llvm-project/llvm/lib/Transforms/Scalar/ADCE.cpp

200 lines
6.3 KiB
C++

//===- ADCE.cpp - Code to perform dead code elimination -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Aggressive Dead Code Elimination pass. This pass
// optimistically assumes that all instructions are dead until proven otherwise,
// allowing it to eliminate dead computations that other DCE passes do not
// catch, particularly involving loop computations.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/ADCE.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Pass.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/Transforms/Scalar.h"
using namespace llvm;
#define DEBUG_TYPE "adce"
STATISTIC(NumRemoved, "Number of instructions removed");
namespace {
class AgggressiveDeadCodeElimination {
Function &F;
// Instructions known to be live
SmallPtrSet<Instruction *, 32> Alive;
// Instructions known to be live where we need to mark
// reaching definitions as live
SmallVector<Instruction *, 128> Worklist;
// Debug info scopes around a live instruction
SmallPtrSet<const Metadata *, 32> AliveScopes;
void collectLiveScopes(const DILocalScope &LS);
void collectLiveScopes(const DILocation &DL);
bool isInstrumentsConstant(Instruction &I);
public:
AgggressiveDeadCodeElimination(Function &F) : F(F) {}
bool aggressiveDCE();
};
}
void AgggressiveDeadCodeElimination::collectLiveScopes(
const DILocalScope &LS) {
if (!AliveScopes.insert(&LS).second)
return;
if (isa<DISubprogram>(LS))
return;
// Tail-recurse through the scope chain.
collectLiveScopes(cast<DILocalScope>(*LS.getScope()));
}
void AgggressiveDeadCodeElimination::collectLiveScopes(const DILocation &DL) {
// Even though DILocations are not scopes, shove them into AliveScopes so we
// don't revisit them.
if (!AliveScopes.insert(&DL).second)
return;
// Collect live scopes from the scope chain.
collectLiveScopes(*DL.getScope());
// Tail-recurse through the inlined-at chain.
if (const DILocation *IA = DL.getInlinedAt())
collectLiveScopes(*IA);
}
// Check if this instruction is a runtime call for value profiling and
// if it's instrumenting a constant.
bool AgggressiveDeadCodeElimination::isInstrumentsConstant(Instruction &I) {
if (CallInst *CI = dyn_cast<CallInst>(&I))
if (Function *Callee = CI->getCalledFunction())
if (Callee->getName().equals(getInstrProfValueProfFuncName()))
if (isa<Constant>(CI->getArgOperand(0)))
return true;
return false;
}
bool AgggressiveDeadCodeElimination::aggressiveDCE() {
// Collect the set of "root" instructions that are known live.
for (Instruction &I : instructions(F)) {
if (isa<TerminatorInst>(I) || I.isEHPad() || I.mayHaveSideEffects()) {
// Skip any value profile instrumentation calls if they are
// instrumenting constants.
if (isInstrumentsConstant(I))
continue;
Alive.insert(&I);
Worklist.push_back(&I);
}
}
// Propagate liveness backwards to operands. Keep track of live debug info
// scopes.
while (!Worklist.empty()) {
Instruction *Curr = Worklist.pop_back_val();
// Collect the live debug info scopes attached to this instruction.
if (const DILocation *DL = Curr->getDebugLoc())
collectLiveScopes(*DL);
for (Use &OI : Curr->operands()) {
if (Instruction *Inst = dyn_cast<Instruction>(OI))
if (Alive.insert(Inst).second)
Worklist.push_back(Inst);
}
}
// The inverse of the live set is the dead set. These are those instructions
// which have no side effects and do not influence the control flow or return
// value of the function, and may therefore be deleted safely.
// NOTE: We reuse the Worklist vector here for memory efficiency.
for (Instruction &I : instructions(F)) {
// Check if the instruction is alive.
if (Alive.count(&I))
continue;
if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I)) {
// Check if the scope of this variable location is alive.
if (AliveScopes.count(DII->getDebugLoc()->getScope()))
continue;
// Fallthrough and drop the intrinsic.
DEBUG({
// If intrinsic is pointing at a live SSA value, there may be an
// earlier optimization bug: if we know the location of the variable,
// why isn't the scope of the location alive?
if (Value *V = DII->getVariableLocation())
if (Instruction *II = dyn_cast<Instruction>(V))
if (Alive.count(II))
dbgs() << "Dropping debug info for " << *DII << "\n";
});
}
// Prepare to delete.
Worklist.push_back(&I);
I.dropAllReferences();
}
for (Instruction *&I : Worklist) {
++NumRemoved;
I->eraseFromParent();
}
return !Worklist.empty();
}
PreservedAnalyses ADCEPass::run(Function &F, FunctionAnalysisManager &) {
if (!AgggressiveDeadCodeElimination(F).aggressiveDCE())
return PreservedAnalyses::all();
// FIXME: This should also 'preserve the CFG'.
auto PA = PreservedAnalyses();
PA.preserve<GlobalsAA>();
return PA;
}
namespace {
struct ADCELegacyPass : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
ADCELegacyPass() : FunctionPass(ID) {
initializeADCELegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
if (skipFunction(F))
return false;
return AgggressiveDeadCodeElimination(F).aggressiveDCE();
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addPreserved<GlobalsAAWrapperPass>();
}
};
}
char ADCELegacyPass::ID = 0;
INITIALIZE_PASS(ADCELegacyPass, "adce", "Aggressive Dead Code Elimination",
false, false)
FunctionPass *llvm::createAggressiveDCEPass() { return new ADCELegacyPass(); }