llvm-project/lldb/source/Breakpoint/BreakpointResolver.cpp

353 lines
13 KiB
C++

//===-- BreakpointResolver.cpp --------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Breakpoint/BreakpointResolver.h"
#include "lldb/Breakpoint/Breakpoint.h"
#include "lldb/Breakpoint/BreakpointLocation.h"
// Have to include the other breakpoint resolver types here so the static
// create from StructuredData can call them.
#include "lldb/Breakpoint/BreakpointResolverAddress.h"
#include "lldb/Breakpoint/BreakpointResolverFileLine.h"
#include "lldb/Breakpoint/BreakpointResolverFileRegex.h"
#include "lldb/Breakpoint/BreakpointResolverName.h"
#include "lldb/Breakpoint/BreakpointResolverScripted.h"
#include "lldb/Core/Address.h"
#include "lldb/Core/ModuleList.h"
#include "lldb/Core/SearchFilter.h"
#include "lldb/Symbol/CompileUnit.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Symbol/SymbolContext.h"
#include "lldb/Target/Target.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/Stream.h"
#include "lldb/Utility/StreamString.h"
using namespace lldb_private;
using namespace lldb;
// BreakpointResolver:
const char *BreakpointResolver::g_ty_to_name[] = {"FileAndLine", "Address",
"SymbolName", "SourceRegex",
"Python", "Exception",
"Unknown"};
const char *BreakpointResolver::g_option_names[static_cast<uint32_t>(
BreakpointResolver::OptionNames::LastOptionName)] = {
"AddressOffset", "Exact", "FileName", "Inlines", "Language",
"LineNumber", "Column", "ModuleName", "NameMask", "Offset",
"PythonClass", "Regex", "ScriptArgs", "SectionName", "SearchDepth",
"SkipPrologue", "SymbolNames"};
const char *BreakpointResolver::ResolverTyToName(enum ResolverTy type) {
if (type > LastKnownResolverType)
return g_ty_to_name[UnknownResolver];
return g_ty_to_name[type];
}
BreakpointResolver::ResolverTy
BreakpointResolver::NameToResolverTy(llvm::StringRef name) {
for (size_t i = 0; i < LastKnownResolverType; i++) {
if (name == g_ty_to_name[i])
return (ResolverTy)i;
}
return UnknownResolver;
}
BreakpointResolver::BreakpointResolver(const BreakpointSP &bkpt,
const unsigned char resolverTy,
lldb::addr_t offset)
: m_breakpoint(bkpt), m_offset(offset), SubclassID(resolverTy) {}
BreakpointResolver::~BreakpointResolver() = default;
BreakpointResolverSP BreakpointResolver::CreateFromStructuredData(
const StructuredData::Dictionary &resolver_dict, Status &error) {
BreakpointResolverSP result_sp;
if (!resolver_dict.IsValid()) {
error.SetErrorString("Can't deserialize from an invalid data object.");
return result_sp;
}
llvm::StringRef subclass_name;
bool success = resolver_dict.GetValueForKeyAsString(
GetSerializationSubclassKey(), subclass_name);
if (!success) {
error.SetErrorString("Resolver data missing subclass resolver key");
return result_sp;
}
ResolverTy resolver_type = NameToResolverTy(subclass_name);
if (resolver_type == UnknownResolver) {
error.SetErrorStringWithFormatv("Unknown resolver type: {0}.",
subclass_name);
return result_sp;
}
StructuredData::Dictionary *subclass_options = nullptr;
success = resolver_dict.GetValueForKeyAsDictionary(
GetSerializationSubclassOptionsKey(), subclass_options);
if (!success || !subclass_options || !subclass_options->IsValid()) {
error.SetErrorString("Resolver data missing subclass options key.");
return result_sp;
}
lldb::addr_t offset;
success = subclass_options->GetValueForKeyAsInteger(
GetKey(OptionNames::Offset), offset);
if (!success) {
error.SetErrorString("Resolver data missing offset options key.");
return result_sp;
}
BreakpointResolver *resolver;
switch (resolver_type) {
case FileLineResolver:
resolver = BreakpointResolverFileLine::CreateFromStructuredData(
nullptr, *subclass_options, error);
break;
case AddressResolver:
resolver = BreakpointResolverAddress::CreateFromStructuredData(
nullptr, *subclass_options, error);
break;
case NameResolver:
resolver = BreakpointResolverName::CreateFromStructuredData(
nullptr, *subclass_options, error);
break;
case FileRegexResolver:
resolver = BreakpointResolverFileRegex::CreateFromStructuredData(
nullptr, *subclass_options, error);
break;
case PythonResolver:
resolver = BreakpointResolverScripted::CreateFromStructuredData(
nullptr, *subclass_options, error);
break;
case ExceptionResolver:
error.SetErrorString("Exception resolvers are hard.");
break;
default:
llvm_unreachable("Should never get an unresolvable resolver type.");
}
if (!error.Success()) {
return result_sp;
} else {
// Add on the global offset option:
resolver->SetOffset(offset);
return BreakpointResolverSP(resolver);
}
}
StructuredData::DictionarySP BreakpointResolver::WrapOptionsDict(
StructuredData::DictionarySP options_dict_sp) {
if (!options_dict_sp || !options_dict_sp->IsValid())
return StructuredData::DictionarySP();
StructuredData::DictionarySP type_dict_sp(new StructuredData::Dictionary());
type_dict_sp->AddStringItem(GetSerializationSubclassKey(), GetResolverName());
type_dict_sp->AddItem(GetSerializationSubclassOptionsKey(), options_dict_sp);
// Add the m_offset to the dictionary:
options_dict_sp->AddIntegerItem(GetKey(OptionNames::Offset), m_offset);
return type_dict_sp;
}
void BreakpointResolver::SetBreakpoint(const BreakpointSP &bkpt) {
assert(bkpt);
m_breakpoint = bkpt;
NotifyBreakpointSet();
}
void BreakpointResolver::ResolveBreakpointInModules(SearchFilter &filter,
ModuleList &modules) {
filter.SearchInModuleList(*this, modules);
}
void BreakpointResolver::ResolveBreakpoint(SearchFilter &filter) {
filter.Search(*this);
}
namespace {
struct SourceLoc {
uint32_t line = UINT32_MAX;
uint16_t column;
SourceLoc(uint32_t l, llvm::Optional<uint16_t> c)
: line(l), column(c ? *c : LLDB_INVALID_COLUMN_NUMBER) {}
SourceLoc(const SymbolContext &sc)
: line(sc.line_entry.line),
column(sc.line_entry.column ? sc.line_entry.column
: LLDB_INVALID_COLUMN_NUMBER) {}
};
bool operator<(const SourceLoc lhs, const SourceLoc rhs) {
if (lhs.line < rhs.line)
return true;
if (lhs.line > rhs.line)
return false;
// uint32_t a_col = lhs.column ? lhs.column : LLDB_INVALID_COLUMN_NUMBER;
// uint32_t b_col = rhs.column ? rhs.column : LLDB_INVALID_COLUMN_NUMBER;
return lhs.column < rhs.column;
}
} // namespace
void BreakpointResolver::SetSCMatchesByLine(
SearchFilter &filter, SymbolContextList &sc_list, bool skip_prologue,
llvm::StringRef log_ident, uint32_t line, llvm::Optional<uint16_t> column) {
llvm::SmallVector<SymbolContext, 16> all_scs;
for (uint32_t i = 0; i < sc_list.GetSize(); ++i)
all_scs.push_back(sc_list[i]);
while (all_scs.size()) {
uint32_t closest_line = UINT32_MAX;
// Move all the elements with a matching file spec to the end.
auto &match = all_scs[0];
auto worklist_begin = std::partition(
all_scs.begin(), all_scs.end(), [&](const SymbolContext &sc) {
if (sc.line_entry.file == match.line_entry.file ||
sc.line_entry.original_file == match.line_entry.original_file) {
// When a match is found, keep track of the smallest line number.
closest_line = std::min(closest_line, sc.line_entry.line);
return false;
}
return true;
});
// (worklist_begin, worklist_end) now contains all entries for one filespec.
auto worklist_end = all_scs.end();
if (column) {
// If a column was requested, do a more precise match and only
// return the first location that comes before or at the
// requested location.
SourceLoc requested(line, *column);
// First, filter out all entries left of the requested column.
worklist_end = std::remove_if(
worklist_begin, worklist_end,
[&](const SymbolContext &sc) { return requested < SourceLoc(sc); });
// Sort the remaining entries by (line, column).
llvm::sort(worklist_begin, worklist_end,
[](const SymbolContext &a, const SymbolContext &b) {
return SourceLoc(a) < SourceLoc(b);
});
// Filter out all locations with a source location after the closest match.
if (worklist_begin != worklist_end)
worklist_end = std::remove_if(
worklist_begin, worklist_end, [&](const SymbolContext &sc) {
return SourceLoc(*worklist_begin) < SourceLoc(sc);
});
} else {
// Remove all entries with a larger line number.
// ResolveSymbolContext will always return a number that is >=
// the line number you pass in. So the smaller line number is
// always better.
worklist_end = std::remove_if(worklist_begin, worklist_end,
[&](const SymbolContext &sc) {
return closest_line != sc.line_entry.line;
});
}
// Sort by file address.
llvm::sort(worklist_begin, worklist_end,
[](const SymbolContext &a, const SymbolContext &b) {
return a.line_entry.range.GetBaseAddress().GetFileAddress() <
b.line_entry.range.GetBaseAddress().GetFileAddress();
});
// Go through and see if there are line table entries that are
// contiguous, and if so keep only the first of the contiguous range.
// We do this by picking the first location in each lexical block.
llvm::SmallDenseSet<Block *, 8> blocks_with_breakpoints;
for (auto first = worklist_begin; first != worklist_end; ++first) {
assert(!blocks_with_breakpoints.count(first->block));
blocks_with_breakpoints.insert(first->block);
worklist_end =
std::remove_if(std::next(first), worklist_end,
[&](const SymbolContext &sc) {
return blocks_with_breakpoints.count(sc.block);
});
}
// Make breakpoints out of the closest line number match.
for (auto &sc : llvm::make_range(worklist_begin, worklist_end))
AddLocation(filter, sc, skip_prologue, log_ident);
// Remove all contexts processed by this iteration.
all_scs.erase(worklist_begin, all_scs.end());
}
}
void BreakpointResolver::AddLocation(SearchFilter &filter,
const SymbolContext &sc,
bool skip_prologue,
llvm::StringRef log_ident) {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
Address line_start = sc.line_entry.range.GetBaseAddress();
if (!line_start.IsValid()) {
LLDB_LOGF(log,
"error: Unable to set breakpoint %s at file address "
"0x%" PRIx64 "\n",
log_ident.str().c_str(), line_start.GetFileAddress());
return;
}
if (!filter.AddressPasses(line_start)) {
LLDB_LOGF(log,
"Breakpoint %s at file address 0x%" PRIx64
" didn't pass the filter.\n",
log_ident.str().c_str(), line_start.GetFileAddress());
}
// If the line number is before the prologue end, move it there...
bool skipped_prologue = false;
if (skip_prologue && sc.function) {
Address prologue_addr(sc.function->GetAddressRange().GetBaseAddress());
if (prologue_addr.IsValid() && (line_start == prologue_addr)) {
const uint32_t prologue_byte_size = sc.function->GetPrologueByteSize();
if (prologue_byte_size) {
prologue_addr.Slide(prologue_byte_size);
if (filter.AddressPasses(prologue_addr)) {
skipped_prologue = true;
line_start = prologue_addr;
}
}
}
}
BreakpointLocationSP bp_loc_sp(AddLocation(line_start));
if (log && bp_loc_sp && !GetBreakpoint()->IsInternal()) {
StreamString s;
bp_loc_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose);
LLDB_LOGF(log, "Added location (skipped prologue: %s): %s \n",
skipped_prologue ? "yes" : "no", s.GetData());
}
}
BreakpointLocationSP BreakpointResolver::AddLocation(Address loc_addr,
bool *new_location) {
loc_addr.Slide(m_offset);
return GetBreakpoint()->AddLocation(loc_addr, new_location);
}
void BreakpointResolver::SetOffset(lldb::addr_t offset) {
// There may already be an offset, so we are actually adjusting location
// addresses by the difference.
// lldb::addr_t slide = offset - m_offset;
// FIXME: We should go fix up all the already set locations for the new
// slide.
m_offset = offset;
}