forked from OSchip/llvm-project
826 lines
31 KiB
C++
826 lines
31 KiB
C++
//===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This class wraps target description classes used by the various code
|
|
// generation TableGen backends. This makes it easier to access the data and
|
|
// provides a single place that needs to check it for validity. All of these
|
|
// classes abort on error conditions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenTarget.h"
|
|
#include "CodeGenDAGPatterns.h"
|
|
#include "CodeGenIntrinsics.h"
|
|
#include "CodeGenSchedule.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Timer.h"
|
|
#include "llvm/TableGen/Error.h"
|
|
#include "llvm/TableGen/Record.h"
|
|
#include "llvm/TableGen/TableGenBackend.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
cl::OptionCategory AsmParserCat("Options for -gen-asm-parser");
|
|
cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer");
|
|
|
|
static cl::opt<unsigned>
|
|
AsmParserNum("asmparsernum", cl::init(0),
|
|
cl::desc("Make -gen-asm-parser emit assembly parser #N"),
|
|
cl::cat(AsmParserCat));
|
|
|
|
static cl::opt<unsigned>
|
|
AsmWriterNum("asmwriternum", cl::init(0),
|
|
cl::desc("Make -gen-asm-writer emit assembly writer #N"),
|
|
cl::cat(AsmWriterCat));
|
|
|
|
/// getValueType - Return the MVT::SimpleValueType that the specified TableGen
|
|
/// record corresponds to.
|
|
MVT::SimpleValueType llvm::getValueType(Record *Rec) {
|
|
return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
|
|
}
|
|
|
|
StringRef llvm::getName(MVT::SimpleValueType T) {
|
|
switch (T) {
|
|
case MVT::Other: return "UNKNOWN";
|
|
case MVT::iPTR: return "TLI.getPointerTy()";
|
|
case MVT::iPTRAny: return "TLI.getPointerTy()";
|
|
default: return getEnumName(T);
|
|
}
|
|
}
|
|
|
|
StringRef llvm::getEnumName(MVT::SimpleValueType T) {
|
|
switch (T) {
|
|
case MVT::Other: return "MVT::Other";
|
|
case MVT::i1: return "MVT::i1";
|
|
case MVT::i8: return "MVT::i8";
|
|
case MVT::i16: return "MVT::i16";
|
|
case MVT::i32: return "MVT::i32";
|
|
case MVT::i64: return "MVT::i64";
|
|
case MVT::i128: return "MVT::i128";
|
|
case MVT::Any: return "MVT::Any";
|
|
case MVT::iAny: return "MVT::iAny";
|
|
case MVT::fAny: return "MVT::fAny";
|
|
case MVT::vAny: return "MVT::vAny";
|
|
case MVT::f16: return "MVT::f16";
|
|
case MVT::f32: return "MVT::f32";
|
|
case MVT::f64: return "MVT::f64";
|
|
case MVT::f80: return "MVT::f80";
|
|
case MVT::f128: return "MVT::f128";
|
|
case MVT::ppcf128: return "MVT::ppcf128";
|
|
case MVT::x86mmx: return "MVT::x86mmx";
|
|
case MVT::Glue: return "MVT::Glue";
|
|
case MVT::isVoid: return "MVT::isVoid";
|
|
case MVT::v1i1: return "MVT::v1i1";
|
|
case MVT::v2i1: return "MVT::v2i1";
|
|
case MVT::v4i1: return "MVT::v4i1";
|
|
case MVT::v8i1: return "MVT::v8i1";
|
|
case MVT::v16i1: return "MVT::v16i1";
|
|
case MVT::v32i1: return "MVT::v32i1";
|
|
case MVT::v64i1: return "MVT::v64i1";
|
|
case MVT::v128i1: return "MVT::v128i1";
|
|
case MVT::v512i1: return "MVT::v512i1";
|
|
case MVT::v1024i1: return "MVT::v1024i1";
|
|
case MVT::v1i8: return "MVT::v1i8";
|
|
case MVT::v2i8: return "MVT::v2i8";
|
|
case MVT::v4i8: return "MVT::v4i8";
|
|
case MVT::v8i8: return "MVT::v8i8";
|
|
case MVT::v16i8: return "MVT::v16i8";
|
|
case MVT::v32i8: return "MVT::v32i8";
|
|
case MVT::v64i8: return "MVT::v64i8";
|
|
case MVT::v128i8: return "MVT::v128i8";
|
|
case MVT::v256i8: return "MVT::v256i8";
|
|
case MVT::v1i16: return "MVT::v1i16";
|
|
case MVT::v2i16: return "MVT::v2i16";
|
|
case MVT::v3i16: return "MVT::v3i16";
|
|
case MVT::v4i16: return "MVT::v4i16";
|
|
case MVT::v8i16: return "MVT::v8i16";
|
|
case MVT::v16i16: return "MVT::v16i16";
|
|
case MVT::v32i16: return "MVT::v32i16";
|
|
case MVT::v64i16: return "MVT::v64i16";
|
|
case MVT::v128i16: return "MVT::v128i16";
|
|
case MVT::v1i32: return "MVT::v1i32";
|
|
case MVT::v2i32: return "MVT::v2i32";
|
|
case MVT::v3i32: return "MVT::v3i32";
|
|
case MVT::v4i32: return "MVT::v4i32";
|
|
case MVT::v5i32: return "MVT::v5i32";
|
|
case MVT::v8i32: return "MVT::v8i32";
|
|
case MVT::v16i32: return "MVT::v16i32";
|
|
case MVT::v32i32: return "MVT::v32i32";
|
|
case MVT::v64i32: return "MVT::v64i32";
|
|
case MVT::v128i32: return "MVT::v128i32";
|
|
case MVT::v256i32: return "MVT::v256i32";
|
|
case MVT::v512i32: return "MVT::v512i32";
|
|
case MVT::v1024i32: return "MVT::v1024i32";
|
|
case MVT::v2048i32: return "MVT::v2048i32";
|
|
case MVT::v1i64: return "MVT::v1i64";
|
|
case MVT::v2i64: return "MVT::v2i64";
|
|
case MVT::v4i64: return "MVT::v4i64";
|
|
case MVT::v8i64: return "MVT::v8i64";
|
|
case MVT::v16i64: return "MVT::v16i64";
|
|
case MVT::v32i64: return "MVT::v32i64";
|
|
case MVT::v1i128: return "MVT::v1i128";
|
|
case MVT::v2f16: return "MVT::v2f16";
|
|
case MVT::v3f16: return "MVT::v3f16";
|
|
case MVT::v4f16: return "MVT::v4f16";
|
|
case MVT::v8f16: return "MVT::v8f16";
|
|
case MVT::v16f16: return "MVT::v16f16";
|
|
case MVT::v32f16: return "MVT::v32f16";
|
|
case MVT::v1f32: return "MVT::v1f32";
|
|
case MVT::v2f32: return "MVT::v2f32";
|
|
case MVT::v3f32: return "MVT::v3f32";
|
|
case MVT::v4f32: return "MVT::v4f32";
|
|
case MVT::v5f32: return "MVT::v5f32";
|
|
case MVT::v8f32: return "MVT::v8f32";
|
|
case MVT::v16f32: return "MVT::v16f32";
|
|
case MVT::v32f32: return "MVT::v32f32";
|
|
case MVT::v64f32: return "MVT::v64f32";
|
|
case MVT::v128f32: return "MVT::v128f32";
|
|
case MVT::v256f32: return "MVT::v256f32";
|
|
case MVT::v512f32: return "MVT::v512f32";
|
|
case MVT::v1024f32: return "MVT::v1024f32";
|
|
case MVT::v2048f32: return "MVT::v2048f32";
|
|
case MVT::v1f64: return "MVT::v1f64";
|
|
case MVT::v2f64: return "MVT::v2f64";
|
|
case MVT::v4f64: return "MVT::v4f64";
|
|
case MVT::v8f64: return "MVT::v8f64";
|
|
case MVT::nxv1i1: return "MVT::nxv1i1";
|
|
case MVT::nxv2i1: return "MVT::nxv2i1";
|
|
case MVT::nxv4i1: return "MVT::nxv4i1";
|
|
case MVT::nxv8i1: return "MVT::nxv8i1";
|
|
case MVT::nxv16i1: return "MVT::nxv16i1";
|
|
case MVT::nxv32i1: return "MVT::nxv32i1";
|
|
case MVT::nxv1i8: return "MVT::nxv1i8";
|
|
case MVT::nxv2i8: return "MVT::nxv2i8";
|
|
case MVT::nxv4i8: return "MVT::nxv4i8";
|
|
case MVT::nxv8i8: return "MVT::nxv8i8";
|
|
case MVT::nxv16i8: return "MVT::nxv16i8";
|
|
case MVT::nxv32i8: return "MVT::nxv32i8";
|
|
case MVT::nxv1i16: return "MVT::nxv1i16";
|
|
case MVT::nxv2i16: return "MVT::nxv2i16";
|
|
case MVT::nxv4i16: return "MVT::nxv4i16";
|
|
case MVT::nxv8i16: return "MVT::nxv8i16";
|
|
case MVT::nxv16i16: return "MVT::nxv16i16";
|
|
case MVT::nxv32i16: return "MVT::nxv32i16";
|
|
case MVT::nxv1i32: return "MVT::nxv1i32";
|
|
case MVT::nxv2i32: return "MVT::nxv2i32";
|
|
case MVT::nxv4i32: return "MVT::nxv4i32";
|
|
case MVT::nxv8i32: return "MVT::nxv8i32";
|
|
case MVT::nxv16i32: return "MVT::nxv16i32";
|
|
case MVT::nxv1i64: return "MVT::nxv1i64";
|
|
case MVT::nxv2i64: return "MVT::nxv2i64";
|
|
case MVT::nxv4i64: return "MVT::nxv4i64";
|
|
case MVT::nxv8i64: return "MVT::nxv8i64";
|
|
case MVT::nxv16i64: return "MVT::nxv16i64";
|
|
case MVT::nxv2f16: return "MVT::nxv2f16";
|
|
case MVT::nxv4f16: return "MVT::nxv4f16";
|
|
case MVT::nxv8f16: return "MVT::nxv8f16";
|
|
case MVT::nxv1f32: return "MVT::nxv1f32";
|
|
case MVT::nxv2f32: return "MVT::nxv2f32";
|
|
case MVT::nxv4f32: return "MVT::nxv4f32";
|
|
case MVT::nxv8f32: return "MVT::nxv8f32";
|
|
case MVT::nxv16f32: return "MVT::nxv16f32";
|
|
case MVT::nxv1f64: return "MVT::nxv1f64";
|
|
case MVT::nxv2f64: return "MVT::nxv2f64";
|
|
case MVT::nxv4f64: return "MVT::nxv4f64";
|
|
case MVT::nxv8f64: return "MVT::nxv8f64";
|
|
case MVT::token: return "MVT::token";
|
|
case MVT::Metadata: return "MVT::Metadata";
|
|
case MVT::iPTR: return "MVT::iPTR";
|
|
case MVT::iPTRAny: return "MVT::iPTRAny";
|
|
case MVT::Untyped: return "MVT::Untyped";
|
|
case MVT::exnref: return "MVT::exnref";
|
|
default: llvm_unreachable("ILLEGAL VALUE TYPE!");
|
|
}
|
|
}
|
|
|
|
/// getQualifiedName - Return the name of the specified record, with a
|
|
/// namespace qualifier if the record contains one.
|
|
///
|
|
std::string llvm::getQualifiedName(const Record *R) {
|
|
std::string Namespace;
|
|
if (R->getValue("Namespace"))
|
|
Namespace = R->getValueAsString("Namespace");
|
|
if (Namespace.empty()) return R->getName();
|
|
return Namespace + "::" + R->getName().str();
|
|
}
|
|
|
|
|
|
/// getTarget - Return the current instance of the Target class.
|
|
///
|
|
CodeGenTarget::CodeGenTarget(RecordKeeper &records)
|
|
: Records(records), CGH(records) {
|
|
std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
|
|
if (Targets.size() == 0)
|
|
PrintFatalError("ERROR: No 'Target' subclasses defined!");
|
|
if (Targets.size() != 1)
|
|
PrintFatalError("ERROR: Multiple subclasses of Target defined!");
|
|
TargetRec = Targets[0];
|
|
}
|
|
|
|
CodeGenTarget::~CodeGenTarget() {
|
|
}
|
|
|
|
const StringRef CodeGenTarget::getName() const {
|
|
return TargetRec->getName();
|
|
}
|
|
|
|
StringRef CodeGenTarget::getInstNamespace() const {
|
|
for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) {
|
|
// Make sure not to pick up "TargetOpcode" by accidentally getting
|
|
// the namespace off the PHI instruction or something.
|
|
if (Inst->Namespace != "TargetOpcode")
|
|
return Inst->Namespace;
|
|
}
|
|
|
|
return "";
|
|
}
|
|
|
|
Record *CodeGenTarget::getInstructionSet() const {
|
|
return TargetRec->getValueAsDef("InstructionSet");
|
|
}
|
|
|
|
bool CodeGenTarget::getAllowRegisterRenaming() const {
|
|
return TargetRec->getValueAsInt("AllowRegisterRenaming");
|
|
}
|
|
|
|
/// getAsmParser - Return the AssemblyParser definition for this target.
|
|
///
|
|
Record *CodeGenTarget::getAsmParser() const {
|
|
std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
|
|
if (AsmParserNum >= LI.size())
|
|
PrintFatalError("Target does not have an AsmParser #" +
|
|
Twine(AsmParserNum) + "!");
|
|
return LI[AsmParserNum];
|
|
}
|
|
|
|
/// getAsmParserVariant - Return the AssemblyParserVariant definition for
|
|
/// this target.
|
|
///
|
|
Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
|
|
std::vector<Record*> LI =
|
|
TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
|
|
if (i >= LI.size())
|
|
PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) +
|
|
"!");
|
|
return LI[i];
|
|
}
|
|
|
|
/// getAsmParserVariantCount - Return the AssemblyParserVariant definition
|
|
/// available for this target.
|
|
///
|
|
unsigned CodeGenTarget::getAsmParserVariantCount() const {
|
|
std::vector<Record*> LI =
|
|
TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
|
|
return LI.size();
|
|
}
|
|
|
|
/// getAsmWriter - Return the AssemblyWriter definition for this target.
|
|
///
|
|
Record *CodeGenTarget::getAsmWriter() const {
|
|
std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
|
|
if (AsmWriterNum >= LI.size())
|
|
PrintFatalError("Target does not have an AsmWriter #" +
|
|
Twine(AsmWriterNum) + "!");
|
|
return LI[AsmWriterNum];
|
|
}
|
|
|
|
CodeGenRegBank &CodeGenTarget::getRegBank() const {
|
|
if (!RegBank)
|
|
RegBank = std::make_unique<CodeGenRegBank>(Records, getHwModes());
|
|
return *RegBank;
|
|
}
|
|
|
|
Optional<CodeGenRegisterClass *>
|
|
CodeGenTarget::getSuperRegForSubReg(const ValueTypeByHwMode &ValueTy,
|
|
CodeGenRegBank &RegBank,
|
|
const CodeGenSubRegIndex *SubIdx) const {
|
|
std::vector<CodeGenRegisterClass *> Candidates;
|
|
auto &RegClasses = RegBank.getRegClasses();
|
|
|
|
// Try to find a register class which supports ValueTy, and also contains
|
|
// SubIdx.
|
|
for (CodeGenRegisterClass &RC : RegClasses) {
|
|
// Is there a subclass of this class which contains this subregister index?
|
|
CodeGenRegisterClass *SubClassWithSubReg = RC.getSubClassWithSubReg(SubIdx);
|
|
if (!SubClassWithSubReg)
|
|
continue;
|
|
|
|
// We have a class. Check if it supports this value type.
|
|
if (llvm::none_of(SubClassWithSubReg->VTs,
|
|
[&ValueTy](const ValueTypeByHwMode &ClassVT) {
|
|
return ClassVT == ValueTy;
|
|
}))
|
|
continue;
|
|
|
|
// We have a register class which supports both the value type and
|
|
// subregister index. Remember it.
|
|
Candidates.push_back(SubClassWithSubReg);
|
|
}
|
|
|
|
// If we didn't find anything, we're done.
|
|
if (Candidates.empty())
|
|
return None;
|
|
|
|
// Find and return the largest of our candidate classes.
|
|
llvm::stable_sort(Candidates, [&](const CodeGenRegisterClass *A,
|
|
const CodeGenRegisterClass *B) {
|
|
if (A->getMembers().size() > B->getMembers().size())
|
|
return true;
|
|
|
|
if (A->getMembers().size() < B->getMembers().size())
|
|
return false;
|
|
|
|
// Order by name as a tie-breaker.
|
|
return StringRef(A->getName()) < B->getName();
|
|
});
|
|
|
|
return Candidates[0];
|
|
}
|
|
|
|
void CodeGenTarget::ReadRegAltNameIndices() const {
|
|
RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
|
|
llvm::sort(RegAltNameIndices, LessRecord());
|
|
}
|
|
|
|
/// getRegisterByName - If there is a register with the specific AsmName,
|
|
/// return it.
|
|
const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
|
|
const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName();
|
|
StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name);
|
|
if (I == Regs.end())
|
|
return nullptr;
|
|
return I->second;
|
|
}
|
|
|
|
std::vector<ValueTypeByHwMode> CodeGenTarget::getRegisterVTs(Record *R)
|
|
const {
|
|
const CodeGenRegister *Reg = getRegBank().getReg(R);
|
|
std::vector<ValueTypeByHwMode> Result;
|
|
for (const auto &RC : getRegBank().getRegClasses()) {
|
|
if (RC.contains(Reg)) {
|
|
ArrayRef<ValueTypeByHwMode> InVTs = RC.getValueTypes();
|
|
Result.insert(Result.end(), InVTs.begin(), InVTs.end());
|
|
}
|
|
}
|
|
|
|
// Remove duplicates.
|
|
llvm::sort(Result);
|
|
Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
|
|
return Result;
|
|
}
|
|
|
|
|
|
void CodeGenTarget::ReadLegalValueTypes() const {
|
|
for (const auto &RC : getRegBank().getRegClasses())
|
|
LegalValueTypes.insert(LegalValueTypes.end(), RC.VTs.begin(), RC.VTs.end());
|
|
|
|
// Remove duplicates.
|
|
llvm::sort(LegalValueTypes);
|
|
LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
|
|
LegalValueTypes.end()),
|
|
LegalValueTypes.end());
|
|
}
|
|
|
|
CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
|
|
if (!SchedModels)
|
|
SchedModels = std::make_unique<CodeGenSchedModels>(Records, *this);
|
|
return *SchedModels;
|
|
}
|
|
|
|
void CodeGenTarget::ReadInstructions() const {
|
|
NamedRegionTimer T("Read Instructions", "Time spent reading instructions",
|
|
"CodeGenTarget", "CodeGenTarget", TimeRegions);
|
|
std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
|
|
if (Insts.size() <= 2)
|
|
PrintFatalError("No 'Instruction' subclasses defined!");
|
|
|
|
// Parse the instructions defined in the .td file.
|
|
for (unsigned i = 0, e = Insts.size(); i != e; ++i)
|
|
Instructions[Insts[i]] = std::make_unique<CodeGenInstruction>(Insts[i]);
|
|
}
|
|
|
|
static const CodeGenInstruction *
|
|
GetInstByName(const char *Name,
|
|
const DenseMap<const Record*,
|
|
std::unique_ptr<CodeGenInstruction>> &Insts,
|
|
RecordKeeper &Records) {
|
|
const Record *Rec = Records.getDef(Name);
|
|
|
|
const auto I = Insts.find(Rec);
|
|
if (!Rec || I == Insts.end())
|
|
PrintFatalError(Twine("Could not find '") + Name + "' instruction!");
|
|
return I->second.get();
|
|
}
|
|
|
|
static const char *const FixedInstrs[] = {
|
|
#define HANDLE_TARGET_OPCODE(OPC) #OPC,
|
|
#include "llvm/Support/TargetOpcodes.def"
|
|
nullptr};
|
|
|
|
unsigned CodeGenTarget::getNumFixedInstructions() {
|
|
return array_lengthof(FixedInstrs) - 1;
|
|
}
|
|
|
|
/// Return all of the instructions defined by the target, ordered by
|
|
/// their enum value.
|
|
void CodeGenTarget::ComputeInstrsByEnum() const {
|
|
const auto &Insts = getInstructions();
|
|
for (const char *const *p = FixedInstrs; *p; ++p) {
|
|
const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
|
|
assert(Instr && "Missing target independent instruction");
|
|
assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
|
|
InstrsByEnum.push_back(Instr);
|
|
}
|
|
unsigned EndOfPredefines = InstrsByEnum.size();
|
|
assert(EndOfPredefines == getNumFixedInstructions() &&
|
|
"Missing generic opcode");
|
|
|
|
for (const auto &I : Insts) {
|
|
const CodeGenInstruction *CGI = I.second.get();
|
|
if (CGI->Namespace != "TargetOpcode") {
|
|
InstrsByEnum.push_back(CGI);
|
|
if (CGI->TheDef->getValueAsBit("isPseudo"))
|
|
++NumPseudoInstructions;
|
|
}
|
|
}
|
|
|
|
assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");
|
|
|
|
// All of the instructions are now in random order based on the map iteration.
|
|
llvm::sort(
|
|
InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(),
|
|
[](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) {
|
|
const auto &D1 = *Rec1->TheDef;
|
|
const auto &D2 = *Rec2->TheDef;
|
|
return std::make_tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) <
|
|
std::make_tuple(!D2.getValueAsBit("isPseudo"), D2.getName());
|
|
});
|
|
}
|
|
|
|
|
|
/// isLittleEndianEncoding - Return whether this target encodes its instruction
|
|
/// in little-endian format, i.e. bits laid out in the order [0..n]
|
|
///
|
|
bool CodeGenTarget::isLittleEndianEncoding() const {
|
|
return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
|
|
}
|
|
|
|
/// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
|
|
/// encodings, reverse the bit order of all instructions.
|
|
void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
|
|
if (!isLittleEndianEncoding())
|
|
return;
|
|
|
|
std::vector<Record *> Insts =
|
|
Records.getAllDerivedDefinitions("InstructionEncoding");
|
|
for (Record *R : Insts) {
|
|
if (R->getValueAsString("Namespace") == "TargetOpcode" ||
|
|
R->getValueAsBit("isPseudo"))
|
|
continue;
|
|
|
|
BitsInit *BI = R->getValueAsBitsInit("Inst");
|
|
|
|
unsigned numBits = BI->getNumBits();
|
|
|
|
SmallVector<Init *, 16> NewBits(numBits);
|
|
|
|
for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) {
|
|
unsigned bitSwapIdx = numBits - bit - 1;
|
|
Init *OrigBit = BI->getBit(bit);
|
|
Init *BitSwap = BI->getBit(bitSwapIdx);
|
|
NewBits[bit] = BitSwap;
|
|
NewBits[bitSwapIdx] = OrigBit;
|
|
}
|
|
if (numBits % 2) {
|
|
unsigned middle = (numBits + 1) / 2;
|
|
NewBits[middle] = BI->getBit(middle);
|
|
}
|
|
|
|
BitsInit *NewBI = BitsInit::get(NewBits);
|
|
|
|
// Update the bits in reversed order so that emitInstrOpBits will get the
|
|
// correct endianness.
|
|
R->getValue("Inst")->setValue(NewBI);
|
|
}
|
|
}
|
|
|
|
/// guessInstructionProperties - Return true if it's OK to guess instruction
|
|
/// properties instead of raising an error.
|
|
///
|
|
/// This is configurable as a temporary migration aid. It will eventually be
|
|
/// permanently false.
|
|
bool CodeGenTarget::guessInstructionProperties() const {
|
|
return getInstructionSet()->getValueAsBit("guessInstructionProperties");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ComplexPattern implementation
|
|
//
|
|
ComplexPattern::ComplexPattern(Record *R) {
|
|
Ty = ::getValueType(R->getValueAsDef("Ty"));
|
|
NumOperands = R->getValueAsInt("NumOperands");
|
|
SelectFunc = R->getValueAsString("SelectFunc");
|
|
RootNodes = R->getValueAsListOfDefs("RootNodes");
|
|
|
|
// FIXME: This is a hack to statically increase the priority of patterns which
|
|
// maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best
|
|
// possible pattern match we'll need to dynamically calculate the complexity
|
|
// of all patterns a dag can potentially map to.
|
|
int64_t RawComplexity = R->getValueAsInt("Complexity");
|
|
if (RawComplexity == -1)
|
|
Complexity = NumOperands * 3;
|
|
else
|
|
Complexity = RawComplexity;
|
|
|
|
// FIXME: Why is this different from parseSDPatternOperatorProperties?
|
|
// Parse the properties.
|
|
Properties = 0;
|
|
std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
|
|
for (unsigned i = 0, e = PropList.size(); i != e; ++i)
|
|
if (PropList[i]->getName() == "SDNPHasChain") {
|
|
Properties |= 1 << SDNPHasChain;
|
|
} else if (PropList[i]->getName() == "SDNPOptInGlue") {
|
|
Properties |= 1 << SDNPOptInGlue;
|
|
} else if (PropList[i]->getName() == "SDNPMayStore") {
|
|
Properties |= 1 << SDNPMayStore;
|
|
} else if (PropList[i]->getName() == "SDNPMayLoad") {
|
|
Properties |= 1 << SDNPMayLoad;
|
|
} else if (PropList[i]->getName() == "SDNPSideEffect") {
|
|
Properties |= 1 << SDNPSideEffect;
|
|
} else if (PropList[i]->getName() == "SDNPMemOperand") {
|
|
Properties |= 1 << SDNPMemOperand;
|
|
} else if (PropList[i]->getName() == "SDNPVariadic") {
|
|
Properties |= 1 << SDNPVariadic;
|
|
} else if (PropList[i]->getName() == "SDNPWantRoot") {
|
|
Properties |= 1 << SDNPWantRoot;
|
|
} else if (PropList[i]->getName() == "SDNPWantParent") {
|
|
Properties |= 1 << SDNPWantParent;
|
|
} else {
|
|
PrintFatalError(R->getLoc(), "Unsupported SD Node property '" +
|
|
PropList[i]->getName() +
|
|
"' on ComplexPattern '" + R->getName() +
|
|
"'!");
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CodeGenIntrinsic Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC) {
|
|
std::vector<Record*> Defs = RC.getAllDerivedDefinitions("Intrinsic");
|
|
|
|
Intrinsics.reserve(Defs.size());
|
|
|
|
for (unsigned I = 0, e = Defs.size(); I != e; ++I)
|
|
Intrinsics.push_back(CodeGenIntrinsic(Defs[I]));
|
|
|
|
llvm::sort(Intrinsics,
|
|
[](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) {
|
|
return std::tie(LHS.TargetPrefix, LHS.Name) <
|
|
std::tie(RHS.TargetPrefix, RHS.Name);
|
|
});
|
|
Targets.push_back({"", 0, 0});
|
|
for (size_t I = 0, E = Intrinsics.size(); I < E; ++I)
|
|
if (Intrinsics[I].TargetPrefix != Targets.back().Name) {
|
|
Targets.back().Count = I - Targets.back().Offset;
|
|
Targets.push_back({Intrinsics[I].TargetPrefix, I, 0});
|
|
}
|
|
Targets.back().Count = Intrinsics.size() - Targets.back().Offset;
|
|
}
|
|
|
|
CodeGenIntrinsic::CodeGenIntrinsic(Record *R) {
|
|
TheDef = R;
|
|
std::string DefName = R->getName();
|
|
ArrayRef<SMLoc> DefLoc = R->getLoc();
|
|
ModRef = ReadWriteMem;
|
|
Properties = 0;
|
|
isOverloaded = false;
|
|
isCommutative = false;
|
|
canThrow = false;
|
|
isNoReturn = false;
|
|
isWillReturn = false;
|
|
isCold = false;
|
|
isNoDuplicate = false;
|
|
isConvergent = false;
|
|
isSpeculatable = false;
|
|
hasSideEffects = false;
|
|
|
|
if (DefName.size() <= 4 ||
|
|
std::string(DefName.begin(), DefName.begin() + 4) != "int_")
|
|
PrintFatalError(DefLoc,
|
|
"Intrinsic '" + DefName + "' does not start with 'int_'!");
|
|
|
|
EnumName = std::string(DefName.begin()+4, DefName.end());
|
|
|
|
if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field.
|
|
GCCBuiltinName = R->getValueAsString("GCCBuiltinName");
|
|
if (R->getValue("MSBuiltinName")) // Ignore a missing MSBuiltinName field.
|
|
MSBuiltinName = R->getValueAsString("MSBuiltinName");
|
|
|
|
TargetPrefix = R->getValueAsString("TargetPrefix");
|
|
Name = R->getValueAsString("LLVMName");
|
|
|
|
if (Name == "") {
|
|
// If an explicit name isn't specified, derive one from the DefName.
|
|
Name = "llvm.";
|
|
|
|
for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
|
|
Name += (EnumName[i] == '_') ? '.' : EnumName[i];
|
|
} else {
|
|
// Verify it starts with "llvm.".
|
|
if (Name.size() <= 5 ||
|
|
std::string(Name.begin(), Name.begin() + 5) != "llvm.")
|
|
PrintFatalError(DefLoc, "Intrinsic '" + DefName +
|
|
"'s name does not start with 'llvm.'!");
|
|
}
|
|
|
|
// If TargetPrefix is specified, make sure that Name starts with
|
|
// "llvm.<targetprefix>.".
|
|
if (!TargetPrefix.empty()) {
|
|
if (Name.size() < 6+TargetPrefix.size() ||
|
|
std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
|
|
!= (TargetPrefix + "."))
|
|
PrintFatalError(DefLoc, "Intrinsic '" + DefName +
|
|
"' does not start with 'llvm." +
|
|
TargetPrefix + ".'!");
|
|
}
|
|
|
|
ListInit *RetTypes = R->getValueAsListInit("RetTypes");
|
|
ListInit *ParamTypes = R->getValueAsListInit("ParamTypes");
|
|
|
|
// First collate a list of overloaded types.
|
|
std::vector<MVT::SimpleValueType> OverloadedVTs;
|
|
for (ListInit *TypeList : {RetTypes, ParamTypes}) {
|
|
for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
|
|
Record *TyEl = TypeList->getElementAsRecord(i);
|
|
assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
|
|
|
|
if (TyEl->isSubClassOf("LLVMMatchType"))
|
|
continue;
|
|
|
|
MVT::SimpleValueType VT = getValueType(TyEl->getValueAsDef("VT"));
|
|
if (MVT(VT).isOverloaded()) {
|
|
OverloadedVTs.push_back(VT);
|
|
isOverloaded = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Parse the list of return types.
|
|
ListInit *TypeList = RetTypes;
|
|
for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
|
|
Record *TyEl = TypeList->getElementAsRecord(i);
|
|
assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
|
|
MVT::SimpleValueType VT;
|
|
if (TyEl->isSubClassOf("LLVMMatchType")) {
|
|
unsigned MatchTy = TyEl->getValueAsInt("Number");
|
|
assert(MatchTy < OverloadedVTs.size() &&
|
|
"Invalid matching number!");
|
|
VT = OverloadedVTs[MatchTy];
|
|
// It only makes sense to use the extended and truncated vector element
|
|
// variants with iAny types; otherwise, if the intrinsic is not
|
|
// overloaded, all the types can be specified directly.
|
|
assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
|
|
!TyEl->isSubClassOf("LLVMTruncatedType")) ||
|
|
VT == MVT::iAny || VT == MVT::vAny) &&
|
|
"Expected iAny or vAny type");
|
|
} else {
|
|
VT = getValueType(TyEl->getValueAsDef("VT"));
|
|
}
|
|
|
|
// Reject invalid types.
|
|
if (VT == MVT::isVoid)
|
|
PrintFatalError(DefLoc, "Intrinsic '" + DefName +
|
|
" has void in result type list!");
|
|
|
|
IS.RetVTs.push_back(VT);
|
|
IS.RetTypeDefs.push_back(TyEl);
|
|
}
|
|
|
|
// Parse the list of parameter types.
|
|
TypeList = ParamTypes;
|
|
for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
|
|
Record *TyEl = TypeList->getElementAsRecord(i);
|
|
assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
|
|
MVT::SimpleValueType VT;
|
|
if (TyEl->isSubClassOf("LLVMMatchType")) {
|
|
unsigned MatchTy = TyEl->getValueAsInt("Number");
|
|
if (MatchTy >= OverloadedVTs.size()) {
|
|
PrintError(R->getLoc(),
|
|
"Parameter #" + Twine(i) + " has out of bounds matching "
|
|
"number " + Twine(MatchTy));
|
|
PrintFatalError(DefLoc,
|
|
Twine("ParamTypes is ") + TypeList->getAsString());
|
|
}
|
|
VT = OverloadedVTs[MatchTy];
|
|
// It only makes sense to use the extended and truncated vector element
|
|
// variants with iAny types; otherwise, if the intrinsic is not
|
|
// overloaded, all the types can be specified directly.
|
|
assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
|
|
!TyEl->isSubClassOf("LLVMTruncatedType") &&
|
|
!TyEl->isSubClassOf("LLVMScalarOrSameVectorWidth")) ||
|
|
VT == MVT::iAny || VT == MVT::vAny) &&
|
|
"Expected iAny or vAny type");
|
|
} else
|
|
VT = getValueType(TyEl->getValueAsDef("VT"));
|
|
|
|
// Reject invalid types.
|
|
if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
|
|
PrintFatalError(DefLoc, "Intrinsic '" + DefName +
|
|
" has void in result type list!");
|
|
|
|
IS.ParamVTs.push_back(VT);
|
|
IS.ParamTypeDefs.push_back(TyEl);
|
|
}
|
|
|
|
// Parse the intrinsic properties.
|
|
ListInit *PropList = R->getValueAsListInit("IntrProperties");
|
|
for (unsigned i = 0, e = PropList->size(); i != e; ++i) {
|
|
Record *Property = PropList->getElementAsRecord(i);
|
|
assert(Property->isSubClassOf("IntrinsicProperty") &&
|
|
"Expected a property!");
|
|
|
|
if (Property->getName() == "IntrNoMem")
|
|
ModRef = NoMem;
|
|
else if (Property->getName() == "IntrReadMem")
|
|
ModRef = ModRefBehavior(ModRef & ~MR_Mod);
|
|
else if (Property->getName() == "IntrWriteMem")
|
|
ModRef = ModRefBehavior(ModRef & ~MR_Ref);
|
|
else if (Property->getName() == "IntrArgMemOnly")
|
|
ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem);
|
|
else if (Property->getName() == "IntrInaccessibleMemOnly")
|
|
ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_InaccessibleMem);
|
|
else if (Property->getName() == "IntrInaccessibleMemOrArgMemOnly")
|
|
ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem |
|
|
MR_InaccessibleMem);
|
|
else if (Property->getName() == "Commutative")
|
|
isCommutative = true;
|
|
else if (Property->getName() == "Throws")
|
|
canThrow = true;
|
|
else if (Property->getName() == "IntrNoDuplicate")
|
|
isNoDuplicate = true;
|
|
else if (Property->getName() == "IntrConvergent")
|
|
isConvergent = true;
|
|
else if (Property->getName() == "IntrNoReturn")
|
|
isNoReturn = true;
|
|
else if (Property->getName() == "IntrWillReturn")
|
|
isWillReturn = true;
|
|
else if (Property->getName() == "IntrCold")
|
|
isCold = true;
|
|
else if (Property->getName() == "IntrSpeculatable")
|
|
isSpeculatable = true;
|
|
else if (Property->getName() == "IntrHasSideEffects")
|
|
hasSideEffects = true;
|
|
else if (Property->isSubClassOf("NoCapture")) {
|
|
unsigned ArgNo = Property->getValueAsInt("ArgNo");
|
|
ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture));
|
|
} else if (Property->isSubClassOf("NoAlias")) {
|
|
unsigned ArgNo = Property->getValueAsInt("ArgNo");
|
|
ArgumentAttributes.push_back(std::make_pair(ArgNo, NoAlias));
|
|
} else if (Property->isSubClassOf("Returned")) {
|
|
unsigned ArgNo = Property->getValueAsInt("ArgNo");
|
|
ArgumentAttributes.push_back(std::make_pair(ArgNo, Returned));
|
|
} else if (Property->isSubClassOf("ReadOnly")) {
|
|
unsigned ArgNo = Property->getValueAsInt("ArgNo");
|
|
ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly));
|
|
} else if (Property->isSubClassOf("WriteOnly")) {
|
|
unsigned ArgNo = Property->getValueAsInt("ArgNo");
|
|
ArgumentAttributes.push_back(std::make_pair(ArgNo, WriteOnly));
|
|
} else if (Property->isSubClassOf("ReadNone")) {
|
|
unsigned ArgNo = Property->getValueAsInt("ArgNo");
|
|
ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone));
|
|
} else if (Property->isSubClassOf("ImmArg")) {
|
|
unsigned ArgNo = Property->getValueAsInt("ArgNo");
|
|
ArgumentAttributes.push_back(std::make_pair(ArgNo, ImmArg));
|
|
} else
|
|
llvm_unreachable("Unknown property!");
|
|
}
|
|
|
|
// Also record the SDPatternOperator Properties.
|
|
Properties = parseSDPatternOperatorProperties(R);
|
|
|
|
// Sort the argument attributes for later benefit.
|
|
llvm::sort(ArgumentAttributes);
|
|
}
|
|
|
|
bool CodeGenIntrinsic::isParamAPointer(unsigned ParamIdx) const {
|
|
if (ParamIdx >= IS.ParamVTs.size())
|
|
return false;
|
|
MVT ParamType = MVT(IS.ParamVTs[ParamIdx]);
|
|
return ParamType == MVT::iPTR || ParamType == MVT::iPTRAny;
|
|
}
|
|
|
|
bool CodeGenIntrinsic::isParamImmArg(unsigned ParamIdx) const {
|
|
std::pair<unsigned, ArgAttribute> Val = {ParamIdx, ImmArg};
|
|
return std::binary_search(ArgumentAttributes.begin(),
|
|
ArgumentAttributes.end(), Val);
|
|
}
|