llvm-project/lld/ELF/Arch/PPC64.cpp

294 lines
9.8 KiB
C++

//===- PPC64.cpp ----------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/Support/Endian.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
static uint64_t PPC64TocOffset = 0x8000;
uint64_t elf::getPPC64TocBase() {
// The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The
// TOC starts where the first of these sections starts. We always create a
// .got when we see a relocation that uses it, so for us the start is always
// the .got.
uint64_t TocVA = InX::Got->getVA();
// Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
// thus permitting a full 64 Kbytes segment. Note that the glibc startup
// code (crt1.o) assumes that you can get from the TOC base to the
// start of the .toc section with only a single (signed) 16-bit relocation.
return TocVA + PPC64TocOffset;
}
namespace {
class PPC64 final : public TargetInfo {
public:
PPC64();
uint32_t calcEFlags() const override;
RelExpr getRelExpr(RelType Type, const Symbol &S,
const uint8_t *Loc) const override;
void writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr,
int32_t Index, unsigned RelOff) const override;
void relocateOne(uint8_t *Loc, RelType Type, uint64_t Val) const override;
void writeGotHeader(uint8_t *Buf) const override;
};
} // namespace
// Relocation masks following the #lo(value), #hi(value), #ha(value),
// #higher(value), #highera(value), #highest(value), and #highesta(value)
// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
// document.
static uint16_t applyPPCLo(uint64_t V) { return V; }
static uint16_t applyPPCHi(uint64_t V) { return V >> 16; }
static uint16_t applyPPCHa(uint64_t V) { return (V + 0x8000) >> 16; }
static uint16_t applyPPCHigher(uint64_t V) { return V >> 32; }
static uint16_t applyPPCHighera(uint64_t V) { return (V + 0x8000) >> 32; }
static uint16_t applyPPCHighest(uint64_t V) { return V >> 48; }
static uint16_t applyPPCHighesta(uint64_t V) { return (V + 0x8000) >> 48; }
PPC64::PPC64() {
GotRel = R_PPC64_GLOB_DAT;
RelativeRel = R_PPC64_RELATIVE;
GotEntrySize = 8;
GotPltEntrySize = 8;
PltEntrySize = 32;
PltHeaderSize = 0;
GotBaseSymInGotPlt = false;
GotBaseSymOff = 0x8000;
if (Config->EKind == ELF64LEKind) {
GotHeaderEntriesNum = 1;
GotPltHeaderEntriesNum = 2;
PltRel = R_PPC64_JMP_SLOT;
} else {
PltRel = R_PPC64_GLOB_DAT;
}
// We need 64K pages (at least under glibc/Linux, the loader won't
// set different permissions on a finer granularity than that).
DefaultMaxPageSize = 65536;
// The PPC64 ELF ABI v1 spec, says:
//
// It is normally desirable to put segments with different characteristics
// in separate 256 Mbyte portions of the address space, to give the
// operating system full paging flexibility in the 64-bit address space.
//
// And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
// use 0x10000000 as the starting address.
DefaultImageBase = 0x10000000;
TrapInstr = 0x7fe00008;
}
static uint32_t getEFlags(InputFile *File) {
// Get the e_flag from the input file and if it is unspecified, then set it to
// the e_flag appropriate for the ABI.
// We are currently handling both ELF64LE and ELF64BE but eventually will
// remove BE support once v2 ABI support is complete.
switch (Config->EKind) {
case ELF64BEKind:
if (uint32_t EFlags =
cast<ObjFile<ELF64BE>>(File)->getObj().getHeader()->e_flags)
return EFlags;
return 1;
case ELF64LEKind:
if (uint32_t EFlags =
cast<ObjFile<ELF64LE>>(File)->getObj().getHeader()->e_flags)
return EFlags;
return 2;
default:
llvm_unreachable("unknown Config->EKind");
}
}
uint32_t PPC64::calcEFlags() const {
assert(!ObjectFiles.empty());
uint32_t Ret = getEFlags(ObjectFiles[0]);
// Verify that all input files have the same e_flags.
for (InputFile *F : makeArrayRef(ObjectFiles).slice(1)) {
if (Ret == getEFlags(F))
continue;
error("incompatible e_flags: " + toString(F));
return 0;
}
return Ret;
}
RelExpr PPC64::getRelExpr(RelType Type, const Symbol &S,
const uint8_t *Loc) const {
switch (Type) {
case R_PPC64_TOC16:
case R_PPC64_TOC16_DS:
case R_PPC64_TOC16_HA:
case R_PPC64_TOC16_HI:
case R_PPC64_TOC16_LO:
case R_PPC64_TOC16_LO_DS:
return R_GOTREL;
case R_PPC64_TOC:
return R_PPC_TOC;
case R_PPC64_REL24:
return R_PPC_PLT_OPD;
case R_PPC64_REL16_LO:
case R_PPC64_REL16_HA:
return R_PC;
default:
return R_ABS;
}
}
void PPC64::writeGotHeader(uint8_t *Buf) const {
if (Config->EKind == ELF64LEKind)
write64(Buf, getPPC64TocBase());
}
void PPC64::writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr,
uint64_t PltEntryAddr, int32_t Index,
unsigned RelOff) const {
uint64_t Off = GotPltEntryAddr - getPPC64TocBase();
if (Config->EKind == ELF64LEKind) {
// The most-common form of the plt stub. This assumes that the toc-pointer
// register is properly initalized, and that the stub must save the toc
// pointer value to the stack-save slot reserved for it (sp + 24).
// There are 2 other variants but we don't have to emit those until we add
// support for R_PPC64_REL24_NOTOC and R_PPC64_TOCSAVE relocations.
// We are missing a super simple optimization, where if the upper 16 bits of
// the offset are zero, then we can omit the addis instruction, and load
// r2 + lo-offset directly into r12. I decided to leave this out in the
// spirit of keeping it simple until we can link actual non-trivial
// programs.
write32(Buf + 0, 0xf8410018); // std r2,24(r1)
write32(Buf + 4, 0x3d820000 | applyPPCHa(Off)); // addis r12,r2, X@plt@to@ha
write32(Buf + 8, 0xe98c0000 | applyPPCLo(Off)); // ld r12,X@plt@toc@l(r12)
write32(Buf + 12, 0x7d8903a6); // mtctr r12
write32(Buf + 16, 0x4e800420); // bctr
} else {
// FIXME: What we should do, in theory, is get the offset of the function
// descriptor in the .opd section, and use that as the offset from %r2 (the
// TOC-base pointer). Instead, we have the GOT-entry offset, and that will
// be a pointer to the function descriptor in the .opd section. Using
// this scheme is simpler, but requires an extra indirection per PLT dispatch.
write32(Buf, 0xf8410028); // std %r2, 40(%r1)
write32(Buf + 4, 0x3d620000 | applyPPCHa(Off)); // addis %r11, %r2, X@ha
write32(Buf + 8, 0xe98b0000 | applyPPCLo(Off)); // ld %r12, X@l(%r11)
write32(Buf + 12, 0xe96c0000); // ld %r11,0(%r12)
write32(Buf + 16, 0x7d6903a6); // mtctr %r11
write32(Buf + 20, 0xe84c0008); // ld %r2,8(%r12)
write32(Buf + 24, 0xe96c0010); // ld %r11,16(%r12)
write32(Buf + 28, 0x4e800420); // bctr
}
}
static std::pair<RelType, uint64_t> toAddr16Rel(RelType Type, uint64_t Val) {
uint64_t V = Val - PPC64TocOffset;
switch (Type) {
case R_PPC64_TOC16:
return {R_PPC64_ADDR16, V};
case R_PPC64_TOC16_DS:
return {R_PPC64_ADDR16_DS, V};
case R_PPC64_TOC16_HA:
return {R_PPC64_ADDR16_HA, V};
case R_PPC64_TOC16_HI:
return {R_PPC64_ADDR16_HI, V};
case R_PPC64_TOC16_LO:
return {R_PPC64_ADDR16_LO, V};
case R_PPC64_TOC16_LO_DS:
return {R_PPC64_ADDR16_LO_DS, V};
default:
return {Type, Val};
}
}
void PPC64::relocateOne(uint8_t *Loc, RelType Type, uint64_t Val) const {
// For a TOC-relative relocation, proceed in terms of the corresponding
// ADDR16 relocation type.
std::tie(Type, Val) = toAddr16Rel(Type, Val);
switch (Type) {
case R_PPC64_ADDR14: {
checkAlignment(Loc, Val, 4, Type);
// Preserve the AA/LK bits in the branch instruction
uint8_t AALK = Loc[3];
write16(Loc + 2, (AALK & 3) | (Val & 0xfffc));
break;
}
case R_PPC64_ADDR16:
checkInt(Loc, Val, 16, Type);
write16(Loc, Val);
break;
case R_PPC64_ADDR16_DS:
checkInt(Loc, Val, 16, Type);
write16(Loc, (read16(Loc) & 3) | (Val & ~3));
break;
case R_PPC64_ADDR16_HA:
case R_PPC64_REL16_HA:
write16(Loc, applyPPCHa(Val));
break;
case R_PPC64_ADDR16_HI:
case R_PPC64_REL16_HI:
write16(Loc, applyPPCHi(Val));
break;
case R_PPC64_ADDR16_HIGHER:
write16(Loc, applyPPCHigher(Val));
break;
case R_PPC64_ADDR16_HIGHERA:
write16(Loc, applyPPCHighera(Val));
break;
case R_PPC64_ADDR16_HIGHEST:
write16(Loc, applyPPCHighest(Val));
break;
case R_PPC64_ADDR16_HIGHESTA:
write16(Loc, applyPPCHighesta(Val));
break;
case R_PPC64_ADDR16_LO:
case R_PPC64_REL16_LO:
write16(Loc, applyPPCLo(Val));
break;
case R_PPC64_ADDR16_LO_DS:
write16(Loc, (read16(Loc) & 3) | (applyPPCLo(Val) & ~3));
break;
case R_PPC64_ADDR32:
case R_PPC64_REL32:
checkInt(Loc, Val, 32, Type);
write32(Loc, Val);
break;
case R_PPC64_ADDR64:
case R_PPC64_REL64:
case R_PPC64_TOC:
write64(Loc, Val);
break;
case R_PPC64_REL24: {
uint32_t Mask = 0x03FFFFFC;
checkInt(Loc, Val, 24, Type);
write32(Loc, (read32(Loc) & ~Mask) | (Val & Mask));
break;
}
default:
error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
}
}
TargetInfo *elf::getPPC64TargetInfo() {
static PPC64 Target;
return &Target;
}