_t imm = ~(N->getSExtValue());
return XformMskToBitPosU3Imm(imm);
}]>;
//===----------------------------------------------------------------------===//
// Template class for MemOp instructions with the register value.
//===----------------------------------------------------------------------===//
class MemOp_rr_base <string opc, bits<2> opcBits, Operand ImmOp,
string memOp, bits<2> memOpBits> :
MEMInst_V4<(outs),
(ins IntRegs:$base, ImmOp:$offset, IntRegs:$delta),
opc#"($base+#$offset)"#memOp#"$delta",
[]>,
Requires<[HasV4T, UseMEMOP]> {
bits<5> base;
bits<5> delta;
bits<32> offset;
bits<6> offsetBits; // memb - u6:0 , memh - u6:1, memw - u6:2
let offsetBits = !if (!eq(opcBits, 0b00), offset{5-0},
!if (!eq(opcBits, 0b01), offset{6-1},
!if (!eq(opcBits, 0b10), offset{7-2},0)));
let IClass = 0b0011;
let Inst{27-24} = 0b1110;
let Inst{22-21} = opcBits;
let Inst{20-16} = base;
let Inst{13} = 0b0;
let Inst{12-7} = offsetBits;
let Inst{6-5} = memOpBits;
let Inst{4-0} = delta;
}
//===----------------------------------------------------------------------===//
// Template class for MemOp instructions with the immediate value.
//===----------------------------------------------------------------------===//
class MemOp_ri_base <string opc, bits<2> opcBits, Operand ImmOp,
string memOp, bits<2> memOpBits> :
MEMInst_V4 <(outs),
(ins IntRegs:$base, ImmOp:$offset, u5Imm:$delta),
opc#"($base+#$offset)"#memOp#"#$delta"
#!if(memOpBits{1},")", ""), // clrbit, setbit - include ')'
[]>,
Requires<[HasV4T, UseMEMOP]> {
bits<5> base;
bits<5> delta;
bits<32> offset;
bits<6> offsetBits; // memb - u6:0 , memh - u6:1, memw - u6:2
let offsetBits = !if (!eq(opcBits, 0b00), offset{5-0},
!if (!eq(opcBits, 0b01), offset{6-1},
!if (!eq(opcBits, 0b10), offset{7-2},0)));
let IClass = 0b0011;
let Inst{27-24} = 0b1111;
let Inst{22-21} = opcBits;
let Inst{20-16} = base;
let Inst{13} = 0b0;
let Inst{12-7} = offsetBits;
let Inst{6-5} = memOpBits;
let Inst{4-0} = delta;
}
// multiclass to define MemOp instructions with register operand.
multiclass MemOp_rr<string opc, bits<2> opcBits, Operand ImmOp> {
def _ADD#NAME#_V4 : MemOp_rr_base <opc, opcBits, ImmOp, " += ", 0b00>; // add
def _SUB#NAME#_V4 : MemOp_rr_base <opc, opcBits, ImmOp, " -= ", 0b01>; // sub
def _AND#NAME#_V4 : MemOp_rr_base <opc, opcBits, ImmOp, " &= ", 0b10>; // and
def _OR#NAME#_V4 : MemOp_rr_base <opc, opcBits, ImmOp, " |= ", 0b11>; // or
}
// multiclass to define MemOp instructions with immediate Operand.
multiclass MemOp_ri<string opc, bits<2> opcBits, Operand ImmOp> {
def _ADD#NAME#_V4 : MemOp_ri_base <opc, opcBits, ImmOp, " += ", 0b00 >;
def _SUB#NAME#_V4 : MemOp_ri_base <opc, opcBits, ImmOp, " -= ", 0b01 >;
def _CLRBIT#NAME#_V4 : MemOp_ri_base<opc, opcBits, ImmOp, " =clrbit(", 0b10>;
def _SETBIT#NAME#_V4 : MemOp_ri_base<opc, opcBits, ImmOp, " =setbit(", 0b11>;
}
multiclass MemOp_base <string opc, bits<2> opcBits, Operand ImmOp> {
defm r : MemOp_rr <opc, opcBits, ImmOp>;
defm i : MemOp_ri <opc, opcBits, ImmOp>;
}
// Define MemOp instructions.
let isExtendable = 1, opExtendable = 1, isExtentSigned = 0,
validSubTargets =HasV4SubT in {
let opExtentBits = 6, accessSize = ByteAccess in
defm MemOPb : MemOp_base <"memb", 0b00, u6_0Ext>;
let opExtentBits = 7, accessSize = HalfWordAccess in
defm MemOPh : MemOp_base <"memh", 0b01, u6_1Ext>;
let opExtentBits = 8, accessSize = WordAccess in
defm MemOPw : MemOp_base <"memw", 0b10, u6_2Ext>;
}
//===----------------------------------------------------------------------===//
// Multiclass to define 'Def Pats' for ALU operations on the memory
// Here value used for the ALU operation is an immediate value.
// mem[bh](Rs+#0) += #U5
// mem[bh](Rs+#u6) += #U5
//===----------------------------------------------------------------------===//
multiclass MemOpi_u5Pats <PatFrag ldOp, PatFrag stOp, PatLeaf ExtPred,
InstHexagon MI, SDNode OpNode> {
let AddedComplexity = 180 in
def : Pat < (stOp (OpNode (ldOp IntRegs:$addr), u5ImmPred:$addend),
IntRegs:$addr),
(MI IntRegs:$addr, #0, u5ImmPred:$addend )>;
let AddedComplexity = 190 in
def : Pat <(stOp (OpNode (ldOp (add IntRegs:$base, ExtPred:$offset)),
u5ImmPred:$addend),
(add IntRegs:$base, ExtPred:$offset)),
(MI IntRegs:$base, ExtPred:$offset, u5ImmPred:$addend)>;
}
multiclass MemOpi_u5ALUOp<PatFrag ldOp, PatFrag stOp, PatLeaf ExtPred,
InstHexagon addMI, InstHexagon subMI> {
defm : MemOpi_u5Pats<ldOp, stOp, ExtPred, addMI, add>;
defm : MemOpi_u5Pats<ldOp, stOp, ExtPred, subMI, sub>;
}
multiclass MemOpi_u5ExtType<PatFrag ldOpByte, PatFrag ldOpHalf > {
// Half Word
defm : MemOpi_u5ALUOp <ldOpHalf, truncstorei16, u6_1ExtPred,
MemOPh_ADDi_V4, MemOPh_SUBi_V4>;
// Byte
defm : MemOpi_u5ALUOp <ldOpByte, truncstorei8, u6ExtPred,
MemOPb_ADDi_V4, MemOPb_SUBi_V4>;
}
let Predicates = [HasV4T, UseMEMOP] in {
defm : MemOpi_u5ExtType<zextloadi8, zextloadi16>; // zero extend
defm : MemOpi_u5ExtType<sextloadi8, sextloadi16>; // sign extend
defm : MemOpi_u5ExtType<extloadi8, extloadi16>; // any extend
// Word
defm : MemOpi_u5ALUOp <load, store, u6_2ExtPred, MemOPw_ADDi_V4,
MemOPw_SUBi_V4>;
}
//===----------------------------------------------------------------------===//
// multiclass to define 'Def Pats' for ALU operations on the memory.
// Here value used for the ALU operation is a negative value.
// mem[bh](Rs+#0) += #m5
// mem[bh](Rs+#u6) += #m5
//===----------------------------------------------------------------------===//
multiclass MemOpi_m5Pats <PatFrag ldOp, PatFrag stOp, PatLeaf extPred,
PatLeaf immPred, ComplexPattern addrPred,
SDNodeXForm xformFunc, InstHexagon MI> {
let AddedComplexity = 190 in
def : Pat <(stOp (add (ldOp IntRegs:$addr), immPred:$subend),
IntRegs:$addr),
(MI IntRegs:$addr, #0, (xformFunc immPred:$subend) )>;
let AddedComplexity = 195 in
def : Pat<(stOp (add (ldOp (add IntRegs:$base, extPred:$offset)),
immPred:$subend),
(add IntRegs:$base, extPred:$offset)),
(MI IntRegs:$base, extPred:$offset, (xformFunc immPred:$subend))>;
}
multiclass MemOpi_m5ExtType<PatFrag ldOpByte, PatFrag ldOpHalf > {
// Half Word
defm : MemOpi_m5Pats <ldOpHalf, truncstorei16, u6_1ExtPred, m5HImmPred,
ADDRriU6_1, MEMOPIMM_HALF, MemOPh_SUBi_V4>;
// Byte
defm : MemOpi_m5Pats <ldOpByte, truncstorei8, u6ExtPred, m5BImmPred,
ADDRriU6_0, MEMOPIMM_BYTE, MemOPb_SUBi_V4>;
}
let Predicates = [HasV4T, UseMEMOP] in {
defm : MemOpi_m5ExtType<zextloadi8, zextloadi16>; // zero extend
defm : MemOpi_m5ExtType<sextloadi8, sextloadi16>; // sign extend
defm : MemOpi_m5ExtType<extloadi8, extloadi16>; // any extend
// Word
defm : MemOpi_m5Pats <load, store, u6_2ExtPred, m5ImmPred,
ADDRriU6_2, MEMOPIMM, MemOPw_SUBi_V4>;
}
//===----------------------------------------------------------------------===//
// Multiclass to define 'def Pats' for bit operations on the memory.
// mem[bhw](Rs+#0) = [clrbit|setbit](#U5)
// mem[bhw](Rs+#u6) = [clrbit|setbit](#U5)
//===----------------------------------------------------------------------===//
multiclass MemOpi_bitPats <PatFrag ldOp, PatFrag stOp, PatLeaf immPred,
PatLeaf extPred, ComplexPattern addrPred,
SDNodeXForm xformFunc, InstHexagon MI, SDNode OpNode> {
// mem[bhw](Rs+#u6:[012]) = [clrbit|setbit](#U5)
let AddedComplexity = 250 in
def : Pat<(stOp (OpNode (ldOp (add IntRegs:$base, extPred:$offset)),
immPred:$bitend),
(add IntRegs:$base, extPred:$offset)),
(MI IntRegs:$base, extPred:$offset, (xformFunc immPred:$bitend))>;
// mem[bhw](Rs+#0) = [clrbit|setbit](#U5)
let AddedComplexity = 225 in
def : Pat <(stOp (OpNode (ldOp (addrPred IntRegs:$addr, extPred:$offset)),
immPred:$bitend),
(addrPred (i32 IntRegs:$addr), extPred:$offset)),
(MI IntRegs:$addr, extPred:$offset, (xformFunc immPred:$bitend))>;
}
multiclass MemOpi_bitExtType<PatFrag ldOpByte, PatFrag ldOpHalf > {
// Byte - clrbit
defm : MemOpi_bitPats<ldOpByte, truncstorei8, Clr3ImmPred, u6ExtPred,
ADDRriU6_0, CLRMEMIMM_BYTE, MemOPb_CLRBITi_V4, and>;
// Byte - setbit
defm : MemOpi_bitPats<ldOpByte, truncstorei8, Set3ImmPred, u6ExtPred,
ADDRriU6_0, SETMEMIMM_BYTE, MemOPb_SETBITi_V4, or>;
// Half Word - clrbit
defm : MemOpi_bitPats<ldOpHalf, truncstorei16, Clr4ImmPred, u6_1ExtPred,
ADDRriU6_1, CLRMEMIMM_SHORT, MemOPh_CLRBITi_V4, and>;
// Half Word - setbit
defm : MemOpi_bitPats<ldOpHalf, truncstorei16, Set4ImmPred, u6_1ExtPred,
ADDRriU6_1, SETMEMIMM_SHORT, MemOPh_SETBITi_V4, or>;
}
let Predicates = [HasV4T, UseMEMOP] in {
// mem[bh](Rs+#0) = [clrbit|setbit](#U5)
// mem[bh](Rs+#u6:[01]) = [clrbit|setbit](#U5)
defm : MemOpi_bitExtType<zextloadi8, zextloadi16>; // zero extend
defm : MemOpi_bitExtType<sextloadi8, sextloadi16>; // sign extend
defm : MemOpi_bitExtType<extloadi8, extloadi16>; // any extend
// memw(Rs+#0) = [clrbit|setbit](#U5)
// memw(Rs+#u6:2) = [clrbit|setbit](#U5)
defm : MemOpi_bitPats<load, store, Clr5ImmPred, u6_2ExtPred, ADDRriU6_2,
CLRMEMIMM, MemOPw_CLRBITi_V4, and>;
defm : MemOpi_bitPats<load, store, Set5ImmPred, u6_2ExtPred, ADDRriU6_2,
SETMEMIMM, MemOPw_SETBITi_V4, or>;
}
//===----------------------------------------------------------------------===//
// Multiclass to define 'def Pats' for ALU operations on the memory
// where addend is a register.
// mem[bhw](Rs+#0) [+-&|]= Rt
// mem[bhw](Rs+#U6:[012]) [+-&|]= Rt
//===----------------------------------------------------------------------===//
multiclass MemOpr_Pats <PatFrag ldOp, PatFrag stOp, ComplexPattern addrPred,
PatLeaf extPred, InstHexagon MI, SDNode OpNode> {
let AddedComplexity = 141 in
// mem[bhw](Rs+#0) [+-&|]= Rt
def : Pat <(stOp (OpNode (ldOp (addrPred IntRegs:$addr, extPred:$offset)),
(i32 IntRegs:$addend)),
(addrPred (i32 IntRegs:$addr), extPred:$offset)),
(MI IntRegs:$addr, extPred:$offset, (i32 IntRegs:$addend) )>;
// mem[bhw](Rs+#U6:[012]) [+-&|]= Rt
let AddedComplexity = 150 in
def : Pat <(stOp (OpNode (ldOp (add IntRegs:$base, extPred:$offset)),
(i32 IntRegs:$orend)),
(add IntRegs:$base, extPred:$offset)),
(MI IntRegs:$base, extPred:$offset, (i32 IntRegs:$orend) )>;
}
multiclass MemOPr_ALUOp<PatFrag ldOp, PatFrag stOp,
ComplexPattern addrPred, PatLeaf extPred,
InstHexagon addMI, InstHexagon subMI,
InstHexagon andMI, InstHexagon orMI > {
defm : MemOpr_Pats <ldOp, stOp, addrPred, extPred, addMI, add>;
defm : MemOpr_Pats <ldOp, stOp, addrPred, extPred, subMI, sub>;
defm : MemOpr_Pats <ldOp, stOp, addrPred, extPred, andMI, and>;
defm : MemOpr_Pats <ldOp, stOp, addrPred, extPred, orMI, or>;
}
multiclass MemOPr_ExtType<PatFrag ldOpByte, PatFrag ldOpHalf > {
// Half Word
defm : MemOPr_ALUOp <ldOpHalf, truncstorei16, ADDRriU6_1, u6_1ExtPred,
MemOPh_ADDr_V4, MemOPh_SUBr_V4,
MemOPh_ANDr_V4, MemOPh_ORr_V4>;
// Byte
defm : MemOPr_ALUOp <ldOpByte, truncstorei8, ADDRriU6_0, u6ExtPred,
MemOPb_ADDr_V4, MemOPb_SUBr_V4,
MemOPb_ANDr_V4, MemOPb_ORr_V4>;
}
// Define 'def Pats' for MemOps with register addend.
let Predicates = [HasV4T, UseMEMOP] in {
// Byte, Half Word
defm : MemOPr_ExtType<zextloadi8, zextloadi16>; // zero extend
defm : MemOPr_ExtType<sextloadi8, sextloadi16>; // sign extend
defm : MemOPr_ExtType<extloadi8, extloadi16>; // any extend
// Word
defm : MemOPr_ALUOp <load, store, ADDRriU6_2, u6_2ExtPred, MemOPw_ADDr_V4,
MemOPw_SUBr_V4, MemOPw_ANDr_V4, MemOPw_ORr_V4 >;
}
//===----------------------------------------------------------------------===//
// XTYPE/PRED +
//===----------------------------------------------------------------------===//
// Hexagon V4 only supports these flavors of byte/half compare instructions:
// EQ/GT/GTU. Other flavors like GE/GEU/LT/LTU/LE/LEU are not supported by
// hardware. However, compiler can still implement these patterns through
// appropriate patterns combinations based on current implemented patterns.
// The implemented patterns are: EQ/GT/GTU.
// Missing patterns are: GE/GEU/LT/LTU/LE/LEU.
// Following instruction is not being extended as it results into the
// incorrect code for negative numbers.
// Pd=cmpb.eq(Rs,#u8)
// p=!cmp.eq(r1,r2)
let isCompare = 1, validSubTargets = HasV4SubT in
def CMPnotEQ_rr : ALU32_rr<(outs PredRegs:$dst),
(ins IntRegs:$src1, IntRegs:$src2),
"$dst = !cmp.eq($src1, $src2)",
[(set (i1 PredRegs:$dst),
(setne (i32 IntRegs:$src1), (i32 IntRegs:$src2)))]>,
Requires<[HasV4T]>;
// p=!cmp.eq(r1,#s10)
let isCompare = 1, validSubTargets = HasV4SubT in
def CMPnotEQ_ri : ALU32_ri<(outs PredRegs:$dst),
(ins IntRegs:$src1, s10Ext:$src2),
"$dst = !cmp.eq($src1, #$src2)",
[(set (i1 PredRegs:$dst),
(setne (i32 IntRegs:$src1), s10ImmPred:$src2))]>,
Requires<[HasV4T]>;
// p=!cmp.gt(r1,r2)
let isCompare = 1, validSubTargets = HasV4SubT in
def CMPnotGT_rr : ALU32_rr<(outs PredRegs:$dst),
(ins IntRegs:$src1, IntRegs:$src2),
"$dst = !cmp.gt($src1, $src2)",
[(set (i1 PredRegs:$dst),
(not (setgt (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>,
Requires<[HasV4T]>;
// p=!cmp.gt(r1,#s10)
let isCompare = 1, validSubTargets = HasV4SubT in
def CMPnotGT_ri : ALU32_ri<(outs PredRegs:$dst),
(ins IntRegs:$src1, s10Ext:$src2),
"$dst = !cmp.gt($src1, #$src2)",
[(set (i1 PredRegs:$dst),
(not (setgt (i32 IntRegs:$src1), s10ImmPred:$src2)))]>,
Requires<[HasV4T]>;
// p=!cmp.gtu(r1,r2)
let isCompare = 1, validSubTargets = HasV4SubT in
def CMPnotGTU_rr : ALU32_rr<(outs PredRegs:$dst),
(ins IntRegs:$src1, IntRegs:$src2),
"$dst = !cmp.gtu($src1, $src2)",
[(set (i1 PredRegs:$dst),
(not (setugt (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>,
Requires<[HasV4T]>;
// p=!cmp.gtu(r1,#u9)
let isCompare = 1, validSubTargets = HasV4SubT in
def CMPnotGTU_ri : ALU32_ri<(outs PredRegs:$dst),
(ins IntRegs:$src1, u9Ext:$src2),
"$dst = !cmp.gtu($src1, #$src2)",
[(set (i1 PredRegs:$dst),
(not (setugt (i32 IntRegs:$src1), u9ImmPred:$src2)))]>,
Requires<[HasV4T]>;
let isCompare = 1, validSubTargets = HasV4SubT in
def CMPbEQri_V4 : MInst<(outs PredRegs:$dst),
(ins IntRegs:$src1, u8Imm:$src2),
"$dst = cmpb.eq($src1, #$src2)",
[(set (i1 PredRegs:$dst),
(seteq (and (i32 IntRegs:$src1), 255), u8ImmPred:$src2))]>,
Requires<[HasV4T]>;
def : Pat <(brcond (i1 (setne (and (i32 IntRegs:$src1), 255), u8ImmPred:$src2)),
bb:$offset),
(JMP_f (CMPbEQri_V4 (i32 IntRegs:$src1), u8ImmPred:$src2),
bb:$offset)>,
Requires<[HasV4T]>;
// Pd=cmpb.eq(Rs,Rt)
let isCompare = 1, validSubTargets = HasV4SubT in
def CMPbEQrr_ubub_V4 : MInst<(outs PredRegs:$dst),
(ins IntRegs:$src1, IntRegs:$src2),
"$dst = cmpb.eq($src1, $src2)",
[(set (i1 PredRegs:$dst),
(seteq (and (xor (i32 IntRegs:$src1),
(i32 IntRegs:$src2)), 255), 0))]>,
Requires<[HasV4T]>;
// Pd=cmpb.eq(Rs,Rt)
let isCompare = 1, validSubTargets = HasV4SubT in
def CMPbEQrr_sbsb_V4 : MInst<(outs PredRegs:$dst),
(ins IntRegs:$src1, IntRegs:$src2),
"$dst = cmpb.eq($src1, $src2)",
[(set (i1 PredRegs:$dst),
(seteq (shl (i32 IntRegs:$src1), (i32 24)),
(shl (i32 IntRegs:$src2), (i32 24))))]>,
Requires<[HasV4T]>;
// Pd=cmpb.gt(Rs,Rt)
let isCompare = 1, validSubTargets = HasV4SubT in
def CMPbGTrr_V4 : MInst<(outs PredRegs:$dst),
(ins IntRegs:$src1, IntRegs:$src2),
"$dst = cmpb.gt($src1, $src2)",
[(set (i1 PredRegs:$dst),
(setgt (shl (i32 IntRegs:$src1), (i32 24)),
(shl (i32 IntRegs:$src2), (i32 24))))]>,
Requires<[HasV4T]>;
// Pd=cmpb.gtu(Rs,#u7)
let isExtendable = 1, opExtendable = 2, isExtentSigned = 0, opExtentBits = 7,
isCompare = 1, validSubTargets = HasV4SubT, CextOpcode = "CMPbGTU", InputType = "imm" in
def CMPbGTUri_V4 : MInst<(outs PredRegs:$dst),
(ins IntRegs:$src1, u7Ext:$src2),
"$dst = cmpb.gtu($src1, #$src2)",
[(set (i1 PredRegs:$dst), (setugt (and (i32 IntRegs:$src1), 255),
u7ExtPred:$src2))]>,
Requires<[HasV4T]>, ImmRegRel;
// SDNode for converting immediate C to C-1.
def DEC_CONST_BYTE : SDNodeXForm<imm, [{
// Return the byte immediate const-1 as an SDNode.
int32_t imm = N->getSExtValue();
return XformU7ToU7M1Imm(imm);
}]>;
// For the sequence
// zext( seteq ( and(Rs, 255), u8))
// Generate
// Pd=cmpb.eq(Rs, #u8)
// if (Pd.new) Rd=#1
// if (!Pd.new) Rd=#0
def : Pat <(i32 (zext (i1 (seteq (i32 (and (i32 IntRegs:$Rs), 255)),
u8ExtPred:$u8)))),
(i32 (TFR_condset_ii (i1 (CMPbEQri_V4 (i32 IntRegs:$Rs),
(u8ExtPred:$u8))),
1, 0))>,
Requires<[HasV4T]>;
// For the sequence
// zext( setne ( and(Rs, 255), u8))
// Generate
// Pd=cmpb.eq(Rs, #u8)
// if (Pd.new) Rd=#0
// if (!Pd.new) Rd=#1
def : Pat <(i32 (zext (i1 (setne (i32 (and (i32 IntRegs:$Rs), 255)),
u8ExtPred:$u8)))),
(i32 (TFR_condset_ii (i1 (CMPbEQri_V4 (i32 IntRegs:$Rs),
(u8ExtPred:$u8))),
0, 1))>,
Requires<[HasV4T]>;
// For the sequence
// zext( seteq (Rs, and(Rt, 255)))
// Generate
// Pd=cmpb.eq(Rs, Rt)
// if (Pd.new) Rd=#1
// if (!Pd.new) Rd=#0
def : Pat <(i32 (zext (i1 (seteq (i32 IntRegs:$Rt),
(i32 (and (i32 IntRegs:$Rs), 255)))))),
(i32 (TFR_condset_ii (i1 (CMPbEQrr_ubub_V4 (i32 IntRegs:$Rs),
(i32 IntRegs:$Rt))),
1, 0))>,
Requires<[HasV4T]>;
// For the sequence
// zext( setne (Rs, and(Rt, 255)))
// Generate
// Pd=cmpb.eq(Rs, Rt)
// if (Pd.new) Rd=#0
// if (!Pd.new) Rd=#1
def : Pat <(i32 (zext (i1 (setne (i32 IntRegs:$Rt),
(i32 (and (i32 IntRegs:$Rs), 255)))))),
(i32 (TFR_condset_ii (i1 (CMPbEQrr_ubub_V4 (i32 IntRegs:$Rs),
(i32 IntRegs:$Rt))),
0, 1))>,
Requires<[HasV4T]>;
// For the sequence
// zext( setugt ( and(Rs, 255), u8))
// Generate
// Pd=cmpb.gtu(Rs, #u8)
// if (Pd.new) Rd=#1
// if (!Pd.new) Rd=#0
def : Pat <(i32 (zext (i1 (setugt (i32 (and (i32 IntRegs:$Rs), 255)),
u8ExtPred:$u8)))),
(i32 (TFR_condset_ii (i1 (CMPbGTUri_V4 (i32 IntRegs:$Rs),
(u8ExtPred:$u8))),
1, 0))>,
Requires<[HasV4T]>;
// For the sequence
// zext( setugt ( and(Rs, 254), u8))
// Generate
// Pd=cmpb.gtu(Rs, #u8)
// if (Pd.new) Rd=#1
// if (!Pd.new) Rd=#0
def : Pat <(i32 (zext (i1 (setugt (i32 (and (i32 IntRegs:$Rs), 254)),
u8ExtPred:$u8)))),
(i32 (TFR_condset_ii (i1 (CMPbGTUri_V4 (i32 IntRegs:$Rs),
(u8ExtPred:$u8))),
1, 0))>,
Requires<[HasV4T]>;
// For the sequence
// zext( setult ( Rs, Rt))
// Generate
// Pd=cmp.ltu(Rs, Rt)
// if (Pd.new) Rd=#1
// if (!Pd.new) Rd=#0
// cmp.ltu(Rs, Rt) -> cmp.gtu(Rt, Rs)
def : Pat <(i32 (zext (i1 (setult (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
(i32 (TFR_condset_ii (i1 (CMPGTUrr (i32 IntRegs:$Rt),
(i32 IntRegs:$Rs))),
1, 0))>,
Requires<[HasV4T]>;
// For the sequence
// zext( setlt ( Rs, Rt))
// Generate
// Pd=cmp.lt(Rs, Rt)
// if (Pd.new) Rd=#1
// if (!Pd.new) Rd=#0
// cmp.lt(Rs, Rt) -> cmp.gt(Rt, Rs)
def : Pat <(i32 (zext (i1 (setlt (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
(i32 (TFR_condset_ii (i1 (CMPGTrr (i32 IntRegs:$Rt),
(i32 IntRegs:$Rs))),
1, 0))>,
Requires<[HasV4T]>;
// For the sequence
// zext( setugt ( Rs, Rt))
// Generate
// Pd=cmp.gtu(Rs, Rt)
// if (Pd.new) Rd=#1
// if (!Pd.new) Rd=#0
def : Pat <(i32 (zext (i1 (setugt (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
(i32 (TFR_condset_ii (i1 (CMPGTUrr (i32 IntRegs:$Rs),
(i32 IntRegs:$Rt))),
1, 0))>,
Requires<[HasV4T]>;
// This pattern interefers with coremark performance, not implementing at this
// time.
// For the sequence
// zext( setgt ( Rs, Rt))
// Generate
// Pd=cmp.gt(Rs, Rt)
// if (Pd.new) Rd=#1
// if (!Pd.new) Rd=#0
// For the sequence
// zext( setuge ( Rs, Rt))
// Generate
// Pd=cmp.ltu(Rs, Rt)
// if (Pd.new) Rd=#0
// if (!Pd.new) Rd=#1
// cmp.ltu(Rs, Rt) -> cmp.gtu(Rt, Rs)
def : Pat <(i32 (zext (i1 (setuge (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
(i32 (TFR_condset_ii (i1 (CMPGTUrr (i32 IntRegs:$Rt),
(i32 IntRegs:$Rs))),
0, 1))>,
Requires<[HasV4T]>;
// For the sequence
// zext( setge ( Rs, Rt))
// Generate
// Pd=cmp.lt(Rs, Rt)
// if (Pd.new) Rd=#0
// if (!Pd.new) Rd=#1
// cmp.lt(Rs, Rt) -> cmp.gt(Rt, Rs)
def : Pat <(i32 (zext (i1 (setge (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
(i32 (TFR_condset_ii (i1 (CMPGTrr (i32 IntRegs:$Rt),
(i32 IntRegs:$Rs))),
0, 1))>,
Requires<[HasV4T]>;
// For the sequence
// zext( setule ( Rs, Rt))
// Generate
// Pd=cmp.gtu(Rs, Rt)
// if (Pd.new) Rd=#0
// if (!Pd.new) Rd=#1
def : Pat <(i32 (zext (i1 (setule (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
(i32 (TFR_condset_ii (i1 (CMPGTUrr (i32 IntRegs:$Rs),
(i32 IntRegs:$Rt))),
0, 1))>,
Requires<[HasV4T]>;
// For the sequence
// zext( setle ( Rs, Rt))
// Generate
// Pd=cmp.gt(Rs, Rt)
// if (Pd.new) Rd=#0
// if (!Pd.new) Rd=#1
def : Pat <(i32 (zext (i1 (setle (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))),
(i32 (TFR_condset_ii (i1 (CMPGTrr (i32 IntRegs:$Rs),
(i32 IntRegs:$Rt))),
0, 1))>,
Requires<[HasV4T]>;
// For the sequence
// zext( setult ( and(Rs, 255), u8))
// Use the isdigit transformation below
// Generate code of the form 'mux_ii(cmpbgtu(Rdd, C-1),0,1)'
// for C code of the form r = ((c>='0') & (c<='9')) ? 1 : 0;.
// The isdigit transformation relies on two 'clever' aspects:
// 1) The data type is unsigned which allows us to eliminate a zero test after
// biasing the expression by 48. We are depending on the representation of
// the unsigned types, and semantics.
// 2) The front end has converted <= 9 into < 10 on entry to LLVM
//
// For the C code:
// retval = ((c>='0') & (c<='9')) ? 1 : 0;
// The code is transformed upstream of llvm into
// retval = (c-48) < 10 ? 1 : 0;
let AddedComplexity = 139 in
def : Pat <(i32 (zext (i1 (setult (i32 (and (i32 IntRegs:$src1), 255)),
u7StrictPosImmPred:$src2)))),
(i32 (MUX_ii (i1 (CMPbGTUri_V4 (i32 IntRegs:$src1),
(DEC_CONST_BYTE u7StrictPosImmPred:$src2))),
0, 1))>,
Requires<[HasV4T]>;
// Pd=cmpb.gtu(Rs,Rt)
let isCompare = 1, validSubTargets = HasV4SubT, CextOpcode = "CMPbGTU",
InputType = "reg" in
def CMPbGTUrr_V4 : MInst<(outs PredRegs:$dst),
(ins IntRegs:$src1, IntRegs:$src2),
"$dst = cmpb.gtu($src1, $src2)",
[(set (i1 PredRegs:$dst), (setugt (and (i32 IntRegs:$src1), 255),
(and (i32 IntRegs:$src2), 255)))]>,
Requires<[HasV4T]>, ImmRegRel;
// Following instruction is not being extended as it results into the incorrect
// code for negative numbers.
// Signed half compare(.eq) ri.
// Pd=cmph.eq(Rs,#s8)
let isCompare = 1, validSubTargets = HasV4SubT in
def CMPhEQri_V4 : MInst<(outs PredRegs:$dst),
(ins IntRegs:$src1, s8Imm:$src2),
"$dst = cmph.eq($src1, #$src2)",
[(set (i1 PredRegs:$dst), (seteq (and (i32 IntRegs:$src1), 65535),
s8ImmPred:$src2))]>,
Requires<[HasV4T]>;
// Signed half compare(.eq) rr.
// Case 1: xor + and, then compare:
// r0=xor(r0,r1)
// r0=and(r0,#0xffff)
// p0=cmp.eq(r0,#0)
// Pd=cmph.eq(Rs,Rt)
let isCompare = 1, validSubTargets = HasV4SubT in
def CMPhEQrr_xor_V4 : MInst<(outs PredRegs:$dst),
(ins IntRegs:$src1, IntRegs:$src2),
"$dst = cmph.eq($src1, $src2)",
[(set (i1 PredRegs:$dst), (seteq (and (xor (i32 IntRegs:$src1),
(i32 IntRegs:$src2)),
65535), 0))]>,
Requires<[HasV4T]>;
// Signed half compare(.eq) rr.
// Case 2: shift left 16 bits then compare:
// r0=asl(r0,16)
// r1=asl(r1,16)
// p0=cmp.eq(r0,r1)
// Pd=cmph.eq(Rs,Rt)
let isCompare = 1, validSubTargets = HasV4SubT in
def CMPhEQrr_shl_V4 : MInst<(outs PredRegs:$dst),
(ins IntRegs:$src1, IntRegs:$src2),
"$dst = cmph.eq($src1, $src2)",
[(set (i1 PredRegs:$dst),
(seteq (shl (i32 IntRegs:$src1), (i32 16)),
(shl (i32 IntRegs:$src2), (i32 16))))]>,
Requires<[HasV4T]>;
/* Incorrect Pattern -- immediate should be right shifted before being
used in the cmph.gt instruction.
// Signed half compare(.gt) ri.
// Pd=cmph.gt(Rs,#s8)
let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8,
isCompare = 1, validSubTargets = HasV4SubT in
def CMPhGTri_V4 : MInst<(outs PredRegs:$dst),
(ins IntRegs:$src1, s8Ext:$src2),
"$dst = cmph.gt($src1, #$src2)",
[(set (i1 PredRegs:$dst),
(setgt (shl (i32 IntRegs:$src1), (i32 16)),
s8ExtPred:$src2))]>,
Requires<[HasV4T]>;
*/
// Signed half compare(.gt) rr.
// Pd=cmph.gt(Rs,Rt)
let isCompare = 1, validSubTargets = HasV4SubT in
def CMPhGTrr_shl_V4 : MInst<(outs PredRegs:$dst),
(ins IntRegs:$src1, IntRegs:$src2),
"$dst = cmph.gt($src1, $src2)",
[(set (i1 PredRegs:$dst),
(setgt (shl (i32 IntRegs:$src1), (i32 16)),
(shl (i32 IntRegs:$src2), (i32 16))))]>,
Requires<[HasV4T]>;
// Unsigned half compare rr (.gtu).
// Pd=cmph.gtu(Rs,Rt)
let isCompare = 1, validSubTargets = HasV4SubT, CextOpcode = "CMPhGTU",
InputType = "reg" in
def CMPhGTUrr_V4 : MInst<(outs PredRegs:$dst),
(ins IntRegs:$src1, IntRegs:$src2),
"$dst = cmph.gtu($src1, $src2)",
[(set (i1 PredRegs:$dst),
(setugt (and (i32 IntRegs:$src1), 65535),
(and (i32 IntRegs:$src2), 65535)))]>,
Requires<[HasV4T]>, ImmRegRel;
// Unsigned half compare ri (.gtu).
// Pd=cmph.gtu(Rs,#u7)
let isExtendable = 1, opExtendable = 2, isExtentSigned = 0, opExtentBits = 7,
isCompare = 1, validSubTargets = HasV4SubT, CextOpcode = "CMPhGTU",
InputType = "imm" in
def CMPhGTUri_V4 : MInst<(outs PredRegs:$dst),
(ins IntRegs:$src1, u7Ext:$src2),
"$dst = cmph.gtu($src1, #$src2)",
[(set (i1 PredRegs:$dst), (setugt (and (i32 IntRegs:$src1), 65535),
u7ExtPred:$src2))]>,
Requires<[HasV4T]>, ImmRegRel;
let validSubTargets = HasV4SubT in
def NTSTBIT_rr : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
"$dst = !tstbit($src1, $src2)",
[(set (i1 PredRegs:$dst),
(seteq (and (shl 1, (i32 IntRegs:$src2)), (i32 IntRegs:$src1)), 0))]>,
Requires<[HasV4T]>;
let validSubTargets = HasV4SubT in
def NTSTBIT_ri : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
"$dst = !tstbit($src1, $src2)",
[(set (i1 PredRegs:$dst),
(seteq (and (shl 1, u5ImmPred:$src2), (i32 IntRegs:$src1)), 0))]>,
Requires<[HasV4T]>;
//===----------------------------------------------------------------------===//
// XTYPE/PRED -
//===----------------------------------------------------------------------===//
//Deallocate frame and return.
// dealloc_return
let isReturn = 1, isTerminator = 1, isBarrier = 1, isPredicable = 1,
Defs = [R29, R30, R31, PC], Uses = [R30], neverHasSideEffects = 1 in {
let validSubTargets = HasV4SubT in
def DEALLOC_RET_V4 : LD0Inst<(outs), (ins),
"dealloc_return",
[]>,
Requires<[HasV4T]>;
}
// Restore registers and dealloc return function call.
let isCall = 1, isBarrier = 1, isReturn = 1, isTerminator = 1,
Defs = [R29, R30, R31, PC] in {
let validSubTargets = HasV4SubT in
def RESTORE_DEALLOC_RET_JMP_V4 : JInst<(outs),
(ins calltarget:$dst),
"jump $dst",
[]>,
Requires<[HasV4T]>;
}
// Restore registers and dealloc frame before a tail call.
let isCall = 1, isBarrier = 1,
Defs = [R29, R30, R31, PC] in {
let validSubTargets = HasV4SubT in
def RESTORE_DEALLOC_BEFORE_TAILCALL_V4 : JInst<(outs),
(ins calltarget:$dst),
"call $dst",
[]>,
Requires<[HasV4T]>;
}
// Save registers function call.
let isCall = 1, isBarrier = 1,
Uses = [R29, R31] in {
def SAVE_REGISTERS_CALL_V4 : JInst<(outs),
(ins calltarget:$dst),
"call $dst // Save_calle_saved_registers",
[]>,
Requires<[HasV4T]>;
}
// if (Ps) dealloc_return
let isReturn = 1, isTerminator = 1,
Defs = [R29, R30, R31, PC], Uses = [R30], neverHasSideEffects = 1,
isPredicated = 1 in {
let validSubTargets = HasV4SubT in
def DEALLOC_RET_cPt_V4 : LD0Inst<(outs),
(ins PredRegs:$src1),
"if ($src1) dealloc_return",
[]>,
Requires<[HasV4T]>;
}
// if (!Ps) dealloc_return
let isReturn = 1, isTerminator = 1,
Defs = [R29, R30, R31, PC], Uses = [R30], neverHasSideEffects = 1,
isPredicated = 1, isPredicatedFalse = 1 in {
let validSubTargets = HasV4SubT in
def DEALLOC_RET_cNotPt_V4 : LD0Inst<(outs), (ins PredRegs:$src1),
"if (!$src1) dealloc_return",
[]>,
Requires<[HasV4T]>;
}
// if (Ps.new) dealloc_return:nt
let isReturn = 1, isTerminator = 1,
Defs = [R29, R30, R31, PC], Uses = [R30], neverHasSideEffects = 1,
isPredicated = 1 in {
let validSubTargets = HasV4SubT in
def DEALLOC_RET_cdnPnt_V4 : LD0Inst<(outs), (ins PredRegs:$src1),
"if ($src1.new) dealloc_return:nt",
[]>,
Requires<[HasV4T]>;
}
// if (!Ps.new) dealloc_return:nt
let isReturn = 1, isTerminator = 1,
Defs = [R29, R30, R31, PC], Uses = [R30], neverHasSideEffects = 1,
isPredicated = 1, isPredicatedFalse = 1 in {
let validSubTargets = HasV4SubT in
def DEALLOC_RET_cNotdnPnt_V4 : LD0Inst<(outs), (ins PredRegs:$src1),
"if (!$src1.new) dealloc_return:nt",
[]>,
Requires<[HasV4T]>;
}
// if (Ps.new) dealloc_return:t
let isReturn = 1, isTerminator = 1,
Defs = [R29, R30, R31, PC], Uses = [R30], neverHasSideEffects = 1,
isPredicated = 1 in {
let validSubTargets = HasV4SubT in
def DEALLOC_RET_cdnPt_V4 : LD0Inst<(outs), (ins PredRegs:$src1),
"if ($src1.new) dealloc_return:t",
[]>,
Requires<[HasV4T]>;
}
// if (!Ps.new) dealloc_return:nt
let isReturn = 1, isTerminator = 1,
Defs = [R29, R30, R31, PC], Uses = [R30], neverHasSideEffects = 1,
isPredicated = 1, isPredicatedFalse = 1 in {
let validSubTargets = HasV4SubT in
def DEALLOC_RET_cNotdnPt_V4 : LD0Inst<(outs), (ins PredRegs:$src1),
"if (!$src1.new) dealloc_return:t",
[]>,
Requires<[HasV4T]>;
}
// Load/Store with absolute addressing mode
// memw(#u6)=Rt
multiclass ST_Abs_Predbase<string mnemonic, RegisterClass RC, bit isNot,
bit isPredNew> {
let isPredicatedNew = isPredNew in
def NAME#_V4 : STInst2<(outs),
(ins PredRegs:$src1, u0AlwaysExt:$absaddr, RC: $src2),
!if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
") ")#mnemonic#"(##$absaddr) = $src2",
[]>,
Requires<[HasV4T]>;
}
multiclass ST_Abs_Pred<string mnemonic, RegisterClass RC, bit PredNot> {
let isPredicatedFalse = PredNot in {
defm _c#NAME : ST_Abs_Predbase<mnemonic, RC, PredNot, 0>;
// Predicate new
defm _cdn#NAME : ST_Abs_Predbase<mnemonic, RC, PredNot, 1>;
}
}
let isNVStorable = 1, isExtended = 1, neverHasSideEffects = 1 in
multiclass ST_Abs<string mnemonic, string CextOp, RegisterClass RC> {
let CextOpcode = CextOp, BaseOpcode = CextOp#_abs in {
let opExtendable = 0, isPredicable = 1 in
def NAME#_V4 : STInst2<(outs),
(ins u0AlwaysExt:$absaddr, RC:$src),
mnemonic#"(##$absaddr) = $src",
[]>,
Requires<[HasV4T]>;
let opExtendable = 1, isPredicated = 1 in {
defm Pt : ST_Abs_Pred<mnemonic, RC, 0>;
defm NotPt : ST_Abs_Pred<mnemonic, RC, 1>;
}
}
}
multiclass ST_Abs_Predbase_nv<string mnemonic, RegisterClass RC, bit isNot,
bit isPredNew> {
let isPredicatedNew = isPredNew in
def NAME#_nv_V4 : NVInst_V4<(outs),
(ins PredRegs:$src1, u0AlwaysExt:$absaddr, RC: $src2),
!if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
") ")#mnemonic#"(##$absaddr) = $src2.new",
[]>,
Requires<[HasV4T]>;
}
multiclass ST_Abs_Pred_nv<string mnemonic, RegisterClass RC, bit PredNot> {
let isPredicatedFalse = PredNot in {
defm _c#NAME : ST_Abs_Predbase_nv<mnemonic, RC, PredNot, 0>;
// Predicate new
defm _cdn#NAME : ST_Abs_Predbase_nv<mnemonic, RC, PredNot, 1>;
}
}
let mayStore = 1, isNVStore = 1, isExtended = 1, neverHasSideEffects = 1 in
multiclass ST_Abs_nv<string mnemonic, string CextOp, RegisterClass RC> {
let CextOpcode = CextOp, BaseOpcode = CextOp#_abs in {
let opExtendable = 0, isPredicable = 1 in
def NAME#_nv_V4 : NVInst_V4<(outs),
(ins u0AlwaysExt:$absaddr, RC:$src),
mnemonic#"(##$absaddr) = $src.new",
[]>,
Requires<[HasV4T]>;
let opExtendable = 1, isPredicated = 1 in {
defm Pt : ST_Abs_Pred_nv<mnemonic, RC, 0>;
defm NotPt : ST_Abs_Pred_nv<mnemonic, RC, 1>;
}
}
}
let addrMode = Absolute in {
let accessSize = ByteAccess in
defm STrib_abs : ST_Abs<"memb", "STrib", IntRegs>,
ST_Abs_nv<"memb", "STrib", IntRegs>, AddrModeRel;
let accessSize = HalfWordAccess in
defm STrih_abs : ST_Abs<"memh", "STrih", IntRegs>,
ST_Abs_nv<"memh", "STrih", IntRegs>, AddrModeRel;
let accessSize = WordAccess in
defm STriw_abs : ST_Abs<"memw", "STriw", IntRegs>,
ST_Abs_nv<"memw", "STriw", IntRegs>, AddrModeRel;
let accessSize = DoubleWordAccess, isNVStorable = 0 in
defm STrid_abs : ST_Abs<"memd", "STrid", DoubleRegs>, AddrModeRel;
}
let Predicates = [HasV4T], AddedComplexity = 30 in {
def : Pat<(truncstorei8 (i32 IntRegs:$src1),
(HexagonCONST32 tglobaladdr:$absaddr)),
(STrib_abs_V4 tglobaladdr: $absaddr, IntRegs: $src1)>;
def : Pat<(truncstorei16 (i32 IntRegs:$src1),
(HexagonCONST32 tglobaladdr:$absaddr)),
(STrih_abs_V4 tglobaladdr: $absaddr, IntRegs: $src1)>;
def : Pat<(store (i32 IntRegs:$src1), (HexagonCONST32 tglobaladdr:$absaddr)),
(STriw_abs_V4 tglobaladdr: $absaddr, IntRegs: $src1)>;
def : Pat<(store (i64 DoubleRegs:$src1),
(HexagonCONST32 tglobaladdr:$absaddr)),
(STrid_abs_V4 tglobaladdr: $absaddr, DoubleRegs: $src1)>;
}
//===----------------------------------------------------------------------===//
// multiclass for store instructions with GP-relative addressing mode.
// mem[bhwd](#global)=Rt
// if ([!]Pv[.new]) mem[bhwd](##global) = Rt
//===----------------------------------------------------------------------===//
let mayStore = 1, isNVStorable = 1 in
multiclass ST_GP<string mnemonic, string BaseOp, RegisterClass RC> {
let BaseOpcode = BaseOp, isPredicable = 1 in
def NAME#_V4 : STInst2<(outs),
(ins globaladdress:$global, RC:$src),
mnemonic#"(#$global) = $src",
[]>;
// When GP-relative instructions are predicated, their addressing mode is
// changed to absolute and they are always constant extended.
let BaseOpcode = BaseOp, isExtended = 1, opExtendable = 1,
isPredicated = 1 in {
defm Pt : ST_Abs_Pred <mnemonic, RC, 0>;
defm NotPt : ST_Abs_Pred <mnemonic, RC, 1>;
}
}
let mayStore = 1, isNVStore = 1 in
multiclass ST_GP_nv<string mnemonic, string BaseOp, RegisterClass RC> {
let BaseOpcode = BaseOp, isPredicable = 1 in
def NAME#_nv_V4 : NVInst_V4<(outs),
(ins u0AlwaysExt:$global, RC:$src),
mnemonic#"(#$global) = $src.new",
[]>,
Requires<[HasV4T]>;
// When GP-relative instructions are predicated, their addressing mode is
// changed to absolute and they are always constant extended.
let BaseOpcode = BaseOp, isExtended = 1, opExtendable = 1,
isPredicated = 1 in {
defm Pt : ST_Abs_Pred_nv<mnemonic, RC, 0>;
defm NotPt : ST_Abs_Pred_nv<mnemonic, RC, 1>;
}
}
let validSubTargets = HasV4SubT, neverHasSideEffects = 1 in {
let isNVStorable = 0 in
defm STd_GP : ST_GP <"memd", "STd_GP", DoubleRegs>, PredNewRel;
defm STb_GP : ST_GP<"memb", "STb_GP", IntRegs>,
ST_GP_nv<"memb", "STb_GP", IntRegs>, NewValueRel;
defm STh_GP : ST_GP<"memh", "STh_GP", IntRegs>,
ST_GP_nv<"memh", "STh_GP", IntRegs>, NewValueRel;
defm STw_GP : ST_GP<"memw", "STw_GP", IntRegs>,
ST_GP_nv<"memw", "STw_GP", IntRegs>, NewValueRel;
}
// 64 bit atomic store
def : Pat <(atomic_store_64 (HexagonCONST32_GP tglobaladdr:$global),
(i64 DoubleRegs:$src1)),
(STd_GP_V4 tglobaladdr:$global, (i64 DoubleRegs:$src1))>,
Requires<[HasV4T]>;
// Map from store(globaladdress) -> memd(#foo)
let AddedComplexity = 100 in
def : Pat <(store (i64 DoubleRegs:$src1),
(HexagonCONST32_GP tglobaladdr:$global)),
(STd_GP_V4 tglobaladdr:$global, (i64 DoubleRegs:$src1))>;
// 8 bit atomic store
def : Pat < (atomic_store_8 (HexagonCONST32_GP tglobaladdr:$global),
(i32 IntRegs:$src1)),
(STb_GP_V4 tglobaladdr:$global, (i32 IntRegs:$src1))>;
// Map from store(globaladdress) -> memb(#foo)
let AddedComplexity = 100 in
def : Pat<(truncstorei8 (i32 IntRegs:$src1),
(HexagonCONST32_GP tglobaladdr:$global)),
(STb_GP_V4 tglobaladdr:$global, (i32 IntRegs:$src1))>;
// Map from "i1 = constant<-1>; memw(CONST32(#foo)) = i1"
// to "r0 = 1; memw(#foo) = r0"
let AddedComplexity = 100 in
def : Pat<(store (i1 -1), (HexagonCONST32_GP tglobaladdr:$global)),
(STb_GP_V4 tglobaladdr:$global, (TFRI 1))>;
def : Pat<(atomic_store_16 (HexagonCONST32_GP tglobaladdr:$global),
(i32 IntRegs:$src1)),
(STh_GP_V4 tglobaladdr:$global, (i32 IntRegs:$src1))>;
// Map from store(globaladdress) -> memh(#foo)
let AddedComplexity = 100 in
def : Pat<(truncstorei16 (i32 IntRegs:$src1),
(HexagonCONST32_GP tglobaladdr:$global)),
(STh_GP_V4 tglobaladdr:$global, (i32 IntRegs:$src1))>;
// 32 bit atomic store
def : Pat<(atomic_store_32 (HexagonCONST32_GP tglobaladdr:$global),
(i32 IntRegs:$src1)),
(STw_GP_V4 tglobaladdr:$global, (i32 IntRegs:$src1))>;
// Map from store(globaladdress) -> memw(#foo)
let AddedComplexity = 100 in
def : Pat<(store (i32 IntRegs:$src1), (HexagonCONST32_GP tglobaladdr:$global)),
(STw_GP_V4 tglobaladdr:$global, (i32 IntRegs:$src1))>;
//===----------------------------------------------------------------------===//
// Multiclass for the load instructions with absolute addressing mode.
//===----------------------------------------------------------------------===//
multiclass LD_Abs_Predbase<string mnemonic, RegisterClass RC, bit isNot,
bit isPredNew> {
let isPredicatedNew = isPredNew in
def NAME : LDInst2<(outs RC:$dst),
(ins PredRegs:$src1, u0AlwaysExt:$absaddr),
!if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
") ")#"$dst = "#mnemonic#"(##$absaddr)",
[]>,
Requires<[HasV4T]>;
}
multiclass LD_Abs_Pred<string mnemonic, RegisterClass RC, bit PredNot> {
let isPredicatedFalse = PredNot in {
defm _c#NAME : LD_Abs_Predbase<mnemonic, RC, PredNot, 0>;
// Predicate new
defm _cdn#NAME : LD_Abs_Predbase<mnemonic, RC, PredNot, 1>;
}
}
let isExtended = 1, neverHasSideEffects = 1 in
multiclass LD_Abs<string mnemonic, string CextOp, RegisterClass RC> {
let CextOpcode = CextOp, BaseOpcode = CextOp#_abs in {
let opExtendable = 1, isPredicable = 1 in
def NAME#_V4 : LDInst2<(outs RC:$dst),
(ins u0AlwaysExt:$absaddr),
"$dst = "#mnemonic#"(##$absaddr)",
[]>,
Requires<[HasV4T]>;
let opExtendable = 2, isPredicated = 1 in {
defm Pt_V4 : LD_Abs_Pred<mnemonic, RC, 0>;
defm NotPt_V4 : LD_Abs_Pred<mnemonic, RC, 1>;
}
}
}
let addrMode = Absolute in {
let accessSize = ByteAccess in {
defm LDrib_abs : LD_Abs<"memb", "LDrib", IntRegs>, AddrModeRel;
defm LDriub_abs : LD_Abs<"memub", "LDriub", IntRegs>, AddrModeRel;
}
let accessSize = HalfWordAccess in {
defm LDrih_abs : LD_Abs<"memh", "LDrih", IntRegs>, AddrModeRel;
defm LDriuh_abs : LD_Abs<"memuh", "LDriuh", IntRegs>, AddrModeRel;
}
let accessSize = WordAccess in
defm LDriw_abs : LD_Abs<"memw", "LDriw", IntRegs>, AddrModeRel;
let accessSize = DoubleWordAccess in
defm LDrid_abs : LD_Abs<"memd", "LDrid", DoubleRegs>, AddrModeRel;
}
let Predicates = [HasV4T], AddedComplexity = 30 in {
def : Pat<(i32 (load (HexagonCONST32 tglobaladdr:$absaddr))),
(LDriw_abs_V4 tglobaladdr: $absaddr)>;
def : Pat<(i32 (sextloadi8 (HexagonCONST32 tglobaladdr:$absaddr))),
(LDrib_abs_V4 tglobaladdr:$absaddr)>;
def : Pat<(i32 (zextloadi8 (HexagonCONST32 tglobaladdr:$absaddr))),
(LDriub_abs_V4 tglobaladdr:$absaddr)>;
def : Pat<(i32 (sextloadi16 (HexagonCONST32 tglobaladdr:$absaddr))),
(LDrih_abs_V4 tglobaladdr:$absaddr)>;
def : Pat<(i32 (zextloadi16 (HexagonCONST32 tglobaladdr:$absaddr))),
(LDriuh_abs_V4 tglobaladdr:$absaddr)>;
}
//===----------------------------------------------------------------------===//
// multiclass for load instructions with GP-relative addressing mode.
// Rx=mem[bhwd](##global)
// if ([!]Pv[.new]) Rx=mem[bhwd](##global)
//===----------------------------------------------------------------------===//
let neverHasSideEffects = 1, validSubTargets = HasV4SubT in
multiclass LD_GP<string mnemonic, string BaseOp, RegisterClass RC> {
let BaseOpcode = BaseOp in {
let isPredicable = 1 in
def NAME#_V4 : LDInst2<(outs RC:$dst),
(ins globaladdress:$global),
"$dst = "#mnemonic#"(#$global)",
[]>;
let isExtended = 1, opExtendable = 2, isPredicated = 1 in {
defm Pt_V4 : LD_Abs_Pred<mnemonic, RC, 0>;
defm NotPt_V4 : LD_Abs_Pred<mnemonic, RC, 1>;
}
}
}
defm LDd_GP : LD_GP<"memd", "LDd_GP", DoubleRegs>, PredNewRel;
defm LDb_GP : LD_GP<"memb", "LDb_GP", IntRegs>, PredNewRel;
defm LDub_GP : LD_GP<"memub", "LDub_GP", IntRegs>, PredNewRel;
defm LDh_GP : LD_GP<"memh", "LDh_GP", IntRegs>, PredNewRel;
defm LDuh_GP : LD_GP<"memuh", "LDuh_GP", IntRegs>, PredNewRel;
defm LDw_GP : LD_GP<"memw", "LDw_GP", IntRegs>, PredNewRel;
def : Pat <(atomic_load_64 (HexagonCONST32_GP tglobaladdr:$global)),
(i64 (LDd_GP_V4 tglobaladdr:$global))>;
def : Pat <(atomic_load_32 (HexagonCONST32_GP tglobaladdr:$global)),
(i32 (LDw_GP_V4 tglobaladdr:$global))>;
def : Pat <(atomic_load_16 (HexagonCONST32_GP tglobaladdr:$global)),
(i32 (LDuh_GP_V4 tglobaladdr:$global))>;
def : Pat <(atomic_load_8 (HexagonCONST32_GP tglobaladdr:$global)),
(i32 (LDub_GP_V4 tglobaladdr:$global))>;
// Map from load(globaladdress) -> memw(#foo + 0)
let AddedComplexity = 100 in
def : Pat <(i64 (load (HexagonCONST32_GP tglobaladdr:$global))),
(i64 (LDd_GP_V4 tglobaladdr:$global))>;
// Map from Pd = load(globaladdress) -> Rd = memb(globaladdress), Pd = Rd
let AddedComplexity = 100 in
def : Pat <(i1 (load (HexagonCONST32_GP tglobaladdr:$global))),
(i1 (TFR_PdRs (i32 (LDb_GP_V4 tglobaladdr:$global))))>;
// When the Interprocedural Global Variable optimizer realizes that a certain
// global variable takes only two constant values, it shrinks the global to
// a boolean. Catch those loads here in the following 3 patterns.
let AddedComplexity = 100 in
def : Pat <(i32 (extloadi1 (HexagonCONST32_GP tglobaladdr:$global))),
(i32 (LDb_GP_V4 tglobaladdr:$global))>;
let AddedComplexity = 100 in
def : Pat <(i32 (sextloadi1 (HexagonCONST32_GP tglobaladdr:$global))),
(i32 (LDb_GP_V4 tglobaladdr:$global))>;
// Map from load(globaladdress) -> memb(#foo)
let AddedComplexity = 100 in
def : Pat <(i32 (extloadi8 (HexagonCONST32_GP tglobaladdr:$global))),
(i32 (LDb_GP_V4 tglobaladdr:$global))>;
// Map from load(globaladdress) -> memb(#foo)
let AddedComplexity = 100 in
def : Pat <(i32 (sextloadi8 (HexagonCONST32_GP tglobaladdr:$global))),
(i32 (LDb_GP_V4 tglobaladdr:$global))>;
let AddedComplexity = 100 in
def : Pat <(i32 (zextloadi1 (HexagonCONST32_GP tglobaladdr:$global))),
(i32 (LDub_GP_V4 tglobaladdr:$global))>;
// Map from load(globaladdress) -> memub(#foo)
let AddedComplexity = 100 in
def : Pat <(i32 (zextloadi8 (HexagonCONST32_GP tglobaladdr:$global))),
(i32 (LDub_GP_V4 tglobaladdr:$global))>;
// Map from load(globaladdress) -> memh(#foo)
let AddedComplexity = 100 in
def : Pat <(i32 (extloadi16 (HexagonCONST32_GP tglobaladdr:$global))),
(i32 (LDh_GP_V4 tglobaladdr:$global))>;
// Map from load(globaladdress) -> memh(#foo)
let AddedComplexity = 100 in
def : Pat <(i32 (sextloadi16 (HexagonCONST32_GP tglobaladdr:$global))),
(i32 (LDh_GP_V4 tglobaladdr:$global))>;
// Map from load(globaladdress) -> memuh(#foo)
let AddedComplexity = 100 in
def : Pat <(i32 (zextloadi16 (HexagonCONST32_GP tglobaladdr:$global))),
(i32 (LDuh_GP_V4 tglobaladdr:$global))>;
// Map from load(globaladdress) -> memw(#foo)
let AddedComplexity = 100 in
def : Pat <(i32 (load (HexagonCONST32_GP tglobaladdr:$global))),
(i32 (LDw_GP_V4 tglobaladdr:$global))>;
// Transfer global address into a register
let isExtended = 1, opExtendable = 1, AddedComplexity=50, isMoveImm = 1,
isAsCheapAsAMove = 1, isReMaterializable = 1, validSubTargets = HasV4SubT in
def TFRI_V4 : ALU32_ri<(outs IntRegs:$dst), (ins s16Ext:$src1),
"$dst = #$src1",
[(set IntRegs:$dst, (HexagonCONST32 tglobaladdr:$src1))]>,
Requires<[HasV4T]>;
// Transfer a block address into a register
def : Pat<(HexagonCONST32_GP tblockaddress:$src1),
(TFRI_V4 tblockaddress:$src1)>,
Requires<[HasV4T]>;
let isExtended = 1, opExtendable = 2, AddedComplexity=50,
neverHasSideEffects = 1, isPredicated = 1, validSubTargets = HasV4SubT in
def TFRI_cPt_V4 : ALU32_ri<(outs IntRegs:$dst),
(ins PredRegs:$src1, s16Ext:$src2),
"if($src1) $dst = #$src2",
[]>,
Requires<[HasV4T]>;
let isExtended = 1, opExtendable = 2, AddedComplexity=50, isPredicatedFalse = 1,
neverHasSideEffects = 1, isPredicated = 1, validSubTargets = HasV4SubT in
def TFRI_cNotPt_V4 : ALU32_ri<(outs IntRegs:$dst),
(ins PredRegs:$src1, s16Ext:$src2),
"if(!$src1) $dst = #$src2",
[]>,
Requires<[HasV4T]>;
let isExtended = 1, opExtendable = 2, AddedComplexity=50,
neverHasSideEffects = 1, isPredicated = 1, validSubTargets = HasV4SubT in
def TFRI_cdnPt_V4 : ALU32_ri<(outs IntRegs:$dst),
(ins PredRegs:$src1, s16Ext:$src2),
"if($src1.new) $dst = #$src2",
[]>,
Requires<[HasV4T]>;
let isExtended = 1, opExtendable = 2, AddedComplexity=50, isPredicatedFalse = 1,
neverHasSideEffects = 1, isPredicated = 1, validSubTargets = HasV4SubT in
def TFRI_cdnNotPt_V4 : ALU32_ri<(outs IntRegs:$dst),
(ins PredRegs:$src1, s16Ext:$src2),
"if(!$src1.new) $dst = #$src2",
[]>,
Requires<[HasV4T]>;
let AddedComplexity = 50, Predicates = [HasV4T] in
def : Pat<(HexagonCONST32_GP tglobaladdr:$src1),
(TFRI_V4 tglobaladdr:$src1)>,
Requires<[HasV4T]>;
// Load - Indirect with long offset: These instructions take global address
// as an operand
let isExtended = 1, opExtendable = 3, AddedComplexity = 40,
validSubTargets = HasV4SubT in
def LDrid_ind_lo_V4 : LDInst<(outs DoubleRegs:$dst),
(ins IntRegs:$src1, u2Imm:$src2, globaladdressExt:$offset),
"$dst=memd($src1<<#$src2+##$offset)",
[(set (i64 DoubleRegs:$dst),
(load (add (shl IntRegs:$src1, u2ImmPred:$src2),
(HexagonCONST32 tglobaladdr:$offset))))]>,
Requires<[HasV4T]>;
let AddedComplexity = 40 in
multiclass LD_indirect_lo<string OpcStr, PatFrag OpNode> {
let isExtended = 1, opExtendable = 3, validSubTargets = HasV4SubT in
def _lo_V4 : LDInst<(outs IntRegs:$dst),
(ins IntRegs:$src1, u2Imm:$src2, globaladdressExt:$offset),
!strconcat("$dst = ",
!strconcat(OpcStr, "($src1<<#$src2+##$offset)")),
[(set IntRegs:$dst,
(i32 (OpNode (add (shl IntRegs:$src1, u2ImmPred:$src2),
(HexagonCONST32 tglobaladdr:$offset)))))]>,
Requires<[HasV4T]>;
}
defm LDrib_ind : LD_indirect_lo<"memb", sextloadi8>;
defm LDriub_ind : LD_indirect_lo<"memub", zextloadi8>;
defm LDriub_ind_anyext : LD_indirect_lo<"memub", extloadi8>;
defm LDrih_ind : LD_indirect_lo<"memh", sextloadi16>;
defm LDriuh_ind : LD_indirect_lo<"memuh", zextloadi16>;
defm LDriuh_ind_anyext : LD_indirect_lo<"memuh", extloadi16>;
defm LDriw_ind : LD_indirect_lo<"memw", load>;
let AddedComplexity = 40 in
def : Pat <(i32 (sextloadi8 (add IntRegs:$src1,
(NumUsesBelowThresCONST32 tglobaladdr:$offset)))),
(i32 (LDrib_ind_lo_V4 IntRegs:$src1, 0, tglobaladdr:$offset))>,
Requires<[HasV4T]>;
let AddedComplexity = 40 in
def : Pat <(i32 (zextloadi8 (add IntRegs:$src1,
(NumUsesBelowThresCONST32 tglobaladdr:$offset)))),
(i32 (LDriub_ind_lo_V4 IntRegs:$src1, 0, tglobaladdr:$offset))>,
Requires<[HasV4T]>;
let Predicates = [HasV4T], AddedComplexity = 30 in {
def : Pat<(truncstorei8 (i32 IntRegs:$src1), u0AlwaysExtPred:$src2),
(STrib_abs_V4 u0AlwaysExtPred:$src2, IntRegs: $src1)>;
def : Pat<(truncstorei16 (i32 IntRegs:$src1), u0AlwaysExtPred:$src2),
(STrih_abs_V4 u0AlwaysExtPred:$src2, IntRegs: $src1)>;
def : Pat<(store (i32 IntRegs:$src1), u0AlwaysExtPred:$src2),
(STriw_abs_V4 u0AlwaysExtPred:$src2, IntRegs: $src1)>;
}
let Predicates = [HasV4T], AddedComplexity = 30 in {
def : Pat<(i32 (load u0AlwaysExtPred:$src)),
(LDriw_abs_V4 u0AlwaysExtPred:$src)>;
def : Pat<(i32 (sextloadi8 u0AlwaysExtPred:$src)),
(LDrib_abs_V4 u0AlwaysExtPred:$src)>;
def : Pat<(i32 (zextloadi8 u0AlwaysExtPred:$src)),
(LDriub_abs_V4 u0AlwaysExtPred:$src)>;
def : Pat<(i32 (sextloadi16 u0AlwaysExtPred:$src)),
(LDrih_abs_V4 u0AlwaysExtPred:$src)>;
def : Pat<(i32 (zextloadi16 u0AlwaysExtPred:$src)),
(LDriuh_abs_V4 u0AlwaysExtPred:$src)>;
}
// Indexed store word - global address.
// memw(Rs+#u6:2)=#S8
let AddedComplexity = 10 in
def STriw_offset_ext_V4 : STInst<(outs),
(ins IntRegs:$src1, u6_2Imm:$src2, globaladdress:$src3),
"memw($src1+#$src2) = ##$src3",
[(store (HexagonCONST32 tglobaladdr:$src3),
(add IntRegs:$src1, u6_2ImmPred:$src2))]>,
Requires<[HasV4T]>;
def : Pat<(i64 (ctlz (i64 DoubleRegs:$src1))),
(i64 (COMBINE_Ir_V4 (i32 0), (i32 (CTLZ64_rr DoubleRegs:$src1))))>,
Requires<[HasV4T]>;
def : Pat<(i64 (cttz (i64 DoubleRegs:$src1))),
(i64 (COMBINE_Ir_V4 (i32 0), (i32 (CTTZ64_rr DoubleRegs:$src1))))>,
Requires<[HasV4T]>;
// i8 -> i64 loads
// We need a complexity of 120 here to override preceding handling of
// zextloadi8.
let Predicates = [HasV4T], AddedComplexity = 120 in {
def: Pat <(i64 (extloadi8 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
(i64 (COMBINE_Ir_V4 0, (LDrib_abs_V4 tglobaladdr:$addr)))>;
def: Pat <(i64 (zextloadi8 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
(i64 (COMBINE_Ir_V4 0, (LDriub_abs_V4 tglobaladdr:$addr)))>;
def: Pat <(i64 (sextloadi8 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
(i64 (SXTW (LDrib_abs_V4 tglobaladdr:$addr)))>;
def: Pat <(i64 (extloadi8 FoldGlobalAddr:$addr)),
(i64 (COMBINE_Ir_V4 0, (LDrib_abs_V4 FoldGlobalAddr:$addr)))>;
def: Pat <(i64 (zextloadi8 FoldGlobalAddr:$addr)),
(i64 (COMBINE_Ir_V4 0, (LDriub_abs_V4 FoldGlobalAddr:$addr)))>;
def: Pat <(i64 (sextloadi8 FoldGlobalAddr:$addr)),
(i64 (SXTW (LDrib_abs_V4 FoldGlobalAddr:$addr)))>;
}
// i16 -> i64 loads
// We need a complexity of 120 here to override preceding handling of
// zextloadi16.
let AddedComplexity = 120 in {
def: Pat <(i64 (extloadi16 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
(i64 (COMBINE_Ir_V4 0, (LDrih_abs_V4 tglobaladdr:$addr)))>,
Requires<[HasV4T]>;
def: Pat <(i64 (zextloadi16 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
(i64 (COMBINE_Ir_V4 0, (LDriuh_abs_V4 tglobaladdr:$addr)))>,
Requires<[HasV4T]>;
def: Pat <(i64 (sextloadi16 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
(i64 (SXTW (LDrih_abs_V4 tglobaladdr:$addr)))>,
Requires<[HasV4T]>;
def: Pat <(i64 (extloadi16 FoldGlobalAddr:$addr)),
(i64 (COMBINE_Ir_V4 0, (LDrih_abs_V4 FoldGlobalAddr:$addr)))>,
Requires<[HasV4T]>;
def: Pat <(i64 (zextloadi16 FoldGlobalAddr:$addr)),
(i64 (COMBINE_Ir_V4 0, (LDriuh_abs_V4 FoldGlobalAddr:$addr)))>,
Requires<[HasV4T]>;
def: Pat <(i64 (sextloadi16 FoldGlobalAddr:$addr)),
(i64 (SXTW (LDrih_abs_V4 FoldGlobalAddr:$addr)))>,
Requires<[HasV4T]>;
}
// i32->i64 loads
// We need a complexity of 120 here to override preceding handling of
// zextloadi32.
let AddedComplexity = 120 in {
def: Pat <(i64 (extloadi32 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
(i64 (COMBINE_Ir_V4 0, (LDriw_abs_V4 tglobaladdr:$addr)))>,
Requires<[HasV4T]>;
def: Pat <(i64 (zextloadi32 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
(i64 (COMBINE_Ir_V4 0, (LDriw_abs_V4 tglobaladdr:$addr)))>,
Requires<[HasV4T]>;
def: Pat <(i64 (sextloadi32 (NumUsesBelowThresCONST32 tglobaladdr:$addr))),
(i64 (SXTW (LDriw_abs_V4 tglobaladdr:$addr)))>,
Requires<[HasV4T]>;
def: Pat <(i64 (extloadi32 FoldGlobalAddr:$addr)),
(i64 (COMBINE_Ir_V4 0, (LDriw_abs_V4 FoldGlobalAddr:$addr)))>,
Requires<[HasV4T]>;
def: Pat <(i64 (zextloadi32 FoldGlobalAddr:$addr)),
(i64 (COMBINE_Ir_V4 0, (LDriw_abs_V4 FoldGlobalAddr:$addr)))>,
Requires<[HasV4T]>;
def: Pat <(i64 (sextloadi32 FoldGlobalAddr:$addr)),
(i64 (SXTW (LDriw_abs_V4 FoldGlobalAddr:$addr)))>,
Requires<[HasV4T]>;
}
// Indexed store double word - global address.
// memw(Rs+#u6:2)=#S8
let AddedComplexity = 10 in
def STrih_offset_ext_V4 : STInst<(outs),
(ins IntRegs:$src1, u6_1Imm:$src2, globaladdress:$src3),
"memh($src1+#$src2) = ##$src3",
[(truncstorei16 (HexagonCONST32 tglobaladdr:$src3),
(add IntRegs:$src1, u6_1ImmPred:$src2))]>,
Requires<[HasV4T]>;
// Map from store(globaladdress + x) -> memd(#foo + x)
let AddedComplexity = 100 in
def : Pat<(store (i64 DoubleRegs:$src1),
FoldGlobalAddrGP:$addr),
(STrid_abs_V4 FoldGlobalAddrGP:$addr, (i64 DoubleRegs:$src1))>,
Requires<[HasV4T]>;
def : Pat<(atomic_store_64 FoldGlobalAddrGP:$addr,
(i64 DoubleRegs:$src1)),
(STrid_abs_V4 FoldGlobalAddrGP:$addr, (i64 DoubleRegs:$src1))>,
Requires<[HasV4T]>;
// Map from store(globaladdress + x) -> memb(#foo + x)
let AddedComplexity = 100 in
def : Pat<(truncstorei8 (i32 IntRegs:$src1), FoldGlobalAddrGP:$addr),
(STrib_abs_V4 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
Requires<[HasV4T]>;
def : Pat<(atomic_store_8 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1)),
(STrib_abs_V4 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
Requires<[HasV4T]>;
// Map from store(globaladdress + x) -> memh(#foo + x)
let AddedComplexity = 100 in
def : Pat<(truncstorei16 (i32 IntRegs:$src1), FoldGlobalAddrGP:$addr),
(STrih_abs_V4 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
Requires<[HasV4T]>;
def : Pat<(atomic_store_16 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1)),
(STrih_abs_V4 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
Requires<[HasV4T]>;
// Map from store(globaladdress + x) -> memw(#foo + x)
let AddedComplexity = 100 in
def : Pat<(store (i32 IntRegs:$src1), FoldGlobalAddrGP:$addr),
(STriw_abs_V4 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
Requires<[HasV4T]>;
def : Pat<(atomic_store_32 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1)),
(STriw_abs_V4 FoldGlobalAddrGP:$addr, (i32 IntRegs:$src1))>,
Requires<[HasV4T]>;
// Map from load(globaladdress + x) -> memd(#foo + x)
let AddedComplexity = 100 in
def : Pat<(i64 (load FoldGlobalAddrGP:$addr)),
(i64 (LDrid_abs_V4 FoldGlobalAddrGP:$addr))>,
Requires<[HasV4T]>;
def : Pat<(atomic_load_64 FoldGlobalAddrGP:$addr),
(i64 (LDrid_abs_V4 FoldGlobalAddrGP:$addr))>,
Requires<[HasV4T]>;
// Map from load(globaladdress + x) -> memb(#foo + x)
let AddedComplexity = 100 in
def : Pat<(i32 (extloadi8 FoldGlobalAddrGP:$addr)),
(i32 (LDrib_abs_V4 FoldGlobalAddrGP:$addr))>,
Requires<[HasV4T]>;
// Map from load(globaladdress + x) -> memb(#foo + x)
let AddedComplexity = 100 in
def : Pat<(i32 (sextloadi8 FoldGlobalAddrGP:$addr)),
(i32 (LDrib_abs_V4 FoldGlobalAddrGP:$addr))>,
Requires<[HasV4T]>;
//let AddedComplexity = 100 in
let AddedComplexity = 100 in
def : Pat<(i32 (extloadi16 FoldGlobalAddrGP:$addr)),
(i32 (LDrih_abs_V4 FoldGlobalAddrGP:$addr))>,
Requires<[HasV4T]>;
// Map from load(globaladdress + x) -> memh(#foo + x)
let AddedComplexity = 100 in
def : Pat<(i32 (sextloadi16 FoldGlobalAddrGP:$addr)),
(i32 (LDrih_abs_V4 FoldGlobalAddrGP:$addr))>,
Requires<[HasV4T]>;
// Map from load(globaladdress + x) -> memuh(#foo + x)
let AddedComplexity = 100 in
def : Pat<(i32 (zextloadi16 FoldGlobalAddrGP:$addr)),
(i32 (LDriuh_abs_V4 FoldGlobalAddrGP:$addr))>,
Requires<[HasV4T]>;
def : Pat<(atomic_load_16 FoldGlobalAddrGP:$addr),
(i32 (LDriuh_abs_V4 FoldGlobalAddrGP:$addr))>,
Requires<[HasV4T]>;
// Map from load(globaladdress + x) -> memub(#foo + x)
let AddedComplexity = 100 in
def : Pat<(i32 (zextloadi8 FoldGlobalAddrGP:$addr)),
(i32 (LDriub_abs_V4 FoldGlobalAddrGP:$addr))>,
Requires<[HasV4T]>;
def : Pat<(atomic_load_8 FoldGlobalAddrGP:$addr),
(i32 (LDriub_abs_V4 FoldGlobalAddrGP:$addr))>,
Requires<[HasV4T]>;
// Map from load(globaladdress + x) -> memw(#foo + x)
let AddedComplexity = 100 in
def : Pat<(i32 (load FoldGlobalAddrGP:$addr)),
(i32 (LDriw_abs_V4 FoldGlobalAddrGP:$addr))>,
Requires<[HasV4T]>;
def : Pat<(atomic_load_32 FoldGlobalAddrGP:$addr),
(i32 (LDriw_abs_V4 FoldGlobalAddrGP:$addr))>,
Requires<[HasV4T]>;