llvm-project/llvm/lib/ProfileData/SampleProfReader.cpp

239 lines
9.8 KiB
C++

//===- SampleProfReader.cpp - Read LLVM sample profile data ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the class that reads LLVM sample profiles. It
// supports two file formats: text and bitcode. The textual representation
// is useful for debugging and testing purposes. The bitcode representation
// is more compact, resulting in smaller file sizes. However, they can
// both be used interchangeably.
//
// NOTE: If you are making changes to the file format, please remember
// to document them in the Clang documentation at
// tools/clang/docs/UsersManual.rst.
//
// Text format
// -----------
//
// Sample profiles are written as ASCII text. The file is divided into
// sections, which correspond to each of the functions executed at runtime.
// Each section has the following format
//
// function1:total_samples:total_head_samples
// offset1[.discriminator]: number_of_samples [fn1:num fn2:num ... ]
// offset2[.discriminator]: number_of_samples [fn3:num fn4:num ... ]
// ...
// offsetN[.discriminator]: number_of_samples [fn5:num fn6:num ... ]
//
// The file may contain blank lines between sections and within a
// section. However, the spacing within a single line is fixed. Additional
// spaces will result in an error while reading the file.
//
// Function names must be mangled in order for the profile loader to
// match them in the current translation unit. The two numbers in the
// function header specify how many total samples were accumulated in the
// function (first number), and the total number of samples accumulated
// in the prologue of the function (second number). This head sample
// count provides an indicator of how frequently the function is invoked.
//
// Each sampled line may contain several items. Some are optional (marked
// below):
//
// a. Source line offset. This number represents the line number
// in the function where the sample was collected. The line number is
// always relative to the line where symbol of the function is
// defined. So, if the function has its header at line 280, the offset
// 13 is at line 293 in the file.
//
// Note that this offset should never be a negative number. This could
// happen in cases like macros. The debug machinery will register the
// line number at the point of macro expansion. So, if the macro was
// expanded in a line before the start of the function, the profile
// converter should emit a 0 as the offset (this means that the optimizers
// will not be able to associate a meaningful weight to the instructions
// in the macro).
//
// b. [OPTIONAL] Discriminator. This is used if the sampled program
// was compiled with DWARF discriminator support
// (http://wiki.dwarfstd.org/index.php?title=Path_Discriminators).
// DWARF discriminators are unsigned integer values that allow the
// compiler to distinguish between multiple execution paths on the
// same source line location.
//
// For example, consider the line of code ``if (cond) foo(); else bar();``.
// If the predicate ``cond`` is true 80% of the time, then the edge
// into function ``foo`` should be considered to be taken most of the
// time. But both calls to ``foo`` and ``bar`` are at the same source
// line, so a sample count at that line is not sufficient. The
// compiler needs to know which part of that line is taken more
// frequently.
//
// This is what discriminators provide. In this case, the calls to
// ``foo`` and ``bar`` will be at the same line, but will have
// different discriminator values. This allows the compiler to correctly
// set edge weights into ``foo`` and ``bar``.
//
// c. Number of samples. This is an integer quantity representing the
// number of samples collected by the profiler at this source
// location.
//
// d. [OPTIONAL] Potential call targets and samples. If present, this
// line contains a call instruction. This models both direct and
// number of samples. For example,
//
// 130: 7 foo:3 bar:2 baz:7
//
// The above means that at relative line offset 130 there is a call
// instruction that calls one of ``foo()``, ``bar()`` and ``baz()``,
// with ``baz()`` being the relatively more frequently called target.
//
//===----------------------------------------------------------------------===//
#include "llvm/ProfileData/SampleProfReader.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/LineIterator.h"
#include "llvm/Support/Regex.h"
using namespace sampleprof;
using namespace llvm;
/// \brief Print the samples collected for a function on stream \p OS.
///
/// \param OS Stream to emit the output to.
void FunctionSamples::print(raw_ostream &OS) {
OS << TotalSamples << ", " << TotalHeadSamples << ", " << BodySamples.size()
<< " sampled lines\n";
for (BodySampleMap::const_iterator SI = BodySamples.begin(),
SE = BodySamples.end();
SI != SE; ++SI)
OS << "\tline offset: " << SI->first.LineOffset
<< ", discriminator: " << SI->first.Discriminator
<< ", number of samples: " << SI->second << "\n";
OS << "\n";
}
/// \brief Print the function profile for \p FName on stream \p OS.
///
/// \param OS Stream to emit the output to.
/// \param FName Name of the function to print.
void SampleProfileReader::printFunctionProfile(raw_ostream &OS,
StringRef FName) {
OS << "Function: " << FName << ":\n";
Profiles[FName].print(OS);
}
/// \brief Dump the function profile for \p FName.
///
/// \param FName Name of the function to print.
void SampleProfileReader::dumpFunctionProfile(StringRef FName) {
printFunctionProfile(dbgs(), FName);
}
/// \brief Dump all the function profiles found.
void SampleProfileReader::dump() {
for (StringMap<FunctionSamples>::const_iterator I = Profiles.begin(),
E = Profiles.end();
I != E; ++I)
dumpFunctionProfile(I->getKey());
}
/// \brief Load samples from a text file.
///
/// See the documentation at the top of the file for an explanation of
/// the expected format.
///
/// \returns true if the file was loaded successfully, false otherwise.
bool SampleProfileReader::loadText() {
ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
MemoryBuffer::getFile(Filename);
if (std::error_code EC = BufferOrErr.getError()) {
std::string Msg(EC.message());
M.getContext().diagnose(DiagnosticInfoSampleProfile(Filename.data(), Msg));
return false;
}
MemoryBuffer &Buffer = *BufferOrErr.get();
line_iterator LineIt(Buffer, /*SkipBlanks=*/true, '#');
// Read the profile of each function. Since each function may be
// mentioned more than once, and we are collecting flat profiles,
// accumulate samples as we parse them.
Regex HeadRE("^([^0-9].*):([0-9]+):([0-9]+)$");
Regex LineSample("^([0-9]+)\\.?([0-9]+)?: ([0-9]+)(.*)$");
while (!LineIt.is_at_eof()) {
// Read the header of each function.
//
// Note that for function identifiers we are actually expecting
// mangled names, but we may not always get them. This happens when
// the compiler decides not to emit the function (e.g., it was inlined
// and removed). In this case, the binary will not have the linkage
// name for the function, so the profiler will emit the function's
// unmangled name, which may contain characters like ':' and '>' in its
// name (member functions, templates, etc).
//
// The only requirement we place on the identifier, then, is that it
// should not begin with a number.
SmallVector<StringRef, 3> Matches;
if (!HeadRE.match(*LineIt, &Matches)) {
reportParseError(LineIt.line_number(),
"Expected 'mangled_name:NUM:NUM', found " + *LineIt);
return false;
}
assert(Matches.size() == 4);
StringRef FName = Matches[1];
unsigned NumSamples, NumHeadSamples;
Matches[2].getAsInteger(10, NumSamples);
Matches[3].getAsInteger(10, NumHeadSamples);
Profiles[FName] = FunctionSamples();
FunctionSamples &FProfile = Profiles[FName];
FProfile.addTotalSamples(NumSamples);
FProfile.addHeadSamples(NumHeadSamples);
++LineIt;
// Now read the body. The body of the function ends when we reach
// EOF or when we see the start of the next function.
while (!LineIt.is_at_eof() && isdigit((*LineIt)[0])) {
if (!LineSample.match(*LineIt, &Matches)) {
reportParseError(
LineIt.line_number(),
"Expected 'NUM[.NUM]: NUM[ mangled_name:NUM]*', found " + *LineIt);
return false;
}
assert(Matches.size() == 5);
unsigned LineOffset, NumSamples, Discriminator = 0;
Matches[1].getAsInteger(10, LineOffset);
if (Matches[2] != "")
Matches[2].getAsInteger(10, Discriminator);
Matches[3].getAsInteger(10, NumSamples);
// FIXME: Handle called targets (in Matches[4]).
// When dealing with instruction weights, we use the value
// zero to indicate the absence of a sample. If we read an
// actual zero from the profile file, return it as 1 to
// avoid the confusion later on.
if (NumSamples == 0)
NumSamples = 1;
FProfile.addBodySamples(LineOffset, Discriminator, NumSamples);
++LineIt;
}
}
return true;
}
/// \brief Load execution samples from a file.
///
/// This function examines the header of the given file to determine
/// whether to use the text or the bitcode loader.
bool SampleProfileReader::load() {
// TODO Actually detect the file format.
return loadText();
}