llvm-project/llvm/lib/Target/Lanai/LanaiInstrInfo.cpp

416 lines
14 KiB
C++

//===-- LanaiInstrInfo.cpp - Lanai Instruction Information ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the Lanai implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#include "Lanai.h"
#include "LanaiInstrInfo.h"
#include "LanaiMachineFunctionInfo.h"
#include "LanaiTargetMachine.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
#define GET_INSTRINFO_CTOR_DTOR
#include "LanaiGenInstrInfo.inc"
LanaiInstrInfo::LanaiInstrInfo()
: LanaiGenInstrInfo(Lanai::ADJCALLSTACKDOWN, Lanai::ADJCALLSTACKUP),
RegisterInfo() {}
void LanaiInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator Position,
const DebugLoc &DL,
unsigned DestinationRegister,
unsigned SourceRegister,
bool KillSource) const {
if (!Lanai::GPRRegClass.contains(DestinationRegister, SourceRegister)) {
llvm_unreachable("Impossible reg-to-reg copy");
}
BuildMI(MBB, Position, DL, get(Lanai::OR_I_LO), DestinationRegister)
.addReg(SourceRegister, getKillRegState(KillSource))
.addImm(0);
}
void LanaiInstrInfo::storeRegToStackSlot(
MachineBasicBlock &MBB, MachineBasicBlock::iterator Position,
unsigned SourceRegister, bool IsKill, int FrameIndex,
const TargetRegisterClass *RegisterClass,
const TargetRegisterInfo *RegisterInfo) const {
DebugLoc DL;
if (Position != MBB.end()) {
DL = Position->getDebugLoc();
}
if (!Lanai::GPRRegClass.hasSubClassEq(RegisterClass)) {
llvm_unreachable("Can't store this register to stack slot");
}
BuildMI(MBB, Position, DL, get(Lanai::SW_RI))
.addReg(SourceRegister, getKillRegState(IsKill))
.addFrameIndex(FrameIndex)
.addImm(0)
.addImm(LPAC::ADD);
}
void LanaiInstrInfo::loadRegFromStackSlot(
MachineBasicBlock &MBB, MachineBasicBlock::iterator Position,
unsigned DestinationRegister, int FrameIndex,
const TargetRegisterClass *RegisterClass,
const TargetRegisterInfo *RegisterInfo) const {
DebugLoc DL;
if (Position != MBB.end()) {
DL = Position->getDebugLoc();
}
if (!Lanai::GPRRegClass.hasSubClassEq(RegisterClass)) {
llvm_unreachable("Can't load this register from stack slot");
}
BuildMI(MBB, Position, DL, get(Lanai::LDW_RI), DestinationRegister)
.addFrameIndex(FrameIndex)
.addImm(0)
.addImm(LPAC::ADD);
}
bool LanaiInstrInfo::areMemAccessesTriviallyDisjoint(MachineInstr *MIa,
MachineInstr *MIb,
AliasAnalysis *AA) const {
assert(MIa && MIa->mayLoadOrStore() && "MIa must be a load or store.");
assert(MIb && MIb->mayLoadOrStore() && "MIb must be a load or store.");
if (MIa->hasUnmodeledSideEffects() || MIb->hasUnmodeledSideEffects() ||
MIa->hasOrderedMemoryRef() || MIb->hasOrderedMemoryRef())
return false;
// Retrieve the base register, offset from the base register and width. Width
// is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If
// base registers are identical, and the offset of a lower memory access +
// the width doesn't overlap the offset of a higher memory access,
// then the memory accesses are different.
const TargetRegisterInfo *TRI = &getRegisterInfo();
unsigned BaseRegA = 0, BaseRegB = 0;
int64_t OffsetA = 0, OffsetB = 0;
unsigned int WidthA = 0, WidthB = 0;
if (getMemOpBaseRegImmOfsWidth(MIa, BaseRegA, OffsetA, WidthA, TRI) &&
getMemOpBaseRegImmOfsWidth(MIb, BaseRegB, OffsetB, WidthB, TRI)) {
if (BaseRegA == BaseRegB) {
int LowOffset = std::min(OffsetA, OffsetB);
int HighOffset = std::max(OffsetA, OffsetB);
int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
if (LowOffset + LowWidth <= HighOffset)
return true;
}
}
return false;
}
bool LanaiInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
return false;
}
static LPCC::CondCode GetOppositeBranchCondition(LPCC::CondCode CC) {
switch (CC) {
case LPCC::ICC_T: // true
return LPCC::ICC_F;
case LPCC::ICC_F: // false
return LPCC::ICC_T;
case LPCC::ICC_HI: // high
return LPCC::ICC_LS;
case LPCC::ICC_LS: // low or same
return LPCC::ICC_HI;
case LPCC::ICC_CC: // carry cleared
return LPCC::ICC_CS;
case LPCC::ICC_CS: // carry set
return LPCC::ICC_CC;
case LPCC::ICC_NE: // not equal
return LPCC::ICC_EQ;
case LPCC::ICC_EQ: // equal
return LPCC::ICC_NE;
case LPCC::ICC_VC: // oVerflow cleared
return LPCC::ICC_VS;
case LPCC::ICC_VS: // oVerflow set
return LPCC::ICC_VC;
case LPCC::ICC_PL: // plus (note: 0 is "minus" too here)
return LPCC::ICC_MI;
case LPCC::ICC_MI: // minus
return LPCC::ICC_PL;
case LPCC::ICC_GE: // greater than or equal
return LPCC::ICC_LT;
case LPCC::ICC_LT: // less than
return LPCC::ICC_GE;
case LPCC::ICC_GT: // greater than
return LPCC::ICC_LE;
case LPCC::ICC_LE: // less than or equal
return LPCC::ICC_GT;
default:
llvm_unreachable("Invalid condtional code");
}
}
// The AnalyzeBranch function is used to examine conditional instructions and
// remove unnecessary instructions. This method is used by BranchFolder and
// IfConverter machine function passes to improve the CFG.
// - TrueBlock is set to the destination if condition evaluates true (it is the
// nullptr if the destination is the fall-through branch);
// - FalseBlock is set to the destination if condition evaluates to false (it
// is the nullptr if the branch is unconditional);
// - condition is populated with machine operands needed to generate the branch
// to insert in InsertBranch;
// Returns: false if branch could successfully be analyzed.
bool LanaiInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TrueBlock,
MachineBasicBlock *&FalseBlock,
SmallVectorImpl<MachineOperand> &Condition,
bool AllowModify) const {
// Iterator to current instruction being considered.
MachineBasicBlock::iterator Instruction = MBB.end();
// Start from the bottom of the block and work up, examining the
// terminator instructions.
while (Instruction != MBB.begin()) {
--Instruction;
// Skip over debug values.
if (Instruction->isDebugValue())
continue;
// Working from the bottom, when we see a non-terminator
// instruction, we're done.
if (!isUnpredicatedTerminator(*Instruction))
break;
// A terminator that isn't a branch can't easily be handled
// by this analysis.
if (!Instruction->isBranch())
return true;
// Handle unconditional branches.
if (Instruction->getOpcode() == Lanai::BT) {
if (!AllowModify) {
TrueBlock = Instruction->getOperand(0).getMBB();
continue;
}
// If the block has any instructions after a branch, delete them.
while (std::next(Instruction) != MBB.end()) {
std::next(Instruction)->eraseFromParent();
}
Condition.clear();
FalseBlock = nullptr;
// Delete the jump if it's equivalent to a fall-through.
if (MBB.isLayoutSuccessor(Instruction->getOperand(0).getMBB())) {
TrueBlock = nullptr;
Instruction->eraseFromParent();
Instruction = MBB.end();
continue;
}
// TrueBlock is used to indicate the unconditional destination.
TrueBlock = Instruction->getOperand(0).getMBB();
continue;
}
// Handle conditional branches
unsigned Opcode = Instruction->getOpcode();
if (Opcode != Lanai::BRCC)
return true; // Unknown opcode.
// Multiple conditional branches are not handled here so only proceed if
// there are no conditions enqueued.
if (Condition.empty()) {
LPCC::CondCode BranchCond =
static_cast<LPCC::CondCode>(Instruction->getOperand(1).getImm());
// TrueBlock is the target of the previously seen unconditional branch.
FalseBlock = TrueBlock;
TrueBlock = Instruction->getOperand(0).getMBB();
Condition.push_back(MachineOperand::CreateImm(BranchCond));
continue;
}
// Multiple conditional branches are not handled.
return true;
}
// Return false indicating branch successfully analyzed.
return false;
}
// ReverseBranchCondition - Reverses the branch condition of the specified
// condition list, returning false on success and true if it cannot be
// reversed.
bool LanaiInstrInfo::ReverseBranchCondition(
SmallVectorImpl<llvm::MachineOperand> &Condition) const {
assert((Condition.size() == 1) &&
"Lanai branch conditions should have one component.");
LPCC::CondCode BranchCond =
static_cast<LPCC::CondCode>(Condition[0].getImm());
Condition[0].setImm(GetOppositeBranchCondition(BranchCond));
return false;
}
// Insert the branch with condition specified in condition and given targets
// (TrueBlock and FalseBlock). This function returns the number of machine
// instructions inserted.
unsigned LanaiInstrInfo::InsertBranch(MachineBasicBlock &MBB,
MachineBasicBlock *TrueBlock,
MachineBasicBlock *FalseBlock,
ArrayRef<MachineOperand> Condition,
const DebugLoc &DL) const {
// Shouldn't be a fall through.
assert(TrueBlock && "InsertBranch must not be told to insert a fallthrough");
// If condition is empty then an unconditional branch is being inserted.
if (Condition.empty()) {
assert(!FalseBlock && "Unconditional branch with multiple successors!");
BuildMI(&MBB, DL, get(Lanai::BT)).addMBB(TrueBlock);
return 1;
}
// Else a conditional branch is inserted.
assert((Condition.size() == 1) &&
"Lanai branch conditions should have one component.");
unsigned ConditionalCode = Condition[0].getImm();
BuildMI(&MBB, DL, get(Lanai::BRCC)).addMBB(TrueBlock).addImm(ConditionalCode);
// If no false block, then false behavior is fall through and no branch needs
// to be inserted.
if (!FalseBlock)
return 1;
BuildMI(&MBB, DL, get(Lanai::BT)).addMBB(FalseBlock);
return 2;
}
unsigned LanaiInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
MachineBasicBlock::iterator Instruction = MBB.end();
unsigned Count = 0;
while (Instruction != MBB.begin()) {
--Instruction;
if (Instruction->isDebugValue())
continue;
if (Instruction->getOpcode() != Lanai::BT &&
Instruction->getOpcode() != Lanai::BRCC) {
break;
}
// Remove the branch.
Instruction->eraseFromParent();
Instruction = MBB.end();
++Count;
}
return Count;
}
unsigned LanaiInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
int &FrameIndex) const {
if (MI->getOpcode() == Lanai::LDW_RI)
if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
MI->getOperand(2).getImm() == 0) {
FrameIndex = MI->getOperand(1).getIndex();
return MI->getOperand(0).getReg();
}
return 0;
}
unsigned LanaiInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
int &FrameIndex) const {
if (MI->getOpcode() == Lanai::LDW_RI) {
unsigned Reg;
if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
return Reg;
// Check for post-frame index elimination operations
const MachineMemOperand *Dummy;
return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
}
return 0;
}
unsigned LanaiInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
int &FrameIndex) const {
if (MI->getOpcode() == Lanai::SW_RI)
if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
MI->getOperand(1).getImm() == 0) {
FrameIndex = MI->getOperand(0).getIndex();
return MI->getOperand(2).getReg();
}
return 0;
}
bool LanaiInstrInfo::getMemOpBaseRegImmOfsWidth(
MachineInstr *LdSt, unsigned &BaseReg, int64_t &Offset, unsigned &Width,
const TargetRegisterInfo *TRI) const {
// Handle only loads/stores with base register followed by immediate offset
// and with add as ALU op.
if (LdSt->getNumOperands() != 4)
return false;
if (!LdSt->getOperand(1).isReg() || !LdSt->getOperand(2).isImm() ||
!(LdSt->getOperand(3).isImm() &&
LdSt->getOperand(3).getImm() == LPAC::ADD))
return false;
switch (LdSt->getOpcode()) {
default:
return false;
case Lanai::LDW_RI:
case Lanai::LDW_RR:
case Lanai::SW_RR:
case Lanai::SW_RI:
Width = 4;
break;
case Lanai::LDHs_RI:
case Lanai::LDHz_RI:
case Lanai::STH_RI:
Width = 2;
break;
case Lanai::LDBs_RI:
case Lanai::LDBz_RI:
case Lanai::STB_RI:
Width = 1;
break;
}
BaseReg = LdSt->getOperand(1).getReg();
Offset = LdSt->getOperand(2).getImm();
return true;
}
bool LanaiInstrInfo::getMemOpBaseRegImmOfs(
MachineInstr *LdSt, unsigned &BaseReg, int64_t &Offset,
const TargetRegisterInfo *TRI) const {
switch (LdSt->getOpcode()) {
default:
return false;
case Lanai::LDW_RI:
case Lanai::LDW_RR:
case Lanai::SW_RR:
case Lanai::SW_RI:
case Lanai::LDHs_RI:
case Lanai::LDHz_RI:
case Lanai::STH_RI:
case Lanai::LDBs_RI:
case Lanai::LDBz_RI:
unsigned Width;
return getMemOpBaseRegImmOfsWidth(LdSt, BaseReg, Offset, Width, TRI);
}
}