llvm-project/llvm/lib/Target/Mips/MipsInstrInfo.td

1394 lines
55 KiB
TableGen

//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the Mips implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Mips profiles and nodes
//===----------------------------------------------------------------------===//
def SDT_MipsJmpLink : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
def SDT_MipsCMov : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
SDTCisSameAs<1, 2>,
SDTCisSameAs<3, 4>,
SDTCisInt<4>]>;
def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
def SDT_MipsCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
def SDT_ExtractLOHI : SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisVT<1, untyped>]>;
def SDT_InsertLOHI : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>,
SDTCisVT<1, i32>,
SDTCisSameAs<1, 2>]>;
def SDT_MipsMultDiv : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>, SDTCisInt<1>,
SDTCisSameAs<1, 2>]>;
def SDT_MipsMAddMSub : SDTypeProfile<1, 3,
[SDTCisVT<0, untyped>, SDTCisSameAs<0, 3>,
SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;
def SDT_MipsDivRem16 : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;
def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
def SDT_Sync : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
SDTCisSameAs<0, 4>]>;
def SDTMipsLoadLR : SDTypeProfile<1, 2,
[SDTCisInt<0>, SDTCisPtrTy<1>,
SDTCisSameAs<0, 2>]>;
// Call
def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
[SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
SDNPVariadic]>;
// Tail call
def MipsTailCall : SDNode<"MipsISD::TailCall", SDT_MipsJmpLink,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
// Hi and Lo nodes are used to handle global addresses. Used on
// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
// static model. (nothing to do with Mips Registers Hi and Lo)
def MipsHi : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
def MipsLo : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
// TlsGd node is used to handle General Dynamic TLS
def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
// TprelHi and TprelLo nodes are used to handle Local Exec TLS
def MipsTprelHi : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
def MipsTprelLo : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
// Thread pointer
def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
// Return
def MipsRet : SDNode<"MipsISD::Ret", SDTNone,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
// These are target-independent nodes, but have target-specific formats.
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
[SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
[SDNPHasChain, SDNPSideEffect,
SDNPOptInGlue, SDNPOutGlue]>;
// Nodes used to extract LO/HI registers.
def MipsExtractHI : SDNode<"MipsISD::ExtractHI", SDT_ExtractLOHI>;
def MipsExtractLO : SDNode<"MipsISD::ExtractLO", SDT_ExtractLOHI>;
// Node used to insert 32-bit integers to LOHI register pair.
def InsertLOHI : SDNode<"MipsISD::InsertLOHI", SDT_InsertLOHI>;
// Mult nodes.
def MipsMult : SDNode<"MipsISD::Mult", SDT_MipsMultDiv>;
def MipsMultu : SDNode<"MipsISD::Multu", SDT_MipsMultDiv>;
// MAdd*/MSub* nodes
def MipsMAdd : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub>;
def MipsMAddu : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub>;
def MipsMSub : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub>;
def MipsMSubu : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub>;
// DivRem(u) nodes
def MipsDivRem : SDNode<"MipsISD::DivRem", SDT_MipsMultDiv>;
def MipsDivRemU : SDNode<"MipsISD::DivRemU", SDT_MipsMultDiv>;
def MipsDivRem16 : SDNode<"MipsISD::DivRem16", SDT_MipsDivRem16,
[SDNPOutGlue]>;
def MipsDivRemU16 : SDNode<"MipsISD::DivRemU16", SDT_MipsDivRem16,
[SDNPOutGlue]>;
// Target constant nodes that are not part of any isel patterns and remain
// unchanged can cause instructions with illegal operands to be emitted.
// Wrapper node patterns give the instruction selector a chance to replace
// target constant nodes that would otherwise remain unchanged with ADDiu
// nodes. Without these wrapper node patterns, the following conditional move
// instruction is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
// compiled:
// movn %got(d)($gp), %got(c)($gp), $4
// This instruction is illegal since movn can take only register operands.
def MipsWrapper : SDNode<"MipsISD::Wrapper", SDTIntBinOp>;
def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain,SDNPSideEffect]>;
def MipsExt : SDNode<"MipsISD::Ext", SDT_Ext>;
def MipsIns : SDNode<"MipsISD::Ins", SDT_Ins>;
def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR,
[SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR,
[SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
def MipsSWL : SDNode<"MipsISD::SWL", SDTStore,
[SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
def MipsSWR : SDNode<"MipsISD::SWR", SDTStore,
[SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR,
[SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR,
[SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
def MipsSDL : SDNode<"MipsISD::SDL", SDTStore,
[SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
def MipsSDR : SDNode<"MipsISD::SDR", SDTStore,
[SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
//===----------------------------------------------------------------------===//
// Mips Instruction Predicate Definitions.
//===----------------------------------------------------------------------===//
def HasSEInReg : Predicate<"Subtarget.hasSEInReg()">,
AssemblerPredicate<"FeatureSEInReg">;
def HasBitCount : Predicate<"Subtarget.hasBitCount()">,
AssemblerPredicate<"FeatureBitCount">;
def HasSwap : Predicate<"Subtarget.hasSwap()">,
AssemblerPredicate<"FeatureSwap">;
def HasCondMov : Predicate<"Subtarget.hasCondMov()">,
AssemblerPredicate<"FeatureCondMov">;
def HasFPIdx : Predicate<"Subtarget.hasFPIdx()">,
AssemblerPredicate<"FeatureFPIdx">;
def HasMips32 : Predicate<"Subtarget.hasMips32()">,
AssemblerPredicate<"FeatureMips32">;
def HasMips32r2 : Predicate<"Subtarget.hasMips32r2()">,
AssemblerPredicate<"FeatureMips32r2">;
def HasMips64 : Predicate<"Subtarget.hasMips64()">,
AssemblerPredicate<"FeatureMips64">;
def NotMips64 : Predicate<"!Subtarget.hasMips64()">,
AssemblerPredicate<"!FeatureMips64">;
def HasMips64r2 : Predicate<"Subtarget.hasMips64r2()">,
AssemblerPredicate<"FeatureMips64r2">;
def IsN64 : Predicate<"Subtarget.isABI_N64()">,
AssemblerPredicate<"FeatureN64">;
def NotN64 : Predicate<"!Subtarget.isABI_N64()">,
AssemblerPredicate<"!FeatureN64">;
def InMips16Mode : Predicate<"Subtarget.inMips16Mode()">,
AssemblerPredicate<"FeatureMips16">;
def RelocStatic : Predicate<"TM.getRelocationModel() == Reloc::Static">,
AssemblerPredicate<"FeatureMips32">;
def RelocPIC : Predicate<"TM.getRelocationModel() == Reloc::PIC_">,
AssemblerPredicate<"FeatureMips32">;
def NoNaNsFPMath : Predicate<"TM.Options.NoNaNsFPMath">,
AssemblerPredicate<"FeatureMips32">;
def HasStdEnc : Predicate<"Subtarget.hasStandardEncoding()">,
AssemblerPredicate<"!FeatureMips16,!FeatureMicroMips">;
def NotDSP : Predicate<"!Subtarget.hasDSP()">;
def InMicroMips : Predicate<"Subtarget.inMicroMipsMode()">,
AssemblerPredicate<"FeatureMicroMips">;
def NotInMicroMips : Predicate<"!Subtarget.inMicroMipsMode()">,
AssemblerPredicate<"!FeatureMicroMips">;
def IsLE : Predicate<"Subtarget.isLittle()">;
def IsBE : Predicate<"!Subtarget.isLittle()">;
class MipsPat<dag pattern, dag result> : Pat<pattern, result> {
let Predicates = [HasStdEnc];
}
class IsCommutable {
bit isCommutable = 1;
}
class IsBranch {
bit isBranch = 1;
}
class IsReturn {
bit isReturn = 1;
}
class IsCall {
bit isCall = 1;
}
class IsTailCall {
bit isCall = 1;
bit isTerminator = 1;
bit isReturn = 1;
bit isBarrier = 1;
bit hasExtraSrcRegAllocReq = 1;
bit isCodeGenOnly = 1;
}
class IsAsCheapAsAMove {
bit isAsCheapAsAMove = 1;
}
class NeverHasSideEffects {
bit neverHasSideEffects = 1;
}
//===----------------------------------------------------------------------===//
// Instruction format superclass
//===----------------------------------------------------------------------===//
include "MipsInstrFormats.td"
//===----------------------------------------------------------------------===//
// Mips Operand, Complex Patterns and Transformations Definitions.
//===----------------------------------------------------------------------===//
// Instruction operand types
def jmptarget : Operand<OtherVT> {
let EncoderMethod = "getJumpTargetOpValue";
}
def brtarget : Operand<OtherVT> {
let EncoderMethod = "getBranchTargetOpValue";
let OperandType = "OPERAND_PCREL";
let DecoderMethod = "DecodeBranchTarget";
}
def calltarget : Operand<iPTR> {
let EncoderMethod = "getJumpTargetOpValue";
}
def simm16 : Operand<i32> {
let DecoderMethod= "DecodeSimm16";
}
def simm20 : Operand<i32> {
}
def uimm20 : Operand<i32> {
}
def uimm10 : Operand<i32> {
}
def simm16_64 : Operand<i64> {
let DecoderMethod = "DecodeSimm16";
}
// Unsigned Operand
def uimm5 : Operand<i32> {
let PrintMethod = "printUnsignedImm";
}
def uimm6 : Operand<i32> {
let PrintMethod = "printUnsignedImm";
}
def uimm16 : Operand<i32> {
let PrintMethod = "printUnsignedImm";
}
def MipsMemAsmOperand : AsmOperandClass {
let Name = "Mem";
let ParserMethod = "parseMemOperand";
}
def MipsInvertedImmoperand : AsmOperandClass {
let Name = "InvNum";
let RenderMethod = "addImmOperands";
let ParserMethod = "parseInvNum";
}
def PtrRegAsmOperand : AsmOperandClass {
let Name = "PtrReg";
let ParserMethod = "parsePtrReg";
}
def InvertedImOperand : Operand<i32> {
let ParserMatchClass = MipsInvertedImmoperand;
}
// Address operand
def mem : Operand<iPTR> {
let PrintMethod = "printMemOperand";
let MIOperandInfo = (ops ptr_rc, simm16);
let EncoderMethod = "getMemEncoding";
let ParserMatchClass = MipsMemAsmOperand;
let OperandType = "OPERAND_MEMORY";
}
def mem_ea : Operand<iPTR> {
let PrintMethod = "printMemOperandEA";
let MIOperandInfo = (ops ptr_rc, simm16);
let EncoderMethod = "getMemEncoding";
let OperandType = "OPERAND_MEMORY";
}
def PtrRC : Operand<iPTR> {
let MIOperandInfo = (ops ptr_rc);
let DecoderMethod = "DecodePtrRegisterClass";
let ParserMatchClass = PtrRegAsmOperand;
}
// size operand of ext instruction
def size_ext : Operand<i32> {
let EncoderMethod = "getSizeExtEncoding";
let DecoderMethod = "DecodeExtSize";
}
// size operand of ins instruction
def size_ins : Operand<i32> {
let EncoderMethod = "getSizeInsEncoding";
let DecoderMethod = "DecodeInsSize";
}
// Transformation Function - get the lower 16 bits.
def LO16 : SDNodeXForm<imm, [{
return getImm(N, N->getZExtValue() & 0xFFFF);
}]>;
// Transformation Function - get the higher 16 bits.
def HI16 : SDNodeXForm<imm, [{
return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF);
}]>;
// Plus 1.
def Plus1 : SDNodeXForm<imm, [{ return getImm(N, N->getSExtValue() + 1); }]>;
// Node immediate fits as 16-bit sign extended on target immediate.
// e.g. addi, andi
def immSExt8 : PatLeaf<(imm), [{ return isInt<8>(N->getSExtValue()); }]>;
// Node immediate fits as 16-bit sign extended on target immediate.
// e.g. addi, andi
def immSExt16 : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
// Node immediate fits as 15-bit sign extended on target immediate.
// e.g. addi, andi
def immSExt15 : PatLeaf<(imm), [{ return isInt<15>(N->getSExtValue()); }]>;
// Node immediate fits as 16-bit zero extended on target immediate.
// The LO16 param means that only the lower 16 bits of the node
// immediate are caught.
// e.g. addiu, sltiu
def immZExt16 : PatLeaf<(imm), [{
if (N->getValueType(0) == MVT::i32)
return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
else
return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
}], LO16>;
// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared).
def immLow16Zero : PatLeaf<(imm), [{
int64_t Val = N->getSExtValue();
return isInt<32>(Val) && !(Val & 0xffff);
}]>;
// shamt field must fit in 5 bits.
def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>;
// True if (N + 1) fits in 16-bit field.
def immSExt16Plus1 : PatLeaf<(imm), [{
return isInt<17>(N->getSExtValue()) && isInt<16>(N->getSExtValue() + 1);
}]>;
// Mips Address Mode! SDNode frameindex could possibily be a match
// since load and store instructions from stack used it.
def addr :
ComplexPattern<iPTR, 2, "selectIntAddr", [frameindex]>;
def addrRegImm :
ComplexPattern<iPTR, 2, "selectAddrRegImm", [frameindex]>;
def addrRegReg :
ComplexPattern<iPTR, 2, "selectAddrRegReg", [frameindex]>;
def addrDefault :
ComplexPattern<iPTR, 2, "selectAddrDefault", [frameindex]>;
//===----------------------------------------------------------------------===//
// Instructions specific format
//===----------------------------------------------------------------------===//
// Arithmetic and logical instructions with 3 register operands.
class ArithLogicR<string opstr, RegisterOperand RO, bit isComm = 0,
InstrItinClass Itin = NoItinerary,
SDPatternOperator OpNode = null_frag>:
InstSE<(outs RO:$rd), (ins RO:$rs, RO:$rt),
!strconcat(opstr, "\t$rd, $rs, $rt"),
[(set RO:$rd, (OpNode RO:$rs, RO:$rt))], Itin, FrmR, opstr> {
let isCommutable = isComm;
let isReMaterializable = 1;
}
// Arithmetic and logical instructions with 2 register operands.
class ArithLogicI<string opstr, Operand Od, RegisterOperand RO,
InstrItinClass Itin = NoItinerary,
SDPatternOperator imm_type = null_frag,
SDPatternOperator OpNode = null_frag> :
InstSE<(outs RO:$rt), (ins RO:$rs, Od:$imm16),
!strconcat(opstr, "\t$rt, $rs, $imm16"),
[(set RO:$rt, (OpNode RO:$rs, imm_type:$imm16))],
Itin, FrmI, opstr> {
let isReMaterializable = 1;
let TwoOperandAliasConstraint = "$rs = $rt";
}
// Arithmetic Multiply ADD/SUB
class MArithR<string opstr, bit isComm = 0> :
InstSE<(outs), (ins GPR32Opnd:$rs, GPR32Opnd:$rt),
!strconcat(opstr, "\t$rs, $rt"), [], IIImult, FrmR, opstr> {
let Defs = [HI0, LO0];
let Uses = [HI0, LO0];
let isCommutable = isComm;
}
// Logical
class LogicNOR<string opstr, RegisterOperand RO>:
InstSE<(outs RO:$rd), (ins RO:$rs, RO:$rt),
!strconcat(opstr, "\t$rd, $rs, $rt"),
[(set RO:$rd, (not (or RO:$rs, RO:$rt)))], IIArith, FrmR, opstr> {
let isCommutable = 1;
}
// Shifts
class shift_rotate_imm<string opstr, Operand ImmOpnd,
RegisterOperand RO, SDPatternOperator OpNode = null_frag,
SDPatternOperator PF = null_frag> :
InstSE<(outs RO:$rd), (ins RO:$rt, ImmOpnd:$shamt),
!strconcat(opstr, "\t$rd, $rt, $shamt"),
[(set RO:$rd, (OpNode RO:$rt, PF:$shamt))], IIArith, FrmR, opstr>;
class shift_rotate_reg<string opstr, RegisterOperand RO,
SDPatternOperator OpNode = null_frag>:
InstSE<(outs RO:$rd), (ins RO:$rt, GPR32Opnd:$rs),
!strconcat(opstr, "\t$rd, $rt, $rs"),
[(set RO:$rd, (OpNode RO:$rt, GPR32Opnd:$rs))], IIArith, FrmR, opstr>;
// Load Upper Imediate
class LoadUpper<string opstr, RegisterOperand RO, Operand Imm>:
InstSE<(outs RO:$rt), (ins Imm:$imm16), !strconcat(opstr, "\t$rt, $imm16"),
[], IIArith, FrmI, opstr>, IsAsCheapAsAMove {
let neverHasSideEffects = 1;
let isReMaterializable = 1;
}
// Memory Load/Store
class Load<string opstr, DAGOperand RO, SDPatternOperator OpNode = null_frag,
InstrItinClass Itin = NoItinerary, ComplexPattern Addr = addr> :
InstSE<(outs RO:$rt), (ins mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
[(set RO:$rt, (OpNode Addr:$addr))], Itin, FrmI, opstr> {
let DecoderMethod = "DecodeMem";
let canFoldAsLoad = 1;
let mayLoad = 1;
}
class Store<string opstr, DAGOperand RO, SDPatternOperator OpNode = null_frag,
InstrItinClass Itin = NoItinerary, ComplexPattern Addr = addr> :
InstSE<(outs), (ins RO:$rt, mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
[(OpNode RO:$rt, Addr:$addr)], Itin, FrmI, opstr> {
let DecoderMethod = "DecodeMem";
let mayStore = 1;
}
// Load/Store Left/Right
let canFoldAsLoad = 1 in
class LoadLeftRight<string opstr, SDNode OpNode, RegisterOperand RO,
InstrItinClass Itin> :
InstSE<(outs RO:$rt), (ins mem:$addr, RO:$src),
!strconcat(opstr, "\t$rt, $addr"),
[(set RO:$rt, (OpNode addr:$addr, RO:$src))], Itin, FrmI> {
let DecoderMethod = "DecodeMem";
string Constraints = "$src = $rt";
}
class StoreLeftRight<string opstr, SDNode OpNode, RegisterOperand RO,
InstrItinClass Itin> :
InstSE<(outs), (ins RO:$rt, mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
[(OpNode RO:$rt, addr:$addr)], Itin, FrmI> {
let DecoderMethod = "DecodeMem";
}
// Conditional Branch
class CBranch<string opstr, PatFrag cond_op, RegisterOperand RO> :
InstSE<(outs), (ins RO:$rs, RO:$rt, brtarget:$offset),
!strconcat(opstr, "\t$rs, $rt, $offset"),
[(brcond (i32 (cond_op RO:$rs, RO:$rt)), bb:$offset)], IIBranch,
FrmI> {
let isBranch = 1;
let isTerminator = 1;
let hasDelaySlot = 1;
let Defs = [AT];
}
class CBranchZero<string opstr, PatFrag cond_op, RegisterOperand RO> :
InstSE<(outs), (ins RO:$rs, brtarget:$offset),
!strconcat(opstr, "\t$rs, $offset"),
[(brcond (i32 (cond_op RO:$rs, 0)), bb:$offset)], IIBranch, FrmI> {
let isBranch = 1;
let isTerminator = 1;
let hasDelaySlot = 1;
let Defs = [AT];
}
// SetCC
class SetCC_R<string opstr, PatFrag cond_op, RegisterOperand RO> :
InstSE<(outs GPR32Opnd:$rd), (ins RO:$rs, RO:$rt),
!strconcat(opstr, "\t$rd, $rs, $rt"),
[(set GPR32Opnd:$rd, (cond_op RO:$rs, RO:$rt))],
IIslt, FrmR, opstr>;
class SetCC_I<string opstr, PatFrag cond_op, Operand Od, PatLeaf imm_type,
RegisterOperand RO>:
InstSE<(outs GPR32Opnd:$rt), (ins RO:$rs, Od:$imm16),
!strconcat(opstr, "\t$rt, $rs, $imm16"),
[(set GPR32Opnd:$rt, (cond_op RO:$rs, imm_type:$imm16))],
IIslt, FrmI, opstr>;
// Jump
class JumpFJ<DAGOperand opnd, string opstr, SDPatternOperator operator,
SDPatternOperator targetoperator> :
InstSE<(outs), (ins opnd:$target), !strconcat(opstr, "\t$target"),
[(operator targetoperator:$target)], IIBranch, FrmJ> {
let isTerminator=1;
let isBarrier=1;
let hasDelaySlot = 1;
let DecoderMethod = "DecodeJumpTarget";
let Defs = [AT];
}
// Unconditional branch
class UncondBranch<Instruction BEQInst> :
PseudoSE<(outs), (ins brtarget:$offset), [(br bb:$offset)], IIBranch>,
PseudoInstExpansion<(BEQInst ZERO, ZERO, brtarget:$offset)> {
let isBranch = 1;
let isTerminator = 1;
let isBarrier = 1;
let hasDelaySlot = 1;
let Predicates = [RelocPIC, HasStdEnc];
let Defs = [AT];
}
// Base class for indirect branch and return instruction classes.
let isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
class JumpFR<RegisterOperand RO, SDPatternOperator operator = null_frag>:
InstSE<(outs), (ins RO:$rs), "jr\t$rs", [(operator RO:$rs)], IIBranch, FrmR>;
// Indirect branch
class IndirectBranch<RegisterOperand RO>: JumpFR<RO, brind> {
let isBranch = 1;
let isIndirectBranch = 1;
}
// Return instruction
class RetBase<RegisterOperand RO>: JumpFR<RO> {
let isReturn = 1;
let isCodeGenOnly = 1;
let hasCtrlDep = 1;
let hasExtraSrcRegAllocReq = 1;
}
// Jump and Link (Call)
let isCall=1, hasDelaySlot=1, Defs = [RA] in {
class JumpLink<string opstr> :
InstSE<(outs), (ins calltarget:$target), !strconcat(opstr, "\t$target"),
[(MipsJmpLink imm:$target)], IIBranch, FrmJ> {
let DecoderMethod = "DecodeJumpTarget";
}
class JumpLinkRegPseudo<RegisterOperand RO, Instruction JALRInst,
Register RetReg, RegisterOperand ResRO = RO>:
PseudoSE<(outs), (ins RO:$rs), [(MipsJmpLink RO:$rs)], IIBranch>,
PseudoInstExpansion<(JALRInst RetReg, ResRO:$rs)>;
class JumpLinkReg<string opstr, RegisterOperand RO>:
InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
[], IIBranch, FrmR>;
class BGEZAL_FT<string opstr, RegisterOperand RO> :
InstSE<(outs), (ins RO:$rs, brtarget:$offset),
!strconcat(opstr, "\t$rs, $offset"), [], IIBranch, FrmI>;
}
class BAL_BR_Pseudo<Instruction RealInst> :
PseudoSE<(outs), (ins brtarget:$offset), [], IIBranch>,
PseudoInstExpansion<(RealInst ZERO, brtarget:$offset)> {
let isBranch = 1;
let isTerminator = 1;
let isBarrier = 1;
let hasDelaySlot = 1;
let Defs = [RA];
}
// Syscall
class SYS_FT<string opstr> :
InstSE<(outs), (ins uimm20:$code_),
!strconcat(opstr, "\t$code_"), [], NoItinerary, FrmI>;
// Break
class BRK_FT<string opstr> :
InstSE<(outs), (ins uimm10:$code_1, uimm10:$code_2),
!strconcat(opstr, "\t$code_1, $code_2"), [], NoItinerary, FrmOther>;
// (D)Eret
class ER_FT<string opstr> :
InstSE<(outs), (ins),
opstr, [], NoItinerary, FrmOther>;
// Interrupts
class DEI_FT<string opstr, RegisterOperand RO> :
InstSE<(outs RO:$rt), (ins),
!strconcat(opstr, "\t$rt"), [], NoItinerary, FrmOther>;
// Wait
class WAIT_FT<string opstr> :
InstSE<(outs), (ins), opstr, [], NoItinerary, FrmOther> {
let Inst{31-26} = 0x10;
let Inst{25} = 1;
let Inst{24-6} = 0;
let Inst{5-0} = 0x20;
}
// Sync
let hasSideEffects = 1 in
class SYNC_FT :
InstSE<(outs), (ins i32imm:$stype), "sync $stype", [(MipsSync imm:$stype)],
NoItinerary, FrmOther>;
let hasSideEffects = 1 in
class TEQ_FT<string opstr, RegisterOperand RO> :
InstSE<(outs), (ins RO:$rs, RO:$rt, uimm16:$code_),
!strconcat(opstr, "\t$rs, $rt, $code_"), [], NoItinerary, FrmI>;
class TEQI_FT<string opstr, RegisterOperand RO> :
InstSE<(outs), (ins RO:$rs, uimm16:$imm16),
!strconcat(opstr, "\t$rs, $imm16"), [], NoItinerary, FrmOther>;
// Mul, Div
class Mult<string opstr, InstrItinClass itin, RegisterOperand RO,
list<Register> DefRegs> :
InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$rs, $rt"), [],
itin, FrmR, opstr> {
let isCommutable = 1;
let Defs = DefRegs;
let neverHasSideEffects = 1;
}
// Pseudo multiply/divide instruction with explicit accumulator register
// operands.
class MultDivPseudo<Instruction RealInst, RegisterClass R0, RegisterOperand R1,
SDPatternOperator OpNode, InstrItinClass Itin,
bit IsComm = 1, bit HasSideEffects = 0,
bit UsesCustomInserter = 0> :
PseudoSE<(outs R0:$ac), (ins R1:$rs, R1:$rt),
[(set R0:$ac, (OpNode R1:$rs, R1:$rt))], Itin>,
PseudoInstExpansion<(RealInst R1:$rs, R1:$rt)> {
let isCommutable = IsComm;
let hasSideEffects = HasSideEffects;
let usesCustomInserter = UsesCustomInserter;
}
// Pseudo multiply add/sub instruction with explicit accumulator register
// operands.
class MAddSubPseudo<Instruction RealInst, SDPatternOperator OpNode>
: PseudoSE<(outs ACC64:$ac),
(ins GPR32Opnd:$rs, GPR32Opnd:$rt, ACC64:$acin),
[(set ACC64:$ac,
(OpNode GPR32Opnd:$rs, GPR32Opnd:$rt, ACC64:$acin))],
IIImult>,
PseudoInstExpansion<(RealInst GPR32Opnd:$rs, GPR32Opnd:$rt)> {
string Constraints = "$acin = $ac";
}
class Div<string opstr, InstrItinClass itin, RegisterOperand RO,
list<Register> DefRegs> :
InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$$zero, $rs, $rt"),
[], itin, FrmR, opstr> {
let Defs = DefRegs;
}
// Move from Hi/Lo
class PseudoMFLOHI<RegisterClass DstRC, RegisterClass SrcRC, SDNode OpNode>
: PseudoSE<(outs DstRC:$rd), (ins SrcRC:$hilo),
[(set DstRC:$rd, (OpNode SrcRC:$hilo))], IIHiLo>;
class MoveFromLOHI<string opstr, RegisterOperand RO, Register UseReg>:
InstSE<(outs RO:$rd), (ins), !strconcat(opstr, "\t$rd"), [], IIHiLo, FrmR,
opstr> {
let Uses = [UseReg];
let neverHasSideEffects = 1;
}
class MoveToLOHI<string opstr, RegisterOperand RO, list<Register> DefRegs>:
InstSE<(outs), (ins RO:$rs), !strconcat(opstr, "\t$rs"), [], IIHiLo,
FrmR, opstr> {
let Defs = DefRegs;
let neverHasSideEffects = 1;
}
class EffectiveAddress<string opstr, RegisterOperand RO> :
InstSE<(outs RO:$rt), (ins mem_ea:$addr), !strconcat(opstr, "\t$rt, $addr"),
[(set RO:$rt, addr:$addr)], NoItinerary, FrmI> {
let isCodeGenOnly = 1;
let DecoderMethod = "DecodeMem";
}
// Count Leading Ones/Zeros in Word
class CountLeading0<string opstr, RegisterOperand RO>:
InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
[(set RO:$rd, (ctlz RO:$rs))], IIArith, FrmR, opstr>,
Requires<[HasBitCount, HasStdEnc]>;
class CountLeading1<string opstr, RegisterOperand RO>:
InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
[(set RO:$rd, (ctlz (not RO:$rs)))], IIArith, FrmR, opstr>,
Requires<[HasBitCount, HasStdEnc]>;
// Sign Extend in Register.
class SignExtInReg<string opstr, ValueType vt, RegisterOperand RO> :
InstSE<(outs RO:$rd), (ins RO:$rt), !strconcat(opstr, "\t$rd, $rt"),
[(set RO:$rd, (sext_inreg RO:$rt, vt))], IIseb, FrmR, opstr> {
let Predicates = [HasSEInReg, HasStdEnc];
}
// Subword Swap
class SubwordSwap<string opstr, RegisterOperand RO>:
InstSE<(outs RO:$rd), (ins RO:$rt), !strconcat(opstr, "\t$rd, $rt"), [],
NoItinerary, FrmR, opstr> {
let Predicates = [HasSwap, HasStdEnc];
let neverHasSideEffects = 1;
}
// Read Hardware
class ReadHardware<RegisterOperand CPURegOperand, RegisterOperand RO> :
InstSE<(outs CPURegOperand:$rt), (ins RO:$rd), "rdhwr\t$rt, $rd", [],
IIArith, FrmR>;
// Ext and Ins
class ExtBase<string opstr, RegisterOperand RO, Operand PosOpnd,
SDPatternOperator Op = null_frag>:
InstSE<(outs RO:$rt), (ins RO:$rs, PosOpnd:$pos, size_ext:$size),
!strconcat(opstr, " $rt, $rs, $pos, $size"),
[(set RO:$rt, (Op RO:$rs, imm:$pos, imm:$size))], NoItinerary,
FrmR, opstr> {
let Predicates = [HasMips32r2, HasStdEnc];
}
class InsBase<string opstr, RegisterOperand RO, Operand PosOpnd,
SDPatternOperator Op = null_frag>:
InstSE<(outs RO:$rt), (ins RO:$rs, PosOpnd:$pos, size_ins:$size, RO:$src),
!strconcat(opstr, " $rt, $rs, $pos, $size"),
[(set RO:$rt, (Op RO:$rs, imm:$pos, imm:$size, RO:$src))],
NoItinerary, FrmR, opstr> {
let Predicates = [HasMips32r2, HasStdEnc];
let Constraints = "$src = $rt";
}
// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
class Atomic2Ops<PatFrag Op, RegisterClass DRC> :
PseudoSE<(outs DRC:$dst), (ins PtrRC:$ptr, DRC:$incr),
[(set DRC:$dst, (Op iPTR:$ptr, DRC:$incr))]>;
// Atomic Compare & Swap.
class AtomicCmpSwap<PatFrag Op, RegisterClass DRC> :
PseudoSE<(outs DRC:$dst), (ins PtrRC:$ptr, DRC:$cmp, DRC:$swap),
[(set DRC:$dst, (Op iPTR:$ptr, DRC:$cmp, DRC:$swap))]>;
class LLBase<string opstr, RegisterOperand RO> :
InstSE<(outs RO:$rt), (ins mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
[], NoItinerary, FrmI> {
let DecoderMethod = "DecodeMem";
let mayLoad = 1;
}
class SCBase<string opstr, RegisterOperand RO> :
InstSE<(outs RO:$dst), (ins RO:$rt, mem:$addr),
!strconcat(opstr, "\t$rt, $addr"), [], NoItinerary, FrmI> {
let DecoderMethod = "DecodeMem";
let mayStore = 1;
let Constraints = "$rt = $dst";
}
class MFC3OP<string asmstr, RegisterOperand RO> :
InstSE<(outs RO:$rt, RO:$rd, uimm16:$sel), (ins),
!strconcat(asmstr, "\t$rt, $rd, $sel"), [], NoItinerary, FrmFR>;
class TrapBase<Instruction RealInst>
: PseudoSE<(outs), (ins), [(trap)], NoItinerary>,
PseudoInstExpansion<(RealInst 0, 0)> {
let isBarrier = 1;
let isTerminator = 1;
let isCodeGenOnly = 1;
}
//===----------------------------------------------------------------------===//
// Pseudo instructions
//===----------------------------------------------------------------------===//
// Return RA.
let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1 in
def RetRA : PseudoSE<(outs), (ins), [(MipsRet)]>;
let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt),
[(callseq_start timm:$amt)]>;
def ADJCALLSTACKUP : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
[(callseq_end timm:$amt1, timm:$amt2)]>;
}
let usesCustomInserter = 1 in {
def ATOMIC_LOAD_ADD_I8 : Atomic2Ops<atomic_load_add_8, GPR32>;
def ATOMIC_LOAD_ADD_I16 : Atomic2Ops<atomic_load_add_16, GPR32>;
def ATOMIC_LOAD_ADD_I32 : Atomic2Ops<atomic_load_add_32, GPR32>;
def ATOMIC_LOAD_SUB_I8 : Atomic2Ops<atomic_load_sub_8, GPR32>;
def ATOMIC_LOAD_SUB_I16 : Atomic2Ops<atomic_load_sub_16, GPR32>;
def ATOMIC_LOAD_SUB_I32 : Atomic2Ops<atomic_load_sub_32, GPR32>;
def ATOMIC_LOAD_AND_I8 : Atomic2Ops<atomic_load_and_8, GPR32>;
def ATOMIC_LOAD_AND_I16 : Atomic2Ops<atomic_load_and_16, GPR32>;
def ATOMIC_LOAD_AND_I32 : Atomic2Ops<atomic_load_and_32, GPR32>;
def ATOMIC_LOAD_OR_I8 : Atomic2Ops<atomic_load_or_8, GPR32>;
def ATOMIC_LOAD_OR_I16 : Atomic2Ops<atomic_load_or_16, GPR32>;
def ATOMIC_LOAD_OR_I32 : Atomic2Ops<atomic_load_or_32, GPR32>;
def ATOMIC_LOAD_XOR_I8 : Atomic2Ops<atomic_load_xor_8, GPR32>;
def ATOMIC_LOAD_XOR_I16 : Atomic2Ops<atomic_load_xor_16, GPR32>;
def ATOMIC_LOAD_XOR_I32 : Atomic2Ops<atomic_load_xor_32, GPR32>;
def ATOMIC_LOAD_NAND_I8 : Atomic2Ops<atomic_load_nand_8, GPR32>;
def ATOMIC_LOAD_NAND_I16 : Atomic2Ops<atomic_load_nand_16, GPR32>;
def ATOMIC_LOAD_NAND_I32 : Atomic2Ops<atomic_load_nand_32, GPR32>;
def ATOMIC_SWAP_I8 : Atomic2Ops<atomic_swap_8, GPR32>;
def ATOMIC_SWAP_I16 : Atomic2Ops<atomic_swap_16, GPR32>;
def ATOMIC_SWAP_I32 : Atomic2Ops<atomic_swap_32, GPR32>;
def ATOMIC_CMP_SWAP_I8 : AtomicCmpSwap<atomic_cmp_swap_8, GPR32>;
def ATOMIC_CMP_SWAP_I16 : AtomicCmpSwap<atomic_cmp_swap_16, GPR32>;
def ATOMIC_CMP_SWAP_I32 : AtomicCmpSwap<atomic_cmp_swap_32, GPR32>;
}
/// Pseudo instructions for loading and storing accumulator registers.
let isPseudo = 1, isCodeGenOnly = 1 in {
def LOAD_ACC64 : Load<"", ACC64>;
def STORE_ACC64 : Store<"", ACC64>;
}
//===----------------------------------------------------------------------===//
// Instruction definition
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// MipsI Instructions
//===----------------------------------------------------------------------===//
/// Arithmetic Instructions (ALU Immediate)
def ADDiu : MMRel, ArithLogicI<"addiu", simm16, GPR32Opnd, IIArith, immSExt16,
add>,
ADDI_FM<0x9>, IsAsCheapAsAMove;
def ADDi : MMRel, ArithLogicI<"addi", simm16, GPR32Opnd>, ADDI_FM<0x8>;
def SLTi : MMRel, SetCC_I<"slti", setlt, simm16, immSExt16, GPR32Opnd>,
SLTI_FM<0xa>;
def SLTiu : MMRel, SetCC_I<"sltiu", setult, simm16, immSExt16, GPR32Opnd>,
SLTI_FM<0xb>;
def ANDi : MMRel, ArithLogicI<"andi", uimm16, GPR32Opnd, IILogic, immZExt16,
and>,
ADDI_FM<0xc>;
def ORi : MMRel, ArithLogicI<"ori", uimm16, GPR32Opnd, IILogic, immZExt16,
or>,
ADDI_FM<0xd>;
def XORi : MMRel, ArithLogicI<"xori", uimm16, GPR32Opnd, IILogic, immZExt16,
xor>,
ADDI_FM<0xe>;
def LUi : MMRel, LoadUpper<"lui", GPR32Opnd, uimm16>, LUI_FM;
/// Arithmetic Instructions (3-Operand, R-Type)
def ADDu : MMRel, ArithLogicR<"addu", GPR32Opnd, 1, IIArith, add>,
ADD_FM<0, 0x21>;
def SUBu : MMRel, ArithLogicR<"subu", GPR32Opnd, 0, IIArith, sub>,
ADD_FM<0, 0x23>;
let Defs = [HI0, LO0] in
def MUL : MMRel, ArithLogicR<"mul", GPR32Opnd, 1, IIImul, mul>,
ADD_FM<0x1c, 2>;
def ADD : MMRel, ArithLogicR<"add", GPR32Opnd>, ADD_FM<0, 0x20>;
def SUB : MMRel, ArithLogicR<"sub", GPR32Opnd>, ADD_FM<0, 0x22>;
def SLT : MMRel, SetCC_R<"slt", setlt, GPR32Opnd>, ADD_FM<0, 0x2a>;
def SLTu : MMRel, SetCC_R<"sltu", setult, GPR32Opnd>, ADD_FM<0, 0x2b>;
def AND : MMRel, ArithLogicR<"and", GPR32Opnd, 1, IILogic, and>,
ADD_FM<0, 0x24>;
def OR : MMRel, ArithLogicR<"or", GPR32Opnd, 1, IILogic, or>,
ADD_FM<0, 0x25>;
def XOR : MMRel, ArithLogicR<"xor", GPR32Opnd, 1, IILogic, xor>,
ADD_FM<0, 0x26>;
def NOR : MMRel, LogicNOR<"nor", GPR32Opnd>, ADD_FM<0, 0x27>;
/// Shift Instructions
def SLL : MMRel, shift_rotate_imm<"sll", uimm5, GPR32Opnd, shl, immZExt5>,
SRA_FM<0, 0>;
def SRL : MMRel, shift_rotate_imm<"srl", uimm5, GPR32Opnd, srl, immZExt5>,
SRA_FM<2, 0>;
def SRA : MMRel, shift_rotate_imm<"sra", uimm5, GPR32Opnd, sra, immZExt5>,
SRA_FM<3, 0>;
def SLLV : MMRel, shift_rotate_reg<"sllv", GPR32Opnd, shl>, SRLV_FM<4, 0>;
def SRLV : MMRel, shift_rotate_reg<"srlv", GPR32Opnd, srl>, SRLV_FM<6, 0>;
def SRAV : MMRel, shift_rotate_reg<"srav", GPR32Opnd, sra>, SRLV_FM<7, 0>;
// Rotate Instructions
let Predicates = [HasMips32r2, HasStdEnc] in {
def ROTR : MMRel, shift_rotate_imm<"rotr", uimm5, GPR32Opnd, rotr,
immZExt5>,
SRA_FM<2, 1>;
def ROTRV : MMRel, shift_rotate_reg<"rotrv", GPR32Opnd, rotr>,
SRLV_FM<6, 1>;
}
/// Load and Store Instructions
/// aligned
def LB : Load<"lb", GPR32Opnd, sextloadi8, IILoad>, MMRel, LW_FM<0x20>;
def LBu : Load<"lbu", GPR32Opnd, zextloadi8, IILoad, addrDefault>, MMRel,
LW_FM<0x24>;
def LH : Load<"lh", GPR32Opnd, sextloadi16, IILoad, addrDefault>, MMRel,
LW_FM<0x21>;
def LHu : Load<"lhu", GPR32Opnd, zextloadi16, IILoad>, MMRel, LW_FM<0x25>;
def LW : Load<"lw", GPR32Opnd, load, IILoad, addrDefault>, MMRel,
LW_FM<0x23>;
def SB : Store<"sb", GPR32Opnd, truncstorei8, IIStore>, MMRel, LW_FM<0x28>;
def SH : Store<"sh", GPR32Opnd, truncstorei16, IIStore>, MMRel, LW_FM<0x29>;
def SW : Store<"sw", GPR32Opnd, store, IIStore>, MMRel, LW_FM<0x2b>;
/// load/store left/right
def LWL : LoadLeftRight<"lwl", MipsLWL, GPR32Opnd, IILoad>, LW_FM<0x22>;
def LWR : LoadLeftRight<"lwr", MipsLWR, GPR32Opnd, IILoad>, LW_FM<0x26>;
def SWL : StoreLeftRight<"swl", MipsSWL, GPR32Opnd, IIStore>, LW_FM<0x2a>;
def SWR : StoreLeftRight<"swr", MipsSWR, GPR32Opnd, IIStore>, LW_FM<0x2e>;
def SYNC : SYNC_FT, SYNC_FM;
def TEQ : TEQ_FT<"teq", GPR32Opnd>, TEQ_FM<0x34>;
def TGE : TEQ_FT<"tge", GPR32Opnd>, TEQ_FM<0x30>;
def TGEU : TEQ_FT<"tgeu", GPR32Opnd>, TEQ_FM<0x31>;
def TLT : TEQ_FT<"tlt", GPR32Opnd>, TEQ_FM<0x32>;
def TLTU : TEQ_FT<"tltu", GPR32Opnd>, TEQ_FM<0x33>;
def TNE : TEQ_FT<"tne", GPR32Opnd>, TEQ_FM<0x36>;
def TEQI : TEQI_FT<"teqi", GPR32Opnd>, TEQI_FM<0xc>;
def TGEI : TEQI_FT<"tgei", GPR32Opnd>, TEQI_FM<0x8>;
def TGEIU : TEQI_FT<"tgeiu", GPR32Opnd>, TEQI_FM<0x9>;
def TLTI : TEQI_FT<"tlti", GPR32Opnd>, TEQI_FM<0xa>;
def TTLTIU : TEQI_FT<"tltiu", GPR32Opnd>, TEQI_FM<0xb>;
def TNEI : TEQI_FT<"tnei", GPR32Opnd>, TEQI_FM<0xe>;
def BREAK : BRK_FT<"break">, BRK_FM<0xd>;
def SYSCALL : SYS_FT<"syscall">, SYS_FM<0xc>;
def TRAP : TrapBase<BREAK>;
def ERET : ER_FT<"eret">, ER_FM<0x18>;
def DERET : ER_FT<"deret">, ER_FM<0x1f>;
def EI : DEI_FT<"ei", GPR32Opnd>, EI_FM<1>;
def DI : DEI_FT<"di", GPR32Opnd>, EI_FM<0>;
def WAIT : WAIT_FT<"wait">;
/// Load-linked, Store-conditional
def LL : LLBase<"ll", GPR32Opnd>, LW_FM<0x30>;
def SC : SCBase<"sc", GPR32Opnd>, LW_FM<0x38>;
/// Jump and Branch Instructions
def J : JumpFJ<jmptarget, "j", br, bb>, FJ<2>,
Requires<[RelocStatic, HasStdEnc]>, IsBranch;
def JR : IndirectBranch<GPR32Opnd>, MTLO_FM<8>;
def BEQ : CBranch<"beq", seteq, GPR32Opnd>, BEQ_FM<4>;
def BNE : CBranch<"bne", setne, GPR32Opnd>, BEQ_FM<5>;
def BGEZ : CBranchZero<"bgez", setge, GPR32Opnd>, BGEZ_FM<1, 1>;
def BGTZ : CBranchZero<"bgtz", setgt, GPR32Opnd>, BGEZ_FM<7, 0>;
def BLEZ : CBranchZero<"blez", setle, GPR32Opnd>, BGEZ_FM<6, 0>;
def BLTZ : CBranchZero<"bltz", setlt, GPR32Opnd>, BGEZ_FM<1, 0>;
def B : UncondBranch<BEQ>;
def JAL : JumpLink<"jal">, FJ<3>;
def JALR : JumpLinkReg<"jalr", GPR32Opnd>, JALR_FM;
def JALRPseudo : JumpLinkRegPseudo<GPR32Opnd, JALR, RA>;
def BGEZAL : BGEZAL_FT<"bgezal", GPR32Opnd>, BGEZAL_FM<0x11>;
def BLTZAL : BGEZAL_FT<"bltzal", GPR32Opnd>, BGEZAL_FM<0x10>;
def BAL_BR : BAL_BR_Pseudo<BGEZAL>;
def TAILCALL : JumpFJ<calltarget, "j", MipsTailCall, imm>, FJ<2>, IsTailCall;
def TAILCALL_R : JumpFR<GPR32Opnd, MipsTailCall>, MTLO_FM<8>, IsTailCall;
def RET : RetBase<GPR32Opnd>, MTLO_FM<8>;
// Exception handling related node and instructions.
// The conversion sequence is:
// ISD::EH_RETURN -> MipsISD::EH_RETURN ->
// MIPSeh_return -> (stack change + indirect branch)
//
// MIPSeh_return takes the place of regular return instruction
// but takes two arguments (V1, V0) which are used for storing
// the offset and return address respectively.
def SDT_MipsEHRET : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisPtrTy<1>]>;
def MIPSehret : SDNode<"MipsISD::EH_RETURN", SDT_MipsEHRET,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
let Uses = [V0, V1], isTerminator = 1, isReturn = 1, isBarrier = 1 in {
def MIPSeh_return32 : MipsPseudo<(outs), (ins GPR32:$spoff, GPR32:$dst),
[(MIPSehret GPR32:$spoff, GPR32:$dst)]>;
def MIPSeh_return64 : MipsPseudo<(outs), (ins GPR64:$spoff,
GPR64:$dst),
[(MIPSehret GPR64:$spoff, GPR64:$dst)]>;
}
/// Multiply and Divide Instructions.
def MULT : MMRel, Mult<"mult", IIImult, GPR32Opnd, [HI0, LO0]>,
MULT_FM<0, 0x18>;
def MULTu : MMRel, Mult<"multu", IIImult, GPR32Opnd, [HI0, LO0]>,
MULT_FM<0, 0x19>;
def PseudoMULT : MultDivPseudo<MULT, ACC64, GPR32Opnd, MipsMult, IIImult>;
def PseudoMULTu : MultDivPseudo<MULTu, ACC64, GPR32Opnd, MipsMultu, IIImult>;
def SDIV : Div<"div", IIIdiv, GPR32Opnd, [HI0, LO0]>, MULT_FM<0, 0x1a>;
def UDIV : Div<"divu", IIIdiv, GPR32Opnd, [HI0, LO0]>, MULT_FM<0, 0x1b>;
def PseudoSDIV : MultDivPseudo<SDIV, ACC64, GPR32Opnd, MipsDivRem, IIIdiv,
0, 1, 1>;
def PseudoUDIV : MultDivPseudo<UDIV, ACC64, GPR32Opnd, MipsDivRemU, IIIdiv,
0, 1, 1>;
def MTHI : MMRel, MoveToLOHI<"mthi", GPR32Opnd, [HI0]>, MTLO_FM<0x11>;
def MTLO : MMRel, MoveToLOHI<"mtlo", GPR32Opnd, [LO0]>, MTLO_FM<0x13>;
def MFHI : MMRel, MoveFromLOHI<"mfhi", GPR32Opnd, AC0>, MFLO_FM<0x10>;
def MFLO : MMRel, MoveFromLOHI<"mflo", GPR32Opnd, AC0>, MFLO_FM<0x12>;
def PseudoMFHI : PseudoMFLOHI<GPR32, ACC64, MipsExtractHI>;
def PseudoMFLO : PseudoMFLOHI<GPR32, ACC64, MipsExtractLO>;
/// Sign Ext In Register Instructions.
def SEB : MMRel, SignExtInReg<"seb", i8, GPR32Opnd>, SEB_FM<0x10, 0x20>;
def SEH : MMRel, SignExtInReg<"seh", i16, GPR32Opnd>, SEB_FM<0x18, 0x20>;
/// Count Leading
def CLZ : MMRel, CountLeading0<"clz", GPR32Opnd>, CLO_FM<0x20>;
def CLO : MMRel, CountLeading1<"clo", GPR32Opnd>, CLO_FM<0x21>;
/// Word Swap Bytes Within Halfwords
def WSBH : MMRel, SubwordSwap<"wsbh", GPR32Opnd>, SEB_FM<2, 0x20>;
/// No operation.
def NOP : PseudoSE<(outs), (ins), []>, PseudoInstExpansion<(SLL ZERO, ZERO, 0)>;
// FrameIndexes are legalized when they are operands from load/store
// instructions. The same not happens for stack address copies, so an
// add op with mem ComplexPattern is used and the stack address copy
// can be matched. It's similar to Sparc LEA_ADDRi
def LEA_ADDiu : EffectiveAddress<"addiu", GPR32Opnd>, LW_FM<9>;
// MADD*/MSUB*
def MADD : MMRel, MArithR<"madd", 1>, MULT_FM<0x1c, 0>;
def MADDU : MMRel, MArithR<"maddu", 1>, MULT_FM<0x1c, 1>;
def MSUB : MMRel, MArithR<"msub">, MULT_FM<0x1c, 4>;
def MSUBU : MMRel, MArithR<"msubu">, MULT_FM<0x1c, 5>;
def PseudoMADD : MAddSubPseudo<MADD, MipsMAdd>;
def PseudoMADDU : MAddSubPseudo<MADDU, MipsMAddu>;
def PseudoMSUB : MAddSubPseudo<MSUB, MipsMSub>;
def PseudoMSUBU : MAddSubPseudo<MSUBU, MipsMSubu>;
def RDHWR : ReadHardware<GPR32Opnd, HWRegsOpnd>, RDHWR_FM;
def EXT : MMRel, ExtBase<"ext", GPR32Opnd, uimm5, MipsExt>, EXT_FM<0>;
def INS : MMRel, InsBase<"ins", GPR32Opnd, uimm5, MipsIns>, EXT_FM<4>;
/// Move Control Registers From/To CPU Registers
def MFC0 : MFC3OP<"mfc0", GPR32Opnd>, MFC3OP_FM<0x10, 0>;
def MTC0 : MFC3OP<"mtc0", GPR32Opnd>, MFC3OP_FM<0x10, 4>;
def MFC2 : MFC3OP<"mfc2", GPR32Opnd>, MFC3OP_FM<0x12, 0>;
def MTC2 : MFC3OP<"mtc2", GPR32Opnd>, MFC3OP_FM<0x12, 4>;
//===----------------------------------------------------------------------===//
// Instruction aliases
//===----------------------------------------------------------------------===//
def : InstAlias<"move $dst, $src",
(ADDu GPR32Opnd:$dst, GPR32Opnd:$src,ZERO), 1>,
Requires<[NotMips64]>;
def : InstAlias<"bal $offset", (BGEZAL ZERO, brtarget:$offset), 0>;
def : InstAlias<"addu $rs, $rt, $imm",
(ADDiu GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 0>;
def : InstAlias<"add $rs, $rt, $imm",
(ADDi GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 0>;
def : InstAlias<"and $rs, $rt, $imm",
(ANDi GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 0>;
def : InstAlias<"j $rs", (JR GPR32Opnd:$rs), 0>;
def : InstAlias<"jalr $rs", (JALR RA, GPR32Opnd:$rs), 0>;
def : InstAlias<"jal $rs", (JALR RA, GPR32Opnd:$rs), 0>;
def : InstAlias<"jal $rd,$rs", (JALR GPR32Opnd:$rd, GPR32Opnd:$rs), 0>;
def : InstAlias<"not $rt, $rs",
(NOR GPR32Opnd:$rt, GPR32Opnd:$rs, ZERO), 0>;
def : InstAlias<"neg $rt, $rs",
(SUB GPR32Opnd:$rt, ZERO, GPR32Opnd:$rs), 1>;
def : InstAlias<"negu $rt, $rs",
(SUBu GPR32Opnd:$rt, ZERO, GPR32Opnd:$rs), 1>;
def : InstAlias<"slt $rs, $rt, $imm",
(SLTi GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 0>;
def : InstAlias<"xor $rs, $rt, $imm",
(XORi GPR32Opnd:$rs, GPR32Opnd:$rt, uimm16:$imm), 0>;
def : InstAlias<"or $rs, $rt, $imm",
(ORi GPR32Opnd:$rs, GPR32Opnd:$rt, uimm16:$imm), 0>;
def : InstAlias<"nop", (SLL ZERO, ZERO, 0), 1>;
def : InstAlias<"mfc0 $rt, $rd", (MFC0 GPR32Opnd:$rt, GPR32Opnd:$rd, 0), 0>;
def : InstAlias<"mtc0 $rt, $rd", (MTC0 GPR32Opnd:$rt, GPR32Opnd:$rd, 0), 0>;
def : InstAlias<"mfc2 $rt, $rd", (MFC2 GPR32Opnd:$rt, GPR32Opnd:$rd, 0), 0>;
def : InstAlias<"mtc2 $rt, $rd", (MTC2 GPR32Opnd:$rt, GPR32Opnd:$rd, 0), 0>;
def : InstAlias<"b $offset", (BEQ ZERO, ZERO, brtarget:$offset), 0>;
def : InstAlias<"bnez $rs,$offset",
(BNE GPR32Opnd:$rs, ZERO, brtarget:$offset), 0>;
def : InstAlias<"beqz $rs,$offset",
(BEQ GPR32Opnd:$rs, ZERO, brtarget:$offset), 0>;
def : InstAlias<"syscall", (SYSCALL 0), 1>;
def : InstAlias<"break $imm", (BREAK uimm10:$imm, 0), 1>;
def : InstAlias<"break", (BREAK 0, 0), 1>;
def : InstAlias<"ei", (EI ZERO), 1>;
def : InstAlias<"di", (DI ZERO), 1>;
def : InstAlias<"teq $rs, $rt", (TEQ GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>;
def : InstAlias<"tge $rs, $rt", (TGE GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>;
def : InstAlias<"tgeu $rs, $rt", (TGEU GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>;
def : InstAlias<"tlt $rs, $rt", (TLT GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>;
def : InstAlias<"tltu $rs, $rt", (TLTU GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>;
def : InstAlias<"tne $rs, $rt", (TNE GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>;
def : InstAlias<"sub, $rd, $rs, $imm",
(ADDi GPR32Opnd:$rd, GPR32Opnd:$rs, InvertedImOperand:$imm)>;
def : InstAlias<"subu, $rd, $rs, $imm",
(ADDiu GPR32Opnd:$rd, GPR32Opnd:$rs, InvertedImOperand:$imm)>;
//===----------------------------------------------------------------------===//
// Assembler Pseudo Instructions
//===----------------------------------------------------------------------===//
class LoadImm32< string instr_asm, Operand Od, RegisterOperand RO> :
MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32),
!strconcat(instr_asm, "\t$rt, $imm32")> ;
def LoadImm32Reg : LoadImm32<"li", uimm5, GPR32Opnd>;
class LoadAddress<string instr_asm, Operand MemOpnd, RegisterOperand RO> :
MipsAsmPseudoInst<(outs RO:$rt), (ins MemOpnd:$addr),
!strconcat(instr_asm, "\t$rt, $addr")> ;
def LoadAddr32Reg : LoadAddress<"la", mem, GPR32Opnd>;
class LoadAddressImm<string instr_asm, Operand Od, RegisterOperand RO> :
MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32),
!strconcat(instr_asm, "\t$rt, $imm32")> ;
def LoadAddr32Imm : LoadAddressImm<"la", uimm5, GPR32Opnd>;
//===----------------------------------------------------------------------===//
// Arbitrary patterns that map to one or more instructions
//===----------------------------------------------------------------------===//
// Load/store pattern templates.
class LoadRegImmPat<Instruction LoadInst, ValueType ValTy, PatFrag Node> :
MipsPat<(ValTy (Node addrRegImm:$a)), (LoadInst addrRegImm:$a)>;
class StoreRegImmPat<Instruction StoreInst, ValueType ValTy> :
MipsPat<(store ValTy:$v, addrRegImm:$a), (StoreInst ValTy:$v, addrRegImm:$a)>;
// Small immediates
def : MipsPat<(i32 immSExt16:$in),
(ADDiu ZERO, imm:$in)>;
def : MipsPat<(i32 immZExt16:$in),
(ORi ZERO, imm:$in)>;
def : MipsPat<(i32 immLow16Zero:$in),
(LUi (HI16 imm:$in))>;
// Arbitrary immediates
def : MipsPat<(i32 imm:$imm),
(ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
// Carry MipsPatterns
def : MipsPat<(subc GPR32:$lhs, GPR32:$rhs),
(SUBu GPR32:$lhs, GPR32:$rhs)>;
let Predicates = [HasStdEnc, NotDSP] in {
def : MipsPat<(addc GPR32:$lhs, GPR32:$rhs),
(ADDu GPR32:$lhs, GPR32:$rhs)>;
def : MipsPat<(addc GPR32:$src, immSExt16:$imm),
(ADDiu GPR32:$src, imm:$imm)>;
}
// Call
def : MipsPat<(MipsJmpLink (i32 tglobaladdr:$dst)),
(JAL tglobaladdr:$dst)>;
def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)),
(JAL texternalsym:$dst)>;
//def : MipsPat<(MipsJmpLink GPR32:$dst),
// (JALR GPR32:$dst)>;
// Tail call
def : MipsPat<(MipsTailCall (iPTR tglobaladdr:$dst)),
(TAILCALL tglobaladdr:$dst)>;
def : MipsPat<(MipsTailCall (iPTR texternalsym:$dst)),
(TAILCALL texternalsym:$dst)>;
// hi/lo relocs
def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
def : MipsPat<(MipsHi texternalsym:$in), (LUi texternalsym:$in)>;
def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
def : MipsPat<(MipsLo texternalsym:$in), (ADDiu ZERO, texternalsym:$in)>;
def : MipsPat<(add GPR32:$hi, (MipsLo tglobaladdr:$lo)),
(ADDiu GPR32:$hi, tglobaladdr:$lo)>;
def : MipsPat<(add GPR32:$hi, (MipsLo tblockaddress:$lo)),
(ADDiu GPR32:$hi, tblockaddress:$lo)>;
def : MipsPat<(add GPR32:$hi, (MipsLo tjumptable:$lo)),
(ADDiu GPR32:$hi, tjumptable:$lo)>;
def : MipsPat<(add GPR32:$hi, (MipsLo tconstpool:$lo)),
(ADDiu GPR32:$hi, tconstpool:$lo)>;
def : MipsPat<(add GPR32:$hi, (MipsLo tglobaltlsaddr:$lo)),
(ADDiu GPR32:$hi, tglobaltlsaddr:$lo)>;
// gp_rel relocs
def : MipsPat<(add GPR32:$gp, (MipsGPRel tglobaladdr:$in)),
(ADDiu GPR32:$gp, tglobaladdr:$in)>;
def : MipsPat<(add GPR32:$gp, (MipsGPRel tconstpool:$in)),
(ADDiu GPR32:$gp, tconstpool:$in)>;
// wrapper_pic
class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
MipsPat<(MipsWrapper RC:$gp, node:$in),
(ADDiuOp RC:$gp, node:$in)>;
def : WrapperPat<tglobaladdr, ADDiu, GPR32>;
def : WrapperPat<tconstpool, ADDiu, GPR32>;
def : WrapperPat<texternalsym, ADDiu, GPR32>;
def : WrapperPat<tblockaddress, ADDiu, GPR32>;
def : WrapperPat<tjumptable, ADDiu, GPR32>;
def : WrapperPat<tglobaltlsaddr, ADDiu, GPR32>;
// Mips does not have "not", so we expand our way
def : MipsPat<(not GPR32:$in),
(NOR GPR32Opnd:$in, ZERO)>;
// extended loads
let Predicates = [HasStdEnc] in {
def : MipsPat<(i32 (extloadi1 addr:$src)), (LBu addr:$src)>;
def : MipsPat<(i32 (extloadi8 addr:$src)), (LBu addr:$src)>;
def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>;
}
// peepholes
let Predicates = [HasStdEnc] in
def : MipsPat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
// brcond patterns
multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
Instruction SLTiuOp, Register ZEROReg> {
def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
(BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
(BEQOp RC:$lhs, ZEROReg, bb:$dst)>;
def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
(BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
(BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
(BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
(BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
def : MipsPat<(brcond (i32 (setgt RC:$lhs, immSExt16Plus1:$rhs)), bb:$dst),
(BEQ (SLTiOp RC:$lhs, (Plus1 imm:$rhs)), ZERO, bb:$dst)>;
def : MipsPat<(brcond (i32 (setugt RC:$lhs, immSExt16Plus1:$rhs)), bb:$dst),
(BEQ (SLTiuOp RC:$lhs, (Plus1 imm:$rhs)), ZERO, bb:$dst)>;
def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
(BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
(BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
def : MipsPat<(brcond RC:$cond, bb:$dst),
(BNEOp RC:$cond, ZEROReg, bb:$dst)>;
}
defm : BrcondPats<GPR32, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;
def : MipsPat<(brcond (i32 (setlt i32:$lhs, 1)), bb:$dst),
(BLEZ i32:$lhs, bb:$dst)>;
def : MipsPat<(brcond (i32 (setgt i32:$lhs, -1)), bb:$dst),
(BGEZ i32:$lhs, bb:$dst)>;
// setcc patterns
multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
Instruction SLTuOp, Register ZEROReg> {
def : MipsPat<(seteq RC:$lhs, 0),
(SLTiuOp RC:$lhs, 1)>;
def : MipsPat<(setne RC:$lhs, 0),
(SLTuOp ZEROReg, RC:$lhs)>;
def : MipsPat<(seteq RC:$lhs, RC:$rhs),
(SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
def : MipsPat<(setne RC:$lhs, RC:$rhs),
(SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
}
multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
def : MipsPat<(setle RC:$lhs, RC:$rhs),
(XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
def : MipsPat<(setule RC:$lhs, RC:$rhs),
(XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
}
multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
def : MipsPat<(setgt RC:$lhs, RC:$rhs),
(SLTOp RC:$rhs, RC:$lhs)>;
def : MipsPat<(setugt RC:$lhs, RC:$rhs),
(SLTuOp RC:$rhs, RC:$lhs)>;
}
multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
def : MipsPat<(setge RC:$lhs, RC:$rhs),
(XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
def : MipsPat<(setuge RC:$lhs, RC:$rhs),
(XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
}
multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
Instruction SLTiuOp> {
def : MipsPat<(setge RC:$lhs, immSExt16:$rhs),
(XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs),
(XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
}
defm : SeteqPats<GPR32, SLTiu, XOR, SLTu, ZERO>;
defm : SetlePats<GPR32, SLT, SLTu>;
defm : SetgtPats<GPR32, SLT, SLTu>;
defm : SetgePats<GPR32, SLT, SLTu>;
defm : SetgeImmPats<GPR32, SLTi, SLTiu>;
// bswap pattern
def : MipsPat<(bswap GPR32:$rt), (ROTR (WSBH GPR32:$rt), 16)>;
// Load halfword/word patterns.
let AddedComplexity = 40 in {
let Predicates = [HasStdEnc] in {
def : LoadRegImmPat<LBu, i32, zextloadi8>;
def : LoadRegImmPat<LH, i32, sextloadi16>;
def : LoadRegImmPat<LW, i32, load>;
}
}
//===----------------------------------------------------------------------===//
// Floating Point Support
//===----------------------------------------------------------------------===//
include "MipsInstrFPU.td"
include "Mips64InstrInfo.td"
include "MipsCondMov.td"
//
// Mips16
include "Mips16InstrFormats.td"
include "Mips16InstrInfo.td"
// DSP
include "MipsDSPInstrFormats.td"
include "MipsDSPInstrInfo.td"
// MSA
include "MipsMSAInstrFormats.td"
include "MipsMSAInstrInfo.td"
// Micromips
include "MicroMipsInstrFormats.td"
include "MicroMipsInstrInfo.td"