llvm-project/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp

1749 lines
64 KiB
C++

//===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file is a part of DataFlowSanitizer, a generalised dynamic data flow
/// analysis.
///
/// Unlike other Sanitizer tools, this tool is not designed to detect a specific
/// class of bugs on its own. Instead, it provides a generic dynamic data flow
/// analysis framework to be used by clients to help detect application-specific
/// issues within their own code.
///
/// The analysis is based on automatic propagation of data flow labels (also
/// known as taint labels) through a program as it performs computation. Each
/// byte of application memory is backed by two bytes of shadow memory which
/// hold the label. On Linux/x86_64, memory is laid out as follows:
///
/// +--------------------+ 0x800000000000 (top of memory)
/// | application memory |
/// +--------------------+ 0x700000008000 (kAppAddr)
/// | |
/// | unused |
/// | |
/// +--------------------+ 0x200200000000 (kUnusedAddr)
/// | union table |
/// +--------------------+ 0x200000000000 (kUnionTableAddr)
/// | shadow memory |
/// +--------------------+ 0x000000010000 (kShadowAddr)
/// | reserved by kernel |
/// +--------------------+ 0x000000000000
///
/// To derive a shadow memory address from an application memory address,
/// bits 44-46 are cleared to bring the address into the range
/// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to
/// account for the double byte representation of shadow labels and move the
/// address into the shadow memory range. See the function
/// DataFlowSanitizer::getShadowAddress below.
///
/// For more information, please refer to the design document:
/// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/SpecialCaseList.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
// External symbol to be used when generating the shadow address for
// architectures with multiple VMAs. Instead of using a constant integer
// the runtime will set the external mask based on the VMA range.
static const char *const kDFSanExternShadowPtrMask = "__dfsan_shadow_ptr_mask";
// The -dfsan-preserve-alignment flag controls whether this pass assumes that
// alignment requirements provided by the input IR are correct. For example,
// if the input IR contains a load with alignment 8, this flag will cause
// the shadow load to have alignment 16. This flag is disabled by default as
// we have unfortunately encountered too much code (including Clang itself;
// see PR14291) which performs misaligned access.
static cl::opt<bool> ClPreserveAlignment(
"dfsan-preserve-alignment",
cl::desc("respect alignment requirements provided by input IR"), cl::Hidden,
cl::init(false));
// The ABI list files control how shadow parameters are passed. The pass treats
// every function labelled "uninstrumented" in the ABI list file as conforming
// to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains
// additional annotations for those functions, a call to one of those functions
// will produce a warning message, as the labelling behaviour of the function is
// unknown. The other supported annotations are "functional" and "discard",
// which are described below under DataFlowSanitizer::WrapperKind.
static cl::list<std::string> ClABIListFiles(
"dfsan-abilist",
cl::desc("File listing native ABI functions and how the pass treats them"),
cl::Hidden);
// Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented
// functions (see DataFlowSanitizer::InstrumentedABI below).
static cl::opt<bool> ClArgsABI(
"dfsan-args-abi",
cl::desc("Use the argument ABI rather than the TLS ABI"),
cl::Hidden);
// Controls whether the pass includes or ignores the labels of pointers in load
// instructions.
static cl::opt<bool> ClCombinePointerLabelsOnLoad(
"dfsan-combine-pointer-labels-on-load",
cl::desc("Combine the label of the pointer with the label of the data when "
"loading from memory."),
cl::Hidden, cl::init(true));
// Controls whether the pass includes or ignores the labels of pointers in
// stores instructions.
static cl::opt<bool> ClCombinePointerLabelsOnStore(
"dfsan-combine-pointer-labels-on-store",
cl::desc("Combine the label of the pointer with the label of the data when "
"storing in memory."),
cl::Hidden, cl::init(false));
static cl::opt<bool> ClDebugNonzeroLabels(
"dfsan-debug-nonzero-labels",
cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, "
"load or return with a nonzero label"),
cl::Hidden);
static StringRef GetGlobalTypeString(const GlobalValue &G) {
// Types of GlobalVariables are always pointer types.
Type *GType = G.getValueType();
// For now we support blacklisting struct types only.
if (StructType *SGType = dyn_cast<StructType>(GType)) {
if (!SGType->isLiteral())
return SGType->getName();
}
return "<unknown type>";
}
namespace {
class DFSanABIList {
std::unique_ptr<SpecialCaseList> SCL;
public:
DFSanABIList() = default;
void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); }
/// Returns whether either this function or its source file are listed in the
/// given category.
bool isIn(const Function &F, StringRef Category) const {
return isIn(*F.getParent(), Category) ||
SCL->inSection("dataflow", "fun", F.getName(), Category);
}
/// Returns whether this global alias is listed in the given category.
///
/// If GA aliases a function, the alias's name is matched as a function name
/// would be. Similarly, aliases of globals are matched like globals.
bool isIn(const GlobalAlias &GA, StringRef Category) const {
if (isIn(*GA.getParent(), Category))
return true;
if (isa<FunctionType>(GA.getValueType()))
return SCL->inSection("dataflow", "fun", GA.getName(), Category);
return SCL->inSection("dataflow", "global", GA.getName(), Category) ||
SCL->inSection("dataflow", "type", GetGlobalTypeString(GA),
Category);
}
/// Returns whether this module is listed in the given category.
bool isIn(const Module &M, StringRef Category) const {
return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category);
}
};
/// TransformedFunction is used to express the result of transforming one
/// function type into another. This struct is immutable. It holds metadata
/// useful for updating calls of the old function to the new type.
struct TransformedFunction {
TransformedFunction(FunctionType* OriginalType,
FunctionType* TransformedType,
std::vector<unsigned> ArgumentIndexMapping)
: OriginalType(OriginalType),
TransformedType(TransformedType),
ArgumentIndexMapping(ArgumentIndexMapping) {}
// Disallow copies.
TransformedFunction(const TransformedFunction&) = delete;
TransformedFunction& operator=(const TransformedFunction&) = delete;
// Allow moves.
TransformedFunction(TransformedFunction&&) = default;
TransformedFunction& operator=(TransformedFunction&&) = default;
/// Type of the function before the transformation.
FunctionType* const OriginalType;
/// Type of the function after the transformation.
FunctionType* const TransformedType;
/// Transforming a function may change the position of arguments. This
/// member records the mapping from each argument's old position to its new
/// position. Argument positions are zero-indexed. If the transformation
/// from F to F' made the first argument of F into the third argument of F',
/// then ArgumentIndexMapping[0] will equal 2.
const std::vector<unsigned> ArgumentIndexMapping;
};
/// Given function attributes from a call site for the original function,
/// return function attributes appropriate for a call to the transformed
/// function.
AttributeList TransformFunctionAttributes(
const TransformedFunction& TransformedFunction,
LLVMContext& Ctx, AttributeList CallSiteAttrs) {
// Construct a vector of AttributeSet for each function argument.
std::vector<llvm::AttributeSet> ArgumentAttributes(
TransformedFunction.TransformedType->getNumParams());
// Copy attributes from the parameter of the original function to the
// transformed version. 'ArgumentIndexMapping' holds the mapping from
// old argument position to new.
for (unsigned i=0, ie = TransformedFunction.ArgumentIndexMapping.size();
i < ie; ++i) {
unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[i];
ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(i);
}
// Copy annotations on varargs arguments.
for (unsigned i = TransformedFunction.OriginalType->getNumParams(),
ie = CallSiteAttrs.getNumAttrSets(); i<ie; ++i) {
ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(i));
}
return AttributeList::get(
Ctx,
CallSiteAttrs.getFnAttributes(),
CallSiteAttrs.getRetAttributes(),
llvm::makeArrayRef(ArgumentAttributes));
}
class DataFlowSanitizer : public ModulePass {
friend struct DFSanFunction;
friend class DFSanVisitor;
enum {
ShadowWidth = 16
};
/// Which ABI should be used for instrumented functions?
enum InstrumentedABI {
/// Argument and return value labels are passed through additional
/// arguments and by modifying the return type.
IA_Args,
/// Argument and return value labels are passed through TLS variables
/// __dfsan_arg_tls and __dfsan_retval_tls.
IA_TLS
};
/// How should calls to uninstrumented functions be handled?
enum WrapperKind {
/// This function is present in an uninstrumented form but we don't know
/// how it should be handled. Print a warning and call the function anyway.
/// Don't label the return value.
WK_Warning,
/// This function does not write to (user-accessible) memory, and its return
/// value is unlabelled.
WK_Discard,
/// This function does not write to (user-accessible) memory, and the label
/// of its return value is the union of the label of its arguments.
WK_Functional,
/// Instead of calling the function, a custom wrapper __dfsw_F is called,
/// where F is the name of the function. This function may wrap the
/// original function or provide its own implementation. This is similar to
/// the IA_Args ABI, except that IA_Args uses a struct return type to
/// pass the return value shadow in a register, while WK_Custom uses an
/// extra pointer argument to return the shadow. This allows the wrapped
/// form of the function type to be expressed in C.
WK_Custom
};
Module *Mod;
LLVMContext *Ctx;
IntegerType *ShadowTy;
PointerType *ShadowPtrTy;
IntegerType *IntptrTy;
ConstantInt *ZeroShadow;
ConstantInt *ShadowPtrMask;
ConstantInt *ShadowPtrMul;
Constant *ArgTLS;
Constant *RetvalTLS;
void *(*GetArgTLSPtr)();
void *(*GetRetvalTLSPtr)();
Constant *GetArgTLS;
Constant *GetRetvalTLS;
Constant *ExternalShadowMask;
FunctionType *DFSanUnionFnTy;
FunctionType *DFSanUnionLoadFnTy;
FunctionType *DFSanUnimplementedFnTy;
FunctionType *DFSanSetLabelFnTy;
FunctionType *DFSanNonzeroLabelFnTy;
FunctionType *DFSanVarargWrapperFnTy;
Constant *DFSanUnionFn;
Constant *DFSanCheckedUnionFn;
Constant *DFSanUnionLoadFn;
Constant *DFSanUnimplementedFn;
Constant *DFSanSetLabelFn;
Constant *DFSanNonzeroLabelFn;
Constant *DFSanVarargWrapperFn;
MDNode *ColdCallWeights;
DFSanABIList ABIList;
DenseMap<Value *, Function *> UnwrappedFnMap;
AttrBuilder ReadOnlyNoneAttrs;
bool DFSanRuntimeShadowMask = false;
Value *getShadowAddress(Value *Addr, Instruction *Pos);
bool isInstrumented(const Function *F);
bool isInstrumented(const GlobalAlias *GA);
FunctionType *getArgsFunctionType(FunctionType *T);
FunctionType *getTrampolineFunctionType(FunctionType *T);
TransformedFunction getCustomFunctionType(FunctionType *T);
InstrumentedABI getInstrumentedABI();
WrapperKind getWrapperKind(Function *F);
void addGlobalNamePrefix(GlobalValue *GV);
Function *buildWrapperFunction(Function *F, StringRef NewFName,
GlobalValue::LinkageTypes NewFLink,
FunctionType *NewFT);
Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName);
public:
static char ID;
DataFlowSanitizer(
const std::vector<std::string> &ABIListFiles = std::vector<std::string>(),
void *(*getArgTLS)() = nullptr, void *(*getRetValTLS)() = nullptr);
bool doInitialization(Module &M) override;
bool runOnModule(Module &M) override;
};
struct DFSanFunction {
DataFlowSanitizer &DFS;
Function *F;
DominatorTree DT;
DataFlowSanitizer::InstrumentedABI IA;
bool IsNativeABI;
Value *ArgTLSPtr = nullptr;
Value *RetvalTLSPtr = nullptr;
AllocaInst *LabelReturnAlloca = nullptr;
DenseMap<Value *, Value *> ValShadowMap;
DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
std::vector<std::pair<PHINode *, PHINode *>> PHIFixups;
DenseSet<Instruction *> SkipInsts;
std::vector<Value *> NonZeroChecks;
bool AvoidNewBlocks;
struct CachedCombinedShadow {
BasicBlock *Block;
Value *Shadow;
};
DenseMap<std::pair<Value *, Value *>, CachedCombinedShadow>
CachedCombinedShadows;
DenseMap<Value *, std::set<Value *>> ShadowElements;
DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI)
: DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) {
DT.recalculate(*F);
// FIXME: Need to track down the register allocator issue which causes poor
// performance in pathological cases with large numbers of basic blocks.
AvoidNewBlocks = F->size() > 1000;
}
Value *getArgTLSPtr();
Value *getArgTLS(unsigned Index, Instruction *Pos);
Value *getRetvalTLS();
Value *getShadow(Value *V);
void setShadow(Instruction *I, Value *Shadow);
Value *combineShadows(Value *V1, Value *V2, Instruction *Pos);
Value *combineOperandShadows(Instruction *Inst);
Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align,
Instruction *Pos);
void storeShadow(Value *Addr, uint64_t Size, uint64_t Align, Value *Shadow,
Instruction *Pos);
};
class DFSanVisitor : public InstVisitor<DFSanVisitor> {
public:
DFSanFunction &DFSF;
DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {}
const DataLayout &getDataLayout() const {
return DFSF.F->getParent()->getDataLayout();
}
void visitOperandShadowInst(Instruction &I);
void visitBinaryOperator(BinaryOperator &BO);
void visitCastInst(CastInst &CI);
void visitCmpInst(CmpInst &CI);
void visitGetElementPtrInst(GetElementPtrInst &GEPI);
void visitLoadInst(LoadInst &LI);
void visitStoreInst(StoreInst &SI);
void visitReturnInst(ReturnInst &RI);
void visitCallSite(CallSite CS);
void visitPHINode(PHINode &PN);
void visitExtractElementInst(ExtractElementInst &I);
void visitInsertElementInst(InsertElementInst &I);
void visitShuffleVectorInst(ShuffleVectorInst &I);
void visitExtractValueInst(ExtractValueInst &I);
void visitInsertValueInst(InsertValueInst &I);
void visitAllocaInst(AllocaInst &I);
void visitSelectInst(SelectInst &I);
void visitMemSetInst(MemSetInst &I);
void visitMemTransferInst(MemTransferInst &I);
};
} // end anonymous namespace
char DataFlowSanitizer::ID;
INITIALIZE_PASS(DataFlowSanitizer, "dfsan",
"DataFlowSanitizer: dynamic data flow analysis.", false, false)
ModulePass *
llvm::createDataFlowSanitizerPass(const std::vector<std::string> &ABIListFiles,
void *(*getArgTLS)(),
void *(*getRetValTLS)()) {
return new DataFlowSanitizer(ABIListFiles, getArgTLS, getRetValTLS);
}
DataFlowSanitizer::DataFlowSanitizer(
const std::vector<std::string> &ABIListFiles, void *(*getArgTLS)(),
void *(*getRetValTLS)())
: ModulePass(ID), GetArgTLSPtr(getArgTLS), GetRetvalTLSPtr(getRetValTLS) {
std::vector<std::string> AllABIListFiles(std::move(ABIListFiles));
AllABIListFiles.insert(AllABIListFiles.end(), ClABIListFiles.begin(),
ClABIListFiles.end());
ABIList.set(SpecialCaseList::createOrDie(AllABIListFiles));
}
FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) {
SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end());
ArgTypes.append(T->getNumParams(), ShadowTy);
if (T->isVarArg())
ArgTypes.push_back(ShadowPtrTy);
Type *RetType = T->getReturnType();
if (!RetType->isVoidTy())
RetType = StructType::get(RetType, ShadowTy);
return FunctionType::get(RetType, ArgTypes, T->isVarArg());
}
FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) {
assert(!T->isVarArg());
SmallVector<Type *, 4> ArgTypes;
ArgTypes.push_back(T->getPointerTo());
ArgTypes.append(T->param_begin(), T->param_end());
ArgTypes.append(T->getNumParams(), ShadowTy);
Type *RetType = T->getReturnType();
if (!RetType->isVoidTy())
ArgTypes.push_back(ShadowPtrTy);
return FunctionType::get(T->getReturnType(), ArgTypes, false);
}
TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
SmallVector<Type *, 4> ArgTypes;
// Some parameters of the custom function being constructed are
// parameters of T. Record the mapping from parameters of T to
// parameters of the custom function, so that parameter attributes
// at call sites can be updated.
std::vector<unsigned> ArgumentIndexMapping;
for (unsigned i = 0, ie = T->getNumParams(); i != ie; ++i) {
Type* param_type = T->getParamType(i);
FunctionType *FT;
if (isa<PointerType>(param_type) && (FT = dyn_cast<FunctionType>(
cast<PointerType>(param_type)->getElementType()))) {
ArgumentIndexMapping.push_back(ArgTypes.size());
ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo());
ArgTypes.push_back(Type::getInt8PtrTy(*Ctx));
} else {
ArgumentIndexMapping.push_back(ArgTypes.size());
ArgTypes.push_back(param_type);
}
}
for (unsigned i = 0, e = T->getNumParams(); i != e; ++i)
ArgTypes.push_back(ShadowTy);
if (T->isVarArg())
ArgTypes.push_back(ShadowPtrTy);
Type *RetType = T->getReturnType();
if (!RetType->isVoidTy())
ArgTypes.push_back(ShadowPtrTy);
return TransformedFunction(
T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()),
ArgumentIndexMapping);
}
bool DataFlowSanitizer::doInitialization(Module &M) {
Triple TargetTriple(M.getTargetTriple());
bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
bool IsMIPS64 = TargetTriple.isMIPS64();
bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 ||
TargetTriple.getArch() == Triple::aarch64_be;
const DataLayout &DL = M.getDataLayout();
Mod = &M;
Ctx = &M.getContext();
ShadowTy = IntegerType::get(*Ctx, ShadowWidth);
ShadowPtrTy = PointerType::getUnqual(ShadowTy);
IntptrTy = DL.getIntPtrType(*Ctx);
ZeroShadow = ConstantInt::getSigned(ShadowTy, 0);
ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidth / 8);
if (IsX86_64)
ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL);
else if (IsMIPS64)
ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL);
// AArch64 supports multiple VMAs and the shadow mask is set at runtime.
else if (IsAArch64)
DFSanRuntimeShadowMask = true;
else
report_fatal_error("unsupported triple");
Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy };
DFSanUnionFnTy =
FunctionType::get(ShadowTy, DFSanUnionArgs, /*isVarArg=*/ false);
Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy };
DFSanUnionLoadFnTy =
FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false);
DFSanUnimplementedFnTy = FunctionType::get(
Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
Type *DFSanSetLabelArgs[3] = { ShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy };
DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx),
DFSanSetLabelArgs, /*isVarArg=*/false);
DFSanNonzeroLabelFnTy = FunctionType::get(
Type::getVoidTy(*Ctx), None, /*isVarArg=*/false);
DFSanVarargWrapperFnTy = FunctionType::get(
Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
if (GetArgTLSPtr) {
Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
ArgTLS = nullptr;
GetArgTLS = ConstantExpr::getIntToPtr(
ConstantInt::get(IntptrTy, uintptr_t(GetArgTLSPtr)),
PointerType::getUnqual(
FunctionType::get(PointerType::getUnqual(ArgTLSTy), false)));
}
if (GetRetvalTLSPtr) {
RetvalTLS = nullptr;
GetRetvalTLS = ConstantExpr::getIntToPtr(
ConstantInt::get(IntptrTy, uintptr_t(GetRetvalTLSPtr)),
PointerType::getUnqual(
FunctionType::get(PointerType::getUnqual(ShadowTy), false)));
}
ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
return true;
}
bool DataFlowSanitizer::isInstrumented(const Function *F) {
return !ABIList.isIn(*F, "uninstrumented");
}
bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) {
return !ABIList.isIn(*GA, "uninstrumented");
}
DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() {
return ClArgsABI ? IA_Args : IA_TLS;
}
DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) {
if (ABIList.isIn(*F, "functional"))
return WK_Functional;
if (ABIList.isIn(*F, "discard"))
return WK_Discard;
if (ABIList.isIn(*F, "custom"))
return WK_Custom;
return WK_Warning;
}
void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) {
std::string GVName = GV->getName(), Prefix = "dfs$";
GV->setName(Prefix + GVName);
// Try to change the name of the function in module inline asm. We only do
// this for specific asm directives, currently only ".symver", to try to avoid
// corrupting asm which happens to contain the symbol name as a substring.
// Note that the substitution for .symver assumes that the versioned symbol
// also has an instrumented name.
std::string Asm = GV->getParent()->getModuleInlineAsm();
std::string SearchStr = ".symver " + GVName + ",";
size_t Pos = Asm.find(SearchStr);
if (Pos != std::string::npos) {
Asm.replace(Pos, SearchStr.size(),
".symver " + Prefix + GVName + "," + Prefix);
GV->getParent()->setModuleInlineAsm(Asm);
}
}
Function *
DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName,
GlobalValue::LinkageTypes NewFLink,
FunctionType *NewFT) {
FunctionType *FT = F->getFunctionType();
Function *NewF = Function::Create(NewFT, NewFLink, NewFName,
F->getParent());
NewF->copyAttributesFrom(F);
NewF->removeAttributes(
AttributeList::ReturnIndex,
AttributeFuncs::typeIncompatible(NewFT->getReturnType()));
BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
if (F->isVarArg()) {
NewF->removeAttributes(AttributeList::FunctionIndex,
AttrBuilder().addAttribute("split-stack"));
CallInst::Create(DFSanVarargWrapperFn,
IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "",
BB);
new UnreachableInst(*Ctx, BB);
} else {
std::vector<Value *> Args;
unsigned n = FT->getNumParams();
for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n)
Args.push_back(&*ai);
CallInst *CI = CallInst::Create(F, Args, "", BB);
if (FT->getReturnType()->isVoidTy())
ReturnInst::Create(*Ctx, BB);
else
ReturnInst::Create(*Ctx, CI, BB);
}
return NewF;
}
Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT,
StringRef FName) {
FunctionType *FTT = getTrampolineFunctionType(FT);
Constant *C = Mod->getOrInsertFunction(FName, FTT);
Function *F = dyn_cast<Function>(C);
if (F && F->isDeclaration()) {
F->setLinkage(GlobalValue::LinkOnceODRLinkage);
BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F);
std::vector<Value *> Args;
Function::arg_iterator AI = F->arg_begin(); ++AI;
for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N)
Args.push_back(&*AI);
CallInst *CI = CallInst::Create(&*F->arg_begin(), Args, "", BB);
ReturnInst *RI;
if (FT->getReturnType()->isVoidTy())
RI = ReturnInst::Create(*Ctx, BB);
else
RI = ReturnInst::Create(*Ctx, CI, BB);
DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true);
Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI;
for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N)
DFSF.ValShadowMap[&*ValAI] = &*ShadowAI;
DFSanVisitor(DFSF).visitCallInst(*CI);
if (!FT->getReturnType()->isVoidTy())
new StoreInst(DFSF.getShadow(RI->getReturnValue()),
&*std::prev(F->arg_end()), RI);
}
return C;
}
bool DataFlowSanitizer::runOnModule(Module &M) {
if (ABIList.isIn(M, "skip"))
return false;
if (!GetArgTLSPtr) {
Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy);
if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS))
G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
}
if (!GetRetvalTLSPtr) {
RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", ShadowTy);
if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS))
G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
}
ExternalShadowMask =
Mod->getOrInsertGlobal(kDFSanExternShadowPtrMask, IntptrTy);
DFSanUnionFn = Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy);
if (Function *F = dyn_cast<Function>(DFSanUnionFn)) {
F->addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind);
F->addAttribute(AttributeList::FunctionIndex, Attribute::ReadNone);
F->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
F->addParamAttr(0, Attribute::ZExt);
F->addParamAttr(1, Attribute::ZExt);
}
DFSanCheckedUnionFn = Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy);
if (Function *F = dyn_cast<Function>(DFSanCheckedUnionFn)) {
F->addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind);
F->addAttribute(AttributeList::FunctionIndex, Attribute::ReadNone);
F->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
F->addParamAttr(0, Attribute::ZExt);
F->addParamAttr(1, Attribute::ZExt);
}
DFSanUnionLoadFn =
Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy);
if (Function *F = dyn_cast<Function>(DFSanUnionLoadFn)) {
F->addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind);
F->addAttribute(AttributeList::FunctionIndex, Attribute::ReadOnly);
F->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
}
DFSanUnimplementedFn =
Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy);
DFSanSetLabelFn =
Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy);
if (Function *F = dyn_cast<Function>(DFSanSetLabelFn)) {
F->addParamAttr(0, Attribute::ZExt);
}
DFSanNonzeroLabelFn =
Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy);
DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper",
DFSanVarargWrapperFnTy);
std::vector<Function *> FnsToInstrument;
SmallPtrSet<Function *, 2> FnsWithNativeABI;
for (Function &i : M) {
if (!i.isIntrinsic() &&
&i != DFSanUnionFn &&
&i != DFSanCheckedUnionFn &&
&i != DFSanUnionLoadFn &&
&i != DFSanUnimplementedFn &&
&i != DFSanSetLabelFn &&
&i != DFSanNonzeroLabelFn &&
&i != DFSanVarargWrapperFn)
FnsToInstrument.push_back(&i);
}
// Give function aliases prefixes when necessary, and build wrappers where the
// instrumentedness is inconsistent.
for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) {
GlobalAlias *GA = &*i;
++i;
// Don't stop on weak. We assume people aren't playing games with the
// instrumentedness of overridden weak aliases.
if (auto F = dyn_cast<Function>(GA->getBaseObject())) {
bool GAInst = isInstrumented(GA), FInst = isInstrumented(F);
if (GAInst && FInst) {
addGlobalNamePrefix(GA);
} else if (GAInst != FInst) {
// Non-instrumented alias of an instrumented function, or vice versa.
// Replace the alias with a native-ABI wrapper of the aliasee. The pass
// below will take care of instrumenting it.
Function *NewF =
buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType());
GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType()));
NewF->takeName(GA);
GA->eraseFromParent();
FnsToInstrument.push_back(NewF);
}
}
}
ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly)
.addAttribute(Attribute::ReadNone);
// First, change the ABI of every function in the module. ABI-listed
// functions keep their original ABI and get a wrapper function.
for (std::vector<Function *>::iterator i = FnsToInstrument.begin(),
e = FnsToInstrument.end();
i != e; ++i) {
Function &F = **i;
FunctionType *FT = F.getFunctionType();
bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() &&
FT->getReturnType()->isVoidTy());
if (isInstrumented(&F)) {
// Instrumented functions get a 'dfs$' prefix. This allows us to more
// easily identify cases of mismatching ABIs.
if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) {
FunctionType *NewFT = getArgsFunctionType(FT);
Function *NewF = Function::Create(NewFT, F.getLinkage(), "", &M);
NewF->copyAttributesFrom(&F);
NewF->removeAttributes(
AttributeList::ReturnIndex,
AttributeFuncs::typeIncompatible(NewFT->getReturnType()));
for (Function::arg_iterator FArg = F.arg_begin(),
NewFArg = NewF->arg_begin(),
FArgEnd = F.arg_end();
FArg != FArgEnd; ++FArg, ++NewFArg) {
FArg->replaceAllUsesWith(&*NewFArg);
}
NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList());
for (Function::user_iterator UI = F.user_begin(), UE = F.user_end();
UI != UE;) {
BlockAddress *BA = dyn_cast<BlockAddress>(*UI);
++UI;
if (BA) {
BA->replaceAllUsesWith(
BlockAddress::get(NewF, BA->getBasicBlock()));
delete BA;
}
}
F.replaceAllUsesWith(
ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)));
NewF->takeName(&F);
F.eraseFromParent();
*i = NewF;
addGlobalNamePrefix(NewF);
} else {
addGlobalNamePrefix(&F);
}
} else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) {
// Build a wrapper function for F. The wrapper simply calls F, and is
// added to FnsToInstrument so that any instrumentation according to its
// WrapperKind is done in the second pass below.
FunctionType *NewFT = getInstrumentedABI() == IA_Args
? getArgsFunctionType(FT)
: FT;
// If the function being wrapped has local linkage, then preserve the
// function's linkage in the wrapper function.
GlobalValue::LinkageTypes wrapperLinkage =
F.hasLocalLinkage()
? F.getLinkage()
: GlobalValue::LinkOnceODRLinkage;
Function *NewF = buildWrapperFunction(
&F, std::string("dfsw$") + std::string(F.getName()),
wrapperLinkage, NewFT);
if (getInstrumentedABI() == IA_TLS)
NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs);
Value *WrappedFnCst =
ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT));
F.replaceAllUsesWith(WrappedFnCst);
UnwrappedFnMap[WrappedFnCst] = &F;
*i = NewF;
if (!F.isDeclaration()) {
// This function is probably defining an interposition of an
// uninstrumented function and hence needs to keep the original ABI.
// But any functions it may call need to use the instrumented ABI, so
// we instrument it in a mode which preserves the original ABI.
FnsWithNativeABI.insert(&F);
// This code needs to rebuild the iterators, as they may be invalidated
// by the push_back, taking care that the new range does not include
// any functions added by this code.
size_t N = i - FnsToInstrument.begin(),
Count = e - FnsToInstrument.begin();
FnsToInstrument.push_back(&F);
i = FnsToInstrument.begin() + N;
e = FnsToInstrument.begin() + Count;
}
// Hopefully, nobody will try to indirectly call a vararg
// function... yet.
} else if (FT->isVarArg()) {
UnwrappedFnMap[&F] = &F;
*i = nullptr;
}
}
for (Function *i : FnsToInstrument) {
if (!i || i->isDeclaration())
continue;
removeUnreachableBlocks(*i);
DFSanFunction DFSF(*this, i, FnsWithNativeABI.count(i));
// DFSanVisitor may create new basic blocks, which confuses df_iterator.
// Build a copy of the list before iterating over it.
SmallVector<BasicBlock *, 4> BBList(depth_first(&i->getEntryBlock()));
for (BasicBlock *i : BBList) {
Instruction *Inst = &i->front();
while (true) {
// DFSanVisitor may split the current basic block, changing the current
// instruction's next pointer and moving the next instruction to the
// tail block from which we should continue.
Instruction *Next = Inst->getNextNode();
// DFSanVisitor may delete Inst, so keep track of whether it was a
// terminator.
bool IsTerminator = isa<TerminatorInst>(Inst);
if (!DFSF.SkipInsts.count(Inst))
DFSanVisitor(DFSF).visit(Inst);
if (IsTerminator)
break;
Inst = Next;
}
}
// We will not necessarily be able to compute the shadow for every phi node
// until we have visited every block. Therefore, the code that handles phi
// nodes adds them to the PHIFixups list so that they can be properly
// handled here.
for (std::vector<std::pair<PHINode *, PHINode *>>::iterator
i = DFSF.PHIFixups.begin(),
e = DFSF.PHIFixups.end();
i != e; ++i) {
for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n;
++val) {
i->second->setIncomingValue(
val, DFSF.getShadow(i->first->getIncomingValue(val)));
}
}
// -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy
// places (i.e. instructions in basic blocks we haven't even begun visiting
// yet). To make our life easier, do this work in a pass after the main
// instrumentation.
if (ClDebugNonzeroLabels) {
for (Value *V : DFSF.NonZeroChecks) {
Instruction *Pos;
if (Instruction *I = dyn_cast<Instruction>(V))
Pos = I->getNextNode();
else
Pos = &DFSF.F->getEntryBlock().front();
while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos))
Pos = Pos->getNextNode();
IRBuilder<> IRB(Pos);
Value *Ne = IRB.CreateICmpNE(V, DFSF.DFS.ZeroShadow);
BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
Ne, Pos, /*Unreachable=*/false, ColdCallWeights));
IRBuilder<> ThenIRB(BI);
ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {});
}
}
}
return false;
}
Value *DFSanFunction::getArgTLSPtr() {
if (ArgTLSPtr)
return ArgTLSPtr;
if (DFS.ArgTLS)
return ArgTLSPtr = DFS.ArgTLS;
IRBuilder<> IRB(&F->getEntryBlock().front());
return ArgTLSPtr = IRB.CreateCall(DFS.GetArgTLS, {});
}
Value *DFSanFunction::getRetvalTLS() {
if (RetvalTLSPtr)
return RetvalTLSPtr;
if (DFS.RetvalTLS)
return RetvalTLSPtr = DFS.RetvalTLS;
IRBuilder<> IRB(&F->getEntryBlock().front());
return RetvalTLSPtr = IRB.CreateCall(DFS.GetRetvalTLS, {});
}
Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) {
IRBuilder<> IRB(Pos);
return IRB.CreateConstGEP2_64(getArgTLSPtr(), 0, Idx);
}
Value *DFSanFunction::getShadow(Value *V) {
if (!isa<Argument>(V) && !isa<Instruction>(V))
return DFS.ZeroShadow;
Value *&Shadow = ValShadowMap[V];
if (!Shadow) {
if (Argument *A = dyn_cast<Argument>(V)) {
if (IsNativeABI)
return DFS.ZeroShadow;
switch (IA) {
case DataFlowSanitizer::IA_TLS: {
Value *ArgTLSPtr = getArgTLSPtr();
Instruction *ArgTLSPos =
DFS.ArgTLS ? &*F->getEntryBlock().begin()
: cast<Instruction>(ArgTLSPtr)->getNextNode();
IRBuilder<> IRB(ArgTLSPos);
Shadow = IRB.CreateLoad(getArgTLS(A->getArgNo(), ArgTLSPos));
break;
}
case DataFlowSanitizer::IA_Args: {
unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2;
Function::arg_iterator i = F->arg_begin();
while (ArgIdx--)
++i;
Shadow = &*i;
assert(Shadow->getType() == DFS.ShadowTy);
break;
}
}
NonZeroChecks.push_back(Shadow);
} else {
Shadow = DFS.ZeroShadow;
}
}
return Shadow;
}
void DFSanFunction::setShadow(Instruction *I, Value *Shadow) {
assert(!ValShadowMap.count(I));
assert(Shadow->getType() == DFS.ShadowTy);
ValShadowMap[I] = Shadow;
}
Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) {
assert(Addr != RetvalTLS && "Reinstrumenting?");
IRBuilder<> IRB(Pos);
Value *ShadowPtrMaskValue;
if (DFSanRuntimeShadowMask)
ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask);
else
ShadowPtrMaskValue = ShadowPtrMask;
return IRB.CreateIntToPtr(
IRB.CreateMul(
IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy),
IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)),
ShadowPtrMul),
ShadowPtrTy);
}
// Generates IR to compute the union of the two given shadows, inserting it
// before Pos. Returns the computed union Value.
Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) {
if (V1 == DFS.ZeroShadow)
return V2;
if (V2 == DFS.ZeroShadow)
return V1;
if (V1 == V2)
return V1;
auto V1Elems = ShadowElements.find(V1);
auto V2Elems = ShadowElements.find(V2);
if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) {
if (std::includes(V1Elems->second.begin(), V1Elems->second.end(),
V2Elems->second.begin(), V2Elems->second.end())) {
return V1;
} else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(),
V1Elems->second.begin(), V1Elems->second.end())) {
return V2;
}
} else if (V1Elems != ShadowElements.end()) {
if (V1Elems->second.count(V2))
return V1;
} else if (V2Elems != ShadowElements.end()) {
if (V2Elems->second.count(V1))
return V2;
}
auto Key = std::make_pair(V1, V2);
if (V1 > V2)
std::swap(Key.first, Key.second);
CachedCombinedShadow &CCS = CachedCombinedShadows[Key];
if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent()))
return CCS.Shadow;
IRBuilder<> IRB(Pos);
if (AvoidNewBlocks) {
CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {V1, V2});
Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
Call->addParamAttr(0, Attribute::ZExt);
Call->addParamAttr(1, Attribute::ZExt);
CCS.Block = Pos->getParent();
CCS.Shadow = Call;
} else {
BasicBlock *Head = Pos->getParent();
Value *Ne = IRB.CreateICmpNE(V1, V2);
BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT));
IRBuilder<> ThenIRB(BI);
CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {V1, V2});
Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
Call->addParamAttr(0, Attribute::ZExt);
Call->addParamAttr(1, Attribute::ZExt);
BasicBlock *Tail = BI->getSuccessor(0);
PHINode *Phi = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front());
Phi->addIncoming(Call, Call->getParent());
Phi->addIncoming(V1, Head);
CCS.Block = Tail;
CCS.Shadow = Phi;
}
std::set<Value *> UnionElems;
if (V1Elems != ShadowElements.end()) {
UnionElems = V1Elems->second;
} else {
UnionElems.insert(V1);
}
if (V2Elems != ShadowElements.end()) {
UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end());
} else {
UnionElems.insert(V2);
}
ShadowElements[CCS.Shadow] = std::move(UnionElems);
return CCS.Shadow;
}
// A convenience function which folds the shadows of each of the operands
// of the provided instruction Inst, inserting the IR before Inst. Returns
// the computed union Value.
Value *DFSanFunction::combineOperandShadows(Instruction *Inst) {
if (Inst->getNumOperands() == 0)
return DFS.ZeroShadow;
Value *Shadow = getShadow(Inst->getOperand(0));
for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) {
Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst);
}
return Shadow;
}
void DFSanVisitor::visitOperandShadowInst(Instruction &I) {
Value *CombinedShadow = DFSF.combineOperandShadows(&I);
DFSF.setShadow(&I, CombinedShadow);
}
// Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where
// Addr has alignment Align, and take the union of each of those shadows.
Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align,
Instruction *Pos) {
if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
const auto i = AllocaShadowMap.find(AI);
if (i != AllocaShadowMap.end()) {
IRBuilder<> IRB(Pos);
return IRB.CreateLoad(i->second);
}
}
uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8;
SmallVector<Value *, 2> Objs;
GetUnderlyingObjects(Addr, Objs, Pos->getModule()->getDataLayout());
bool AllConstants = true;
for (Value *Obj : Objs) {
if (isa<Function>(Obj) || isa<BlockAddress>(Obj))
continue;
if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant())
continue;
AllConstants = false;
break;
}
if (AllConstants)
return DFS.ZeroShadow;
Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
switch (Size) {
case 0:
return DFS.ZeroShadow;
case 1: {
LoadInst *LI = new LoadInst(ShadowAddr, "", Pos);
LI->setAlignment(ShadowAlign);
return LI;
}
case 2: {
IRBuilder<> IRB(Pos);
Value *ShadowAddr1 = IRB.CreateGEP(DFS.ShadowTy, ShadowAddr,
ConstantInt::get(DFS.IntptrTy, 1));
return combineShadows(IRB.CreateAlignedLoad(ShadowAddr, ShadowAlign),
IRB.CreateAlignedLoad(ShadowAddr1, ShadowAlign), Pos);
}
}
if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidth) == 0) {
// Fast path for the common case where each byte has identical shadow: load
// shadow 64 bits at a time, fall out to a __dfsan_union_load call if any
// shadow is non-equal.
BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F);
IRBuilder<> FallbackIRB(FallbackBB);
CallInst *FallbackCall = FallbackIRB.CreateCall(
DFS.DFSanUnionLoadFn,
{ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
// Compare each of the shadows stored in the loaded 64 bits to each other,
// by computing (WideShadow rotl ShadowWidth) == WideShadow.
IRBuilder<> IRB(Pos);
Value *WideAddr =
IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx));
Value *WideShadow = IRB.CreateAlignedLoad(WideAddr, ShadowAlign);
Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.ShadowTy);
Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidth);
Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidth);
Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow);
Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow);
BasicBlock *Head = Pos->getParent();
BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator());
if (DomTreeNode *OldNode = DT.getNode(Head)) {
std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
DomTreeNode *NewNode = DT.addNewBlock(Tail, Head);
for (auto Child : Children)
DT.changeImmediateDominator(Child, NewNode);
}
// In the following code LastBr will refer to the previous basic block's
// conditional branch instruction, whose true successor is fixed up to point
// to the next block during the loop below or to the tail after the final
// iteration.
BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq);
ReplaceInstWithInst(Head->getTerminator(), LastBr);
DT.addNewBlock(FallbackBB, Head);
for (uint64_t Ofs = 64 / DFS.ShadowWidth; Ofs != Size;
Ofs += 64 / DFS.ShadowWidth) {
BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F);
DT.addNewBlock(NextBB, LastBr->getParent());
IRBuilder<> NextIRB(NextBB);
WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr,
ConstantInt::get(DFS.IntptrTy, 1));
Value *NextWideShadow = NextIRB.CreateAlignedLoad(WideAddr, ShadowAlign);
ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow);
LastBr->setSuccessor(0, NextBB);
LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB);
}
LastBr->setSuccessor(0, Tail);
FallbackIRB.CreateBr(Tail);
PHINode *Shadow = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front());
Shadow->addIncoming(FallbackCall, FallbackBB);
Shadow->addIncoming(TruncShadow, LastBr->getParent());
return Shadow;
}
IRBuilder<> IRB(Pos);
CallInst *FallbackCall = IRB.CreateCall(
DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
return FallbackCall;
}
void DFSanVisitor::visitLoadInst(LoadInst &LI) {
auto &DL = LI.getModule()->getDataLayout();
uint64_t Size = DL.getTypeStoreSize(LI.getType());
if (Size == 0) {
DFSF.setShadow(&LI, DFSF.DFS.ZeroShadow);
return;
}
uint64_t Align;
if (ClPreserveAlignment) {
Align = LI.getAlignment();
if (Align == 0)
Align = DL.getABITypeAlignment(LI.getType());
} else {
Align = 1;
}
IRBuilder<> IRB(&LI);
Value *Shadow = DFSF.loadShadow(LI.getPointerOperand(), Size, Align, &LI);
if (ClCombinePointerLabelsOnLoad) {
Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI);
}
if (Shadow != DFSF.DFS.ZeroShadow)
DFSF.NonZeroChecks.push_back(Shadow);
DFSF.setShadow(&LI, Shadow);
}
void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, uint64_t Align,
Value *Shadow, Instruction *Pos) {
if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
const auto i = AllocaShadowMap.find(AI);
if (i != AllocaShadowMap.end()) {
IRBuilder<> IRB(Pos);
IRB.CreateStore(Shadow, i->second);
return;
}
}
uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8;
IRBuilder<> IRB(Pos);
Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
if (Shadow == DFS.ZeroShadow) {
IntegerType *ShadowTy = IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidth);
Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0);
Value *ExtShadowAddr =
IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy));
IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign);
return;
}
const unsigned ShadowVecSize = 128 / DFS.ShadowWidth;
uint64_t Offset = 0;
if (Size >= ShadowVecSize) {
VectorType *ShadowVecTy = VectorType::get(DFS.ShadowTy, ShadowVecSize);
Value *ShadowVec = UndefValue::get(ShadowVecTy);
for (unsigned i = 0; i != ShadowVecSize; ++i) {
ShadowVec = IRB.CreateInsertElement(
ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i));
}
Value *ShadowVecAddr =
IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy));
do {
Value *CurShadowVecAddr =
IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset);
IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign);
Size -= ShadowVecSize;
++Offset;
} while (Size >= ShadowVecSize);
Offset *= ShadowVecSize;
}
while (Size > 0) {
Value *CurShadowAddr =
IRB.CreateConstGEP1_32(DFS.ShadowTy, ShadowAddr, Offset);
IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign);
--Size;
++Offset;
}
}
void DFSanVisitor::visitStoreInst(StoreInst &SI) {
auto &DL = SI.getModule()->getDataLayout();
uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType());
if (Size == 0)
return;
uint64_t Align;
if (ClPreserveAlignment) {
Align = SI.getAlignment();
if (Align == 0)
Align = DL.getABITypeAlignment(SI.getValueOperand()->getType());
} else {
Align = 1;
}
Value* Shadow = DFSF.getShadow(SI.getValueOperand());
if (ClCombinePointerLabelsOnStore) {
Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand());
Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI);
}
DFSF.storeShadow(SI.getPointerOperand(), Size, Align, Shadow, &SI);
}
void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) {
visitOperandShadowInst(BO);
}
void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); }
void DFSanVisitor::visitCmpInst(CmpInst &CI) { visitOperandShadowInst(CI); }
void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
visitOperandShadowInst(GEPI);
}
void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) {
visitOperandShadowInst(I);
}
void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) {
visitOperandShadowInst(I);
}
void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) {
visitOperandShadowInst(I);
}
void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) {
visitOperandShadowInst(I);
}
void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) {
visitOperandShadowInst(I);
}
void DFSanVisitor::visitAllocaInst(AllocaInst &I) {
bool AllLoadsStores = true;
for (User *U : I.users()) {
if (isa<LoadInst>(U))
continue;
if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
if (SI->getPointerOperand() == &I)
continue;
}
AllLoadsStores = false;
break;
}
if (AllLoadsStores) {
IRBuilder<> IRB(&I);
DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.ShadowTy);
}
DFSF.setShadow(&I, DFSF.DFS.ZeroShadow);
}
void DFSanVisitor::visitSelectInst(SelectInst &I) {
Value *CondShadow = DFSF.getShadow(I.getCondition());
Value *TrueShadow = DFSF.getShadow(I.getTrueValue());
Value *FalseShadow = DFSF.getShadow(I.getFalseValue());
if (isa<VectorType>(I.getCondition()->getType())) {
DFSF.setShadow(
&I,
DFSF.combineShadows(
CondShadow, DFSF.combineShadows(TrueShadow, FalseShadow, &I), &I));
} else {
Value *ShadowSel;
if (TrueShadow == FalseShadow) {
ShadowSel = TrueShadow;
} else {
ShadowSel =
SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I);
}
DFSF.setShadow(&I, DFSF.combineShadows(CondShadow, ShadowSel, &I));
}
}
void DFSanVisitor::visitMemSetInst(MemSetInst &I) {
IRBuilder<> IRB(&I);
Value *ValShadow = DFSF.getShadow(I.getValue());
IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn,
{ValShadow, IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(
*DFSF.DFS.Ctx)),
IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
}
void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) {
IRBuilder<> IRB(&I);
Value *DestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I);
Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I);
Value *LenShadow = IRB.CreateMul(
I.getLength(),
ConstantInt::get(I.getLength()->getType(), DFSF.DFS.ShadowWidth / 8));
Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx);
DestShadow = IRB.CreateBitCast(DestShadow, Int8Ptr);
SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr);
auto *MTI = cast<MemTransferInst>(
IRB.CreateCall(I.getCalledValue(),
{DestShadow, SrcShadow, LenShadow, I.getVolatileCst()}));
if (ClPreserveAlignment) {
MTI->setDestAlignment(I.getDestAlignment() * (DFSF.DFS.ShadowWidth / 8));
MTI->setSourceAlignment(I.getSourceAlignment() * (DFSF.DFS.ShadowWidth / 8));
} else {
MTI->setDestAlignment(DFSF.DFS.ShadowWidth / 8);
MTI->setSourceAlignment(DFSF.DFS.ShadowWidth / 8);
}
}
void DFSanVisitor::visitReturnInst(ReturnInst &RI) {
if (!DFSF.IsNativeABI && RI.getReturnValue()) {
switch (DFSF.IA) {
case DataFlowSanitizer::IA_TLS: {
Value *S = DFSF.getShadow(RI.getReturnValue());
IRBuilder<> IRB(&RI);
IRB.CreateStore(S, DFSF.getRetvalTLS());
break;
}
case DataFlowSanitizer::IA_Args: {
IRBuilder<> IRB(&RI);
Type *RT = DFSF.F->getFunctionType()->getReturnType();
Value *InsVal =
IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0);
Value *InsShadow =
IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1);
RI.setOperand(0, InsShadow);
break;
}
}
}
}
void DFSanVisitor::visitCallSite(CallSite CS) {
Function *F = CS.getCalledFunction();
if ((F && F->isIntrinsic()) || isa<InlineAsm>(CS.getCalledValue())) {
visitOperandShadowInst(*CS.getInstruction());
return;
}
// Calls to this function are synthesized in wrappers, and we shouldn't
// instrument them.
if (F == DFSF.DFS.DFSanVarargWrapperFn)
return;
IRBuilder<> IRB(CS.getInstruction());
DenseMap<Value *, Function *>::iterator i =
DFSF.DFS.UnwrappedFnMap.find(CS.getCalledValue());
if (i != DFSF.DFS.UnwrappedFnMap.end()) {
Function *F = i->second;
switch (DFSF.DFS.getWrapperKind(F)) {
case DataFlowSanitizer::WK_Warning:
CS.setCalledFunction(F);
IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn,
IRB.CreateGlobalStringPtr(F->getName()));
DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
return;
case DataFlowSanitizer::WK_Discard:
CS.setCalledFunction(F);
DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
return;
case DataFlowSanitizer::WK_Functional:
CS.setCalledFunction(F);
visitOperandShadowInst(*CS.getInstruction());
return;
case DataFlowSanitizer::WK_Custom:
// Don't try to handle invokes of custom functions, it's too complicated.
// Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_
// wrapper.
if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
FunctionType *FT = F->getFunctionType();
TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT);
std::string CustomFName = "__dfsw_";
CustomFName += F->getName();
Constant *CustomF = DFSF.DFS.Mod->getOrInsertFunction(
CustomFName, CustomFn.TransformedType);
if (Function *CustomFn = dyn_cast<Function>(CustomF)) {
CustomFn->copyAttributesFrom(F);
// Custom functions returning non-void will write to the return label.
if (!FT->getReturnType()->isVoidTy()) {
CustomFn->removeAttributes(AttributeList::FunctionIndex,
DFSF.DFS.ReadOnlyNoneAttrs);
}
}
std::vector<Value *> Args;
CallSite::arg_iterator i = CS.arg_begin();
for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) {
Type *T = (*i)->getType();
FunctionType *ParamFT;
if (isa<PointerType>(T) &&
(ParamFT = dyn_cast<FunctionType>(
cast<PointerType>(T)->getElementType()))) {
std::string TName = "dfst";
TName += utostr(FT->getNumParams() - n);
TName += "$";
TName += F->getName();
Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName);
Args.push_back(T);
Args.push_back(
IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx)));
} else {
Args.push_back(*i);
}
}
i = CS.arg_begin();
const unsigned ShadowArgStart = Args.size();
for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
Args.push_back(DFSF.getShadow(*i));
if (FT->isVarArg()) {
auto *LabelVATy = ArrayType::get(DFSF.DFS.ShadowTy,
CS.arg_size() - FT->getNumParams());
auto *LabelVAAlloca = new AllocaInst(
LabelVATy, getDataLayout().getAllocaAddrSpace(),
"labelva", &DFSF.F->getEntryBlock().front());
for (unsigned n = 0; i != CS.arg_end(); ++i, ++n) {
auto LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, n);
IRB.CreateStore(DFSF.getShadow(*i), LabelVAPtr);
}
Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0));
}
if (!FT->getReturnType()->isVoidTy()) {
if (!DFSF.LabelReturnAlloca) {
DFSF.LabelReturnAlloca =
new AllocaInst(DFSF.DFS.ShadowTy,
getDataLayout().getAllocaAddrSpace(),
"labelreturn", &DFSF.F->getEntryBlock().front());
}
Args.push_back(DFSF.LabelReturnAlloca);
}
for (i = CS.arg_begin() + FT->getNumParams(); i != CS.arg_end(); ++i)
Args.push_back(*i);
CallInst *CustomCI = IRB.CreateCall(CustomF, Args);
CustomCI->setCallingConv(CI->getCallingConv());
CustomCI->setAttributes(TransformFunctionAttributes(CustomFn,
CI->getContext(), CI->getAttributes()));
// Update the parameter attributes of the custom call instruction to
// zero extend the shadow parameters. This is required for targets
// which consider ShadowTy an illegal type.
for (unsigned n = 0; n < FT->getNumParams(); n++) {
const unsigned ArgNo = ShadowArgStart + n;
if (CustomCI->getArgOperand(ArgNo)->getType() == DFSF.DFS.ShadowTy)
CustomCI->addParamAttr(ArgNo, Attribute::ZExt);
}
if (!FT->getReturnType()->isVoidTy()) {
LoadInst *LabelLoad = IRB.CreateLoad(DFSF.LabelReturnAlloca);
DFSF.setShadow(CustomCI, LabelLoad);
}
CI->replaceAllUsesWith(CustomCI);
CI->eraseFromParent();
return;
}
break;
}
}
FunctionType *FT = cast<FunctionType>(
CS.getCalledValue()->getType()->getPointerElementType());
if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) {
IRB.CreateStore(DFSF.getShadow(CS.getArgument(i)),
DFSF.getArgTLS(i, CS.getInstruction()));
}
}
Instruction *Next = nullptr;
if (!CS.getType()->isVoidTy()) {
if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
if (II->getNormalDest()->getSinglePredecessor()) {
Next = &II->getNormalDest()->front();
} else {
BasicBlock *NewBB =
SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT);
Next = &NewBB->front();
}
} else {
assert(CS->getIterator() != CS->getParent()->end());
Next = CS->getNextNode();
}
if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
IRBuilder<> NextIRB(Next);
LoadInst *LI = NextIRB.CreateLoad(DFSF.getRetvalTLS());
DFSF.SkipInsts.insert(LI);
DFSF.setShadow(CS.getInstruction(), LI);
DFSF.NonZeroChecks.push_back(LI);
}
}
// Do all instrumentation for IA_Args down here to defer tampering with the
// CFG in a way that SplitEdge may be able to detect.
if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) {
FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT);
Value *Func =
IRB.CreateBitCast(CS.getCalledValue(), PointerType::getUnqual(NewFT));
std::vector<Value *> Args;
CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
Args.push_back(*i);
i = CS.arg_begin();
for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
Args.push_back(DFSF.getShadow(*i));
if (FT->isVarArg()) {
unsigned VarArgSize = CS.arg_size() - FT->getNumParams();
ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.ShadowTy, VarArgSize);
AllocaInst *VarArgShadow =
new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(),
"", &DFSF.F->getEntryBlock().front());
Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0));
for (unsigned n = 0; i != e; ++i, ++n) {
IRB.CreateStore(
DFSF.getShadow(*i),
IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n));
Args.push_back(*i);
}
}
CallSite NewCS;
if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
NewCS = IRB.CreateInvoke(Func, II->getNormalDest(), II->getUnwindDest(),
Args);
} else {
NewCS = IRB.CreateCall(Func, Args);
}
NewCS.setCallingConv(CS.getCallingConv());
NewCS.setAttributes(CS.getAttributes().removeAttributes(
*DFSF.DFS.Ctx, AttributeList::ReturnIndex,
AttributeFuncs::typeIncompatible(NewCS.getInstruction()->getType())));
if (Next) {
ExtractValueInst *ExVal =
ExtractValueInst::Create(NewCS.getInstruction(), 0, "", Next);
DFSF.SkipInsts.insert(ExVal);
ExtractValueInst *ExShadow =
ExtractValueInst::Create(NewCS.getInstruction(), 1, "", Next);
DFSF.SkipInsts.insert(ExShadow);
DFSF.setShadow(ExVal, ExShadow);
DFSF.NonZeroChecks.push_back(ExShadow);
CS.getInstruction()->replaceAllUsesWith(ExVal);
}
CS.getInstruction()->eraseFromParent();
}
}
void DFSanVisitor::visitPHINode(PHINode &PN) {
PHINode *ShadowPN =
PHINode::Create(DFSF.DFS.ShadowTy, PN.getNumIncomingValues(), "", &PN);
// Give the shadow phi node valid predecessors to fool SplitEdge into working.
Value *UndefShadow = UndefValue::get(DFSF.DFS.ShadowTy);
for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e;
++i) {
ShadowPN->addIncoming(UndefShadow, *i);
}
DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN));
DFSF.setShadow(&PN, ShadowPN);
}