llvm-project/mlir/lib/Transforms/LoopInvariantCodeMotion.cpp

126 lines
4.6 KiB
C++

//===- LoopInvariantCodeMotion.cpp - Code to perform loop fusion-----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements loop invariant code motion.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Transforms/Passes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/Interfaces/LoopLikeInterface.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Transforms/LoopUtils.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "licm"
using namespace mlir;
namespace {
/// Loop invariant code motion (LICM) pass.
struct LoopInvariantCodeMotion
: public LoopInvariantCodeMotionBase<LoopInvariantCodeMotion> {
void runOnOperation() override;
};
} // end anonymous namespace
// Checks whether the given op can be hoisted by checking that
// - the op and any of its contained operations do not depend on SSA values
// defined inside of the loop (by means of calling definedOutside).
// - the op has no side-effects. If sideEffecting is Never, sideeffects of this
// op and its nested ops are ignored.
static bool canBeHoisted(Operation *op,
function_ref<bool(Value)> definedOutside) {
// Check that dependencies are defined outside of loop.
if (!llvm::all_of(op->getOperands(), definedOutside))
return false;
// Check whether this op is side-effect free. If we already know that there
// can be no side-effects because the surrounding op has claimed so, we can
// (and have to) skip this step.
if (auto memInterface = dyn_cast<MemoryEffectOpInterface>(op)) {
if (!memInterface.hasNoEffect())
return false;
// If the operation doesn't have side effects and it doesn't recursively
// have side effects, it can always be hoisted.
if (!op->hasTrait<OpTrait::HasRecursiveSideEffects>())
return true;
// Otherwise, if the operation doesn't provide the memory effect interface
// and it doesn't have recursive side effects we treat it conservatively as
// side-effecting.
} else if (!op->hasTrait<OpTrait::HasRecursiveSideEffects>()) {
return false;
}
// Recurse into the regions for this op and check whether the contained ops
// can be hoisted.
for (auto &region : op->getRegions()) {
for (auto &block : region) {
for (auto &innerOp : block.without_terminator())
if (!canBeHoisted(&innerOp, definedOutside))
return false;
}
}
return true;
}
LogicalResult mlir::moveLoopInvariantCode(LoopLikeOpInterface looplike) {
auto &loopBody = looplike.getLoopBody();
// We use two collections here as we need to preserve the order for insertion
// and this is easiest.
SmallPtrSet<Operation *, 8> willBeMovedSet;
SmallVector<Operation *, 8> opsToMove;
// Helper to check whether an operation is loop invariant wrt. SSA properties.
auto isDefinedOutsideOfBody = [&](Value value) {
auto definingOp = value.getDefiningOp();
return (definingOp && !!willBeMovedSet.count(definingOp)) ||
looplike.isDefinedOutsideOfLoop(value);
};
// Do not use walk here, as we do not want to go into nested regions and hoist
// operations from there. These regions might have semantics unknown to this
// rewriting. If the nested regions are loops, they will have been processed.
for (auto &block : loopBody) {
for (auto &op : block.without_terminator()) {
if (canBeHoisted(&op, isDefinedOutsideOfBody)) {
opsToMove.push_back(&op);
willBeMovedSet.insert(&op);
}
}
}
// For all instructions that we found to be invariant, move outside of the
// loop.
auto result = looplike.moveOutOfLoop(opsToMove);
LLVM_DEBUG(looplike.print(llvm::dbgs() << "\n\nModified loop:\n"));
return result;
}
void LoopInvariantCodeMotion::runOnOperation() {
// Walk through all loops in a function in innermost-loop-first order. This
// way, we first LICM from the inner loop, and place the ops in
// the outer loop, which in turn can be further LICM'ed.
getOperation()->walk([&](LoopLikeOpInterface loopLike) {
LLVM_DEBUG(loopLike.print(llvm::dbgs() << "\nOriginal loop:\n"));
if (failed(moveLoopInvariantCode(loopLike)))
signalPassFailure();
});
}
std::unique_ptr<Pass> mlir::createLoopInvariantCodeMotionPass() {
return std::make_unique<LoopInvariantCodeMotion>();
}