forked from OSchip/llvm-project
980c3e6dd2
This pass inserts the necessary CFI instructions to compensate for the inconsistency of the call-frame information caused by linear (non-CFG aware) nature of the unwind tables. Unlike the `CFIInstrInserer` pass, this one almost always emits only `.cfi_remember_state`/`.cfi_restore_state`, which results in smaller unwind tables and also transparently handles custom unwind info extensions like CFA offset adjustement and save locations of SVE registers. This pass takes advantage of the constraints that LLVM imposes on the placement of save/restore points (cf. `ShrinkWrap.cpp`): * there is a single basic block, containing the function prologue * possibly multiple epilogue blocks, where each epilogue block is complete and self-contained, i.e. CSR restore instructions (and the corresponding CFI instructions are not split across two or more blocks. * prologue and epilogue blocks are outside of any loops Thus, during execution, at the beginning and at the end of each basic block the function can be in one of two states: - "has a call frame", if the function has executed the prologue, or has not executed any epilogue - "does not have a call frame", if the function has not executed the prologue, or has executed an epilogue These properties can be computed for each basic block by a single RPO traversal. In order to accommodate backends which do not generate unwind info in epilogues we compute an additional property "strong no call frame on entry" which is set for the entry point of the function and for every block reachable from the entry along a path that does not execute the prologue. If this property holds, it takes precedence over the "has a call frame" property. From the point of view of the unwind tables, the "has/does not have call frame" state at beginning of each block is determined by the state at the end of the previous block, in layout order. Where these states differ, we insert compensating CFI instructions, which come in two flavours: - CFI instructions, which reset the unwind table state to the initial one. This is done by a target specific hook and is expected to be trivial to implement, for example it could be: ``` .cfi_def_cfa <sp>, 0 .cfi_same_value <rN> .cfi_same_value <rN-1> ... ``` where `<rN>` are the callee-saved registers. - CFI instructions, which reset the unwind table state to the one created by the function prologue. These are the sequence: ``` .cfi_restore_state .cfi_remember_state ``` In this case we also insert a `.cfi_remember_state` after the last CFI instruction in the function prologue. Reviewed By: MaskRay, danielkiss, chill Differential Revision: https://reviews.llvm.org/D114545 |
||
---|---|---|
.. | ||
AsmPrinter | ||
GlobalISel | ||
LiveDebugValues | ||
MIRParser | ||
SelectionDAG | ||
AggressiveAntiDepBreaker.cpp | ||
AggressiveAntiDepBreaker.h | ||
AllocationOrder.cpp | ||
AllocationOrder.h | ||
Analysis.cpp | ||
AtomicExpandPass.cpp | ||
BasicBlockSections.cpp | ||
BasicTargetTransformInfo.cpp | ||
BranchFolding.cpp | ||
BranchFolding.h | ||
BranchRelaxation.cpp | ||
BreakFalseDeps.cpp | ||
CFGuardLongjmp.cpp | ||
CFIFixup.cpp | ||
CFIInstrInserter.cpp | ||
CMakeLists.txt | ||
CalcSpillWeights.cpp | ||
CallingConvLower.cpp | ||
CodeGen.cpp | ||
CodeGenCommonISel.cpp | ||
CodeGenPassBuilder.cpp | ||
CodeGenPrepare.cpp | ||
CommandFlags.cpp | ||
CriticalAntiDepBreaker.cpp | ||
CriticalAntiDepBreaker.h | ||
DFAPacketizer.cpp | ||
DeadMachineInstructionElim.cpp | ||
DetectDeadLanes.cpp | ||
DwarfEHPrepare.cpp | ||
EHContGuardCatchret.cpp | ||
EarlyIfConversion.cpp | ||
EdgeBundles.cpp | ||
ExecutionDomainFix.cpp | ||
ExpandMemCmp.cpp | ||
ExpandPostRAPseudos.cpp | ||
ExpandReductions.cpp | ||
ExpandVectorPredication.cpp | ||
FEntryInserter.cpp | ||
FaultMaps.cpp | ||
FinalizeISel.cpp | ||
FixupStatepointCallerSaved.cpp | ||
FuncletLayout.cpp | ||
GCMetadata.cpp | ||
GCMetadataPrinter.cpp | ||
GCRootLowering.cpp | ||
GlobalMerge.cpp | ||
HardwareLoops.cpp | ||
IfConversion.cpp | ||
ImplicitNullChecks.cpp | ||
IndirectBrExpandPass.cpp | ||
InlineSpiller.cpp | ||
InterferenceCache.cpp | ||
InterferenceCache.h | ||
InterleavedAccessPass.cpp | ||
InterleavedLoadCombinePass.cpp | ||
IntrinsicLowering.cpp | ||
JMCInstrumenter.cpp | ||
LLVMTargetMachine.cpp | ||
LatencyPriorityQueue.cpp | ||
LazyMachineBlockFrequencyInfo.cpp | ||
LexicalScopes.cpp | ||
LiveDebugVariables.cpp | ||
LiveDebugVariables.h | ||
LiveInterval.cpp | ||
LiveIntervalCalc.cpp | ||
LiveIntervalUnion.cpp | ||
LiveIntervals.cpp | ||
LivePhysRegs.cpp | ||
LiveRangeCalc.cpp | ||
LiveRangeEdit.cpp | ||
LiveRangeShrink.cpp | ||
LiveRangeUtils.h | ||
LiveRegMatrix.cpp | ||
LiveRegUnits.cpp | ||
LiveStacks.cpp | ||
LiveVariables.cpp | ||
LocalStackSlotAllocation.cpp | ||
LoopTraversal.cpp | ||
LowLevelType.cpp | ||
LowerEmuTLS.cpp | ||
MBFIWrapper.cpp | ||
MIRCanonicalizerPass.cpp | ||
MIRFSDiscriminator.cpp | ||
MIRNamerPass.cpp | ||
MIRPrinter.cpp | ||
MIRPrintingPass.cpp | ||
MIRSampleProfile.cpp | ||
MIRVRegNamerUtils.cpp | ||
MIRVRegNamerUtils.h | ||
MIRYamlMapping.cpp | ||
MLRegallocEvictAdvisor.cpp | ||
MachineBasicBlock.cpp | ||
MachineBlockFrequencyInfo.cpp | ||
MachineBlockPlacement.cpp | ||
MachineBranchProbabilityInfo.cpp | ||
MachineCSE.cpp | ||
MachineCheckDebugify.cpp | ||
MachineCombiner.cpp | ||
MachineCopyPropagation.cpp | ||
MachineCycleAnalysis.cpp | ||
MachineDebugify.cpp | ||
MachineDominanceFrontier.cpp | ||
MachineDominators.cpp | ||
MachineFrameInfo.cpp | ||
MachineFunction.cpp | ||
MachineFunctionPass.cpp | ||
MachineFunctionPrinterPass.cpp | ||
MachineFunctionSplitter.cpp | ||
MachineInstr.cpp | ||
MachineInstrBundle.cpp | ||
MachineLICM.cpp | ||
MachineLoopInfo.cpp | ||
MachineLoopUtils.cpp | ||
MachineModuleInfo.cpp | ||
MachineModuleInfoImpls.cpp | ||
MachineModuleSlotTracker.cpp | ||
MachineOperand.cpp | ||
MachineOptimizationRemarkEmitter.cpp | ||
MachineOutliner.cpp | ||
MachinePassManager.cpp | ||
MachinePipeliner.cpp | ||
MachinePostDominators.cpp | ||
MachineRegionInfo.cpp | ||
MachineRegisterInfo.cpp | ||
MachineSSAContext.cpp | ||
MachineSSAUpdater.cpp | ||
MachineScheduler.cpp | ||
MachineSink.cpp | ||
MachineSizeOpts.cpp | ||
MachineStableHash.cpp | ||
MachineStripDebug.cpp | ||
MachineTraceMetrics.cpp | ||
MachineVerifier.cpp | ||
MacroFusion.cpp | ||
ModuloSchedule.cpp | ||
MultiHazardRecognizer.cpp | ||
NonRelocatableStringpool.cpp | ||
OptimizePHIs.cpp | ||
PHIElimination.cpp | ||
PHIEliminationUtils.cpp | ||
PHIEliminationUtils.h | ||
ParallelCG.cpp | ||
PatchableFunction.cpp | ||
PeepholeOptimizer.cpp | ||
PostRAHazardRecognizer.cpp | ||
PostRASchedulerList.cpp | ||
PreISelIntrinsicLowering.cpp | ||
ProcessImplicitDefs.cpp | ||
PrologEpilogInserter.cpp | ||
PseudoProbeInserter.cpp | ||
PseudoSourceValue.cpp | ||
RDFGraph.cpp | ||
RDFLiveness.cpp | ||
RDFRegisters.cpp | ||
README.txt | ||
ReachingDefAnalysis.cpp | ||
RegAllocBase.cpp | ||
RegAllocBase.h | ||
RegAllocBasic.cpp | ||
RegAllocEvictionAdvisor.cpp | ||
RegAllocEvictionAdvisor.h | ||
RegAllocFast.cpp | ||
RegAllocGreedy.cpp | ||
RegAllocGreedy.h | ||
RegAllocPBQP.cpp | ||
RegAllocScore.cpp | ||
RegAllocScore.h | ||
RegUsageInfoCollector.cpp | ||
RegUsageInfoPropagate.cpp | ||
RegisterBank.cpp | ||
RegisterBankInfo.cpp | ||
RegisterClassInfo.cpp | ||
RegisterCoalescer.cpp | ||
RegisterCoalescer.h | ||
RegisterPressure.cpp | ||
RegisterScavenging.cpp | ||
RegisterUsageInfo.cpp | ||
RemoveRedundantDebugValues.cpp | ||
RenameIndependentSubregs.cpp | ||
ReplaceWithVeclib.cpp | ||
ResetMachineFunctionPass.cpp | ||
SafeStack.cpp | ||
SafeStackLayout.cpp | ||
SafeStackLayout.h | ||
ScheduleDAG.cpp | ||
ScheduleDAGInstrs.cpp | ||
ScheduleDAGPrinter.cpp | ||
ScoreboardHazardRecognizer.cpp | ||
ShadowStackGCLowering.cpp | ||
ShrinkWrap.cpp | ||
SjLjEHPrepare.cpp | ||
SlotIndexes.cpp | ||
SpillPlacement.cpp | ||
SpillPlacement.h | ||
SplitKit.cpp | ||
SplitKit.h | ||
StackColoring.cpp | ||
StackMapLivenessAnalysis.cpp | ||
StackMaps.cpp | ||
StackProtector.cpp | ||
StackSlotColoring.cpp | ||
SwiftErrorValueTracking.cpp | ||
SwitchLoweringUtils.cpp | ||
TailDuplication.cpp | ||
TailDuplicator.cpp | ||
TargetFrameLoweringImpl.cpp | ||
TargetInstrInfo.cpp | ||
TargetLoweringBase.cpp | ||
TargetLoweringObjectFileImpl.cpp | ||
TargetOptionsImpl.cpp | ||
TargetPassConfig.cpp | ||
TargetRegisterInfo.cpp | ||
TargetSchedule.cpp | ||
TargetSubtargetInfo.cpp | ||
TwoAddressInstructionPass.cpp | ||
TypePromotion.cpp | ||
UnreachableBlockElim.cpp | ||
VLIWMachineScheduler.cpp | ||
ValueTypes.cpp | ||
VirtRegMap.cpp | ||
WasmEHPrepare.cpp | ||
WinEHPrepare.cpp | ||
XRayInstrumentation.cpp |
README.txt
//===---------------------------------------------------------------------===// Common register allocation / spilling problem: mul lr, r4, lr str lr, [sp, #+52] ldr lr, [r1, #+32] sxth r3, r3 ldr r4, [sp, #+52] mla r4, r3, lr, r4 can be: mul lr, r4, lr mov r4, lr str lr, [sp, #+52] ldr lr, [r1, #+32] sxth r3, r3 mla r4, r3, lr, r4 and then "merge" mul and mov: mul r4, r4, lr str r4, [sp, #+52] ldr lr, [r1, #+32] sxth r3, r3 mla r4, r3, lr, r4 It also increase the likelihood the store may become dead. //===---------------------------------------------------------------------===// bb27 ... ... %reg1037 = ADDri %reg1039, 1 %reg1038 = ADDrs %reg1032, %reg1039, %noreg, 10 Successors according to CFG: 0x8b03bf0 (#5) bb76 (0x8b03bf0, LLVM BB @0x8b032d0, ID#5): Predecessors according to CFG: 0x8b0c5f0 (#3) 0x8b0a7c0 (#4) %reg1039 = PHI %reg1070, mbb<bb76.outer,0x8b0c5f0>, %reg1037, mbb<bb27,0x8b0a7c0> Note ADDri is not a two-address instruction. However, its result %reg1037 is an operand of the PHI node in bb76 and its operand %reg1039 is the result of the PHI node. We should treat it as a two-address code and make sure the ADDri is scheduled after any node that reads %reg1039. //===---------------------------------------------------------------------===// Use local info (i.e. register scavenger) to assign it a free register to allow reuse: ldr r3, [sp, #+4] add r3, r3, #3 ldr r2, [sp, #+8] add r2, r2, #2 ldr r1, [sp, #+4] <== add r1, r1, #1 ldr r0, [sp, #+4] add r0, r0, #2 //===---------------------------------------------------------------------===// LLVM aggressively lift CSE out of loop. Sometimes this can be negative side- effects: R1 = X + 4 R2 = X + 7 R3 = X + 15 loop: load [i + R1] ... load [i + R2] ... load [i + R3] Suppose there is high register pressure, R1, R2, R3, can be spilled. We need to implement proper re-materialization to handle this: R1 = X + 4 R2 = X + 7 R3 = X + 15 loop: R1 = X + 4 @ re-materialized load [i + R1] ... R2 = X + 7 @ re-materialized load [i + R2] ... R3 = X + 15 @ re-materialized load [i + R3] Furthermore, with re-association, we can enable sharing: R1 = X + 4 R2 = X + 7 R3 = X + 15 loop: T = i + X load [T + 4] ... load [T + 7] ... load [T + 15] //===---------------------------------------------------------------------===// It's not always a good idea to choose rematerialization over spilling. If all the load / store instructions would be folded then spilling is cheaper because it won't require new live intervals / registers. See 2003-05-31-LongShifts for an example. //===---------------------------------------------------------------------===// With a copying garbage collector, derived pointers must not be retained across collector safe points; the collector could move the objects and invalidate the derived pointer. This is bad enough in the first place, but safe points can crop up unpredictably. Consider: %array = load { i32, [0 x %obj] }** %array_addr %nth_el = getelementptr { i32, [0 x %obj] }* %array, i32 0, i32 %n %old = load %obj** %nth_el %z = div i64 %x, %y store %obj* %new, %obj** %nth_el If the i64 division is lowered to a libcall, then a safe point will (must) appear for the call site. If a collection occurs, %array and %nth_el no longer point into the correct object. The fix for this is to copy address calculations so that dependent pointers are never live across safe point boundaries. But the loads cannot be copied like this if there was an intervening store, so may be hard to get right. Only a concurrent mutator can trigger a collection at the libcall safe point. So single-threaded programs do not have this requirement, even with a copying collector. Still, LLVM optimizations would probably undo a front-end's careful work. //===---------------------------------------------------------------------===// The ocaml frametable structure supports liveness information. It would be good to support it. //===---------------------------------------------------------------------===// The FIXME in ComputeCommonTailLength in BranchFolding.cpp needs to be revisited. The check is there to work around a misuse of directives in inline assembly. //===---------------------------------------------------------------------===// It would be good to detect collector/target compatibility instead of silently doing the wrong thing. //===---------------------------------------------------------------------===// It would be really nice to be able to write patterns in .td files for copies, which would eliminate a bunch of explicit predicates on them (e.g. no side effects). Once this is in place, it would be even better to have tblgen synthesize the various copy insertion/inspection methods in TargetInstrInfo. //===---------------------------------------------------------------------===// Stack coloring improvements: 1. Do proper LiveStacks analysis on all stack objects including those which are not spill slots. 2. Reorder objects to fill in gaps between objects. e.g. 4, 1, <gap>, 4, 1, 1, 1, <gap>, 4 => 4, 1, 1, 1, 1, 4, 4 //===---------------------------------------------------------------------===// The scheduler should be able to sort nearby instructions by their address. For example, in an expanded memset sequence it's not uncommon to see code like this: movl $0, 4(%rdi) movl $0, 8(%rdi) movl $0, 12(%rdi) movl $0, 0(%rdi) Each of the stores is independent, and the scheduler is currently making an arbitrary decision about the order. //===---------------------------------------------------------------------===// Another opportunitiy in this code is that the $0 could be moved to a register: movl $0, 4(%rdi) movl $0, 8(%rdi) movl $0, 12(%rdi) movl $0, 0(%rdi) This would save substantial code size, especially for longer sequences like this. It would be easy to have a rule telling isel to avoid matching MOV32mi if the immediate has more than some fixed number of uses. It's more involved to teach the register allocator how to do late folding to recover from excessive register pressure.