llvm-project/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp

1452 lines
54 KiB
C++

//===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the visit functions for load, store and alloca.
//
//===----------------------------------------------------------------------===//
#include "InstCombineInternal.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
#define DEBUG_TYPE "instcombine"
STATISTIC(NumDeadStore, "Number of dead stores eliminated");
STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
/// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
/// some part of a constant global variable. This intentionally only accepts
/// constant expressions because we can't rewrite arbitrary instructions.
static bool pointsToConstantGlobal(Value *V) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
return GV->isConstant();
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
if (CE->getOpcode() == Instruction::BitCast ||
CE->getOpcode() == Instruction::AddrSpaceCast ||
CE->getOpcode() == Instruction::GetElementPtr)
return pointsToConstantGlobal(CE->getOperand(0));
}
return false;
}
/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
/// pointer to an alloca. Ignore any reads of the pointer, return false if we
/// see any stores or other unknown uses. If we see pointer arithmetic, keep
/// track of whether it moves the pointer (with IsOffset) but otherwise traverse
/// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
/// the alloca, and if the source pointer is a pointer to a constant global, we
/// can optimize this.
static bool
isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
SmallVectorImpl<Instruction *> &ToDelete) {
// We track lifetime intrinsics as we encounter them. If we decide to go
// ahead and replace the value with the global, this lets the caller quickly
// eliminate the markers.
SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
ValuesToInspect.emplace_back(V, false);
while (!ValuesToInspect.empty()) {
auto ValuePair = ValuesToInspect.pop_back_val();
const bool IsOffset = ValuePair.second;
for (auto &U : ValuePair.first->uses()) {
auto *I = cast<Instruction>(U.getUser());
if (auto *LI = dyn_cast<LoadInst>(I)) {
// Ignore non-volatile loads, they are always ok.
if (!LI->isSimple()) return false;
continue;
}
if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
// If uses of the bitcast are ok, we are ok.
ValuesToInspect.emplace_back(I, IsOffset);
continue;
}
if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
// If the GEP has all zero indices, it doesn't offset the pointer. If it
// doesn't, it does.
ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices());
continue;
}
if (auto CS = CallSite(I)) {
// If this is the function being called then we treat it like a load and
// ignore it.
if (CS.isCallee(&U))
continue;
unsigned DataOpNo = CS.getDataOperandNo(&U);
bool IsArgOperand = CS.isArgOperand(&U);
// Inalloca arguments are clobbered by the call.
if (IsArgOperand && CS.isInAllocaArgument(DataOpNo))
return false;
// If this is a readonly/readnone call site, then we know it is just a
// load (but one that potentially returns the value itself), so we can
// ignore it if we know that the value isn't captured.
if (CS.onlyReadsMemory() &&
(CS.getInstruction()->use_empty() || CS.doesNotCapture(DataOpNo)))
continue;
// If this is being passed as a byval argument, the caller is making a
// copy, so it is only a read of the alloca.
if (IsArgOperand && CS.isByValArgument(DataOpNo))
continue;
}
// Lifetime intrinsics can be handled by the caller.
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
II->getIntrinsicID() == Intrinsic::lifetime_end) {
assert(II->use_empty() && "Lifetime markers have no result to use!");
ToDelete.push_back(II);
continue;
}
}
// If this is isn't our memcpy/memmove, reject it as something we can't
// handle.
MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
if (!MI)
return false;
// If the transfer is using the alloca as a source of the transfer, then
// ignore it since it is a load (unless the transfer is volatile).
if (U.getOperandNo() == 1) {
if (MI->isVolatile()) return false;
continue;
}
// If we already have seen a copy, reject the second one.
if (TheCopy) return false;
// If the pointer has been offset from the start of the alloca, we can't
// safely handle this.
if (IsOffset) return false;
// If the memintrinsic isn't using the alloca as the dest, reject it.
if (U.getOperandNo() != 0) return false;
// If the source of the memcpy/move is not a constant global, reject it.
if (!pointsToConstantGlobal(MI->getSource()))
return false;
// Otherwise, the transform is safe. Remember the copy instruction.
TheCopy = MI;
}
}
return true;
}
/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
/// modified by a copy from a constant global. If we can prove this, we can
/// replace any uses of the alloca with uses of the global directly.
static MemTransferInst *
isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
SmallVectorImpl<Instruction *> &ToDelete) {
MemTransferInst *TheCopy = nullptr;
if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
return TheCopy;
return nullptr;
}
static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) {
// Check for array size of 1 (scalar allocation).
if (!AI.isArrayAllocation()) {
// i32 1 is the canonical array size for scalar allocations.
if (AI.getArraySize()->getType()->isIntegerTy(32))
return nullptr;
// Canonicalize it.
Value *V = IC.Builder->getInt32(1);
AI.setOperand(0, V);
return &AI;
}
// Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
AllocaInst *New = IC.Builder->CreateAlloca(NewTy, nullptr, AI.getName());
New->setAlignment(AI.getAlignment());
// Scan to the end of the allocation instructions, to skip over a block of
// allocas if possible...also skip interleaved debug info
//
BasicBlock::iterator It(New);
while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
++It;
// Now that I is pointing to the first non-allocation-inst in the block,
// insert our getelementptr instruction...
//
Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
Value *NullIdx = Constant::getNullValue(IdxTy);
Value *Idx[2] = {NullIdx, NullIdx};
Instruction *GEP =
GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub");
IC.InsertNewInstBefore(GEP, *It);
// Now make everything use the getelementptr instead of the original
// allocation.
return IC.replaceInstUsesWith(AI, GEP);
}
if (isa<UndefValue>(AI.getArraySize()))
return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
// Ensure that the alloca array size argument has type intptr_t, so that
// any casting is exposed early.
Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
if (AI.getArraySize()->getType() != IntPtrTy) {
Value *V = IC.Builder->CreateIntCast(AI.getArraySize(), IntPtrTy, false);
AI.setOperand(0, V);
return &AI;
}
return nullptr;
}
Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
if (auto *I = simplifyAllocaArraySize(*this, AI))
return I;
if (AI.getAllocatedType()->isSized()) {
// If the alignment is 0 (unspecified), assign it the preferred alignment.
if (AI.getAlignment() == 0)
AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType()));
// Move all alloca's of zero byte objects to the entry block and merge them
// together. Note that we only do this for alloca's, because malloc should
// allocate and return a unique pointer, even for a zero byte allocation.
if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) {
// For a zero sized alloca there is no point in doing an array allocation.
// This is helpful if the array size is a complicated expression not used
// elsewhere.
if (AI.isArrayAllocation()) {
AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1));
return &AI;
}
// Get the first instruction in the entry block.
BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
if (FirstInst != &AI) {
// If the entry block doesn't start with a zero-size alloca then move
// this one to the start of the entry block. There is no problem with
// dominance as the array size was forced to a constant earlier already.
AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
AI.moveBefore(FirstInst);
return &AI;
}
// If the alignment of the entry block alloca is 0 (unspecified),
// assign it the preferred alignment.
if (EntryAI->getAlignment() == 0)
EntryAI->setAlignment(
DL.getPrefTypeAlignment(EntryAI->getAllocatedType()));
// Replace this zero-sized alloca with the one at the start of the entry
// block after ensuring that the address will be aligned enough for both
// types.
unsigned MaxAlign = std::max(EntryAI->getAlignment(),
AI.getAlignment());
EntryAI->setAlignment(MaxAlign);
if (AI.getType() != EntryAI->getType())
return new BitCastInst(EntryAI, AI.getType());
return replaceInstUsesWith(AI, EntryAI);
}
}
}
if (AI.getAlignment()) {
// Check to see if this allocation is only modified by a memcpy/memmove from
// a constant global whose alignment is equal to or exceeds that of the
// allocation. If this is the case, we can change all users to use
// the constant global instead. This is commonly produced by the CFE by
// constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
// is only subsequently read.
SmallVector<Instruction *, 4> ToDelete;
if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
unsigned SourceAlign = getOrEnforceKnownAlignment(
Copy->getSource(), AI.getAlignment(), DL, &AI, &AC, &DT);
if (AI.getAlignment() <= SourceAlign) {
DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
DEBUG(dbgs() << " memcpy = " << *Copy << '\n');
for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
eraseInstFromFunction(*ToDelete[i]);
Constant *TheSrc = cast<Constant>(Copy->getSource());
Constant *Cast
= ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, AI.getType());
Instruction *NewI = replaceInstUsesWith(AI, Cast);
eraseInstFromFunction(*Copy);
++NumGlobalCopies;
return NewI;
}
}
}
// At last, use the generic allocation site handler to aggressively remove
// unused allocas.
return visitAllocSite(AI);
}
// Are we allowed to form a atomic load or store of this type?
static bool isSupportedAtomicType(Type *Ty) {
return Ty->isIntegerTy() || Ty->isPointerTy() || Ty->isFloatingPointTy();
}
/// \brief Helper to combine a load to a new type.
///
/// This just does the work of combining a load to a new type. It handles
/// metadata, etc., and returns the new instruction. The \c NewTy should be the
/// loaded *value* type. This will convert it to a pointer, cast the operand to
/// that pointer type, load it, etc.
///
/// Note that this will create all of the instructions with whatever insert
/// point the \c InstCombiner currently is using.
static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy,
const Twine &Suffix = "") {
assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) &&
"can't fold an atomic load to requested type");
Value *Ptr = LI.getPointerOperand();
unsigned AS = LI.getPointerAddressSpace();
SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
LI.getAllMetadata(MD);
LoadInst *NewLoad = IC.Builder->CreateAlignedLoad(
IC.Builder->CreateBitCast(Ptr, NewTy->getPointerTo(AS)),
LI.getAlignment(), LI.isVolatile(), LI.getName() + Suffix);
NewLoad->setAtomic(LI.getOrdering(), LI.getSynchScope());
MDBuilder MDB(NewLoad->getContext());
for (const auto &MDPair : MD) {
unsigned ID = MDPair.first;
MDNode *N = MDPair.second;
// Note, essentially every kind of metadata should be preserved here! This
// routine is supposed to clone a load instruction changing *only its type*.
// The only metadata it makes sense to drop is metadata which is invalidated
// when the pointer type changes. This should essentially never be the case
// in LLVM, but we explicitly switch over only known metadata to be
// conservatively correct. If you are adding metadata to LLVM which pertains
// to loads, you almost certainly want to add it here.
switch (ID) {
case LLVMContext::MD_dbg:
case LLVMContext::MD_tbaa:
case LLVMContext::MD_prof:
case LLVMContext::MD_fpmath:
case LLVMContext::MD_tbaa_struct:
case LLVMContext::MD_invariant_load:
case LLVMContext::MD_alias_scope:
case LLVMContext::MD_noalias:
case LLVMContext::MD_nontemporal:
case LLVMContext::MD_mem_parallel_loop_access:
// All of these directly apply.
NewLoad->setMetadata(ID, N);
break;
case LLVMContext::MD_nonnull:
// This only directly applies if the new type is also a pointer.
if (NewTy->isPointerTy()) {
NewLoad->setMetadata(ID, N);
break;
}
// If it's integral now, translate it to !range metadata.
if (NewTy->isIntegerTy()) {
auto *ITy = cast<IntegerType>(NewTy);
auto *NullInt = ConstantExpr::getPtrToInt(
ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
auto *NonNullInt =
ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
NewLoad->setMetadata(LLVMContext::MD_range,
MDB.createRange(NonNullInt, NullInt));
}
break;
case LLVMContext::MD_align:
case LLVMContext::MD_dereferenceable:
case LLVMContext::MD_dereferenceable_or_null:
// These only directly apply if the new type is also a pointer.
if (NewTy->isPointerTy())
NewLoad->setMetadata(ID, N);
break;
case LLVMContext::MD_range:
// FIXME: It would be nice to propagate this in some way, but the type
// conversions make it hard.
// If it's a pointer now and the range does not contain 0, make it !nonnull.
if (NewTy->isPointerTy()) {
unsigned BitWidth = IC.getDataLayout().getTypeSizeInBits(NewTy);
if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
MDNode *NN = MDNode::get(LI.getContext(), None);
NewLoad->setMetadata(LLVMContext::MD_nonnull, NN);
}
}
break;
}
}
return NewLoad;
}
/// \brief Combine a store to a new type.
///
/// Returns the newly created store instruction.
static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) {
assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) &&
"can't fold an atomic store of requested type");
Value *Ptr = SI.getPointerOperand();
unsigned AS = SI.getPointerAddressSpace();
SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
SI.getAllMetadata(MD);
StoreInst *NewStore = IC.Builder->CreateAlignedStore(
V, IC.Builder->CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
SI.getAlignment(), SI.isVolatile());
NewStore->setAtomic(SI.getOrdering(), SI.getSynchScope());
for (const auto &MDPair : MD) {
unsigned ID = MDPair.first;
MDNode *N = MDPair.second;
// Note, essentially every kind of metadata should be preserved here! This
// routine is supposed to clone a store instruction changing *only its
// type*. The only metadata it makes sense to drop is metadata which is
// invalidated when the pointer type changes. This should essentially
// never be the case in LLVM, but we explicitly switch over only known
// metadata to be conservatively correct. If you are adding metadata to
// LLVM which pertains to stores, you almost certainly want to add it
// here.
switch (ID) {
case LLVMContext::MD_dbg:
case LLVMContext::MD_tbaa:
case LLVMContext::MD_prof:
case LLVMContext::MD_fpmath:
case LLVMContext::MD_tbaa_struct:
case LLVMContext::MD_alias_scope:
case LLVMContext::MD_noalias:
case LLVMContext::MD_nontemporal:
case LLVMContext::MD_mem_parallel_loop_access:
// All of these directly apply.
NewStore->setMetadata(ID, N);
break;
case LLVMContext::MD_invariant_load:
case LLVMContext::MD_nonnull:
case LLVMContext::MD_range:
case LLVMContext::MD_align:
case LLVMContext::MD_dereferenceable:
case LLVMContext::MD_dereferenceable_or_null:
// These don't apply for stores.
break;
}
}
return NewStore;
}
/// \brief Combine loads to match the type of their uses' value after looking
/// through intervening bitcasts.
///
/// The core idea here is that if the result of a load is used in an operation,
/// we should load the type most conducive to that operation. For example, when
/// loading an integer and converting that immediately to a pointer, we should
/// instead directly load a pointer.
///
/// However, this routine must never change the width of a load or the number of
/// loads as that would introduce a semantic change. This combine is expected to
/// be a semantic no-op which just allows loads to more closely model the types
/// of their consuming operations.
///
/// Currently, we also refuse to change the precise type used for an atomic load
/// or a volatile load. This is debatable, and might be reasonable to change
/// later. However, it is risky in case some backend or other part of LLVM is
/// relying on the exact type loaded to select appropriate atomic operations.
static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) {
// FIXME: We could probably with some care handle both volatile and ordered
// atomic loads here but it isn't clear that this is important.
if (!LI.isUnordered())
return nullptr;
if (LI.use_empty())
return nullptr;
// swifterror values can't be bitcasted.
if (LI.getPointerOperand()->isSwiftError())
return nullptr;
Type *Ty = LI.getType();
const DataLayout &DL = IC.getDataLayout();
// Try to canonicalize loads which are only ever stored to operate over
// integers instead of any other type. We only do this when the loaded type
// is sized and has a size exactly the same as its store size and the store
// size is a legal integer type.
if (!Ty->isIntegerTy() && Ty->isSized() &&
DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) &&
DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty) &&
!DL.isNonIntegralPointerType(Ty)) {
if (all_of(LI.users(), [&LI](User *U) {
auto *SI = dyn_cast<StoreInst>(U);
return SI && SI->getPointerOperand() != &LI;
})) {
LoadInst *NewLoad = combineLoadToNewType(
IC, LI,
Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty)));
// Replace all the stores with stores of the newly loaded value.
for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) {
auto *SI = cast<StoreInst>(*UI++);
IC.Builder->SetInsertPoint(SI);
combineStoreToNewValue(IC, *SI, NewLoad);
IC.eraseInstFromFunction(*SI);
}
assert(LI.use_empty() && "Failed to remove all users of the load!");
// Return the old load so the combiner can delete it safely.
return &LI;
}
}
// Fold away bit casts of the loaded value by loading the desired type.
// We can do this for BitCastInsts as well as casts from and to pointer types,
// as long as those are noops (i.e., the source or dest type have the same
// bitwidth as the target's pointers).
if (LI.hasOneUse())
if (auto* CI = dyn_cast<CastInst>(LI.user_back()))
if (CI->isNoopCast(DL))
if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) {
LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy());
CI->replaceAllUsesWith(NewLoad);
IC.eraseInstFromFunction(*CI);
return &LI;
}
// FIXME: We should also canonicalize loads of vectors when their elements are
// cast to other types.
return nullptr;
}
static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) {
// FIXME: We could probably with some care handle both volatile and atomic
// stores here but it isn't clear that this is important.
if (!LI.isSimple())
return nullptr;
Type *T = LI.getType();
if (!T->isAggregateType())
return nullptr;
StringRef Name = LI.getName();
assert(LI.getAlignment() && "Alignment must be set at this point");
if (auto *ST = dyn_cast<StructType>(T)) {
// If the struct only have one element, we unpack.
auto NumElements = ST->getNumElements();
if (NumElements == 1) {
LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U),
".unpack");
return IC.replaceInstUsesWith(LI, IC.Builder->CreateInsertValue(
UndefValue::get(T), NewLoad, 0, Name));
}
// We don't want to break loads with padding here as we'd loose
// the knowledge that padding exists for the rest of the pipeline.
const DataLayout &DL = IC.getDataLayout();
auto *SL = DL.getStructLayout(ST);
if (SL->hasPadding())
return nullptr;
auto Align = LI.getAlignment();
if (!Align)
Align = DL.getABITypeAlignment(ST);
auto *Addr = LI.getPointerOperand();
auto *IdxType = Type::getInt32Ty(T->getContext());
auto *Zero = ConstantInt::get(IdxType, 0);
Value *V = UndefValue::get(T);
for (unsigned i = 0; i < NumElements; i++) {
Value *Indices[2] = {
Zero,
ConstantInt::get(IdxType, i),
};
auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
Name + ".elt");
auto EltAlign = MinAlign(Align, SL->getElementOffset(i));
auto *L = IC.Builder->CreateAlignedLoad(Ptr, EltAlign, Name + ".unpack");
V = IC.Builder->CreateInsertValue(V, L, i);
}
V->setName(Name);
return IC.replaceInstUsesWith(LI, V);
}
if (auto *AT = dyn_cast<ArrayType>(T)) {
auto *ET = AT->getElementType();
auto NumElements = AT->getNumElements();
if (NumElements == 1) {
LoadInst *NewLoad = combineLoadToNewType(IC, LI, ET, ".unpack");
return IC.replaceInstUsesWith(LI, IC.Builder->CreateInsertValue(
UndefValue::get(T), NewLoad, 0, Name));
}
// Bail out if the array is too large. Ideally we would like to optimize
// arrays of arbitrary size but this has a terrible impact on compile time.
// The threshold here is chosen arbitrarily, maybe needs a little bit of
// tuning.
if (NumElements > 1024)
return nullptr;
const DataLayout &DL = IC.getDataLayout();
auto EltSize = DL.getTypeAllocSize(ET);
auto Align = LI.getAlignment();
if (!Align)
Align = DL.getABITypeAlignment(T);
auto *Addr = LI.getPointerOperand();
auto *IdxType = Type::getInt64Ty(T->getContext());
auto *Zero = ConstantInt::get(IdxType, 0);
Value *V = UndefValue::get(T);
uint64_t Offset = 0;
for (uint64_t i = 0; i < NumElements; i++) {
Value *Indices[2] = {
Zero,
ConstantInt::get(IdxType, i),
};
auto *Ptr = IC.Builder->CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
Name + ".elt");
auto *L = IC.Builder->CreateAlignedLoad(Ptr, MinAlign(Align, Offset),
Name + ".unpack");
V = IC.Builder->CreateInsertValue(V, L, i);
Offset += EltSize;
}
V->setName(Name);
return IC.replaceInstUsesWith(LI, V);
}
return nullptr;
}
// If we can determine that all possible objects pointed to by the provided
// pointer value are, not only dereferenceable, but also definitively less than
// or equal to the provided maximum size, then return true. Otherwise, return
// false (constant global values and allocas fall into this category).
//
// FIXME: This should probably live in ValueTracking (or similar).
static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
const DataLayout &DL) {
SmallPtrSet<Value *, 4> Visited;
SmallVector<Value *, 4> Worklist(1, V);
do {
Value *P = Worklist.pop_back_val();
P = P->stripPointerCasts();
if (!Visited.insert(P).second)
continue;
if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
Worklist.push_back(SI->getTrueValue());
Worklist.push_back(SI->getFalseValue());
continue;
}
if (PHINode *PN = dyn_cast<PHINode>(P)) {
for (Value *IncValue : PN->incoming_values())
Worklist.push_back(IncValue);
continue;
}
if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
if (GA->isInterposable())
return false;
Worklist.push_back(GA->getAliasee());
continue;
}
// If we know how big this object is, and it is less than MaxSize, continue
// searching. Otherwise, return false.
if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
if (!AI->getAllocatedType()->isSized())
return false;
ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
if (!CS)
return false;
uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
// Make sure that, even if the multiplication below would wrap as an
// uint64_t, we still do the right thing.
if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
return false;
continue;
}
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
return false;
uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
if (InitSize > MaxSize)
return false;
continue;
}
return false;
} while (!Worklist.empty());
return true;
}
// If we're indexing into an object of a known size, and the outer index is
// not a constant, but having any value but zero would lead to undefined
// behavior, replace it with zero.
//
// For example, if we have:
// @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
// ...
// %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
// ... = load i32* %arrayidx, align 4
// Then we know that we can replace %x in the GEP with i64 0.
//
// FIXME: We could fold any GEP index to zero that would cause UB if it were
// not zero. Currently, we only handle the first such index. Also, we could
// also search through non-zero constant indices if we kept track of the
// offsets those indices implied.
static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI,
Instruction *MemI, unsigned &Idx) {
if (GEPI->getNumOperands() < 2)
return false;
// Find the first non-zero index of a GEP. If all indices are zero, return
// one past the last index.
auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
unsigned I = 1;
for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
Value *V = GEPI->getOperand(I);
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
if (CI->isZero())
continue;
break;
}
return I;
};
// Skip through initial 'zero' indices, and find the corresponding pointer
// type. See if the next index is not a constant.
Idx = FirstNZIdx(GEPI);
if (Idx == GEPI->getNumOperands())
return false;
if (isa<Constant>(GEPI->getOperand(Idx)))
return false;
SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
Type *AllocTy =
GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops);
if (!AllocTy || !AllocTy->isSized())
return false;
const DataLayout &DL = IC.getDataLayout();
uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy);
// If there are more indices after the one we might replace with a zero, make
// sure they're all non-negative. If any of them are negative, the overall
// address being computed might be before the base address determined by the
// first non-zero index.
auto IsAllNonNegative = [&]() {
for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
bool KnownNonNegative, KnownNegative;
IC.ComputeSignBit(GEPI->getOperand(i), KnownNonNegative,
KnownNegative, 0, MemI);
if (KnownNonNegative)
continue;
return false;
}
return true;
};
// FIXME: If the GEP is not inbounds, and there are extra indices after the
// one we'll replace, those could cause the address computation to wrap
// (rendering the IsAllNonNegative() check below insufficient). We can do
// better, ignoring zero indices (and other indices we can prove small
// enough not to wrap).
if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
return false;
// Note that isObjectSizeLessThanOrEq will return true only if the pointer is
// also known to be dereferenceable.
return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
IsAllNonNegative();
}
// If we're indexing into an object with a variable index for the memory
// access, but the object has only one element, we can assume that the index
// will always be zero. If we replace the GEP, return it.
template <typename T>
static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr,
T &MemI) {
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
unsigned Idx;
if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
Instruction *NewGEPI = GEPI->clone();
NewGEPI->setOperand(Idx,
ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
NewGEPI->insertBefore(GEPI);
MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
return NewGEPI;
}
}
return nullptr;
}
Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
Value *Op = LI.getOperand(0);
// Try to canonicalize the loaded type.
if (Instruction *Res = combineLoadToOperationType(*this, LI))
return Res;
// Attempt to improve the alignment.
unsigned KnownAlign = getOrEnforceKnownAlignment(
Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, &AC, &DT);
unsigned LoadAlign = LI.getAlignment();
unsigned EffectiveLoadAlign =
LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType());
if (KnownAlign > EffectiveLoadAlign)
LI.setAlignment(KnownAlign);
else if (LoadAlign == 0)
LI.setAlignment(EffectiveLoadAlign);
// Replace GEP indices if possible.
if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
Worklist.Add(NewGEPI);
return &LI;
}
if (Instruction *Res = unpackLoadToAggregate(*this, LI))
return Res;
// Do really simple store-to-load forwarding and load CSE, to catch cases
// where there are several consecutive memory accesses to the same location,
// separated by a few arithmetic operations.
BasicBlock::iterator BBI(LI);
bool IsLoadCSE = false;
if (Value *AvailableVal =
FindAvailableLoadedValue(&LI, LI.getParent(), BBI,
DefMaxInstsToScan, AA, &IsLoadCSE)) {
if (IsLoadCSE) {
LoadInst *NLI = cast<LoadInst>(AvailableVal);
unsigned KnownIDs[] = {
LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
LLVMContext::MD_noalias, LLVMContext::MD_range,
LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull,
LLVMContext::MD_invariant_group, LLVMContext::MD_align,
LLVMContext::MD_dereferenceable,
LLVMContext::MD_dereferenceable_or_null};
combineMetadata(NLI, &LI, KnownIDs);
};
return replaceInstUsesWith(
LI, Builder->CreateBitOrPointerCast(AvailableVal, LI.getType(),
LI.getName() + ".cast"));
}
// None of the following transforms are legal for volatile/ordered atomic
// loads. Most of them do apply for unordered atomics.
if (!LI.isUnordered()) return nullptr;
// load(gep null, ...) -> unreachable
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
const Value *GEPI0 = GEPI->getOperand(0);
// TODO: Consider a target hook for valid address spaces for this xform.
if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
// Insert a new store to null instruction before the load to indicate
// that this code is not reachable. We do this instead of inserting
// an unreachable instruction directly because we cannot modify the
// CFG.
new StoreInst(UndefValue::get(LI.getType()),
Constant::getNullValue(Op->getType()), &LI);
return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
}
}
// load null/undef -> unreachable
// TODO: Consider a target hook for valid address spaces for this xform.
if (isa<UndefValue>(Op) ||
(isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
// Insert a new store to null instruction before the load to indicate that
// this code is not reachable. We do this instead of inserting an
// unreachable instruction directly because we cannot modify the CFG.
new StoreInst(UndefValue::get(LI.getType()),
Constant::getNullValue(Op->getType()), &LI);
return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
}
if (Op->hasOneUse()) {
// Change select and PHI nodes to select values instead of addresses: this
// helps alias analysis out a lot, allows many others simplifications, and
// exposes redundancy in the code.
//
// Note that we cannot do the transformation unless we know that the
// introduced loads cannot trap! Something like this is valid as long as
// the condition is always false: load (select bool %C, int* null, int* %G),
// but it would not be valid if we transformed it to load from null
// unconditionally.
//
if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
// load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
unsigned Align = LI.getAlignment();
if (isSafeToLoadUnconditionally(SI->getOperand(1), Align, DL, SI) &&
isSafeToLoadUnconditionally(SI->getOperand(2), Align, DL, SI)) {
LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1),
SI->getOperand(1)->getName()+".val");
LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2),
SI->getOperand(2)->getName()+".val");
assert(LI.isUnordered() && "implied by above");
V1->setAlignment(Align);
V1->setAtomic(LI.getOrdering(), LI.getSynchScope());
V2->setAlignment(Align);
V2->setAtomic(LI.getOrdering(), LI.getSynchScope());
return SelectInst::Create(SI->getCondition(), V1, V2);
}
// load (select (cond, null, P)) -> load P
if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
LI.getPointerAddressSpace() == 0) {
LI.setOperand(0, SI->getOperand(2));
return &LI;
}
// load (select (cond, P, null)) -> load P
if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
LI.getPointerAddressSpace() == 0) {
LI.setOperand(0, SI->getOperand(1));
return &LI;
}
}
}
return nullptr;
}
/// \brief Look for extractelement/insertvalue sequence that acts like a bitcast.
///
/// \returns underlying value that was "cast", or nullptr otherwise.
///
/// For example, if we have:
///
/// %E0 = extractelement <2 x double> %U, i32 0
/// %V0 = insertvalue [2 x double] undef, double %E0, 0
/// %E1 = extractelement <2 x double> %U, i32 1
/// %V1 = insertvalue [2 x double] %V0, double %E1, 1
///
/// and the layout of a <2 x double> is isomorphic to a [2 x double],
/// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
/// Note that %U may contain non-undef values where %V1 has undef.
static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) {
Value *U = nullptr;
while (auto *IV = dyn_cast<InsertValueInst>(V)) {
auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand());
if (!E)
return nullptr;
auto *W = E->getVectorOperand();
if (!U)
U = W;
else if (U != W)
return nullptr;
auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand());
if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin())
return nullptr;
V = IV->getAggregateOperand();
}
if (!isa<UndefValue>(V) ||!U)
return nullptr;
auto *UT = cast<VectorType>(U->getType());
auto *VT = V->getType();
// Check that types UT and VT are bitwise isomorphic.
const auto &DL = IC.getDataLayout();
if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) {
return nullptr;
}
if (auto *AT = dyn_cast<ArrayType>(VT)) {
if (AT->getNumElements() != UT->getNumElements())
return nullptr;
} else {
auto *ST = cast<StructType>(VT);
if (ST->getNumElements() != UT->getNumElements())
return nullptr;
for (const auto *EltT : ST->elements()) {
if (EltT != UT->getElementType())
return nullptr;
}
}
return U;
}
/// \brief Combine stores to match the type of value being stored.
///
/// The core idea here is that the memory does not have any intrinsic type and
/// where we can we should match the type of a store to the type of value being
/// stored.
///
/// However, this routine must never change the width of a store or the number of
/// stores as that would introduce a semantic change. This combine is expected to
/// be a semantic no-op which just allows stores to more closely model the types
/// of their incoming values.
///
/// Currently, we also refuse to change the precise type used for an atomic or
/// volatile store. This is debatable, and might be reasonable to change later.
/// However, it is risky in case some backend or other part of LLVM is relying
/// on the exact type stored to select appropriate atomic operations.
///
/// \returns true if the store was successfully combined away. This indicates
/// the caller must erase the store instruction. We have to let the caller erase
/// the store instruction as otherwise there is no way to signal whether it was
/// combined or not: IC.EraseInstFromFunction returns a null pointer.
static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) {
// FIXME: We could probably with some care handle both volatile and ordered
// atomic stores here but it isn't clear that this is important.
if (!SI.isUnordered())
return false;
// swifterror values can't be bitcasted.
if (SI.getPointerOperand()->isSwiftError())
return false;
Value *V = SI.getValueOperand();
// Fold away bit casts of the stored value by storing the original type.
if (auto *BC = dyn_cast<BitCastInst>(V)) {
V = BC->getOperand(0);
if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) {
combineStoreToNewValue(IC, SI, V);
return true;
}
}
if (Value *U = likeBitCastFromVector(IC, V))
if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) {
combineStoreToNewValue(IC, SI, U);
return true;
}
// FIXME: We should also canonicalize stores of vectors when their elements
// are cast to other types.
return false;
}
static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) {
// FIXME: We could probably with some care handle both volatile and atomic
// stores here but it isn't clear that this is important.
if (!SI.isSimple())
return false;
Value *V = SI.getValueOperand();
Type *T = V->getType();
if (!T->isAggregateType())
return false;
if (auto *ST = dyn_cast<StructType>(T)) {
// If the struct only have one element, we unpack.
unsigned Count = ST->getNumElements();
if (Count == 1) {
V = IC.Builder->CreateExtractValue(V, 0);
combineStoreToNewValue(IC, SI, V);
return true;
}
// We don't want to break loads with padding here as we'd loose
// the knowledge that padding exists for the rest of the pipeline.
const DataLayout &DL = IC.getDataLayout();
auto *SL = DL.getStructLayout(ST);
if (SL->hasPadding())
return false;
auto Align = SI.getAlignment();
if (!Align)
Align = DL.getABITypeAlignment(ST);
SmallString<16> EltName = V->getName();
EltName += ".elt";
auto *Addr = SI.getPointerOperand();
SmallString<16> AddrName = Addr->getName();
AddrName += ".repack";
auto *IdxType = Type::getInt32Ty(ST->getContext());
auto *Zero = ConstantInt::get(IdxType, 0);
for (unsigned i = 0; i < Count; i++) {
Value *Indices[2] = {
Zero,
ConstantInt::get(IdxType, i),
};
auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
AddrName);
auto *Val = IC.Builder->CreateExtractValue(V, i, EltName);
auto EltAlign = MinAlign(Align, SL->getElementOffset(i));
IC.Builder->CreateAlignedStore(Val, Ptr, EltAlign);
}
return true;
}
if (auto *AT = dyn_cast<ArrayType>(T)) {
// If the array only have one element, we unpack.
auto NumElements = AT->getNumElements();
if (NumElements == 1) {
V = IC.Builder->CreateExtractValue(V, 0);
combineStoreToNewValue(IC, SI, V);
return true;
}
// Bail out if the array is too large. Ideally we would like to optimize
// arrays of arbitrary size but this has a terrible impact on compile time.
// The threshold here is chosen arbitrarily, maybe needs a little bit of
// tuning.
if (NumElements > 1024)
return false;
const DataLayout &DL = IC.getDataLayout();
auto EltSize = DL.getTypeAllocSize(AT->getElementType());
auto Align = SI.getAlignment();
if (!Align)
Align = DL.getABITypeAlignment(T);
SmallString<16> EltName = V->getName();
EltName += ".elt";
auto *Addr = SI.getPointerOperand();
SmallString<16> AddrName = Addr->getName();
AddrName += ".repack";
auto *IdxType = Type::getInt64Ty(T->getContext());
auto *Zero = ConstantInt::get(IdxType, 0);
uint64_t Offset = 0;
for (uint64_t i = 0; i < NumElements; i++) {
Value *Indices[2] = {
Zero,
ConstantInt::get(IdxType, i),
};
auto *Ptr = IC.Builder->CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
AddrName);
auto *Val = IC.Builder->CreateExtractValue(V, i, EltName);
auto EltAlign = MinAlign(Align, Offset);
IC.Builder->CreateAlignedStore(Val, Ptr, EltAlign);
Offset += EltSize;
}
return true;
}
return false;
}
/// equivalentAddressValues - Test if A and B will obviously have the same
/// value. This includes recognizing that %t0 and %t1 will have the same
/// value in code like this:
/// %t0 = getelementptr \@a, 0, 3
/// store i32 0, i32* %t0
/// %t1 = getelementptr \@a, 0, 3
/// %t2 = load i32* %t1
///
static bool equivalentAddressValues(Value *A, Value *B) {
// Test if the values are trivially equivalent.
if (A == B) return true;
// Test if the values come form identical arithmetic instructions.
// This uses isIdenticalToWhenDefined instead of isIdenticalTo because
// its only used to compare two uses within the same basic block, which
// means that they'll always either have the same value or one of them
// will have an undefined value.
if (isa<BinaryOperator>(A) ||
isa<CastInst>(A) ||
isa<PHINode>(A) ||
isa<GetElementPtrInst>(A))
if (Instruction *BI = dyn_cast<Instruction>(B))
if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
return true;
// Otherwise they may not be equivalent.
return false;
}
Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
Value *Val = SI.getOperand(0);
Value *Ptr = SI.getOperand(1);
// Try to canonicalize the stored type.
if (combineStoreToValueType(*this, SI))
return eraseInstFromFunction(SI);
// Attempt to improve the alignment.
unsigned KnownAlign = getOrEnforceKnownAlignment(
Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, &AC, &DT);
unsigned StoreAlign = SI.getAlignment();
unsigned EffectiveStoreAlign =
StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType());
if (KnownAlign > EffectiveStoreAlign)
SI.setAlignment(KnownAlign);
else if (StoreAlign == 0)
SI.setAlignment(EffectiveStoreAlign);
// Try to canonicalize the stored type.
if (unpackStoreToAggregate(*this, SI))
return eraseInstFromFunction(SI);
// Replace GEP indices if possible.
if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
Worklist.Add(NewGEPI);
return &SI;
}
// Don't hack volatile/ordered stores.
// FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
if (!SI.isUnordered()) return nullptr;
// If the RHS is an alloca with a single use, zapify the store, making the
// alloca dead.
if (Ptr->hasOneUse()) {
if (isa<AllocaInst>(Ptr))
return eraseInstFromFunction(SI);
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
if (isa<AllocaInst>(GEP->getOperand(0))) {
if (GEP->getOperand(0)->hasOneUse())
return eraseInstFromFunction(SI);
}
}
}
// Do really simple DSE, to catch cases where there are several consecutive
// stores to the same location, separated by a few arithmetic operations. This
// situation often occurs with bitfield accesses.
BasicBlock::iterator BBI(SI);
for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
--ScanInsts) {
--BBI;
// Don't count debug info directives, lest they affect codegen,
// and we skip pointer-to-pointer bitcasts, which are NOPs.
if (isa<DbgInfoIntrinsic>(BBI) ||
(isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
ScanInsts++;
continue;
}
if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
// Prev store isn't volatile, and stores to the same location?
if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1),
SI.getOperand(1))) {
++NumDeadStore;
++BBI;
eraseInstFromFunction(*PrevSI);
continue;
}
break;
}
// If this is a load, we have to stop. However, if the loaded value is from
// the pointer we're loading and is producing the pointer we're storing,
// then *this* store is dead (X = load P; store X -> P).
if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
assert(SI.isUnordered() && "can't eliminate ordering operation");
return eraseInstFromFunction(SI);
}
// Otherwise, this is a load from some other location. Stores before it
// may not be dead.
break;
}
// Don't skip over loads or things that can modify memory.
if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
break;
}
// store X, null -> turns into 'unreachable' in SimplifyCFG
if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
if (!isa<UndefValue>(Val)) {
SI.setOperand(0, UndefValue::get(Val->getType()));
if (Instruction *U = dyn_cast<Instruction>(Val))
Worklist.Add(U); // Dropped a use.
}
return nullptr; // Do not modify these!
}
// store undef, Ptr -> noop
if (isa<UndefValue>(Val))
return eraseInstFromFunction(SI);
// If this store is the last instruction in the basic block (possibly
// excepting debug info instructions), and if the block ends with an
// unconditional branch, try to move it to the successor block.
BBI = SI.getIterator();
do {
++BBI;
} while (isa<DbgInfoIntrinsic>(BBI) ||
(isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
if (BI->isUnconditional())
if (SimplifyStoreAtEndOfBlock(SI))
return nullptr; // xform done!
return nullptr;
}
/// SimplifyStoreAtEndOfBlock - Turn things like:
/// if () { *P = v1; } else { *P = v2 }
/// into a phi node with a store in the successor.
///
/// Simplify things like:
/// *P = v1; if () { *P = v2; }
/// into a phi node with a store in the successor.
///
bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
assert(SI.isUnordered() &&
"this code has not been auditted for volatile or ordered store case");
BasicBlock *StoreBB = SI.getParent();
// Check to see if the successor block has exactly two incoming edges. If
// so, see if the other predecessor contains a store to the same location.
// if so, insert a PHI node (if needed) and move the stores down.
BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
// Determine whether Dest has exactly two predecessors and, if so, compute
// the other predecessor.
pred_iterator PI = pred_begin(DestBB);
BasicBlock *P = *PI;
BasicBlock *OtherBB = nullptr;
if (P != StoreBB)
OtherBB = P;
if (++PI == pred_end(DestBB))
return false;
P = *PI;
if (P != StoreBB) {
if (OtherBB)
return false;
OtherBB = P;
}
if (++PI != pred_end(DestBB))
return false;
// Bail out if all the relevant blocks aren't distinct (this can happen,
// for example, if SI is in an infinite loop)
if (StoreBB == DestBB || OtherBB == DestBB)
return false;
// Verify that the other block ends in a branch and is not otherwise empty.
BasicBlock::iterator BBI(OtherBB->getTerminator());
BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
if (!OtherBr || BBI == OtherBB->begin())
return false;
// If the other block ends in an unconditional branch, check for the 'if then
// else' case. there is an instruction before the branch.
StoreInst *OtherStore = nullptr;
if (OtherBr->isUnconditional()) {
--BBI;
// Skip over debugging info.
while (isa<DbgInfoIntrinsic>(BBI) ||
(isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
if (BBI==OtherBB->begin())
return false;
--BBI;
}
// If this isn't a store, isn't a store to the same location, or is not the
// right kind of store, bail out.
OtherStore = dyn_cast<StoreInst>(BBI);
if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
!SI.isSameOperationAs(OtherStore))
return false;
} else {
// Otherwise, the other block ended with a conditional branch. If one of the
// destinations is StoreBB, then we have the if/then case.
if (OtherBr->getSuccessor(0) != StoreBB &&
OtherBr->getSuccessor(1) != StoreBB)
return false;
// Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
// if/then triangle. See if there is a store to the same ptr as SI that
// lives in OtherBB.
for (;; --BBI) {
// Check to see if we find the matching store.
if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
if (OtherStore->getOperand(1) != SI.getOperand(1) ||
!SI.isSameOperationAs(OtherStore))
return false;
break;
}
// If we find something that may be using or overwriting the stored
// value, or if we run out of instructions, we can't do the xform.
if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
BBI == OtherBB->begin())
return false;
}
// In order to eliminate the store in OtherBr, we have to
// make sure nothing reads or overwrites the stored value in
// StoreBB.
for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
// FIXME: This should really be AA driven.
if (I->mayReadFromMemory() || I->mayWriteToMemory())
return false;
}
}
// Insert a PHI node now if we need it.
Value *MergedVal = OtherStore->getOperand(0);
if (MergedVal != SI.getOperand(0)) {
PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
PN->addIncoming(SI.getOperand(0), SI.getParent());
PN->addIncoming(OtherStore->getOperand(0), OtherBB);
MergedVal = InsertNewInstBefore(PN, DestBB->front());
}
// Advance to a place where it is safe to insert the new store and
// insert it.
BBI = DestBB->getFirstInsertionPt();
StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1),
SI.isVolatile(),
SI.getAlignment(),
SI.getOrdering(),
SI.getSynchScope());
InsertNewInstBefore(NewSI, *BBI);
NewSI->setDebugLoc(OtherStore->getDebugLoc());
// If the two stores had AA tags, merge them.
AAMDNodes AATags;
SI.getAAMetadata(AATags);
if (AATags) {
OtherStore->getAAMetadata(AATags, /* Merge = */ true);
NewSI->setAAMetadata(AATags);
}
// Nuke the old stores.
eraseInstFromFunction(SI);
eraseInstFromFunction(*OtherStore);
return true;
}