llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h

792 lines
31 KiB
C++

//===-- SelectionDAGBuilder.h - Selection-DAG building --------*- C++ -*---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements routines for translating from LLVM IR into SelectionDAG IR.
//
//===----------------------------------------------------------------------===//
#ifndef SELECTIONDAGBUILDER_H
#define SELECTIONDAGBUILDER_H
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Constants.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/ErrorHandling.h"
#include <vector>
namespace llvm {
class AddrSpaceCastInst;
class AliasAnalysis;
class AllocaInst;
class BasicBlock;
class BitCastInst;
class BranchInst;
class CallInst;
class DbgValueInst;
class ExtractElementInst;
class ExtractValueInst;
class FCmpInst;
class FPExtInst;
class FPToSIInst;
class FPToUIInst;
class FPTruncInst;
class Function;
class FunctionLoweringInfo;
class GetElementPtrInst;
class GCFunctionInfo;
class ICmpInst;
class IntToPtrInst;
class IndirectBrInst;
class InvokeInst;
class InsertElementInst;
class InsertValueInst;
class Instruction;
class LoadInst;
class MachineBasicBlock;
class MachineInstr;
class MachineRegisterInfo;
class MDNode;
class PHINode;
class PtrToIntInst;
class ReturnInst;
class SDDbgValue;
class SExtInst;
class SelectInst;
class ShuffleVectorInst;
class SIToFPInst;
class StoreInst;
class SwitchInst;
class DataLayout;
class TargetLibraryInfo;
class TargetLowering;
class TruncInst;
class UIToFPInst;
class UnreachableInst;
class VAArgInst;
class ZExtInst;
//===----------------------------------------------------------------------===//
/// SelectionDAGBuilder - This is the common target-independent lowering
/// implementation that is parameterized by a TargetLowering object.
///
class SelectionDAGBuilder {
/// CurInst - The current instruction being visited
const Instruction *CurInst;
DenseMap<const Value*, SDValue> NodeMap;
/// UnusedArgNodeMap - Maps argument value for unused arguments. This is used
/// to preserve debug information for incoming arguments.
DenseMap<const Value*, SDValue> UnusedArgNodeMap;
/// DanglingDebugInfo - Helper type for DanglingDebugInfoMap.
class DanglingDebugInfo {
const DbgValueInst* DI;
DebugLoc dl;
unsigned SDNodeOrder;
public:
DanglingDebugInfo() : DI(0), dl(DebugLoc()), SDNodeOrder(0) { }
DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO) :
DI(di), dl(DL), SDNodeOrder(SDNO) { }
const DbgValueInst* getDI() { return DI; }
DebugLoc getdl() { return dl; }
unsigned getSDNodeOrder() { return SDNodeOrder; }
};
/// DanglingDebugInfoMap - Keeps track of dbg_values for which we have not
/// yet seen the referent. We defer handling these until we do see it.
DenseMap<const Value*, DanglingDebugInfo> DanglingDebugInfoMap;
public:
/// PendingLoads - Loads are not emitted to the program immediately. We bunch
/// them up and then emit token factor nodes when possible. This allows us to
/// get simple disambiguation between loads without worrying about alias
/// analysis.
SmallVector<SDValue, 8> PendingLoads;
private:
/// PendingExports - CopyToReg nodes that copy values to virtual registers
/// for export to other blocks need to be emitted before any terminator
/// instruction, but they have no other ordering requirements. We bunch them
/// up and the emit a single tokenfactor for them just before terminator
/// instructions.
SmallVector<SDValue, 8> PendingExports;
/// SDNodeOrder - A unique monotonically increasing number used to order the
/// SDNodes we create.
unsigned SDNodeOrder;
/// Case - A struct to record the Value for a switch case, and the
/// case's target basic block.
struct Case {
const Constant *Low;
const Constant *High;
MachineBasicBlock* BB;
uint32_t ExtraWeight;
Case() : Low(0), High(0), BB(0), ExtraWeight(0) { }
Case(const Constant *low, const Constant *high, MachineBasicBlock *bb,
uint32_t extraweight) : Low(low), High(high), BB(bb),
ExtraWeight(extraweight) { }
APInt size() const {
const APInt &rHigh = cast<ConstantInt>(High)->getValue();
const APInt &rLow = cast<ConstantInt>(Low)->getValue();
return (rHigh - rLow + 1ULL);
}
};
struct CaseBits {
uint64_t Mask;
MachineBasicBlock* BB;
unsigned Bits;
uint32_t ExtraWeight;
CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits,
uint32_t Weight):
Mask(mask), BB(bb), Bits(bits), ExtraWeight(Weight) { }
};
typedef std::vector<Case> CaseVector;
typedef std::vector<CaseBits> CaseBitsVector;
typedef CaseVector::iterator CaseItr;
typedef std::pair<CaseItr, CaseItr> CaseRange;
/// CaseRec - A struct with ctor used in lowering switches to a binary tree
/// of conditional branches.
struct CaseRec {
CaseRec(MachineBasicBlock *bb, const Constant *lt, const Constant *ge,
CaseRange r) :
CaseBB(bb), LT(lt), GE(ge), Range(r) {}
/// CaseBB - The MBB in which to emit the compare and branch
MachineBasicBlock *CaseBB;
/// LT, GE - If nonzero, we know the current case value must be less-than or
/// greater-than-or-equal-to these Constants.
const Constant *LT;
const Constant *GE;
/// Range - A pair of iterators representing the range of case values to be
/// processed at this point in the binary search tree.
CaseRange Range;
};
typedef std::vector<CaseRec> CaseRecVector;
/// The comparison function for sorting the switch case values in the vector.
/// WARNING: Case ranges should be disjoint!
struct CaseCmp {
bool operator()(const Case &C1, const Case &C2) {
assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
return CI1->getValue().slt(CI2->getValue());
}
};
struct CaseBitsCmp {
bool operator()(const CaseBits &C1, const CaseBits &C2) {
return C1.Bits > C2.Bits;
}
};
size_t Clusterify(CaseVector &Cases, const SwitchInst &SI);
/// CaseBlock - This structure is used to communicate between
/// SelectionDAGBuilder and SDISel for the code generation of additional basic
/// blocks needed by multi-case switch statements.
struct CaseBlock {
CaseBlock(ISD::CondCode cc, const Value *cmplhs, const Value *cmprhs,
const Value *cmpmiddle,
MachineBasicBlock *truebb, MachineBasicBlock *falsebb,
MachineBasicBlock *me,
uint32_t trueweight = 0, uint32_t falseweight = 0)
: CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs),
TrueBB(truebb), FalseBB(falsebb), ThisBB(me),
TrueWeight(trueweight), FalseWeight(falseweight) { }
// CC - the condition code to use for the case block's setcc node
ISD::CondCode CC;
// CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit.
// Emit by default LHS op RHS. MHS is used for range comparisons:
// If MHS is not null: (LHS <= MHS) and (MHS <= RHS).
const Value *CmpLHS, *CmpMHS, *CmpRHS;
// TrueBB/FalseBB - the block to branch to if the setcc is true/false.
MachineBasicBlock *TrueBB, *FalseBB;
// ThisBB - the block into which to emit the code for the setcc and branches
MachineBasicBlock *ThisBB;
// TrueWeight/FalseWeight - branch weights.
uint32_t TrueWeight, FalseWeight;
};
struct JumpTable {
JumpTable(unsigned R, unsigned J, MachineBasicBlock *M,
MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {}
/// Reg - the virtual register containing the index of the jump table entry
//. to jump to.
unsigned Reg;
/// JTI - the JumpTableIndex for this jump table in the function.
unsigned JTI;
/// MBB - the MBB into which to emit the code for the indirect jump.
MachineBasicBlock *MBB;
/// Default - the MBB of the default bb, which is a successor of the range
/// check MBB. This is when updating PHI nodes in successors.
MachineBasicBlock *Default;
};
struct JumpTableHeader {
JumpTableHeader(APInt F, APInt L, const Value *SV, MachineBasicBlock *H,
bool E = false):
First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {}
APInt First;
APInt Last;
const Value *SValue;
MachineBasicBlock *HeaderBB;
bool Emitted;
};
typedef std::pair<JumpTableHeader, JumpTable> JumpTableBlock;
struct BitTestCase {
BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr,
uint32_t Weight):
Mask(M), ThisBB(T), TargetBB(Tr), ExtraWeight(Weight) { }
uint64_t Mask;
MachineBasicBlock *ThisBB;
MachineBasicBlock *TargetBB;
uint32_t ExtraWeight;
};
typedef SmallVector<BitTestCase, 3> BitTestInfo;
struct BitTestBlock {
BitTestBlock(APInt F, APInt R, const Value* SV,
unsigned Rg, MVT RgVT, bool E,
MachineBasicBlock* P, MachineBasicBlock* D,
const BitTestInfo& C):
First(F), Range(R), SValue(SV), Reg(Rg), RegVT(RgVT), Emitted(E),
Parent(P), Default(D), Cases(C) { }
APInt First;
APInt Range;
const Value *SValue;
unsigned Reg;
MVT RegVT;
bool Emitted;
MachineBasicBlock *Parent;
MachineBasicBlock *Default;
BitTestInfo Cases;
};
/// A class which encapsulates all of the information needed to generate a
/// stack protector check and signals to isel via its state being initialized
/// that a stack protector needs to be generated.
///
/// *NOTE* The following is a high level documentation of SelectionDAG Stack
/// Protector Generation. The reason that it is placed here is for a lack of
/// other good places to stick it.
///
/// High Level Overview of SelectionDAG Stack Protector Generation:
///
/// Previously, generation of stack protectors was done exclusively in the
/// pre-SelectionDAG Codegen LLVM IR Pass "Stack Protector". This necessitated
/// splitting basic blocks at the IR level to create the success/failure basic
/// blocks in the tail of the basic block in question. As a result of this,
/// calls that would have qualified for the sibling call optimization were no
/// longer eligible for optimization since said calls were no longer right in
/// the "tail position" (i.e. the immediate predecessor of a ReturnInst
/// instruction).
///
/// Then it was noticed that since the sibling call optimization causes the
/// callee to reuse the caller's stack, if we could delay the generation of
/// the stack protector check until later in CodeGen after the sibling call
/// decision was made, we get both the tail call optimization and the stack
/// protector check!
///
/// A few goals in solving this problem were:
///
/// 1. Preserve the architecture independence of stack protector generation.
///
/// 2. Preserve the normal IR level stack protector check for platforms like
/// OpenBSD for which we support platform specific stack protector
/// generation.
///
/// The main problem that guided the present solution is that one can not
/// solve this problem in an architecture independent manner at the IR level
/// only. This is because:
///
/// 1. The decision on whether or not to perform a sibling call on certain
/// platforms (for instance i386) requires lower level information
/// related to available registers that can not be known at the IR level.
///
/// 2. Even if the previous point were not true, the decision on whether to
/// perform a tail call is done in LowerCallTo in SelectionDAG which
/// occurs after the Stack Protector Pass. As a result, one would need to
/// put the relevant callinst into the stack protector check success
/// basic block (where the return inst is placed) and then move it back
/// later at SelectionDAG/MI time before the stack protector check if the
/// tail call optimization failed. The MI level option was nixed
/// immediately since it would require platform specific pattern
/// matching. The SelectionDAG level option was nixed because
/// SelectionDAG only processes one IR level basic block at a time
/// implying one could not create a DAG Combine to move the callinst.
///
/// To get around this problem a few things were realized:
///
/// 1. While one can not handle multiple IR level basic blocks at the
/// SelectionDAG Level, one can generate multiple machine basic blocks
/// for one IR level basic block. This is how we handle bit tests and
/// switches.
///
/// 2. At the MI level, tail calls are represented via a special return
/// MIInst called "tcreturn". Thus if we know the basic block in which we
/// wish to insert the stack protector check, we get the correct behavior
/// by always inserting the stack protector check right before the return
/// statement. This is a "magical transformation" since no matter where
/// the stack protector check intrinsic is, we always insert the stack
/// protector check code at the end of the BB.
///
/// Given the aforementioned constraints, the following solution was devised:
///
/// 1. On platforms that do not support SelectionDAG stack protector check
/// generation, allow for the normal IR level stack protector check
/// generation to continue.
///
/// 2. On platforms that do support SelectionDAG stack protector check
/// generation:
///
/// a. Use the IR level stack protector pass to decide if a stack
/// protector is required/which BB we insert the stack protector check
/// in by reusing the logic already therein. If we wish to generate a
/// stack protector check in a basic block, we place a special IR
/// intrinsic called llvm.stackprotectorcheck right before the BB's
/// returninst or if there is a callinst that could potentially be
/// sibling call optimized, before the call inst.
///
/// b. Then when a BB with said intrinsic is processed, we codegen the BB
/// normally via SelectBasicBlock. In said process, when we visit the
/// stack protector check, we do not actually emit anything into the
/// BB. Instead, we just initialize the stack protector descriptor
/// class (which involves stashing information/creating the success
/// mbbb and the failure mbb if we have not created one for this
/// function yet) and export the guard variable that we are going to
/// compare.
///
/// c. After we finish selecting the basic block, in FinishBasicBlock if
/// the StackProtectorDescriptor attached to the SelectionDAGBuilder is
/// initialized, we first find a splice point in the parent basic block
/// before the terminator and then splice the terminator of said basic
/// block into the success basic block. Then we code-gen a new tail for
/// the parent basic block consisting of the two loads, the comparison,
/// and finally two branches to the success/failure basic blocks. We
/// conclude by code-gening the failure basic block if we have not
/// code-gened it already (all stack protector checks we generate in
/// the same function, use the same failure basic block).
class StackProtectorDescriptor {
public:
StackProtectorDescriptor() : ParentMBB(0), SuccessMBB(0), FailureMBB(0),
Guard(0) { }
~StackProtectorDescriptor() { }
/// Returns true if all fields of the stack protector descriptor are
/// initialized implying that we should/are ready to emit a stack protector.
bool shouldEmitStackProtector() const {
return ParentMBB && SuccessMBB && FailureMBB && Guard;
}
/// Initialize the stack protector descriptor structure for a new basic
/// block.
void initialize(const BasicBlock *BB,
MachineBasicBlock *MBB,
const CallInst &StackProtCheckCall) {
// Make sure we are not initialized yet.
assert(!shouldEmitStackProtector() && "Stack Protector Descriptor is "
"already initialized!");
ParentMBB = MBB;
SuccessMBB = AddSuccessorMBB(BB, MBB);
FailureMBB = AddSuccessorMBB(BB, MBB, FailureMBB);
if (!Guard)
Guard = StackProtCheckCall.getArgOperand(0);
}
/// Reset state that changes when we handle different basic blocks.
///
/// This currently includes:
///
/// 1. The specific basic block we are generating a
/// stack protector for (ParentMBB).
///
/// 2. The successor machine basic block that will contain the tail of
/// parent mbb after we create the stack protector check (SuccessMBB). This
/// BB is visited only on stack protector check success.
void resetPerBBState() {
ParentMBB = 0;
SuccessMBB = 0;
}
/// Reset state that only changes when we switch functions.
///
/// This currently includes:
///
/// 1. FailureMBB since we reuse the failure code path for all stack
/// protector checks created in an individual function.
///
/// 2.The guard variable since the guard variable we are checking against is
/// always the same.
void resetPerFunctionState() {
FailureMBB = 0;
Guard = 0;
}
MachineBasicBlock *getParentMBB() { return ParentMBB; }
MachineBasicBlock *getSuccessMBB() { return SuccessMBB; }
MachineBasicBlock *getFailureMBB() { return FailureMBB; }
const Value *getGuard() { return Guard; }
private:
/// The basic block for which we are generating the stack protector.
///
/// As a result of stack protector generation, we will splice the
/// terminators of this basic block into the successor mbb SuccessMBB and
/// replace it with a compare/branch to the successor mbbs
/// SuccessMBB/FailureMBB depending on whether or not the stack protector
/// was violated.
MachineBasicBlock *ParentMBB;
/// A basic block visited on stack protector check success that contains the
/// terminators of ParentMBB.
MachineBasicBlock *SuccessMBB;
/// This basic block visited on stack protector check failure that will
/// contain a call to __stack_chk_fail().
MachineBasicBlock *FailureMBB;
/// The guard variable which we will compare against the stored value in the
/// stack protector stack slot.
const Value *Guard;
/// Add a successor machine basic block to ParentMBB. If the successor mbb
/// has not been created yet (i.e. if SuccMBB = 0), then the machine basic
/// block will be created.
MachineBasicBlock *AddSuccessorMBB(const BasicBlock *BB,
MachineBasicBlock *ParentMBB,
MachineBasicBlock *SuccMBB = 0);
};
private:
const TargetMachine &TM;
public:
/// Lowest valid SDNodeOrder. The special case 0 is reserved for scheduling
/// nodes without a corresponding SDNode.
static const unsigned LowestSDNodeOrder = 1;
SelectionDAG &DAG;
const DataLayout *TD;
AliasAnalysis *AA;
const TargetLibraryInfo *LibInfo;
/// SwitchCases - Vector of CaseBlock structures used to communicate
/// SwitchInst code generation information.
std::vector<CaseBlock> SwitchCases;
/// JTCases - Vector of JumpTable structures used to communicate
/// SwitchInst code generation information.
std::vector<JumpTableBlock> JTCases;
/// BitTestCases - Vector of BitTestBlock structures used to communicate
/// SwitchInst code generation information.
std::vector<BitTestBlock> BitTestCases;
/// A StackProtectorDescriptor structure used to communicate stack protector
/// information in between SelectBasicBlock and FinishBasicBlock.
StackProtectorDescriptor SPDescriptor;
// Emit PHI-node-operand constants only once even if used by multiple
// PHI nodes.
DenseMap<const Constant *, unsigned> ConstantsOut;
/// FuncInfo - Information about the function as a whole.
///
FunctionLoweringInfo &FuncInfo;
/// OptLevel - What optimization level we're generating code for.
///
CodeGenOpt::Level OptLevel;
/// GFI - Garbage collection metadata for the function.
GCFunctionInfo *GFI;
/// LPadToCallSiteMap - Map a landing pad to the call site indexes.
DenseMap<MachineBasicBlock*, SmallVector<unsigned, 4> > LPadToCallSiteMap;
/// HasTailCall - This is set to true if a call in the current
/// block has been translated as a tail call. In this case,
/// no subsequent DAG nodes should be created.
///
bool HasTailCall;
LLVMContext *Context;
SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo,
CodeGenOpt::Level ol)
: CurInst(NULL), SDNodeOrder(LowestSDNodeOrder), TM(dag.getTarget()),
DAG(dag), FuncInfo(funcinfo), OptLevel(ol),
HasTailCall(false) {
}
void init(GCFunctionInfo *gfi, AliasAnalysis &aa,
const TargetLibraryInfo *li);
/// clear - Clear out the current SelectionDAG and the associated
/// state and prepare this SelectionDAGBuilder object to be used
/// for a new block. This doesn't clear out information about
/// additional blocks that are needed to complete switch lowering
/// or PHI node updating; that information is cleared out as it is
/// consumed.
void clear();
/// clearDanglingDebugInfo - Clear the dangling debug information
/// map. This function is separated from the clear so that debug
/// information that is dangling in a basic block can be properly
/// resolved in a different basic block. This allows the
/// SelectionDAG to resolve dangling debug information attached
/// to PHI nodes.
void clearDanglingDebugInfo();
/// getRoot - Return the current virtual root of the Selection DAG,
/// flushing any PendingLoad items. This must be done before emitting
/// a store or any other node that may need to be ordered after any
/// prior load instructions.
///
SDValue getRoot();
/// getControlRoot - Similar to getRoot, but instead of flushing all the
/// PendingLoad items, flush all the PendingExports items. It is necessary
/// to do this before emitting a terminator instruction.
///
SDValue getControlRoot();
SDLoc getCurSDLoc() const {
return SDLoc(CurInst, SDNodeOrder);
}
DebugLoc getCurDebugLoc() const {
return CurInst ? CurInst->getDebugLoc() : DebugLoc();
}
unsigned getSDNodeOrder() const { return SDNodeOrder; }
void CopyValueToVirtualRegister(const Value *V, unsigned Reg);
void visit(const Instruction &I);
void visit(unsigned Opcode, const User &I);
// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
// generate the debug data structures now that we've seen its definition.
void resolveDanglingDebugInfo(const Value *V, SDValue Val);
SDValue getValue(const Value *V);
SDValue getNonRegisterValue(const Value *V);
SDValue getValueImpl(const Value *V);
void setValue(const Value *V, SDValue NewN) {
SDValue &N = NodeMap[V];
assert(N.getNode() == 0 && "Already set a value for this node!");
N = NewN;
}
void setUnusedArgValue(const Value *V, SDValue NewN) {
SDValue &N = UnusedArgNodeMap[V];
assert(N.getNode() == 0 && "Already set a value for this node!");
N = NewN;
}
void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB,
MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
MachineBasicBlock *SwitchBB, unsigned Opc);
void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
MachineBasicBlock *CurBB,
MachineBasicBlock *SwitchBB);
bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases);
bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB);
void CopyToExportRegsIfNeeded(const Value *V);
void ExportFromCurrentBlock(const Value *V);
void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall,
MachineBasicBlock *LandingPad = NULL);
std::pair<SDValue, SDValue> LowerCallOperands(const CallInst &CI,
unsigned ArgIdx,
unsigned NumArgs,
SDValue Callee,
bool useVoidTy = false);
/// UpdateSplitBlock - When an MBB was split during scheduling, update the
/// references that need to refer to the last resulting block.
void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last);
private:
// Terminator instructions.
void visitRet(const ReturnInst &I);
void visitBr(const BranchInst &I);
void visitSwitch(const SwitchInst &I);
void visitIndirectBr(const IndirectBrInst &I);
void visitUnreachable(const UnreachableInst &I) { /* noop */ }
// Helpers for visitSwitch
bool handleSmallSwitchRange(CaseRec& CR,
CaseRecVector& WorkList,
const Value* SV,
MachineBasicBlock* Default,
MachineBasicBlock *SwitchBB);
bool handleJTSwitchCase(CaseRec& CR,
CaseRecVector& WorkList,
const Value* SV,
MachineBasicBlock* Default,
MachineBasicBlock *SwitchBB);
bool handleBTSplitSwitchCase(CaseRec& CR,
CaseRecVector& WorkList,
const Value* SV,
MachineBasicBlock* Default,
MachineBasicBlock *SwitchBB);
bool handleBitTestsSwitchCase(CaseRec& CR,
CaseRecVector& WorkList,
const Value* SV,
MachineBasicBlock* Default,
MachineBasicBlock *SwitchBB);
uint32_t getEdgeWeight(const MachineBasicBlock *Src,
const MachineBasicBlock *Dst) const;
void addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
uint32_t Weight = 0);
public:
void visitSwitchCase(CaseBlock &CB,
MachineBasicBlock *SwitchBB);
void visitSPDescriptorParent(StackProtectorDescriptor &SPD,
MachineBasicBlock *ParentBB);
void visitSPDescriptorFailure(StackProtectorDescriptor &SPD);
void visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB);
void visitBitTestCase(BitTestBlock &BB,
MachineBasicBlock* NextMBB,
uint32_t BranchWeightToNext,
unsigned Reg,
BitTestCase &B,
MachineBasicBlock *SwitchBB);
void visitJumpTable(JumpTable &JT);
void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH,
MachineBasicBlock *SwitchBB);
private:
// These all get lowered before this pass.
void visitInvoke(const InvokeInst &I);
void visitResume(const ResumeInst &I);
void visitBinary(const User &I, unsigned OpCode);
void visitShift(const User &I, unsigned Opcode);
void visitAdd(const User &I) { visitBinary(I, ISD::ADD); }
void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); }
void visitSub(const User &I) { visitBinary(I, ISD::SUB); }
void visitFSub(const User &I);
void visitMul(const User &I) { visitBinary(I, ISD::MUL); }
void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); }
void visitURem(const User &I) { visitBinary(I, ISD::UREM); }
void visitSRem(const User &I) { visitBinary(I, ISD::SREM); }
void visitFRem(const User &I) { visitBinary(I, ISD::FREM); }
void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); }
void visitSDiv(const User &I);
void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); }
void visitAnd (const User &I) { visitBinary(I, ISD::AND); }
void visitOr (const User &I) { visitBinary(I, ISD::OR); }
void visitXor (const User &I) { visitBinary(I, ISD::XOR); }
void visitShl (const User &I) { visitShift(I, ISD::SHL); }
void visitLShr(const User &I) { visitShift(I, ISD::SRL); }
void visitAShr(const User &I) { visitShift(I, ISD::SRA); }
void visitICmp(const User &I);
void visitFCmp(const User &I);
// Visit the conversion instructions
void visitTrunc(const User &I);
void visitZExt(const User &I);
void visitSExt(const User &I);
void visitFPTrunc(const User &I);
void visitFPExt(const User &I);
void visitFPToUI(const User &I);
void visitFPToSI(const User &I);
void visitUIToFP(const User &I);
void visitSIToFP(const User &I);
void visitPtrToInt(const User &I);
void visitIntToPtr(const User &I);
void visitBitCast(const User &I);
void visitAddrSpaceCast(const User &I);
void visitExtractElement(const User &I);
void visitInsertElement(const User &I);
void visitShuffleVector(const User &I);
void visitExtractValue(const ExtractValueInst &I);
void visitInsertValue(const InsertValueInst &I);
void visitLandingPad(const LandingPadInst &I);
void visitGetElementPtr(const User &I);
void visitSelect(const User &I);
void visitAlloca(const AllocaInst &I);
void visitLoad(const LoadInst &I);
void visitStore(const StoreInst &I);
void visitAtomicCmpXchg(const AtomicCmpXchgInst &I);
void visitAtomicRMW(const AtomicRMWInst &I);
void visitFence(const FenceInst &I);
void visitPHI(const PHINode &I);
void visitCall(const CallInst &I);
bool visitMemCmpCall(const CallInst &I);
bool visitMemChrCall(const CallInst &I);
bool visitStrCpyCall(const CallInst &I, bool isStpcpy);
bool visitStrCmpCall(const CallInst &I);
bool visitStrLenCall(const CallInst &I);
bool visitStrNLenCall(const CallInst &I);
bool visitUnaryFloatCall(const CallInst &I, unsigned Opcode);
void visitAtomicLoad(const LoadInst &I);
void visitAtomicStore(const StoreInst &I);
void visitInlineAsm(ImmutableCallSite CS);
const char *visitIntrinsicCall(const CallInst &I, unsigned Intrinsic);
void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic);
void visitVAStart(const CallInst &I);
void visitVAArg(const VAArgInst &I);
void visitVAEnd(const CallInst &I);
void visitVACopy(const CallInst &I);
void visitStackmap(const CallInst &I);
void visitPatchpoint(const CallInst &I);
void visitUserOp1(const Instruction &I) {
llvm_unreachable("UserOp1 should not exist at instruction selection time!");
}
void visitUserOp2(const Instruction &I) {
llvm_unreachable("UserOp2 should not exist at instruction selection time!");
}
void processIntegerCallValue(const Instruction &I,
SDValue Value, bool IsSigned);
void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
/// EmitFuncArgumentDbgValue - If V is an function argument then create
/// corresponding DBG_VALUE machine instruction for it now. At the end of
/// instruction selection, they will be inserted to the entry BB.
bool EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
int64_t Offset, const SDValue &N);
};
} // end namespace llvm
#endif