forked from OSchip/llvm-project
318 lines
14 KiB
TableGen
318 lines
14 KiB
TableGen
//===-- MipsCallingConv.td - Calling Conventions for Mips --*- tablegen -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
// This describes the calling conventions for Mips architecture.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// CCIfSubtarget - Match if the current subtarget has a feature F.
|
|
class CCIfSubtarget<string F, CCAction A, string Invert = "">
|
|
: CCIf<!strconcat(Invert,
|
|
"static_cast<const MipsSubtarget&>"
|
|
"(State.getMachineFunction().getSubtarget()).",
|
|
F),
|
|
A>;
|
|
|
|
// The inverse of CCIfSubtarget
|
|
class CCIfSubtargetNot<string F, CCAction A> : CCIfSubtarget<F, A, "!">;
|
|
|
|
// For soft-float, f128 values are returned in A0_64 rather than V1_64.
|
|
def RetCC_F128SoftFloat : CallingConv<[
|
|
CCAssignToReg<[V0_64, A0_64]>
|
|
]>;
|
|
|
|
// For hard-float, f128 values are returned as a pair of f64's rather than a
|
|
// pair of i64's.
|
|
def RetCC_F128HardFloat : CallingConv<[
|
|
CCBitConvertToType<f64>,
|
|
CCAssignToReg<[D0_64, D2_64]>
|
|
]>;
|
|
|
|
// Handle F128 specially since we can't identify the original type during the
|
|
// tablegen-erated code.
|
|
def RetCC_F128 : CallingConv<[
|
|
CCIfSubtarget<"abiUsesSoftFloat()",
|
|
CCIfType<[i64], CCDelegateTo<RetCC_F128SoftFloat>>>,
|
|
CCIfSubtargetNot<"abiUsesSoftFloat()",
|
|
CCIfType<[i64], CCDelegateTo<RetCC_F128HardFloat>>>
|
|
]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Mips O32 Calling Convention
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Only the return rules are defined here for O32. The rules for argument
|
|
// passing are defined in MipsISelLowering.cpp.
|
|
def RetCC_MipsO32 : CallingConv<[
|
|
// i32 are returned in registers V0, V1, A0, A1
|
|
CCIfType<[i32], CCAssignToReg<[V0, V1, A0, A1]>>,
|
|
|
|
// f32 are returned in registers F0, F2
|
|
CCIfType<[f32], CCAssignToReg<[F0, F2]>>,
|
|
|
|
// f64 arguments are returned in D0_64 and D2_64 in FP64bit mode or
|
|
// in D0 and D1 in FP32bit mode.
|
|
CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCAssignToReg<[D0_64, D2_64]>>>,
|
|
CCIfType<[f64], CCIfSubtargetNot<"isFP64bit()", CCAssignToReg<[D0, D1]>>>
|
|
]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Mips N32/64 Calling Convention
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def CC_MipsN : CallingConv<[
|
|
// Promote i8/i16 arguments to i32.
|
|
CCIfType<[i8, i16], CCPromoteToType<i32>>,
|
|
|
|
// Integer arguments are passed in integer registers.
|
|
CCIfType<[i32], CCAssignToRegWithShadow<[A0, A1, A2, A3,
|
|
T0, T1, T2, T3],
|
|
[F12, F13, F14, F15,
|
|
F16, F17, F18, F19]>>,
|
|
|
|
CCIfType<[i64], CCAssignToRegWithShadow<[A0_64, A1_64, A2_64, A3_64,
|
|
T0_64, T1_64, T2_64, T3_64],
|
|
[D12_64, D13_64, D14_64, D15_64,
|
|
D16_64, D17_64, D18_64, D19_64]>>,
|
|
|
|
// f32 arguments are passed in single precision FP registers.
|
|
CCIfType<[f32], CCAssignToRegWithShadow<[F12, F13, F14, F15,
|
|
F16, F17, F18, F19],
|
|
[A0_64, A1_64, A2_64, A3_64,
|
|
T0_64, T1_64, T2_64, T3_64]>>,
|
|
|
|
// f64 arguments are passed in double precision FP registers.
|
|
CCIfType<[f64], CCAssignToRegWithShadow<[D12_64, D13_64, D14_64, D15_64,
|
|
D16_64, D17_64, D18_64, D19_64],
|
|
[A0_64, A1_64, A2_64, A3_64,
|
|
T0_64, T1_64, T2_64, T3_64]>>,
|
|
|
|
// All stack parameter slots become 64-bit doublewords and are 8-byte aligned.
|
|
CCIfType<[i32, f32], CCAssignToStack<4, 8>>,
|
|
CCIfType<[i64, f64], CCAssignToStack<8, 8>>
|
|
]>;
|
|
|
|
// N32/64 variable arguments.
|
|
// All arguments are passed in integer registers.
|
|
def CC_MipsN_VarArg : CallingConv<[
|
|
// Promote i8/i16 arguments to i32.
|
|
CCIfType<[i8, i16], CCPromoteToType<i32>>,
|
|
|
|
CCIfType<[i32, f32], CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3]>>,
|
|
|
|
CCIfType<[i64, f64], CCAssignToReg<[A0_64, A1_64, A2_64, A3_64,
|
|
T0_64, T1_64, T2_64, T3_64]>>,
|
|
|
|
// All stack parameter slots become 64-bit doublewords and are 8-byte aligned.
|
|
CCIfType<[i32, f32], CCAssignToStack<4, 8>>,
|
|
CCIfType<[i64, f64], CCAssignToStack<8, 8>>
|
|
]>;
|
|
|
|
def RetCC_MipsN : CallingConv<[
|
|
// f128 needs to be handled similarly to f32 and f64. However, f128 is not
|
|
// legal and is lowered to i128 which is further lowered to a pair of i64's.
|
|
// This presents us with a problem for the calling convention since hard-float
|
|
// still needs to pass them in FPU registers, and soft-float needs to use $v0,
|
|
// and $a0 instead of the usual $v0, and $v1. We therefore resort to a
|
|
// pre-analyze (see PreAnalyzeReturnForF128()) step to pass information on
|
|
// whether the result was originally an f128 into the tablegen-erated code.
|
|
//
|
|
// f128 should only occur for the N64 ABI where long double is 128-bit. On
|
|
// N32, long double is equivalent to double.
|
|
CCIfType<[i64],
|
|
CCIf<"static_cast<MipsCCState *>(&State)->WasOriginalArgF128(ValNo)",
|
|
CCDelegateTo<RetCC_F128>>>,
|
|
|
|
// Aggregate returns are positioned at the lowest address in the slot for
|
|
// both little and big-endian targets. When passing in registers, this
|
|
// requires that big-endian targets shift the value into the upper bits.
|
|
CCIfSubtarget<"isLittle()",
|
|
CCIfType<[i8, i16, i32], CCIfInReg<CCPromoteToType<i64>>>>,
|
|
CCIfSubtargetNot<"isLittle()",
|
|
CCIfType<[i8, i16, i32], CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>,
|
|
|
|
// i32 are returned in registers V0, V1
|
|
CCIfType<[i32], CCAssignToReg<[V0, V1]>>,
|
|
|
|
// i64 are returned in registers V0_64, V1_64
|
|
CCIfType<[i64], CCAssignToReg<[V0_64, V1_64]>>,
|
|
|
|
// f32 are returned in registers F0, F2
|
|
CCIfType<[f32], CCAssignToReg<[F0, F2]>>,
|
|
|
|
// f64 are returned in registers D0, D2
|
|
CCIfType<[f64], CCAssignToReg<[D0_64, D2_64]>>
|
|
]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Mips EABI Calling Convention
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def CC_MipsEABI : CallingConv<[
|
|
// Promote i8/i16 arguments to i32.
|
|
CCIfType<[i8, i16], CCPromoteToType<i32>>,
|
|
|
|
// Integer arguments are passed in integer registers.
|
|
CCIfType<[i32], CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3]>>,
|
|
|
|
// Single fp arguments are passed in pairs within 32-bit mode
|
|
CCIfType<[f32], CCIfSubtarget<"isSingleFloat()",
|
|
CCAssignToReg<[F12, F13, F14, F15, F16, F17, F18, F19]>>>,
|
|
|
|
CCIfType<[f32], CCIfSubtargetNot<"isSingleFloat()",
|
|
CCAssignToReg<[F12, F14, F16, F18]>>>,
|
|
|
|
// The first 4 double fp arguments are passed in single fp registers.
|
|
CCIfType<[f64], CCIfSubtargetNot<"isSingleFloat()",
|
|
CCAssignToReg<[D6, D7, D8, D9]>>>,
|
|
|
|
// Integer values get stored in stack slots that are 4 bytes in
|
|
// size and 4-byte aligned.
|
|
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
|
|
|
|
// Integer values get stored in stack slots that are 8 bytes in
|
|
// size and 8-byte aligned.
|
|
CCIfType<[f64], CCIfSubtargetNot<"isSingleFloat()", CCAssignToStack<8, 8>>>
|
|
]>;
|
|
|
|
def RetCC_MipsEABI : CallingConv<[
|
|
// i32 are returned in registers V0, V1
|
|
CCIfType<[i32], CCAssignToReg<[V0, V1]>>,
|
|
|
|
// f32 are returned in registers F0, F1
|
|
CCIfType<[f32], CCAssignToReg<[F0, F1]>>,
|
|
|
|
// f64 are returned in register D0
|
|
CCIfType<[f64], CCIfSubtargetNot<"isSingleFloat()", CCAssignToReg<[D0]>>>
|
|
]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Mips FastCC Calling Convention
|
|
//===----------------------------------------------------------------------===//
|
|
def CC_MipsO32_FastCC : CallingConv<[
|
|
// f64 arguments are passed in double-precision floating pointer registers.
|
|
CCIfType<[f64], CCIfSubtargetNot<"isFP64bit()",
|
|
CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6,
|
|
D7, D8, D9]>>>,
|
|
CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCIfSubtarget<"useOddSPReg()",
|
|
CCAssignToReg<[D0_64, D1_64, D2_64, D3_64,
|
|
D4_64, D5_64, D6_64, D7_64,
|
|
D8_64, D9_64, D10_64, D11_64,
|
|
D12_64, D13_64, D14_64, D15_64,
|
|
D16_64, D17_64, D18_64,
|
|
D19_64]>>>>,
|
|
CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCIfSubtarget<"noOddSPReg()",
|
|
CCAssignToReg<[D0_64, D2_64, D4_64, D6_64,
|
|
D8_64, D10_64, D12_64, D14_64,
|
|
D16_64, D18_64]>>>>,
|
|
|
|
// Stack parameter slots for f64 are 64-bit doublewords and 8-byte aligned.
|
|
CCIfType<[f64], CCAssignToStack<8, 8>>
|
|
]>;
|
|
|
|
def CC_MipsN_FastCC : CallingConv<[
|
|
// Integer arguments are passed in integer registers.
|
|
CCIfType<[i64], CCAssignToReg<[A0_64, A1_64, A2_64, A3_64, T0_64, T1_64,
|
|
T2_64, T3_64, T4_64, T5_64, T6_64, T7_64,
|
|
T8_64, V1_64]>>,
|
|
|
|
// f64 arguments are passed in double-precision floating pointer registers.
|
|
CCIfType<[f64], CCAssignToReg<[D0_64, D1_64, D2_64, D3_64, D4_64, D5_64,
|
|
D6_64, D7_64, D8_64, D9_64, D10_64, D11_64,
|
|
D12_64, D13_64, D14_64, D15_64, D16_64, D17_64,
|
|
D18_64, D19_64]>>,
|
|
|
|
// Stack parameter slots for i64 and f64 are 64-bit doublewords and
|
|
// 8-byte aligned.
|
|
CCIfType<[i64, f64], CCAssignToStack<8, 8>>
|
|
]>;
|
|
|
|
def CC_Mips_FastCC : CallingConv<[
|
|
// Handles byval parameters.
|
|
CCIfByVal<CCPassByVal<4, 4>>,
|
|
|
|
// Promote i8/i16 arguments to i32.
|
|
CCIfType<[i8, i16], CCPromoteToType<i32>>,
|
|
|
|
// Integer arguments are passed in integer registers. All scratch registers,
|
|
// except for AT, V0 and T9, are available to be used as argument registers.
|
|
CCIfType<[i32], CCIfSubtargetNot<"isTargetNaCl()",
|
|
CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, V1]>>>,
|
|
|
|
// In NaCl, T6, T7 and T8 are reserved and not available as argument
|
|
// registers for fastcc. T6 contains the mask for sandboxing control flow
|
|
// (indirect jumps and calls). T7 contains the mask for sandboxing memory
|
|
// accesses (loads and stores). T8 contains the thread pointer.
|
|
CCIfType<[i32], CCIfSubtarget<"isTargetNaCl()",
|
|
CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, V1]>>>,
|
|
|
|
// f32 arguments are passed in single-precision floating pointer registers.
|
|
CCIfType<[f32], CCIfSubtarget<"useOddSPReg()",
|
|
CCAssignToReg<[F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13,
|
|
F14, F15, F16, F17, F18, F19]>>>,
|
|
|
|
// Don't use odd numbered single-precision registers for -mno-odd-spreg.
|
|
CCIfType<[f32], CCIfSubtarget<"noOddSPReg()",
|
|
CCAssignToReg<[F0, F2, F4, F6, F8, F10, F12, F14, F16, F18]>>>,
|
|
|
|
// Stack parameter slots for i32 and f32 are 32-bit words and 4-byte aligned.
|
|
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
|
|
|
|
CCIfSubtarget<"isABI_EABI()", CCDelegateTo<CC_MipsEABI>>,
|
|
CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FastCC>>,
|
|
CCDelegateTo<CC_MipsN_FastCC>
|
|
]>;
|
|
|
|
//==
|
|
|
|
def CC_Mips16RetHelper : CallingConv<[
|
|
// Integer arguments are passed in integer registers.
|
|
CCIfType<[i32], CCAssignToReg<[V0, V1, A0, A1]>>
|
|
]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Mips Calling Convention Dispatch
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def RetCC_Mips : CallingConv<[
|
|
CCIfSubtarget<"isABI_EABI()", CCDelegateTo<RetCC_MipsEABI>>,
|
|
CCIfSubtarget<"isABI_N32()", CCDelegateTo<RetCC_MipsN>>,
|
|
CCIfSubtarget<"isABI_N64()", CCDelegateTo<RetCC_MipsN>>,
|
|
CCDelegateTo<RetCC_MipsO32>
|
|
]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Callee-saved register lists.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def CSR_SingleFloatOnly : CalleeSavedRegs<(add (sequence "F%u", 31, 20), RA, FP,
|
|
(sequence "S%u", 7, 0))>;
|
|
|
|
def CSR_O32_FPXX : CalleeSavedRegs<(add (sequence "D%u", 15, 10), RA, FP,
|
|
(sequence "S%u", 7, 0))> {
|
|
let OtherPreserved = (add (decimate (sequence "F%u", 30, 20), 2));
|
|
}
|
|
|
|
def CSR_O32 : CalleeSavedRegs<(add (sequence "D%u", 15, 10), RA, FP,
|
|
(sequence "S%u", 7, 0))>;
|
|
|
|
def CSR_O32_FP64 :
|
|
CalleeSavedRegs<(add (decimate (sequence "D%u_64", 30, 20), 2), RA, FP,
|
|
(sequence "S%u", 7, 0))>;
|
|
|
|
def CSR_N32 : CalleeSavedRegs<(add D20_64, D22_64, D24_64, D26_64, D28_64,
|
|
D30_64, RA_64, FP_64, GP_64,
|
|
(sequence "S%u_64", 7, 0))>;
|
|
|
|
def CSR_N64 : CalleeSavedRegs<(add (sequence "D%u_64", 31, 24), RA_64, FP_64,
|
|
GP_64, (sequence "S%u_64", 7, 0))>;
|
|
|
|
def CSR_Mips16RetHelper :
|
|
CalleeSavedRegs<(add V0, V1, FP,
|
|
(sequence "A%u", 3, 0), (sequence "S%u", 7, 0),
|
|
(sequence "D%u", 15, 10))>;
|