forked from OSchip/llvm-project
460 lines
14 KiB
C++
460 lines
14 KiB
C++
//===----- R600Packetizer.cpp - VLIW packetizer ---------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// This pass implements instructions packetization for R600. It unsets isLast
|
|
/// bit of instructions inside a bundle and substitutes src register with
|
|
/// PreviousVector when applicable.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef R600PACKETIZER_CPP
|
|
#define R600PACKETIZER_CPP
|
|
|
|
#define DEBUG_TYPE "packets"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/CodeGen/DFAPacketizer.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/ScheduleDAG.h"
|
|
#include "AMDGPU.h"
|
|
#include "R600InstrInfo.h"
|
|
|
|
namespace llvm {
|
|
|
|
class R600Packetizer : public MachineFunctionPass {
|
|
|
|
public:
|
|
static char ID;
|
|
R600Packetizer(const TargetMachine &TM) : MachineFunctionPass(ID) {}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<MachineDominatorTree>();
|
|
AU.addPreserved<MachineDominatorTree>();
|
|
AU.addRequired<MachineLoopInfo>();
|
|
AU.addPreserved<MachineLoopInfo>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
const char *getPassName() const {
|
|
return "R600 Packetizer";
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &Fn);
|
|
};
|
|
char R600Packetizer::ID = 0;
|
|
|
|
class R600PacketizerList : public VLIWPacketizerList {
|
|
|
|
private:
|
|
const R600InstrInfo *TII;
|
|
const R600RegisterInfo &TRI;
|
|
|
|
enum BankSwizzle {
|
|
ALU_VEC_012 = 0,
|
|
ALU_VEC_021,
|
|
ALU_VEC_120,
|
|
ALU_VEC_102,
|
|
ALU_VEC_201,
|
|
ALU_VEC_210
|
|
};
|
|
|
|
unsigned getSlot(const MachineInstr *MI) const {
|
|
return TRI.getHWRegChan(MI->getOperand(0).getReg());
|
|
}
|
|
|
|
/// \returns register to PV chan mapping for bundle/single instructions that
|
|
/// immediatly precedes I.
|
|
DenseMap<unsigned, unsigned> getPreviousVector(MachineBasicBlock::iterator I)
|
|
const {
|
|
DenseMap<unsigned, unsigned> Result;
|
|
I--;
|
|
if (!TII->isALUInstr(I->getOpcode()) && !I->isBundle())
|
|
return Result;
|
|
MachineBasicBlock::instr_iterator BI = I.getInstrIterator();
|
|
if (I->isBundle())
|
|
BI++;
|
|
do {
|
|
if (TII->isPredicated(BI))
|
|
continue;
|
|
if (TII->isTransOnly(BI))
|
|
continue;
|
|
int OperandIdx = TII->getOperandIdx(BI->getOpcode(), R600Operands::WRITE);
|
|
if (OperandIdx < 0)
|
|
continue;
|
|
if (BI->getOperand(OperandIdx).getImm() == 0)
|
|
continue;
|
|
unsigned Dst = BI->getOperand(0).getReg();
|
|
if (BI->getOpcode() == AMDGPU::DOT4_r600_real) {
|
|
Result[Dst] = AMDGPU::PV_X;
|
|
continue;
|
|
}
|
|
unsigned PVReg = 0;
|
|
switch (TRI.getHWRegChan(Dst)) {
|
|
case 0:
|
|
PVReg = AMDGPU::PV_X;
|
|
break;
|
|
case 1:
|
|
PVReg = AMDGPU::PV_Y;
|
|
break;
|
|
case 2:
|
|
PVReg = AMDGPU::PV_Z;
|
|
break;
|
|
case 3:
|
|
PVReg = AMDGPU::PV_W;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Invalid Chan");
|
|
}
|
|
Result[Dst] = PVReg;
|
|
} while ((++BI)->isBundledWithPred());
|
|
return Result;
|
|
}
|
|
|
|
void substitutePV(MachineInstr *MI, const DenseMap<unsigned, unsigned> &PVs)
|
|
const {
|
|
R600Operands::Ops Ops[] = {
|
|
R600Operands::SRC0,
|
|
R600Operands::SRC1,
|
|
R600Operands::SRC2
|
|
};
|
|
for (unsigned i = 0; i < 3; i++) {
|
|
int OperandIdx = TII->getOperandIdx(MI->getOpcode(), Ops[i]);
|
|
if (OperandIdx < 0)
|
|
continue;
|
|
unsigned Src = MI->getOperand(OperandIdx).getReg();
|
|
const DenseMap<unsigned, unsigned>::const_iterator It = PVs.find(Src);
|
|
if (It != PVs.end())
|
|
MI->getOperand(OperandIdx).setReg(It->second);
|
|
}
|
|
}
|
|
public:
|
|
// Ctor.
|
|
R600PacketizerList(MachineFunction &MF, MachineLoopInfo &MLI,
|
|
MachineDominatorTree &MDT)
|
|
: VLIWPacketizerList(MF, MLI, MDT, true),
|
|
TII (static_cast<const R600InstrInfo *>(MF.getTarget().getInstrInfo())),
|
|
TRI(TII->getRegisterInfo()) { }
|
|
|
|
// initPacketizerState - initialize some internal flags.
|
|
void initPacketizerState() { }
|
|
|
|
// ignorePseudoInstruction - Ignore bundling of pseudo instructions.
|
|
bool ignorePseudoInstruction(MachineInstr *MI, MachineBasicBlock *MBB) {
|
|
return false;
|
|
}
|
|
|
|
// isSoloInstruction - return true if instruction MI can not be packetized
|
|
// with any other instruction, which means that MI itself is a packet.
|
|
bool isSoloInstruction(MachineInstr *MI) {
|
|
if (TII->isVector(*MI))
|
|
return true;
|
|
if (!TII->isALUInstr(MI->getOpcode()))
|
|
return true;
|
|
if (TII->get(MI->getOpcode()).TSFlags & R600_InstFlag::TRANS_ONLY)
|
|
return true;
|
|
if (TII->isTransOnly(MI))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// isLegalToPacketizeTogether - Is it legal to packetize SUI and SUJ
|
|
// together.
|
|
bool isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) {
|
|
MachineInstr *MII = SUI->getInstr(), *MIJ = SUJ->getInstr();
|
|
if (getSlot(MII) <= getSlot(MIJ))
|
|
return false;
|
|
// Does MII and MIJ share the same pred_sel ?
|
|
int OpI = TII->getOperandIdx(MII->getOpcode(), R600Operands::PRED_SEL),
|
|
OpJ = TII->getOperandIdx(MIJ->getOpcode(), R600Operands::PRED_SEL);
|
|
unsigned PredI = (OpI > -1)?MII->getOperand(OpI).getReg():0,
|
|
PredJ = (OpJ > -1)?MIJ->getOperand(OpJ).getReg():0;
|
|
if (PredI != PredJ)
|
|
return false;
|
|
if (SUJ->isSucc(SUI)) {
|
|
for (unsigned i = 0, e = SUJ->Succs.size(); i < e; ++i) {
|
|
const SDep &Dep = SUJ->Succs[i];
|
|
if (Dep.getSUnit() != SUI)
|
|
continue;
|
|
if (Dep.getKind() == SDep::Anti)
|
|
continue;
|
|
if (Dep.getKind() == SDep::Output)
|
|
if (MII->getOperand(0).getReg() != MIJ->getOperand(0).getReg())
|
|
continue;
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// isLegalToPruneDependencies - Is it legal to prune dependece between SUI
|
|
// and SUJ.
|
|
bool isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) {return false;}
|
|
|
|
void setIsLastBit(MachineInstr *MI, unsigned Bit) const {
|
|
unsigned LastOp = TII->getOperandIdx(MI->getOpcode(), R600Operands::LAST);
|
|
MI->getOperand(LastOp).setImm(Bit);
|
|
}
|
|
|
|
MachineBasicBlock::iterator addToPacket(MachineInstr *MI) {
|
|
CurrentPacketMIs.push_back(MI);
|
|
bool FitsConstLimits = TII->canBundle(CurrentPacketMIs);
|
|
DEBUG(
|
|
if (!FitsConstLimits) {
|
|
dbgs() << "Couldn't pack :\n";
|
|
MI->dump();
|
|
dbgs() << "with the following packets :\n";
|
|
for (unsigned i = 0, e = CurrentPacketMIs.size() - 1; i < e; i++) {
|
|
CurrentPacketMIs[i]->dump();
|
|
dbgs() << "\n";
|
|
}
|
|
dbgs() << "because of Consts read limitations\n";
|
|
});
|
|
const DenseMap<unsigned, unsigned> &PV =
|
|
getPreviousVector(CurrentPacketMIs.front());
|
|
bool FitsReadPortLimits = fitsReadPortLimitation(CurrentPacketMIs, PV);
|
|
DEBUG(
|
|
if (!FitsReadPortLimits) {
|
|
dbgs() << "Couldn't pack :\n";
|
|
MI->dump();
|
|
dbgs() << "with the following packets :\n";
|
|
for (unsigned i = 0, e = CurrentPacketMIs.size() - 1; i < e; i++) {
|
|
CurrentPacketMIs[i]->dump();
|
|
dbgs() << "\n";
|
|
}
|
|
dbgs() << "because of Read port limitations\n";
|
|
});
|
|
bool isBundlable = FitsConstLimits && FitsReadPortLimits;
|
|
CurrentPacketMIs.pop_back();
|
|
if (!isBundlable) {
|
|
endPacket(MI->getParent(), MI);
|
|
substitutePV(MI, getPreviousVector(MI));
|
|
return VLIWPacketizerList::addToPacket(MI);
|
|
}
|
|
if (!CurrentPacketMIs.empty())
|
|
setIsLastBit(CurrentPacketMIs.back(), 0);
|
|
substitutePV(MI, PV);
|
|
return VLIWPacketizerList::addToPacket(MI);
|
|
}
|
|
private:
|
|
std::vector<std::pair<int, unsigned> >
|
|
ExtractSrcs(const MachineInstr *MI, const DenseMap<unsigned, unsigned> &PV)
|
|
const {
|
|
R600Operands::Ops Ops[] = {
|
|
R600Operands::SRC0,
|
|
R600Operands::SRC1,
|
|
R600Operands::SRC2
|
|
};
|
|
std::vector<std::pair<int, unsigned> > Result;
|
|
for (unsigned i = 0; i < 3; i++) {
|
|
int OperandIdx = TII->getOperandIdx(MI->getOpcode(), Ops[i]);
|
|
if (OperandIdx < 0){
|
|
Result.push_back(std::pair<int, unsigned>(-1,0));
|
|
continue;
|
|
}
|
|
unsigned Src = MI->getOperand(OperandIdx).getReg();
|
|
if (PV.find(Src) != PV.end()) {
|
|
Result.push_back(std::pair<int, unsigned>(-1,0));
|
|
continue;
|
|
}
|
|
unsigned Reg = TRI.getEncodingValue(Src) & 0xff;
|
|
if (Reg > 127) {
|
|
Result.push_back(std::pair<int, unsigned>(-1,0));
|
|
continue;
|
|
}
|
|
unsigned Chan = TRI.getHWRegChan(Src);
|
|
Result.push_back(std::pair<int, unsigned>(Reg, Chan));
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
std::vector<std::pair<int, unsigned> >
|
|
Swizzle(std::vector<std::pair<int, unsigned> > Src,
|
|
BankSwizzle Swz) const {
|
|
switch (Swz) {
|
|
case ALU_VEC_012:
|
|
break;
|
|
case ALU_VEC_021:
|
|
std::swap(Src[1], Src[2]);
|
|
break;
|
|
case ALU_VEC_102:
|
|
std::swap(Src[0], Src[1]);
|
|
break;
|
|
case ALU_VEC_120:
|
|
std::swap(Src[0], Src[1]);
|
|
std::swap(Src[0], Src[2]);
|
|
break;
|
|
case ALU_VEC_201:
|
|
std::swap(Src[0], Src[2]);
|
|
std::swap(Src[0], Src[1]);
|
|
break;
|
|
case ALU_VEC_210:
|
|
std::swap(Src[0], Src[2]);
|
|
break;
|
|
}
|
|
return Src;
|
|
}
|
|
|
|
bool isLegal(const std::vector<MachineInstr *> &IG,
|
|
const std::vector<BankSwizzle> &Swz,
|
|
const DenseMap<unsigned, unsigned> &PV) const {
|
|
assert (Swz.size() == IG.size());
|
|
int Vector[4][3];
|
|
memset(Vector, -1, sizeof(Vector));
|
|
for (unsigned i = 0, e = IG.size(); i < e; i++) {
|
|
const std::vector<std::pair<int, unsigned> > &Srcs =
|
|
Swizzle(ExtractSrcs(IG[i], PV), Swz[i]);
|
|
for (unsigned j = 0; j < 3; j++) {
|
|
const std::pair<int, unsigned> &Src = Srcs[j];
|
|
if (Src.first < 0)
|
|
continue;
|
|
if (Vector[Src.second][j] < 0)
|
|
Vector[Src.second][j] = Src.first;
|
|
if (Vector[Src.second][j] != Src.first)
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool recursiveFitsFPLimitation(
|
|
std::vector<MachineInstr *> IG,
|
|
const DenseMap<unsigned, unsigned> &PV,
|
|
std::vector<BankSwizzle> &SwzCandidate,
|
|
std::vector<MachineInstr *> CurrentlyChecked)
|
|
const {
|
|
if (!isLegal(CurrentlyChecked, SwzCandidate, PV))
|
|
return false;
|
|
if (IG.size() == CurrentlyChecked.size()) {
|
|
return true;
|
|
}
|
|
BankSwizzle AvailableSwizzle[] = {
|
|
ALU_VEC_012,
|
|
ALU_VEC_021,
|
|
ALU_VEC_120,
|
|
ALU_VEC_102,
|
|
ALU_VEC_201,
|
|
ALU_VEC_210
|
|
};
|
|
CurrentlyChecked.push_back(IG[CurrentlyChecked.size()]);
|
|
for (unsigned i = 0; i < 6; i++) {
|
|
SwzCandidate.push_back(AvailableSwizzle[i]);
|
|
if (recursiveFitsFPLimitation(IG, PV, SwzCandidate, CurrentlyChecked))
|
|
return true;
|
|
SwzCandidate.pop_back();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool fitsReadPortLimitation(
|
|
std::vector<MachineInstr *> IG,
|
|
const DenseMap<unsigned, unsigned> &PV)
|
|
const {
|
|
//Todo : support shared src0 - src1 operand
|
|
std::vector<BankSwizzle> SwzCandidate;
|
|
bool Result = recursiveFitsFPLimitation(IG, PV, SwzCandidate,
|
|
std::vector<MachineInstr *>());
|
|
if (!Result)
|
|
return false;
|
|
for (unsigned i = 0, e = IG.size(); i < e; i++) {
|
|
MachineInstr *MI = IG[i];
|
|
unsigned Op = TII->getOperandIdx(MI->getOpcode(),
|
|
R600Operands::BANK_SWIZZLE);
|
|
MI->getOperand(Op).setImm(SwzCandidate[i]);
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
bool R600Packetizer::runOnMachineFunction(MachineFunction &Fn) {
|
|
const TargetInstrInfo *TII = Fn.getTarget().getInstrInfo();
|
|
MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
|
|
MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
|
|
|
|
// Instantiate the packetizer.
|
|
R600PacketizerList Packetizer(Fn, MLI, MDT);
|
|
|
|
// DFA state table should not be empty.
|
|
assert(Packetizer.getResourceTracker() && "Empty DFA table!");
|
|
|
|
//
|
|
// Loop over all basic blocks and remove KILL pseudo-instructions
|
|
// These instructions confuse the dependence analysis. Consider:
|
|
// D0 = ... (Insn 0)
|
|
// R0 = KILL R0, D0 (Insn 1)
|
|
// R0 = ... (Insn 2)
|
|
// Here, Insn 1 will result in the dependence graph not emitting an output
|
|
// dependence between Insn 0 and Insn 2. This can lead to incorrect
|
|
// packetization
|
|
//
|
|
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
|
|
MBB != MBBe; ++MBB) {
|
|
MachineBasicBlock::iterator End = MBB->end();
|
|
MachineBasicBlock::iterator MI = MBB->begin();
|
|
while (MI != End) {
|
|
if (MI->isKill()) {
|
|
MachineBasicBlock::iterator DeleteMI = MI;
|
|
++MI;
|
|
MBB->erase(DeleteMI);
|
|
End = MBB->end();
|
|
continue;
|
|
}
|
|
++MI;
|
|
}
|
|
}
|
|
|
|
// Loop over all of the basic blocks.
|
|
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
|
|
MBB != MBBe; ++MBB) {
|
|
// Find scheduling regions and schedule / packetize each region.
|
|
unsigned RemainingCount = MBB->size();
|
|
for(MachineBasicBlock::iterator RegionEnd = MBB->end();
|
|
RegionEnd != MBB->begin();) {
|
|
// The next region starts above the previous region. Look backward in the
|
|
// instruction stream until we find the nearest boundary.
|
|
MachineBasicBlock::iterator I = RegionEnd;
|
|
for(;I != MBB->begin(); --I, --RemainingCount) {
|
|
if (TII->isSchedulingBoundary(llvm::prior(I), MBB, Fn))
|
|
break;
|
|
}
|
|
I = MBB->begin();
|
|
|
|
// Skip empty scheduling regions.
|
|
if (I == RegionEnd) {
|
|
RegionEnd = llvm::prior(RegionEnd);
|
|
--RemainingCount;
|
|
continue;
|
|
}
|
|
// Skip regions with one instruction.
|
|
if (I == llvm::prior(RegionEnd)) {
|
|
RegionEnd = llvm::prior(RegionEnd);
|
|
continue;
|
|
}
|
|
|
|
Packetizer.PacketizeMIs(MBB, I, RegionEnd);
|
|
RegionEnd = I;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
llvm::FunctionPass *llvm::createR600Packetizer(TargetMachine &tm) {
|
|
return new R600Packetizer(tm);
|
|
}
|
|
|
|
#endif // R600PACKETIZER_CPP
|