llvm-project/llvm/lib/Transforms/IPO/PassManagerBuilder.cpp

1007 lines
39 KiB
C++

//===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the PassManagerBuilder class, which is used to set up a
// "standard" optimization sequence suitable for languages like C and C++.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm-c/Transforms/PassManagerBuilder.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/CFLAndersAliasAnalysis.h"
#include "llvm/Analysis/CFLSteensAliasAnalysis.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/ScopedNoAliasAA.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/ForceFunctionAttrs.h"
#include "llvm/Transforms/IPO/FunctionAttrs.h"
#include "llvm/Transforms/IPO/InferFunctionAttrs.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
#include "llvm/Transforms/Vectorize.h"
using namespace llvm;
static cl::opt<bool>
RunLoopVectorization("vectorize-loops", cl::Hidden,
cl::desc("Run the Loop vectorization passes"));
static cl::opt<bool>
RunSLPVectorization("vectorize-slp", cl::Hidden,
cl::desc("Run the SLP vectorization passes"));
static cl::opt<bool>
RunBBVectorization("vectorize-slp-aggressive", cl::Hidden,
cl::desc("Run the BB vectorization passes"));
static cl::opt<bool>
UseGVNAfterVectorization("use-gvn-after-vectorization",
cl::init(false), cl::Hidden,
cl::desc("Run GVN instead of Early CSE after vectorization passes"));
static cl::opt<bool> ExtraVectorizerPasses(
"extra-vectorizer-passes", cl::init(false), cl::Hidden,
cl::desc("Run cleanup optimization passes after vectorization."));
static cl::opt<bool>
RunLoopRerolling("reroll-loops", cl::Hidden,
cl::desc("Run the loop rerolling pass"));
static cl::opt<bool> RunLoadCombine("combine-loads", cl::init(false),
cl::Hidden,
cl::desc("Run the load combining pass"));
static cl::opt<bool> RunNewGVN("enable-newgvn", cl::init(false), cl::Hidden,
cl::desc("Run the NewGVN pass"));
static cl::opt<bool>
RunSLPAfterLoopVectorization("run-slp-after-loop-vectorization",
cl::init(true), cl::Hidden,
cl::desc("Run the SLP vectorizer (and BB vectorizer) after the Loop "
"vectorizer instead of before"));
// Experimental option to use CFL-AA
enum class CFLAAType { None, Steensgaard, Andersen, Both };
static cl::opt<CFLAAType>
UseCFLAA("use-cfl-aa", cl::init(CFLAAType::None), cl::Hidden,
cl::desc("Enable the new, experimental CFL alias analysis"),
cl::values(clEnumValN(CFLAAType::None, "none", "Disable CFL-AA"),
clEnumValN(CFLAAType::Steensgaard, "steens",
"Enable unification-based CFL-AA"),
clEnumValN(CFLAAType::Andersen, "anders",
"Enable inclusion-based CFL-AA"),
clEnumValN(CFLAAType::Both, "both",
"Enable both variants of CFL-AA")));
static cl::opt<bool> EnableLoopInterchange(
"enable-loopinterchange", cl::init(false), cl::Hidden,
cl::desc("Enable the new, experimental LoopInterchange Pass"));
static cl::opt<bool> EnableNonLTOGlobalsModRef(
"enable-non-lto-gmr", cl::init(true), cl::Hidden,
cl::desc(
"Enable the GlobalsModRef AliasAnalysis outside of the LTO pipeline."));
static cl::opt<bool> EnableLoopLoadElim(
"enable-loop-load-elim", cl::init(true), cl::Hidden,
cl::desc("Enable the LoopLoadElimination Pass"));
static cl::opt<bool>
EnablePrepareForThinLTO("prepare-for-thinlto", cl::init(false), cl::Hidden,
cl::desc("Enable preparation for ThinLTO."));
static cl::opt<bool> RunPGOInstrGen(
"profile-generate", cl::init(false), cl::Hidden,
cl::desc("Enable PGO instrumentation."));
static cl::opt<std::string>
PGOOutputFile("profile-generate-file", cl::init(""), cl::Hidden,
cl::desc("Specify the path of profile data file."));
static cl::opt<std::string> RunPGOInstrUse(
"profile-use", cl::init(""), cl::Hidden, cl::value_desc("filename"),
cl::desc("Enable use phase of PGO instrumentation and specify the path "
"of profile data file"));
static cl::opt<bool> UseLoopVersioningLICM(
"enable-loop-versioning-licm", cl::init(false), cl::Hidden,
cl::desc("Enable the experimental Loop Versioning LICM pass"));
static cl::opt<bool>
DisablePreInliner("disable-preinline", cl::init(false), cl::Hidden,
cl::desc("Disable pre-instrumentation inliner"));
static cl::opt<int> PreInlineThreshold(
"preinline-threshold", cl::Hidden, cl::init(75), cl::ZeroOrMore,
cl::desc("Control the amount of inlining in pre-instrumentation inliner "
"(default = 75)"));
static cl::opt<bool> EnableGVNHoist(
"enable-gvn-hoist", cl::init(false), cl::Hidden,
cl::desc("Enable the GVN hoisting pass (default = off)"));
static cl::opt<bool>
DisableLibCallsShrinkWrap("disable-libcalls-shrinkwrap", cl::init(false),
cl::Hidden,
cl::desc("Disable shrink-wrap library calls"));
static cl::opt<bool>
EnableSimpleLoopUnswitch("enable-simple-loop-unswitch", cl::init(false),
cl::Hidden,
cl::desc("Enable the simple loop unswitch pass."));
PassManagerBuilder::PassManagerBuilder() {
OptLevel = 2;
SizeLevel = 0;
LibraryInfo = nullptr;
Inliner = nullptr;
DisableUnitAtATime = false;
DisableUnrollLoops = false;
BBVectorize = RunBBVectorization;
SLPVectorize = RunSLPVectorization;
LoopVectorize = RunLoopVectorization;
RerollLoops = RunLoopRerolling;
LoadCombine = RunLoadCombine;
NewGVN = RunNewGVN;
DisableGVNLoadPRE = false;
VerifyInput = false;
VerifyOutput = false;
MergeFunctions = false;
PrepareForLTO = false;
EnablePGOInstrGen = RunPGOInstrGen;
PGOInstrGen = PGOOutputFile;
PGOInstrUse = RunPGOInstrUse;
PrepareForThinLTO = EnablePrepareForThinLTO;
PerformThinLTO = false;
DivergentTarget = false;
}
PassManagerBuilder::~PassManagerBuilder() {
delete LibraryInfo;
delete Inliner;
}
/// Set of global extensions, automatically added as part of the standard set.
static ManagedStatic<SmallVector<std::pair<PassManagerBuilder::ExtensionPointTy,
PassManagerBuilder::ExtensionFn>, 8> > GlobalExtensions;
void PassManagerBuilder::addGlobalExtension(
PassManagerBuilder::ExtensionPointTy Ty,
PassManagerBuilder::ExtensionFn Fn) {
GlobalExtensions->push_back(std::make_pair(Ty, std::move(Fn)));
}
void PassManagerBuilder::addExtension(ExtensionPointTy Ty, ExtensionFn Fn) {
Extensions.push_back(std::make_pair(Ty, std::move(Fn)));
}
void PassManagerBuilder::addExtensionsToPM(ExtensionPointTy ETy,
legacy::PassManagerBase &PM) const {
for (unsigned i = 0, e = GlobalExtensions->size(); i != e; ++i)
if ((*GlobalExtensions)[i].first == ETy)
(*GlobalExtensions)[i].second(*this, PM);
for (unsigned i = 0, e = Extensions.size(); i != e; ++i)
if (Extensions[i].first == ETy)
Extensions[i].second(*this, PM);
}
void PassManagerBuilder::addInitialAliasAnalysisPasses(
legacy::PassManagerBase &PM) const {
switch (UseCFLAA) {
case CFLAAType::Steensgaard:
PM.add(createCFLSteensAAWrapperPass());
break;
case CFLAAType::Andersen:
PM.add(createCFLAndersAAWrapperPass());
break;
case CFLAAType::Both:
PM.add(createCFLSteensAAWrapperPass());
PM.add(createCFLAndersAAWrapperPass());
break;
default:
break;
}
// Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that
// BasicAliasAnalysis wins if they disagree. This is intended to help
// support "obvious" type-punning idioms.
PM.add(createTypeBasedAAWrapperPass());
PM.add(createScopedNoAliasAAWrapperPass());
}
void PassManagerBuilder::addInstructionCombiningPass(
legacy::PassManagerBase &PM) const {
bool ExpensiveCombines = OptLevel > 2;
PM.add(createInstructionCombiningPass(ExpensiveCombines));
}
void PassManagerBuilder::populateFunctionPassManager(
legacy::FunctionPassManager &FPM) {
addExtensionsToPM(EP_EarlyAsPossible, FPM);
// Add LibraryInfo if we have some.
if (LibraryInfo)
FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
if (OptLevel == 0) return;
addInitialAliasAnalysisPasses(FPM);
FPM.add(createCFGSimplificationPass());
FPM.add(createSROAPass());
FPM.add(createEarlyCSEPass());
FPM.add(createLowerExpectIntrinsicPass());
}
// Do PGO instrumentation generation or use pass as the option specified.
void PassManagerBuilder::addPGOInstrPasses(legacy::PassManagerBase &MPM) {
if (!EnablePGOInstrGen && PGOInstrUse.empty())
return;
// Perform the preinline and cleanup passes for O1 and above.
// And avoid doing them if optimizing for size.
if (OptLevel > 0 && SizeLevel == 0 && !DisablePreInliner) {
// Create preinline pass. We construct an InlineParams object and specify
// the threshold here to avoid the command line options of the regular
// inliner to influence pre-inlining. The only fields of InlineParams we
// care about are DefaultThreshold and HintThreshold.
InlineParams IP;
IP.DefaultThreshold = PreInlineThreshold;
// FIXME: The hint threshold has the same value used by the regular inliner.
// This should probably be lowered after performance testing.
IP.HintThreshold = 325;
MPM.add(createFunctionInliningPass(IP));
MPM.add(createSROAPass());
MPM.add(createEarlyCSEPass()); // Catch trivial redundancies
MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
MPM.add(createInstructionCombiningPass()); // Combine silly seq's
addExtensionsToPM(EP_Peephole, MPM);
}
if (EnablePGOInstrGen) {
MPM.add(createPGOInstrumentationGenLegacyPass());
// Add the profile lowering pass.
InstrProfOptions Options;
if (!PGOInstrGen.empty())
Options.InstrProfileOutput = PGOInstrGen;
MPM.add(createInstrProfilingLegacyPass(Options));
}
if (!PGOInstrUse.empty())
MPM.add(createPGOInstrumentationUseLegacyPass(PGOInstrUse));
// Indirect call promotion that promotes intra-module targets only.
// For ThinLTO this is done earlier due to interactions with globalopt
// for imported functions. We don't run this at -O0.
if (OptLevel > 0)
MPM.add(
createPGOIndirectCallPromotionLegacyPass(false, !PGOSampleUse.empty()));
}
void PassManagerBuilder::addFunctionSimplificationPasses(
legacy::PassManagerBase &MPM) {
// Start of function pass.
// Break up aggregate allocas, using SSAUpdater.
MPM.add(createSROAPass());
MPM.add(createEarlyCSEPass()); // Catch trivial redundancies
if (EnableGVNHoist)
MPM.add(createGVNHoistPass());
// Speculative execution if the target has divergent branches; otherwise nop.
MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass());
MPM.add(createJumpThreadingPass()); // Thread jumps.
MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals
MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
// Combine silly seq's
addInstructionCombiningPass(MPM);
if (SizeLevel == 0 && !DisableLibCallsShrinkWrap)
MPM.add(createLibCallsShrinkWrapPass());
addExtensionsToPM(EP_Peephole, MPM);
// Optimize memory intrinsic calls based on the profiled size information.
if (SizeLevel == 0)
MPM.add(createPGOMemOPSizeOptLegacyPass());
MPM.add(createTailCallEliminationPass()); // Eliminate tail calls
MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
MPM.add(createReassociatePass()); // Reassociate expressions
// Rotate Loop - disable header duplication at -Oz
MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1));
MPM.add(createLICMPass()); // Hoist loop invariants
if (EnableSimpleLoopUnswitch)
MPM.add(createSimpleLoopUnswitchLegacyPass());
else
MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget));
MPM.add(createCFGSimplificationPass());
addInstructionCombiningPass(MPM);
MPM.add(createIndVarSimplifyPass()); // Canonicalize indvars
MPM.add(createLoopIdiomPass()); // Recognize idioms like memset.
addExtensionsToPM(EP_LateLoopOptimizations, MPM);
MPM.add(createLoopDeletionPass()); // Delete dead loops
if (EnableLoopInterchange) {
MPM.add(createLoopInterchangePass()); // Interchange loops
MPM.add(createCFGSimplificationPass());
}
if (!DisableUnrollLoops)
MPM.add(createSimpleLoopUnrollPass(OptLevel)); // Unroll small loops
addExtensionsToPM(EP_LoopOptimizerEnd, MPM);
if (OptLevel > 1) {
MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds
MPM.add(NewGVN ? createNewGVNPass()
: createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
}
MPM.add(createMemCpyOptPass()); // Remove memcpy / form memset
MPM.add(createSCCPPass()); // Constant prop with SCCP
// Delete dead bit computations (instcombine runs after to fold away the dead
// computations, and then ADCE will run later to exploit any new DCE
// opportunities that creates).
MPM.add(createBitTrackingDCEPass()); // Delete dead bit computations
// Run instcombine after redundancy elimination to exploit opportunities
// opened up by them.
addInstructionCombiningPass(MPM);
addExtensionsToPM(EP_Peephole, MPM);
MPM.add(createJumpThreadingPass()); // Thread jumps
MPM.add(createCorrelatedValuePropagationPass());
MPM.add(createDeadStoreEliminationPass()); // Delete dead stores
MPM.add(createLICMPass());
addExtensionsToPM(EP_ScalarOptimizerLate, MPM);
if (RerollLoops)
MPM.add(createLoopRerollPass());
if (!RunSLPAfterLoopVectorization) {
if (SLPVectorize)
MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
if (BBVectorize) {
MPM.add(createBBVectorizePass());
addInstructionCombiningPass(MPM);
addExtensionsToPM(EP_Peephole, MPM);
if (OptLevel > 1 && UseGVNAfterVectorization)
MPM.add(NewGVN
? createNewGVNPass()
: createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
else
MPM.add(createEarlyCSEPass()); // Catch trivial redundancies
// BBVectorize may have significantly shortened a loop body; unroll again.
if (!DisableUnrollLoops)
MPM.add(createLoopUnrollPass(OptLevel));
}
}
if (LoadCombine)
MPM.add(createLoadCombinePass());
MPM.add(createAggressiveDCEPass()); // Delete dead instructions
MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
// Clean up after everything.
addInstructionCombiningPass(MPM);
addExtensionsToPM(EP_Peephole, MPM);
}
void PassManagerBuilder::populateModulePassManager(
legacy::PassManagerBase &MPM) {
if (!PGOSampleUse.empty()) {
MPM.add(createPruneEHPass());
MPM.add(createSampleProfileLoaderPass(PGOSampleUse));
}
// Allow forcing function attributes as a debugging and tuning aid.
MPM.add(createForceFunctionAttrsLegacyPass());
// If all optimizations are disabled, just run the always-inline pass and,
// if enabled, the function merging pass.
if (OptLevel == 0) {
addPGOInstrPasses(MPM);
if (Inliner) {
MPM.add(Inliner);
Inliner = nullptr;
}
// FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly
// creates a CGSCC pass manager, but we don't want to add extensions into
// that pass manager. To prevent this we insert a no-op module pass to reset
// the pass manager to get the same behavior as EP_OptimizerLast in non-O0
// builds. The function merging pass is
if (MergeFunctions)
MPM.add(createMergeFunctionsPass());
else if (!GlobalExtensions->empty() || !Extensions.empty())
MPM.add(createBarrierNoopPass());
addExtensionsToPM(EP_EnabledOnOptLevel0, MPM);
// Rename anon globals to be able to export them in the summary.
// This has to be done after we add the extensions to the pass manager
// as there could be passes (e.g. Adddress sanitizer) which introduce
// new unnamed globals.
if (PrepareForThinLTO)
MPM.add(createNameAnonGlobalPass());
return;
}
// Add LibraryInfo if we have some.
if (LibraryInfo)
MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
addInitialAliasAnalysisPasses(MPM);
// For ThinLTO there are two passes of indirect call promotion. The
// first is during the compile phase when PerformThinLTO=false and
// intra-module indirect call targets are promoted. The second is during
// the ThinLTO backend when PerformThinLTO=true, when we promote imported
// inter-module indirect calls. For that we perform indirect call promotion
// earlier in the pass pipeline, here before globalopt. Otherwise imported
// available_externally functions look unreferenced and are removed.
if (PerformThinLTO)
MPM.add(createPGOIndirectCallPromotionLegacyPass(/*InLTO = */ true,
!PGOSampleUse.empty()));
// For SamplePGO in ThinLTO compile phase, we do not want to unroll loops
// as it will change the CFG too much to make the 2nd profile annotation
// in backend more difficult.
bool PrepareForThinLTOUsingPGOSampleProfile =
PrepareForThinLTO && !PGOSampleUse.empty();
if (PrepareForThinLTOUsingPGOSampleProfile)
DisableUnrollLoops = true;
if (!DisableUnitAtATime) {
// Infer attributes about declarations if possible.
MPM.add(createInferFunctionAttrsLegacyPass());
addExtensionsToPM(EP_ModuleOptimizerEarly, MPM);
MPM.add(createIPSCCPPass()); // IP SCCP
MPM.add(createGlobalOptimizerPass()); // Optimize out global vars
// Promote any localized global vars.
MPM.add(createPromoteMemoryToRegisterPass());
MPM.add(createDeadArgEliminationPass()); // Dead argument elimination
addInstructionCombiningPass(MPM); // Clean up after IPCP & DAE
addExtensionsToPM(EP_Peephole, MPM);
MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE
}
// For SamplePGO in ThinLTO compile phase, we do not want to do indirect
// call promotion as it will change the CFG too much to make the 2nd
// profile annotation in backend more difficult.
// PGO instrumentation is added during the compile phase for ThinLTO, do
// not run it a second time
if (!PerformThinLTO && !PrepareForThinLTOUsingPGOSampleProfile)
addPGOInstrPasses(MPM);
if (EnableNonLTOGlobalsModRef)
// We add a module alias analysis pass here. In part due to bugs in the
// analysis infrastructure this "works" in that the analysis stays alive
// for the entire SCC pass run below.
MPM.add(createGlobalsAAWrapperPass());
// Start of CallGraph SCC passes.
if (!DisableUnitAtATime)
MPM.add(createPruneEHPass()); // Remove dead EH info
if (Inliner) {
MPM.add(Inliner);
Inliner = nullptr;
}
if (!DisableUnitAtATime)
MPM.add(createPostOrderFunctionAttrsLegacyPass());
if (OptLevel > 2)
MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args
addExtensionsToPM(EP_CGSCCOptimizerLate, MPM);
addFunctionSimplificationPasses(MPM);
// FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC
// pass manager that we are specifically trying to avoid. To prevent this
// we must insert a no-op module pass to reset the pass manager.
MPM.add(createBarrierNoopPass());
if (!DisableUnitAtATime && OptLevel > 1 && !PrepareForLTO &&
!PrepareForThinLTO)
// Remove avail extern fns and globals definitions if we aren't
// compiling an object file for later LTO. For LTO we want to preserve
// these so they are eligible for inlining at link-time. Note if they
// are unreferenced they will be removed by GlobalDCE later, so
// this only impacts referenced available externally globals.
// Eventually they will be suppressed during codegen, but eliminating
// here enables more opportunity for GlobalDCE as it may make
// globals referenced by available external functions dead
// and saves running remaining passes on the eliminated functions.
MPM.add(createEliminateAvailableExternallyPass());
if (!DisableUnitAtATime)
MPM.add(createReversePostOrderFunctionAttrsPass());
// If we are planning to perform ThinLTO later, let's not bloat the code with
// unrolling/vectorization/... now. We'll first run the inliner + CGSCC passes
// during ThinLTO and perform the rest of the optimizations afterward.
if (PrepareForThinLTO) {
// Reduce the size of the IR as much as possible.
MPM.add(createGlobalOptimizerPass());
// Rename anon globals to be able to export them in the summary.
MPM.add(createNameAnonGlobalPass());
return;
}
if (PerformThinLTO)
// Optimize globals now when performing ThinLTO, this enables more
// optimizations later.
MPM.add(createGlobalOptimizerPass());
// Scheduling LoopVersioningLICM when inlining is over, because after that
// we may see more accurate aliasing. Reason to run this late is that too
// early versioning may prevent further inlining due to increase of code
// size. By placing it just after inlining other optimizations which runs
// later might get benefit of no-alias assumption in clone loop.
if (UseLoopVersioningLICM) {
MPM.add(createLoopVersioningLICMPass()); // Do LoopVersioningLICM
MPM.add(createLICMPass()); // Hoist loop invariants
}
if (EnableNonLTOGlobalsModRef)
// We add a fresh GlobalsModRef run at this point. This is particularly
// useful as the above will have inlined, DCE'ed, and function-attr
// propagated everything. We should at this point have a reasonably minimal
// and richly annotated call graph. By computing aliasing and mod/ref
// information for all local globals here, the late loop passes and notably
// the vectorizer will be able to use them to help recognize vectorizable
// memory operations.
//
// Note that this relies on a bug in the pass manager which preserves
// a module analysis into a function pass pipeline (and throughout it) so
// long as the first function pass doesn't invalidate the module analysis.
// Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for
// this to work. Fortunately, it is trivial to preserve AliasAnalysis
// (doing nothing preserves it as it is required to be conservatively
// correct in the face of IR changes).
MPM.add(createGlobalsAAWrapperPass());
MPM.add(createFloat2IntPass());
addExtensionsToPM(EP_VectorizerStart, MPM);
// Re-rotate loops in all our loop nests. These may have fallout out of
// rotated form due to GVN or other transformations, and the vectorizer relies
// on the rotated form. Disable header duplication at -Oz.
MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1));
// Distribute loops to allow partial vectorization. I.e. isolate dependences
// into separate loop that would otherwise inhibit vectorization. This is
// currently only performed for loops marked with the metadata
// llvm.loop.distribute=true or when -enable-loop-distribute is specified.
MPM.add(createLoopDistributePass());
MPM.add(createLoopVectorizePass(DisableUnrollLoops, LoopVectorize));
// Eliminate loads by forwarding stores from the previous iteration to loads
// of the current iteration.
if (EnableLoopLoadElim)
MPM.add(createLoopLoadEliminationPass());
// FIXME: Because of #pragma vectorize enable, the passes below are always
// inserted in the pipeline, even when the vectorizer doesn't run (ex. when
// on -O1 and no #pragma is found). Would be good to have these two passes
// as function calls, so that we can only pass them when the vectorizer
// changed the code.
addInstructionCombiningPass(MPM);
if (OptLevel > 1 && ExtraVectorizerPasses) {
// At higher optimization levels, try to clean up any runtime overlap and
// alignment checks inserted by the vectorizer. We want to track correllated
// runtime checks for two inner loops in the same outer loop, fold any
// common computations, hoist loop-invariant aspects out of any outer loop,
// and unswitch the runtime checks if possible. Once hoisted, we may have
// dead (or speculatable) control flows or more combining opportunities.
MPM.add(createEarlyCSEPass());
MPM.add(createCorrelatedValuePropagationPass());
addInstructionCombiningPass(MPM);
MPM.add(createLICMPass());
MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget));
MPM.add(createCFGSimplificationPass());
addInstructionCombiningPass(MPM);
}
if (RunSLPAfterLoopVectorization) {
if (SLPVectorize) {
MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
if (OptLevel > 1 && ExtraVectorizerPasses) {
MPM.add(createEarlyCSEPass());
}
}
if (BBVectorize) {
MPM.add(createBBVectorizePass());
addInstructionCombiningPass(MPM);
addExtensionsToPM(EP_Peephole, MPM);
if (OptLevel > 1 && UseGVNAfterVectorization)
MPM.add(NewGVN
? createNewGVNPass()
: createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
else
MPM.add(createEarlyCSEPass()); // Catch trivial redundancies
// BBVectorize may have significantly shortened a loop body; unroll again.
if (!DisableUnrollLoops)
MPM.add(createLoopUnrollPass(OptLevel));
}
}
addExtensionsToPM(EP_Peephole, MPM);
MPM.add(createLateCFGSimplificationPass()); // Switches to lookup tables
addInstructionCombiningPass(MPM);
if (!DisableUnrollLoops) {
MPM.add(createLoopUnrollPass(OptLevel)); // Unroll small loops
// LoopUnroll may generate some redundency to cleanup.
addInstructionCombiningPass(MPM);
// Runtime unrolling will introduce runtime check in loop prologue. If the
// unrolled loop is a inner loop, then the prologue will be inside the
// outer loop. LICM pass can help to promote the runtime check out if the
// checked value is loop invariant.
MPM.add(createLICMPass());
}
// After vectorization and unrolling, assume intrinsics may tell us more
// about pointer alignments.
MPM.add(createAlignmentFromAssumptionsPass());
if (!DisableUnitAtATime) {
// FIXME: We shouldn't bother with this anymore.
MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes
// GlobalOpt already deletes dead functions and globals, at -O2 try a
// late pass of GlobalDCE. It is capable of deleting dead cycles.
if (OptLevel > 1) {
MPM.add(createGlobalDCEPass()); // Remove dead fns and globals.
MPM.add(createConstantMergePass()); // Merge dup global constants
}
}
if (MergeFunctions)
MPM.add(createMergeFunctionsPass());
// LoopSink pass sinks instructions hoisted by LICM, which serves as a
// canonicalization pass that enables other optimizations. As a result,
// LoopSink pass needs to be a very late IR pass to avoid undoing LICM
// result too early.
MPM.add(createLoopSinkPass());
// Get rid of LCSSA nodes.
MPM.add(createInstructionSimplifierPass());
// LoopSink (and other loop passes since the last simplifyCFG) might have
// resulted in single-entry-single-exit or empty blocks. Clean up the CFG.
MPM.add(createCFGSimplificationPass());
addExtensionsToPM(EP_OptimizerLast, MPM);
}
void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) {
// Remove unused virtual tables to improve the quality of code generated by
// whole-program devirtualization and bitset lowering.
PM.add(createGlobalDCEPass());
// Provide AliasAnalysis services for optimizations.
addInitialAliasAnalysisPasses(PM);
// Allow forcing function attributes as a debugging and tuning aid.
PM.add(createForceFunctionAttrsLegacyPass());
// Infer attributes about declarations if possible.
PM.add(createInferFunctionAttrsLegacyPass());
if (OptLevel > 1) {
// Indirect call promotion. This should promote all the targets that are
// left by the earlier promotion pass that promotes intra-module targets.
// This two-step promotion is to save the compile time. For LTO, it should
// produce the same result as if we only do promotion here.
PM.add(
createPGOIndirectCallPromotionLegacyPass(true, !PGOSampleUse.empty()));
// Propagate constants at call sites into the functions they call. This
// opens opportunities for globalopt (and inlining) by substituting function
// pointers passed as arguments to direct uses of functions.
PM.add(createIPSCCPPass());
}
// Infer attributes about definitions. The readnone attribute in particular is
// required for virtual constant propagation.
PM.add(createPostOrderFunctionAttrsLegacyPass());
PM.add(createReversePostOrderFunctionAttrsPass());
// Split globals using inrange annotations on GEP indices. This can help
// improve the quality of generated code when virtual constant propagation or
// control flow integrity are enabled.
PM.add(createGlobalSplitPass());
// Apply whole-program devirtualization and virtual constant propagation.
PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr));
// That's all we need at opt level 1.
if (OptLevel == 1)
return;
// Now that we internalized some globals, see if we can hack on them!
PM.add(createGlobalOptimizerPass());
// Promote any localized global vars.
PM.add(createPromoteMemoryToRegisterPass());
// Linking modules together can lead to duplicated global constants, only
// keep one copy of each constant.
PM.add(createConstantMergePass());
// Remove unused arguments from functions.
PM.add(createDeadArgEliminationPass());
// Reduce the code after globalopt and ipsccp. Both can open up significant
// simplification opportunities, and both can propagate functions through
// function pointers. When this happens, we often have to resolve varargs
// calls, etc, so let instcombine do this.
addInstructionCombiningPass(PM);
addExtensionsToPM(EP_Peephole, PM);
// Inline small functions
bool RunInliner = Inliner;
if (RunInliner) {
PM.add(Inliner);
Inliner = nullptr;
}
PM.add(createPruneEHPass()); // Remove dead EH info.
// Optimize globals again if we ran the inliner.
if (RunInliner)
PM.add(createGlobalOptimizerPass());
PM.add(createGlobalDCEPass()); // Remove dead functions.
// If we didn't decide to inline a function, check to see if we can
// transform it to pass arguments by value instead of by reference.
PM.add(createArgumentPromotionPass());
// The IPO passes may leave cruft around. Clean up after them.
addInstructionCombiningPass(PM);
addExtensionsToPM(EP_Peephole, PM);
PM.add(createJumpThreadingPass());
// Break up allocas
PM.add(createSROAPass());
// Run a few AA driven optimizations here and now, to cleanup the code.
PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture.
PM.add(createGlobalsAAWrapperPass()); // IP alias analysis.
PM.add(createLICMPass()); // Hoist loop invariants.
PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds.
PM.add(NewGVN ? createNewGVNPass()
: createGVNPass(DisableGVNLoadPRE)); // Remove redundancies.
PM.add(createMemCpyOptPass()); // Remove dead memcpys.
// Nuke dead stores.
PM.add(createDeadStoreEliminationPass());
// More loops are countable; try to optimize them.
PM.add(createIndVarSimplifyPass());
PM.add(createLoopDeletionPass());
if (EnableLoopInterchange)
PM.add(createLoopInterchangePass());
if (!DisableUnrollLoops)
PM.add(createSimpleLoopUnrollPass(OptLevel)); // Unroll small loops
PM.add(createLoopVectorizePass(true, LoopVectorize));
// The vectorizer may have significantly shortened a loop body; unroll again.
if (!DisableUnrollLoops)
PM.add(createLoopUnrollPass(OptLevel));
// Now that we've optimized loops (in particular loop induction variables),
// we may have exposed more scalar opportunities. Run parts of the scalar
// optimizer again at this point.
addInstructionCombiningPass(PM); // Initial cleanup
PM.add(createCFGSimplificationPass()); // if-convert
PM.add(createSCCPPass()); // Propagate exposed constants
addInstructionCombiningPass(PM); // Clean up again
PM.add(createBitTrackingDCEPass());
// More scalar chains could be vectorized due to more alias information
if (RunSLPAfterLoopVectorization)
if (SLPVectorize)
PM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
// After vectorization, assume intrinsics may tell us more about pointer
// alignments.
PM.add(createAlignmentFromAssumptionsPass());
if (LoadCombine)
PM.add(createLoadCombinePass());
// Cleanup and simplify the code after the scalar optimizations.
addInstructionCombiningPass(PM);
addExtensionsToPM(EP_Peephole, PM);
PM.add(createJumpThreadingPass());
}
void PassManagerBuilder::addLateLTOOptimizationPasses(
legacy::PassManagerBase &PM) {
// Delete basic blocks, which optimization passes may have killed.
PM.add(createCFGSimplificationPass());
// Drop bodies of available externally objects to improve GlobalDCE.
PM.add(createEliminateAvailableExternallyPass());
// Now that we have optimized the program, discard unreachable functions.
PM.add(createGlobalDCEPass());
// FIXME: this is profitable (for compiler time) to do at -O0 too, but
// currently it damages debug info.
if (MergeFunctions)
PM.add(createMergeFunctionsPass());
}
void PassManagerBuilder::populateThinLTOPassManager(
legacy::PassManagerBase &PM) {
PerformThinLTO = true;
if (VerifyInput)
PM.add(createVerifierPass());
if (ImportSummary) {
// These passes import type identifier resolutions for whole-program
// devirtualization and CFI. They must run early because other passes may
// disturb the specific instruction patterns that these passes look for,
// creating dependencies on resolutions that may not appear in the summary.
//
// For example, GVN may transform the pattern assume(type.test) appearing in
// two basic blocks into assume(phi(type.test, type.test)), which would
// transform a dependency on a WPD resolution into a dependency on a type
// identifier resolution for CFI.
//
// Also, WPD has access to more precise information than ICP and can
// devirtualize more effectively, so it should operate on the IR first.
PM.add(createWholeProgramDevirtPass(nullptr, ImportSummary));
PM.add(createLowerTypeTestsPass(nullptr, ImportSummary));
}
populateModulePassManager(PM);
if (VerifyOutput)
PM.add(createVerifierPass());
PerformThinLTO = false;
}
void PassManagerBuilder::populateLTOPassManager(legacy::PassManagerBase &PM) {
if (LibraryInfo)
PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
if (VerifyInput)
PM.add(createVerifierPass());
if (OptLevel != 0)
addLTOOptimizationPasses(PM);
// Create a function that performs CFI checks for cross-DSO calls with targets
// in the current module.
PM.add(createCrossDSOCFIPass());
// Lower type metadata and the type.test intrinsic. This pass supports Clang's
// control flow integrity mechanisms (-fsanitize=cfi*) and needs to run at
// link time if CFI is enabled. The pass does nothing if CFI is disabled.
PM.add(createLowerTypeTestsPass(ExportSummary, nullptr));
if (OptLevel != 0)
addLateLTOOptimizationPasses(PM);
if (VerifyOutput)
PM.add(createVerifierPass());
}
inline PassManagerBuilder *unwrap(LLVMPassManagerBuilderRef P) {
return reinterpret_cast<PassManagerBuilder*>(P);
}
inline LLVMPassManagerBuilderRef wrap(PassManagerBuilder *P) {
return reinterpret_cast<LLVMPassManagerBuilderRef>(P);
}
LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() {
PassManagerBuilder *PMB = new PassManagerBuilder();
return wrap(PMB);
}
void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) {
PassManagerBuilder *Builder = unwrap(PMB);
delete Builder;
}
void
LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB,
unsigned OptLevel) {
PassManagerBuilder *Builder = unwrap(PMB);
Builder->OptLevel = OptLevel;
}
void
LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB,
unsigned SizeLevel) {
PassManagerBuilder *Builder = unwrap(PMB);
Builder->SizeLevel = SizeLevel;
}
void
LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB,
LLVMBool Value) {
PassManagerBuilder *Builder = unwrap(PMB);
Builder->DisableUnitAtATime = Value;
}
void
LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB,
LLVMBool Value) {
PassManagerBuilder *Builder = unwrap(PMB);
Builder->DisableUnrollLoops = Value;
}
void
LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB,
LLVMBool Value) {
// NOTE: The simplify-libcalls pass has been removed.
}
void
LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB,
unsigned Threshold) {
PassManagerBuilder *Builder = unwrap(PMB);
Builder->Inliner = createFunctionInliningPass(Threshold);
}
void
LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB,
LLVMPassManagerRef PM) {
PassManagerBuilder *Builder = unwrap(PMB);
legacy::FunctionPassManager *FPM = unwrap<legacy::FunctionPassManager>(PM);
Builder->populateFunctionPassManager(*FPM);
}
void
LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB,
LLVMPassManagerRef PM) {
PassManagerBuilder *Builder = unwrap(PMB);
legacy::PassManagerBase *MPM = unwrap(PM);
Builder->populateModulePassManager(*MPM);
}
void LLVMPassManagerBuilderPopulateLTOPassManager(LLVMPassManagerBuilderRef PMB,
LLVMPassManagerRef PM,
LLVMBool Internalize,
LLVMBool RunInliner) {
PassManagerBuilder *Builder = unwrap(PMB);
legacy::PassManagerBase *LPM = unwrap(PM);
// A small backwards compatibility hack. populateLTOPassManager used to take
// an RunInliner option.
if (RunInliner && !Builder->Inliner)
Builder->Inliner = createFunctionInliningPass();
Builder->populateLTOPassManager(*LPM);
}