llvm-project/llvm/lib/ExecutionEngine/Interpreter/Execution.cpp

2125 lines
80 KiB
C++

//===-- Execution.cpp - Implement code to simulate the program ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the actual instruction interpreter.
//
//===----------------------------------------------------------------------===//
#include "Interpreter.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cmath>
using namespace llvm;
#define DEBUG_TYPE "interpreter"
STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed");
static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden,
cl::desc("make the interpreter print every volatile load and store"));
//===----------------------------------------------------------------------===//
// Various Helper Functions
//===----------------------------------------------------------------------===//
static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
SF.Values[V] = Val;
}
//===----------------------------------------------------------------------===//
// Binary Instruction Implementations
//===----------------------------------------------------------------------===//
#define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
case Type::TY##TyID: \
Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
break
static void executeFAddInst(GenericValue &Dest, GenericValue Src1,
GenericValue Src2, Type *Ty) {
switch (Ty->getTypeID()) {
IMPLEMENT_BINARY_OPERATOR(+, Float);
IMPLEMENT_BINARY_OPERATOR(+, Double);
default:
dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n";
llvm_unreachable(nullptr);
}
}
static void executeFSubInst(GenericValue &Dest, GenericValue Src1,
GenericValue Src2, Type *Ty) {
switch (Ty->getTypeID()) {
IMPLEMENT_BINARY_OPERATOR(-, Float);
IMPLEMENT_BINARY_OPERATOR(-, Double);
default:
dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n";
llvm_unreachable(nullptr);
}
}
static void executeFMulInst(GenericValue &Dest, GenericValue Src1,
GenericValue Src2, Type *Ty) {
switch (Ty->getTypeID()) {
IMPLEMENT_BINARY_OPERATOR(*, Float);
IMPLEMENT_BINARY_OPERATOR(*, Double);
default:
dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n";
llvm_unreachable(nullptr);
}
}
static void executeFDivInst(GenericValue &Dest, GenericValue Src1,
GenericValue Src2, Type *Ty) {
switch (Ty->getTypeID()) {
IMPLEMENT_BINARY_OPERATOR(/, Float);
IMPLEMENT_BINARY_OPERATOR(/, Double);
default:
dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n";
llvm_unreachable(nullptr);
}
}
static void executeFRemInst(GenericValue &Dest, GenericValue Src1,
GenericValue Src2, Type *Ty) {
switch (Ty->getTypeID()) {
case Type::FloatTyID:
Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
break;
case Type::DoubleTyID:
Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
break;
default:
dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
llvm_unreachable(nullptr);
}
}
#define IMPLEMENT_INTEGER_ICMP(OP, TY) \
case Type::IntegerTyID: \
Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
break;
#define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY) \
case Type::VectorTyID: { \
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
Dest.AggregateVal[_i].IntVal = APInt(1, \
Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal));\
} break;
// Handle pointers specially because they must be compared with only as much
// width as the host has. We _do not_ want to be comparing 64 bit values when
// running on a 32-bit target, otherwise the upper 32 bits might mess up
// comparisons if they contain garbage.
#define IMPLEMENT_POINTER_ICMP(OP) \
case Type::PointerTyID: \
Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
(void*)(intptr_t)Src2.PointerVal); \
break;
static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(eq,Ty);
IMPLEMENT_VECTOR_INTEGER_ICMP(eq,Ty);
IMPLEMENT_POINTER_ICMP(==);
default:
dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
llvm_unreachable(nullptr);
}
return Dest;
}
static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(ne,Ty);
IMPLEMENT_VECTOR_INTEGER_ICMP(ne,Ty);
IMPLEMENT_POINTER_ICMP(!=);
default:
dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
llvm_unreachable(nullptr);
}
return Dest;
}
static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(ult,Ty);
IMPLEMENT_VECTOR_INTEGER_ICMP(ult,Ty);
IMPLEMENT_POINTER_ICMP(<);
default:
dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
llvm_unreachable(nullptr);
}
return Dest;
}
static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(slt,Ty);
IMPLEMENT_VECTOR_INTEGER_ICMP(slt,Ty);
IMPLEMENT_POINTER_ICMP(<);
default:
dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
llvm_unreachable(nullptr);
}
return Dest;
}
static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(ugt,Ty);
IMPLEMENT_VECTOR_INTEGER_ICMP(ugt,Ty);
IMPLEMENT_POINTER_ICMP(>);
default:
dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
llvm_unreachable(nullptr);
}
return Dest;
}
static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(sgt,Ty);
IMPLEMENT_VECTOR_INTEGER_ICMP(sgt,Ty);
IMPLEMENT_POINTER_ICMP(>);
default:
dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
llvm_unreachable(nullptr);
}
return Dest;
}
static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(ule,Ty);
IMPLEMENT_VECTOR_INTEGER_ICMP(ule,Ty);
IMPLEMENT_POINTER_ICMP(<=);
default:
dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
llvm_unreachable(nullptr);
}
return Dest;
}
static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(sle,Ty);
IMPLEMENT_VECTOR_INTEGER_ICMP(sle,Ty);
IMPLEMENT_POINTER_ICMP(<=);
default:
dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
llvm_unreachable(nullptr);
}
return Dest;
}
static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(uge,Ty);
IMPLEMENT_VECTOR_INTEGER_ICMP(uge,Ty);
IMPLEMENT_POINTER_ICMP(>=);
default:
dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
llvm_unreachable(nullptr);
}
return Dest;
}
static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(sge,Ty);
IMPLEMENT_VECTOR_INTEGER_ICMP(sge,Ty);
IMPLEMENT_POINTER_ICMP(>=);
default:
dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
llvm_unreachable(nullptr);
}
return Dest;
}
void Interpreter::visitICmpInst(ICmpInst &I) {
ExecutionContext &SF = ECStack.back();
Type *Ty = I.getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue R; // Result
switch (I.getPredicate()) {
case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break;
case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break;
case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break;
case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break;
case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break;
case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break;
case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break;
case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break;
case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break;
case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break;
default:
dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I;
llvm_unreachable(nullptr);
}
SetValue(&I, R, SF);
}
#define IMPLEMENT_FCMP(OP, TY) \
case Type::TY##TyID: \
Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
break
#define IMPLEMENT_VECTOR_FCMP_T(OP, TY) \
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
Dest.AggregateVal[_i].IntVal = APInt(1, \
Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\
break;
#define IMPLEMENT_VECTOR_FCMP(OP) \
case Type::VectorTyID: \
if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) { \
IMPLEMENT_VECTOR_FCMP_T(OP, Float); \
} else { \
IMPLEMENT_VECTOR_FCMP_T(OP, Double); \
}
static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(==, Float);
IMPLEMENT_FCMP(==, Double);
IMPLEMENT_VECTOR_FCMP(==);
default:
dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
llvm_unreachable(nullptr);
}
return Dest;
}
#define IMPLEMENT_SCALAR_NANS(TY, X,Y) \
if (TY->isFloatTy()) { \
if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
Dest.IntVal = APInt(1,false); \
return Dest; \
} \
} else { \
if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
Dest.IntVal = APInt(1,false); \
return Dest; \
} \
}
#define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG) \
assert(X.AggregateVal.size() == Y.AggregateVal.size()); \
Dest.AggregateVal.resize( X.AggregateVal.size() ); \
for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) { \
if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val || \
Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val) \
Dest.AggregateVal[_i].IntVal = APInt(1,FLAG); \
else { \
Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG); \
} \
}
#define MASK_VECTOR_NANS(TY, X,Y, FLAG) \
if (TY->isVectorTy()) { \
if (cast<VectorType>(TY)->getElementType()->isFloatTy()) { \
MASK_VECTOR_NANS_T(X, Y, Float, FLAG) \
} else { \
MASK_VECTOR_NANS_T(X, Y, Double, FLAG) \
} \
} \
static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
Type *Ty)
{
GenericValue Dest;
// if input is scalar value and Src1 or Src2 is NaN return false
IMPLEMENT_SCALAR_NANS(Ty, Src1, Src2)
// if vector input detect NaNs and fill mask
MASK_VECTOR_NANS(Ty, Src1, Src2, false)
GenericValue DestMask = Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(!=, Float);
IMPLEMENT_FCMP(!=, Double);
IMPLEMENT_VECTOR_FCMP(!=);
default:
dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
llvm_unreachable(nullptr);
}
// in vector case mask out NaN elements
if (Ty->isVectorTy())
for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
if (DestMask.AggregateVal[_i].IntVal == false)
Dest.AggregateVal[_i].IntVal = APInt(1,false);
return Dest;
}
static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(<=, Float);
IMPLEMENT_FCMP(<=, Double);
IMPLEMENT_VECTOR_FCMP(<=);
default:
dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
llvm_unreachable(nullptr);
}
return Dest;
}
static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(>=, Float);
IMPLEMENT_FCMP(>=, Double);
IMPLEMENT_VECTOR_FCMP(>=);
default:
dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
llvm_unreachable(nullptr);
}
return Dest;
}
static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(<, Float);
IMPLEMENT_FCMP(<, Double);
IMPLEMENT_VECTOR_FCMP(<);
default:
dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
llvm_unreachable(nullptr);
}
return Dest;
}
static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(>, Float);
IMPLEMENT_FCMP(>, Double);
IMPLEMENT_VECTOR_FCMP(>);
default:
dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
llvm_unreachable(nullptr);
}
return Dest;
}
#define IMPLEMENT_UNORDERED(TY, X,Y) \
if (TY->isFloatTy()) { \
if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
Dest.IntVal = APInt(1,true); \
return Dest; \
} \
} else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
Dest.IntVal = APInt(1,true); \
return Dest; \
}
#define IMPLEMENT_VECTOR_UNORDERED(TY, X, Y, FUNC) \
if (TY->isVectorTy()) { \
GenericValue DestMask = Dest; \
Dest = FUNC(Src1, Src2, Ty); \
for (size_t _i = 0; _i < Src1.AggregateVal.size(); _i++) \
if (DestMask.AggregateVal[_i].IntVal == true) \
Dest.AggregateVal[_i].IntVal = APInt(1, true); \
return Dest; \
}
static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
MASK_VECTOR_NANS(Ty, Src1, Src2, true)
IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OEQ)
return executeFCMP_OEQ(Src1, Src2, Ty);
}
static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
MASK_VECTOR_NANS(Ty, Src1, Src2, true)
IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_ONE)
return executeFCMP_ONE(Src1, Src2, Ty);
}
static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
MASK_VECTOR_NANS(Ty, Src1, Src2, true)
IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLE)
return executeFCMP_OLE(Src1, Src2, Ty);
}
static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
MASK_VECTOR_NANS(Ty, Src1, Src2, true)
IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGE)
return executeFCMP_OGE(Src1, Src2, Ty);
}
static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
MASK_VECTOR_NANS(Ty, Src1, Src2, true)
IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLT)
return executeFCMP_OLT(Src1, Src2, Ty);
}
static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
MASK_VECTOR_NANS(Ty, Src1, Src2, true)
IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGT)
return executeFCMP_OGT(Src1, Src2, Ty);
}
static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
if(Ty->isVectorTy()) {
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
Dest.AggregateVal.resize( Src1.AggregateVal.size() );
if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
Dest.AggregateVal[_i].IntVal = APInt(1,
( (Src1.AggregateVal[_i].FloatVal ==
Src1.AggregateVal[_i].FloatVal) &&
(Src2.AggregateVal[_i].FloatVal ==
Src2.AggregateVal[_i].FloatVal)));
} else {
for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
Dest.AggregateVal[_i].IntVal = APInt(1,
( (Src1.AggregateVal[_i].DoubleVal ==
Src1.AggregateVal[_i].DoubleVal) &&
(Src2.AggregateVal[_i].DoubleVal ==
Src2.AggregateVal[_i].DoubleVal)));
}
} else if (Ty->isFloatTy())
Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&
Src2.FloatVal == Src2.FloatVal));
else {
Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal &&
Src2.DoubleVal == Src2.DoubleVal));
}
return Dest;
}
static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
if(Ty->isVectorTy()) {
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
Dest.AggregateVal.resize( Src1.AggregateVal.size() );
if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
Dest.AggregateVal[_i].IntVal = APInt(1,
( (Src1.AggregateVal[_i].FloatVal !=
Src1.AggregateVal[_i].FloatVal) ||
(Src2.AggregateVal[_i].FloatVal !=
Src2.AggregateVal[_i].FloatVal)));
} else {
for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
Dest.AggregateVal[_i].IntVal = APInt(1,
( (Src1.AggregateVal[_i].DoubleVal !=
Src1.AggregateVal[_i].DoubleVal) ||
(Src2.AggregateVal[_i].DoubleVal !=
Src2.AggregateVal[_i].DoubleVal)));
}
} else if (Ty->isFloatTy())
Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||
Src2.FloatVal != Src2.FloatVal));
else {
Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal ||
Src2.DoubleVal != Src2.DoubleVal));
}
return Dest;
}
static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2,
Type *Ty, const bool val) {
GenericValue Dest;
if(Ty->isVectorTy()) {
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
Dest.AggregateVal.resize( Src1.AggregateVal.size() );
for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
Dest.AggregateVal[_i].IntVal = APInt(1,val);
} else {
Dest.IntVal = APInt(1, val);
}
return Dest;
}
void Interpreter::visitFCmpInst(FCmpInst &I) {
ExecutionContext &SF = ECStack.back();
Type *Ty = I.getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue R; // Result
switch (I.getPredicate()) {
default:
dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
llvm_unreachable(nullptr);
break;
case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, false);
break;
case FCmpInst::FCMP_TRUE: R = executeFCMP_BOOL(Src1, Src2, Ty, true);
break;
case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break;
case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break;
case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break;
case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break;
case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break;
case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break;
case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break;
case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break;
case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break;
case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break;
case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break;
case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break;
case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break;
case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break;
}
SetValue(&I, R, SF);
}
static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1,
GenericValue Src2, Type *Ty) {
GenericValue Result;
switch (predicate) {
case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty);
case ICmpInst::ICMP_NE: return executeICMP_NE(Src1, Src2, Ty);
case ICmpInst::ICMP_UGT: return executeICMP_UGT(Src1, Src2, Ty);
case ICmpInst::ICMP_SGT: return executeICMP_SGT(Src1, Src2, Ty);
case ICmpInst::ICMP_ULT: return executeICMP_ULT(Src1, Src2, Ty);
case ICmpInst::ICMP_SLT: return executeICMP_SLT(Src1, Src2, Ty);
case ICmpInst::ICMP_UGE: return executeICMP_UGE(Src1, Src2, Ty);
case ICmpInst::ICMP_SGE: return executeICMP_SGE(Src1, Src2, Ty);
case ICmpInst::ICMP_ULE: return executeICMP_ULE(Src1, Src2, Ty);
case ICmpInst::ICMP_SLE: return executeICMP_SLE(Src1, Src2, Ty);
case FCmpInst::FCMP_ORD: return executeFCMP_ORD(Src1, Src2, Ty);
case FCmpInst::FCMP_UNO: return executeFCMP_UNO(Src1, Src2, Ty);
case FCmpInst::FCMP_OEQ: return executeFCMP_OEQ(Src1, Src2, Ty);
case FCmpInst::FCMP_UEQ: return executeFCMP_UEQ(Src1, Src2, Ty);
case FCmpInst::FCMP_ONE: return executeFCMP_ONE(Src1, Src2, Ty);
case FCmpInst::FCMP_UNE: return executeFCMP_UNE(Src1, Src2, Ty);
case FCmpInst::FCMP_OLT: return executeFCMP_OLT(Src1, Src2, Ty);
case FCmpInst::FCMP_ULT: return executeFCMP_ULT(Src1, Src2, Ty);
case FCmpInst::FCMP_OGT: return executeFCMP_OGT(Src1, Src2, Ty);
case FCmpInst::FCMP_UGT: return executeFCMP_UGT(Src1, Src2, Ty);
case FCmpInst::FCMP_OLE: return executeFCMP_OLE(Src1, Src2, Ty);
case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty);
case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty);
case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty);
case FCmpInst::FCMP_FALSE: return executeFCMP_BOOL(Src1, Src2, Ty, false);
case FCmpInst::FCMP_TRUE: return executeFCMP_BOOL(Src1, Src2, Ty, true);
default:
dbgs() << "Unhandled Cmp predicate\n";
llvm_unreachable(nullptr);
}
}
void Interpreter::visitBinaryOperator(BinaryOperator &I) {
ExecutionContext &SF = ECStack.back();
Type *Ty = I.getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue R; // Result
// First process vector operation
if (Ty->isVectorTy()) {
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
R.AggregateVal.resize(Src1.AggregateVal.size());
// Macros to execute binary operation 'OP' over integer vectors
#define INTEGER_VECTOR_OPERATION(OP) \
for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
R.AggregateVal[i].IntVal = \
Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal;
// Additional macros to execute binary operations udiv/sdiv/urem/srem since
// they have different notation.
#define INTEGER_VECTOR_FUNCTION(OP) \
for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
R.AggregateVal[i].IntVal = \
Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal);
// Macros to execute binary operation 'OP' over floating point type TY
// (float or double) vectors
#define FLOAT_VECTOR_FUNCTION(OP, TY) \
for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
R.AggregateVal[i].TY = \
Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY;
// Macros to choose appropriate TY: float or double and run operation
// execution
#define FLOAT_VECTOR_OP(OP) { \
if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) \
FLOAT_VECTOR_FUNCTION(OP, FloatVal) \
else { \
if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) \
FLOAT_VECTOR_FUNCTION(OP, DoubleVal) \
else { \
dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \
llvm_unreachable(0); \
} \
} \
}
switch(I.getOpcode()){
default:
dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
llvm_unreachable(nullptr);
break;
case Instruction::Add: INTEGER_VECTOR_OPERATION(+) break;
case Instruction::Sub: INTEGER_VECTOR_OPERATION(-) break;
case Instruction::Mul: INTEGER_VECTOR_OPERATION(*) break;
case Instruction::UDiv: INTEGER_VECTOR_FUNCTION(udiv) break;
case Instruction::SDiv: INTEGER_VECTOR_FUNCTION(sdiv) break;
case Instruction::URem: INTEGER_VECTOR_FUNCTION(urem) break;
case Instruction::SRem: INTEGER_VECTOR_FUNCTION(srem) break;
case Instruction::And: INTEGER_VECTOR_OPERATION(&) break;
case Instruction::Or: INTEGER_VECTOR_OPERATION(|) break;
case Instruction::Xor: INTEGER_VECTOR_OPERATION(^) break;
case Instruction::FAdd: FLOAT_VECTOR_OP(+) break;
case Instruction::FSub: FLOAT_VECTOR_OP(-) break;
case Instruction::FMul: FLOAT_VECTOR_OP(*) break;
case Instruction::FDiv: FLOAT_VECTOR_OP(/) break;
case Instruction::FRem:
if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
R.AggregateVal[i].FloatVal =
fmod(Src1.AggregateVal[i].FloatVal, Src2.AggregateVal[i].FloatVal);
else {
if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
R.AggregateVal[i].DoubleVal =
fmod(Src1.AggregateVal[i].DoubleVal, Src2.AggregateVal[i].DoubleVal);
else {
dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
llvm_unreachable(nullptr);
}
}
break;
}
} else {
switch (I.getOpcode()) {
default:
dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
llvm_unreachable(nullptr);
break;
case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break;
case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break;
case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break;
case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break;
case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break;
case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break;
case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break;
case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break;
case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break;
case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
}
}
SetValue(&I, R, SF);
}
static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
GenericValue Src3, Type *Ty) {
GenericValue Dest;
if(Ty->isVectorTy()) {
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
assert(Src2.AggregateVal.size() == Src3.AggregateVal.size());
Dest.AggregateVal.resize( Src1.AggregateVal.size() );
for (size_t i = 0; i < Src1.AggregateVal.size(); ++i)
Dest.AggregateVal[i] = (Src1.AggregateVal[i].IntVal == 0) ?
Src3.AggregateVal[i] : Src2.AggregateVal[i];
} else {
Dest = (Src1.IntVal == 0) ? Src3 : Src2;
}
return Dest;
}
void Interpreter::visitSelectInst(SelectInst &I) {
ExecutionContext &SF = ECStack.back();
Type * Ty = I.getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
GenericValue R = executeSelectInst(Src1, Src2, Src3, Ty);
SetValue(&I, R, SF);
}
//===----------------------------------------------------------------------===//
// Terminator Instruction Implementations
//===----------------------------------------------------------------------===//
void Interpreter::exitCalled(GenericValue GV) {
// runAtExitHandlers() assumes there are no stack frames, but
// if exit() was called, then it had a stack frame. Blow away
// the stack before interpreting atexit handlers.
ECStack.clear();
runAtExitHandlers();
exit(GV.IntVal.zextOrTrunc(32).getZExtValue());
}
/// Pop the last stack frame off of ECStack and then copy the result
/// back into the result variable if we are not returning void. The
/// result variable may be the ExitValue, or the Value of the calling
/// CallInst if there was a previous stack frame. This method may
/// invalidate any ECStack iterators you have. This method also takes
/// care of switching to the normal destination BB, if we are returning
/// from an invoke.
///
void Interpreter::popStackAndReturnValueToCaller(Type *RetTy,
GenericValue Result) {
// Pop the current stack frame.
ECStack.pop_back();
if (ECStack.empty()) { // Finished main. Put result into exit code...
if (RetTy && !RetTy->isVoidTy()) { // Nonvoid return type?
ExitValue = Result; // Capture the exit value of the program
} else {
memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
}
} else {
// If we have a previous stack frame, and we have a previous call,
// fill in the return value...
ExecutionContext &CallingSF = ECStack.back();
if (Instruction *I = CallingSF.Caller.getInstruction()) {
// Save result...
if (!CallingSF.Caller.getType()->isVoidTy())
SetValue(I, Result, CallingSF);
if (InvokeInst *II = dyn_cast<InvokeInst> (I))
SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
CallingSF.Caller = CallSite(); // We returned from the call...
}
}
}
void Interpreter::visitReturnInst(ReturnInst &I) {
ExecutionContext &SF = ECStack.back();
Type *RetTy = Type::getVoidTy(I.getContext());
GenericValue Result;
// Save away the return value... (if we are not 'ret void')
if (I.getNumOperands()) {
RetTy = I.getReturnValue()->getType();
Result = getOperandValue(I.getReturnValue(), SF);
}
popStackAndReturnValueToCaller(RetTy, Result);
}
void Interpreter::visitUnreachableInst(UnreachableInst &I) {
report_fatal_error("Program executed an 'unreachable' instruction!");
}
void Interpreter::visitBranchInst(BranchInst &I) {
ExecutionContext &SF = ECStack.back();
BasicBlock *Dest;
Dest = I.getSuccessor(0); // Uncond branches have a fixed dest...
if (!I.isUnconditional()) {
Value *Cond = I.getCondition();
if (getOperandValue(Cond, SF).IntVal == 0) // If false cond...
Dest = I.getSuccessor(1);
}
SwitchToNewBasicBlock(Dest, SF);
}
void Interpreter::visitSwitchInst(SwitchInst &I) {
ExecutionContext &SF = ECStack.back();
Value* Cond = I.getCondition();
Type *ElTy = Cond->getType();
GenericValue CondVal = getOperandValue(Cond, SF);
// Check to see if any of the cases match...
BasicBlock *Dest = nullptr;
for (auto Case : I.cases()) {
GenericValue CaseVal = getOperandValue(Case.getCaseValue(), SF);
if (executeICMP_EQ(CondVal, CaseVal, ElTy).IntVal != 0) {
Dest = cast<BasicBlock>(Case.getCaseSuccessor());
break;
}
}
if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default
SwitchToNewBasicBlock(Dest, SF);
}
void Interpreter::visitIndirectBrInst(IndirectBrInst &I) {
ExecutionContext &SF = ECStack.back();
void *Dest = GVTOP(getOperandValue(I.getAddress(), SF));
SwitchToNewBasicBlock((BasicBlock*)Dest, SF);
}
// SwitchToNewBasicBlock - This method is used to jump to a new basic block.
// This function handles the actual updating of block and instruction iterators
// as well as execution of all of the PHI nodes in the destination block.
//
// This method does this because all of the PHI nodes must be executed
// atomically, reading their inputs before any of the results are updated. Not
// doing this can cause problems if the PHI nodes depend on other PHI nodes for
// their inputs. If the input PHI node is updated before it is read, incorrect
// results can happen. Thus we use a two phase approach.
//
void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
BasicBlock *PrevBB = SF.CurBB; // Remember where we came from...
SF.CurBB = Dest; // Update CurBB to branch destination
SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do
// Loop over all of the PHI nodes in the current block, reading their inputs.
std::vector<GenericValue> ResultValues;
for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
// Search for the value corresponding to this previous bb...
int i = PN->getBasicBlockIndex(PrevBB);
assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
Value *IncomingValue = PN->getIncomingValue(i);
// Save the incoming value for this PHI node...
ResultValues.push_back(getOperandValue(IncomingValue, SF));
}
// Now loop over all of the PHI nodes setting their values...
SF.CurInst = SF.CurBB->begin();
for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) {
PHINode *PN = cast<PHINode>(SF.CurInst);
SetValue(PN, ResultValues[i], SF);
}
}
//===----------------------------------------------------------------------===//
// Memory Instruction Implementations
//===----------------------------------------------------------------------===//
void Interpreter::visitAllocaInst(AllocaInst &I) {
ExecutionContext &SF = ECStack.back();
Type *Ty = I.getType()->getElementType(); // Type to be allocated
// Get the number of elements being allocated by the array...
unsigned NumElements =
getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue();
unsigned TypeSize = (size_t)getDataLayout().getTypeAllocSize(Ty);
// Avoid malloc-ing zero bytes, use max()...
unsigned MemToAlloc = std::max(1U, NumElements * TypeSize);
// Allocate enough memory to hold the type...
void *Memory = safe_malloc(MemToAlloc);
DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x "
<< NumElements << " (Total: " << MemToAlloc << ") at "
<< uintptr_t(Memory) << '\n');
GenericValue Result = PTOGV(Memory);
assert(Result.PointerVal && "Null pointer returned by malloc!");
SetValue(&I, Result, SF);
if (I.getOpcode() == Instruction::Alloca)
ECStack.back().Allocas.add(Memory);
}
// getElementOffset - The workhorse for getelementptr.
//
GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
gep_type_iterator E,
ExecutionContext &SF) {
assert(Ptr->getType()->isPointerTy() &&
"Cannot getElementOffset of a nonpointer type!");
uint64_t Total = 0;
for (; I != E; ++I) {
if (StructType *STy = I.getStructTypeOrNull()) {
const StructLayout *SLO = getDataLayout().getStructLayout(STy);
const ConstantInt *CPU = cast<ConstantInt>(I.getOperand());
unsigned Index = unsigned(CPU->getZExtValue());
Total += SLO->getElementOffset(Index);
} else {
// Get the index number for the array... which must be long type...
GenericValue IdxGV = getOperandValue(I.getOperand(), SF);
int64_t Idx;
unsigned BitWidth =
cast<IntegerType>(I.getOperand()->getType())->getBitWidth();
if (BitWidth == 32)
Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue();
else {
assert(BitWidth == 64 && "Invalid index type for getelementptr");
Idx = (int64_t)IdxGV.IntVal.getZExtValue();
}
Total += getDataLayout().getTypeAllocSize(I.getIndexedType()) * Idx;
}
}
GenericValue Result;
Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total;
DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n");
return Result;
}
void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeGEPOperation(I.getPointerOperand(),
gep_type_begin(I), gep_type_end(I), SF), SF);
}
void Interpreter::visitLoadInst(LoadInst &I) {
ExecutionContext &SF = ECStack.back();
GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
GenericValue Result;
LoadValueFromMemory(Result, Ptr, I.getType());
SetValue(&I, Result, SF);
if (I.isVolatile() && PrintVolatile)
dbgs() << "Volatile load " << I;
}
void Interpreter::visitStoreInst(StoreInst &I) {
ExecutionContext &SF = ECStack.back();
GenericValue Val = getOperandValue(I.getOperand(0), SF);
GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
I.getOperand(0)->getType());
if (I.isVolatile() && PrintVolatile)
dbgs() << "Volatile store: " << I;
}
//===----------------------------------------------------------------------===//
// Miscellaneous Instruction Implementations
//===----------------------------------------------------------------------===//
void Interpreter::visitCallSite(CallSite CS) {
ExecutionContext &SF = ECStack.back();
// Check to see if this is an intrinsic function call...
Function *F = CS.getCalledFunction();
if (F && F->isDeclaration())
switch (F->getIntrinsicID()) {
case Intrinsic::not_intrinsic:
break;
case Intrinsic::vastart: { // va_start
GenericValue ArgIndex;
ArgIndex.UIntPairVal.first = ECStack.size() - 1;
ArgIndex.UIntPairVal.second = 0;
SetValue(CS.getInstruction(), ArgIndex, SF);
return;
}
case Intrinsic::vaend: // va_end is a noop for the interpreter
return;
case Intrinsic::vacopy: // va_copy: dest = src
SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF);
return;
default:
// If it is an unknown intrinsic function, use the intrinsic lowering
// class to transform it into hopefully tasty LLVM code.
//
BasicBlock::iterator me(CS.getInstruction());
BasicBlock *Parent = CS.getInstruction()->getParent();
bool atBegin(Parent->begin() == me);
if (!atBegin)
--me;
IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction()));
// Restore the CurInst pointer to the first instruction newly inserted, if
// any.
if (atBegin) {
SF.CurInst = Parent->begin();
} else {
SF.CurInst = me;
++SF.CurInst;
}
return;
}
SF.Caller = CS;
std::vector<GenericValue> ArgVals;
const unsigned NumArgs = SF.Caller.arg_size();
ArgVals.reserve(NumArgs);
uint16_t pNum = 1;
for (CallSite::arg_iterator i = SF.Caller.arg_begin(),
e = SF.Caller.arg_end(); i != e; ++i, ++pNum) {
Value *V = *i;
ArgVals.push_back(getOperandValue(V, SF));
}
// To handle indirect calls, we must get the pointer value from the argument
// and treat it as a function pointer.
GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF);
callFunction((Function*)GVTOP(SRC), ArgVals);
}
// auxiliary function for shift operations
static unsigned getShiftAmount(uint64_t orgShiftAmount,
llvm::APInt valueToShift) {
unsigned valueWidth = valueToShift.getBitWidth();
if (orgShiftAmount < (uint64_t)valueWidth)
return orgShiftAmount;
// according to the llvm documentation, if orgShiftAmount > valueWidth,
// the result is undfeined. but we do shift by this rule:
return (NextPowerOf2(valueWidth-1) - 1) & orgShiftAmount;
}
void Interpreter::visitShl(BinaryOperator &I) {
ExecutionContext &SF = ECStack.back();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Dest;
Type *Ty = I.getType();
if (Ty->isVectorTy()) {
uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
assert(src1Size == Src2.AggregateVal.size());
for (unsigned i = 0; i < src1Size; i++) {
GenericValue Result;
uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
Result.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
Dest.AggregateVal.push_back(Result);
}
} else {
// scalar
uint64_t shiftAmount = Src2.IntVal.getZExtValue();
llvm::APInt valueToShift = Src1.IntVal;
Dest.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
}
SetValue(&I, Dest, SF);
}
void Interpreter::visitLShr(BinaryOperator &I) {
ExecutionContext &SF = ECStack.back();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Dest;
Type *Ty = I.getType();
if (Ty->isVectorTy()) {
uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
assert(src1Size == Src2.AggregateVal.size());
for (unsigned i = 0; i < src1Size; i++) {
GenericValue Result;
uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
Result.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
Dest.AggregateVal.push_back(Result);
}
} else {
// scalar
uint64_t shiftAmount = Src2.IntVal.getZExtValue();
llvm::APInt valueToShift = Src1.IntVal;
Dest.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
}
SetValue(&I, Dest, SF);
}
void Interpreter::visitAShr(BinaryOperator &I) {
ExecutionContext &SF = ECStack.back();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Dest;
Type *Ty = I.getType();
if (Ty->isVectorTy()) {
size_t src1Size = Src1.AggregateVal.size();
assert(src1Size == Src2.AggregateVal.size());
for (unsigned i = 0; i < src1Size; i++) {
GenericValue Result;
uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
Result.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
Dest.AggregateVal.push_back(Result);
}
} else {
// scalar
uint64_t shiftAmount = Src2.IntVal.getZExtValue();
llvm::APInt valueToShift = Src1.IntVal;
Dest.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
}
SetValue(&I, Dest, SF);
}
GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
Type *SrcTy = SrcVal->getType();
if (SrcTy->isVectorTy()) {
Type *DstVecTy = DstTy->getScalarType();
unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
unsigned NumElts = Src.AggregateVal.size();
// the sizes of src and dst vectors must be equal
Dest.AggregateVal.resize(NumElts);
for (unsigned i = 0; i < NumElts; i++)
Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.trunc(DBitWidth);
} else {
IntegerType *DITy = cast<IntegerType>(DstTy);
unsigned DBitWidth = DITy->getBitWidth();
Dest.IntVal = Src.IntVal.trunc(DBitWidth);
}
return Dest;
}
GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
Type *SrcTy = SrcVal->getType();
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
if (SrcTy->isVectorTy()) {
Type *DstVecTy = DstTy->getScalarType();
unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
unsigned size = Src.AggregateVal.size();
// the sizes of src and dst vectors must be equal.
Dest.AggregateVal.resize(size);
for (unsigned i = 0; i < size; i++)
Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.sext(DBitWidth);
} else {
auto *DITy = cast<IntegerType>(DstTy);
unsigned DBitWidth = DITy->getBitWidth();
Dest.IntVal = Src.IntVal.sext(DBitWidth);
}
return Dest;
}
GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
Type *SrcTy = SrcVal->getType();
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
if (SrcTy->isVectorTy()) {
Type *DstVecTy = DstTy->getScalarType();
unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
unsigned size = Src.AggregateVal.size();
// the sizes of src and dst vectors must be equal.
Dest.AggregateVal.resize(size);
for (unsigned i = 0; i < size; i++)
Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.zext(DBitWidth);
} else {
auto *DITy = cast<IntegerType>(DstTy);
unsigned DBitWidth = DITy->getBitWidth();
Dest.IntVal = Src.IntVal.zext(DBitWidth);
}
return Dest;
}
GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
assert(SrcVal->getType()->getScalarType()->isDoubleTy() &&
DstTy->getScalarType()->isFloatTy() &&
"Invalid FPTrunc instruction");
unsigned size = Src.AggregateVal.size();
// the sizes of src and dst vectors must be equal.
Dest.AggregateVal.resize(size);
for (unsigned i = 0; i < size; i++)
Dest.AggregateVal[i].FloatVal = (float)Src.AggregateVal[i].DoubleVal;
} else {
assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() &&
"Invalid FPTrunc instruction");
Dest.FloatVal = (float)Src.DoubleVal;
}
return Dest;
}
GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
assert(SrcVal->getType()->getScalarType()->isFloatTy() &&
DstTy->getScalarType()->isDoubleTy() && "Invalid FPExt instruction");
unsigned size = Src.AggregateVal.size();
// the sizes of src and dst vectors must be equal.
Dest.AggregateVal.resize(size);
for (unsigned i = 0; i < size; i++)
Dest.AggregateVal[i].DoubleVal = (double)Src.AggregateVal[i].FloatVal;
} else {
assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() &&
"Invalid FPExt instruction");
Dest.DoubleVal = (double)Src.FloatVal;
}
return Dest;
}
GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
Type *SrcTy = SrcVal->getType();
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
if (SrcTy->getTypeID() == Type::VectorTyID) {
Type *DstVecTy = DstTy->getScalarType();
Type *SrcVecTy = SrcTy->getScalarType();
uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
unsigned size = Src.AggregateVal.size();
// the sizes of src and dst vectors must be equal.
Dest.AggregateVal.resize(size);
if (SrcVecTy->getTypeID() == Type::FloatTyID) {
assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToUI instruction");
for (unsigned i = 0; i < size; i++)
Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
Src.AggregateVal[i].FloatVal, DBitWidth);
} else {
for (unsigned i = 0; i < size; i++)
Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
Src.AggregateVal[i].DoubleVal, DBitWidth);
}
} else {
// scalar
uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction");
if (SrcTy->getTypeID() == Type::FloatTyID)
Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
else {
Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
}
}
return Dest;
}
GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
Type *SrcTy = SrcVal->getType();
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
if (SrcTy->getTypeID() == Type::VectorTyID) {
Type *DstVecTy = DstTy->getScalarType();
Type *SrcVecTy = SrcTy->getScalarType();
uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
unsigned size = Src.AggregateVal.size();
// the sizes of src and dst vectors must be equal
Dest.AggregateVal.resize(size);
if (SrcVecTy->getTypeID() == Type::FloatTyID) {
assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToSI instruction");
for (unsigned i = 0; i < size; i++)
Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
Src.AggregateVal[i].FloatVal, DBitWidth);
} else {
for (unsigned i = 0; i < size; i++)
Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
Src.AggregateVal[i].DoubleVal, DBitWidth);
}
} else {
// scalar
unsigned DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction");
if (SrcTy->getTypeID() == Type::FloatTyID)
Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
else {
Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
}
}
return Dest;
}
GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
Type *DstVecTy = DstTy->getScalarType();
unsigned size = Src.AggregateVal.size();
// the sizes of src and dst vectors must be equal
Dest.AggregateVal.resize(size);
if (DstVecTy->getTypeID() == Type::FloatTyID) {
assert(DstVecTy->isFloatingPointTy() && "Invalid UIToFP instruction");
for (unsigned i = 0; i < size; i++)
Dest.AggregateVal[i].FloatVal =
APIntOps::RoundAPIntToFloat(Src.AggregateVal[i].IntVal);
} else {
for (unsigned i = 0; i < size; i++)
Dest.AggregateVal[i].DoubleVal =
APIntOps::RoundAPIntToDouble(Src.AggregateVal[i].IntVal);
}
} else {
// scalar
assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction");
if (DstTy->getTypeID() == Type::FloatTyID)
Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal);
else {
Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal);
}
}
return Dest;
}
GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
Type *DstVecTy = DstTy->getScalarType();
unsigned size = Src.AggregateVal.size();
// the sizes of src and dst vectors must be equal
Dest.AggregateVal.resize(size);
if (DstVecTy->getTypeID() == Type::FloatTyID) {
assert(DstVecTy->isFloatingPointTy() && "Invalid SIToFP instruction");
for (unsigned i = 0; i < size; i++)
Dest.AggregateVal[i].FloatVal =
APIntOps::RoundSignedAPIntToFloat(Src.AggregateVal[i].IntVal);
} else {
for (unsigned i = 0; i < size; i++)
Dest.AggregateVal[i].DoubleVal =
APIntOps::RoundSignedAPIntToDouble(Src.AggregateVal[i].IntVal);
}
} else {
// scalar
assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction");
if (DstTy->getTypeID() == Type::FloatTyID)
Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal);
else {
Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal);
}
}
return Dest;
}
GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction");
Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal);
return Dest;
}
GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction");
uint32_t PtrSize = getDataLayout().getPointerSizeInBits();
if (PtrSize != Src.IntVal.getBitWidth())
Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize);
Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue()));
return Dest;
}
GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
// This instruction supports bitwise conversion of vectors to integers and
// to vectors of other types (as long as they have the same size)
Type *SrcTy = SrcVal->getType();
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
if ((SrcTy->getTypeID() == Type::VectorTyID) ||
(DstTy->getTypeID() == Type::VectorTyID)) {
// vector src bitcast to vector dst or vector src bitcast to scalar dst or
// scalar src bitcast to vector dst
bool isLittleEndian = getDataLayout().isLittleEndian();
GenericValue TempDst, TempSrc, SrcVec;
Type *SrcElemTy;
Type *DstElemTy;
unsigned SrcBitSize;
unsigned DstBitSize;
unsigned SrcNum;
unsigned DstNum;
if (SrcTy->getTypeID() == Type::VectorTyID) {
SrcElemTy = SrcTy->getScalarType();
SrcBitSize = SrcTy->getScalarSizeInBits();
SrcNum = Src.AggregateVal.size();
SrcVec = Src;
} else {
// if src is scalar value, make it vector <1 x type>
SrcElemTy = SrcTy;
SrcBitSize = SrcTy->getPrimitiveSizeInBits();
SrcNum = 1;
SrcVec.AggregateVal.push_back(Src);
}
if (DstTy->getTypeID() == Type::VectorTyID) {
DstElemTy = DstTy->getScalarType();
DstBitSize = DstTy->getScalarSizeInBits();
DstNum = (SrcNum * SrcBitSize) / DstBitSize;
} else {
DstElemTy = DstTy;
DstBitSize = DstTy->getPrimitiveSizeInBits();
DstNum = 1;
}
if (SrcNum * SrcBitSize != DstNum * DstBitSize)
llvm_unreachable("Invalid BitCast");
// If src is floating point, cast to integer first.
TempSrc.AggregateVal.resize(SrcNum);
if (SrcElemTy->isFloatTy()) {
for (unsigned i = 0; i < SrcNum; i++)
TempSrc.AggregateVal[i].IntVal =
APInt::floatToBits(SrcVec.AggregateVal[i].FloatVal);
} else if (SrcElemTy->isDoubleTy()) {
for (unsigned i = 0; i < SrcNum; i++)
TempSrc.AggregateVal[i].IntVal =
APInt::doubleToBits(SrcVec.AggregateVal[i].DoubleVal);
} else if (SrcElemTy->isIntegerTy()) {
for (unsigned i = 0; i < SrcNum; i++)
TempSrc.AggregateVal[i].IntVal = SrcVec.AggregateVal[i].IntVal;
} else {
// Pointers are not allowed as the element type of vector.
llvm_unreachable("Invalid Bitcast");
}
// now TempSrc is integer type vector
if (DstNum < SrcNum) {
// Example: bitcast <4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>
unsigned Ratio = SrcNum / DstNum;
unsigned SrcElt = 0;
for (unsigned i = 0; i < DstNum; i++) {
GenericValue Elt;
Elt.IntVal = 0;
Elt.IntVal = Elt.IntVal.zext(DstBitSize);
unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize * (Ratio - 1);
for (unsigned j = 0; j < Ratio; j++) {
APInt Tmp;
Tmp = Tmp.zext(SrcBitSize);
Tmp = TempSrc.AggregateVal[SrcElt++].IntVal;
Tmp = Tmp.zext(DstBitSize);
Tmp <<= ShiftAmt;
ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
Elt.IntVal |= Tmp;
}
TempDst.AggregateVal.push_back(Elt);
}
} else {
// Example: bitcast <2 x i64> <i64 0, i64 1> to <4 x i32>
unsigned Ratio = DstNum / SrcNum;
for (unsigned i = 0; i < SrcNum; i++) {
unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize * (Ratio - 1);
for (unsigned j = 0; j < Ratio; j++) {
GenericValue Elt;
Elt.IntVal = Elt.IntVal.zext(SrcBitSize);
Elt.IntVal = TempSrc.AggregateVal[i].IntVal;
Elt.IntVal.lshrInPlace(ShiftAmt);
// it could be DstBitSize == SrcBitSize, so check it
if (DstBitSize < SrcBitSize)
Elt.IntVal = Elt.IntVal.trunc(DstBitSize);
ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
TempDst.AggregateVal.push_back(Elt);
}
}
}
// convert result from integer to specified type
if (DstTy->getTypeID() == Type::VectorTyID) {
if (DstElemTy->isDoubleTy()) {
Dest.AggregateVal.resize(DstNum);
for (unsigned i = 0; i < DstNum; i++)
Dest.AggregateVal[i].DoubleVal =
TempDst.AggregateVal[i].IntVal.bitsToDouble();
} else if (DstElemTy->isFloatTy()) {
Dest.AggregateVal.resize(DstNum);
for (unsigned i = 0; i < DstNum; i++)
Dest.AggregateVal[i].FloatVal =
TempDst.AggregateVal[i].IntVal.bitsToFloat();
} else {
Dest = TempDst;
}
} else {
if (DstElemTy->isDoubleTy())
Dest.DoubleVal = TempDst.AggregateVal[0].IntVal.bitsToDouble();
else if (DstElemTy->isFloatTy()) {
Dest.FloatVal = TempDst.AggregateVal[0].IntVal.bitsToFloat();
} else {
Dest.IntVal = TempDst.AggregateVal[0].IntVal;
}
}
} else { // if ((SrcTy->getTypeID() == Type::VectorTyID) ||
// (DstTy->getTypeID() == Type::VectorTyID))
// scalar src bitcast to scalar dst
if (DstTy->isPointerTy()) {
assert(SrcTy->isPointerTy() && "Invalid BitCast");
Dest.PointerVal = Src.PointerVal;
} else if (DstTy->isIntegerTy()) {
if (SrcTy->isFloatTy())
Dest.IntVal = APInt::floatToBits(Src.FloatVal);
else if (SrcTy->isDoubleTy()) {
Dest.IntVal = APInt::doubleToBits(Src.DoubleVal);
} else if (SrcTy->isIntegerTy()) {
Dest.IntVal = Src.IntVal;
} else {
llvm_unreachable("Invalid BitCast");
}
} else if (DstTy->isFloatTy()) {
if (SrcTy->isIntegerTy())
Dest.FloatVal = Src.IntVal.bitsToFloat();
else {
Dest.FloatVal = Src.FloatVal;
}
} else if (DstTy->isDoubleTy()) {
if (SrcTy->isIntegerTy())
Dest.DoubleVal = Src.IntVal.bitsToDouble();
else {
Dest.DoubleVal = Src.DoubleVal;
}
} else {
llvm_unreachable("Invalid Bitcast");
}
}
return Dest;
}
void Interpreter::visitTruncInst(TruncInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitSExtInst(SExtInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitZExtInst(ZExtInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitFPTruncInst(FPTruncInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitFPExtInst(FPExtInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitUIToFPInst(UIToFPInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitSIToFPInst(SIToFPInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitFPToUIInst(FPToUIInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitFPToSIInst(FPToSIInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitPtrToIntInst(PtrToIntInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitIntToPtrInst(IntToPtrInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitBitCastInst(BitCastInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF);
}
#define IMPLEMENT_VAARG(TY) \
case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
void Interpreter::visitVAArgInst(VAArgInst &I) {
ExecutionContext &SF = ECStack.back();
// Get the incoming valist parameter. LLI treats the valist as a
// (ec-stack-depth var-arg-index) pair.
GenericValue VAList = getOperandValue(I.getOperand(0), SF);
GenericValue Dest;
GenericValue Src = ECStack[VAList.UIntPairVal.first]
.VarArgs[VAList.UIntPairVal.second];
Type *Ty = I.getType();
switch (Ty->getTypeID()) {
case Type::IntegerTyID:
Dest.IntVal = Src.IntVal;
break;
IMPLEMENT_VAARG(Pointer);
IMPLEMENT_VAARG(Float);
IMPLEMENT_VAARG(Double);
default:
dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
llvm_unreachable(nullptr);
}
// Set the Value of this Instruction.
SetValue(&I, Dest, SF);
// Move the pointer to the next vararg.
++VAList.UIntPairVal.second;
}
void Interpreter::visitExtractElementInst(ExtractElementInst &I) {
ExecutionContext &SF = ECStack.back();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Dest;
Type *Ty = I.getType();
const unsigned indx = unsigned(Src2.IntVal.getZExtValue());
if(Src1.AggregateVal.size() > indx) {
switch (Ty->getTypeID()) {
default:
dbgs() << "Unhandled destination type for extractelement instruction: "
<< *Ty << "\n";
llvm_unreachable(nullptr);
break;
case Type::IntegerTyID:
Dest.IntVal = Src1.AggregateVal[indx].IntVal;
break;
case Type::FloatTyID:
Dest.FloatVal = Src1.AggregateVal[indx].FloatVal;
break;
case Type::DoubleTyID:
Dest.DoubleVal = Src1.AggregateVal[indx].DoubleVal;
break;
}
} else {
dbgs() << "Invalid index in extractelement instruction\n";
}
SetValue(&I, Dest, SF);
}
void Interpreter::visitInsertElementInst(InsertElementInst &I) {
ExecutionContext &SF = ECStack.back();
Type *Ty = I.getType();
if(!(Ty->isVectorTy()) )
llvm_unreachable("Unhandled dest type for insertelement instruction");
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
GenericValue Dest;
Type *TyContained = Ty->getContainedType(0);
const unsigned indx = unsigned(Src3.IntVal.getZExtValue());
Dest.AggregateVal = Src1.AggregateVal;
if(Src1.AggregateVal.size() <= indx)
llvm_unreachable("Invalid index in insertelement instruction");
switch (TyContained->getTypeID()) {
default:
llvm_unreachable("Unhandled dest type for insertelement instruction");
case Type::IntegerTyID:
Dest.AggregateVal[indx].IntVal = Src2.IntVal;
break;
case Type::FloatTyID:
Dest.AggregateVal[indx].FloatVal = Src2.FloatVal;
break;
case Type::DoubleTyID:
Dest.AggregateVal[indx].DoubleVal = Src2.DoubleVal;
break;
}
SetValue(&I, Dest, SF);
}
void Interpreter::visitShuffleVectorInst(ShuffleVectorInst &I){
ExecutionContext &SF = ECStack.back();
Type *Ty = I.getType();
if(!(Ty->isVectorTy()))
llvm_unreachable("Unhandled dest type for shufflevector instruction");
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
GenericValue Dest;
// There is no need to check types of src1 and src2, because the compiled
// bytecode can't contain different types for src1 and src2 for a
// shufflevector instruction.
Type *TyContained = Ty->getContainedType(0);
unsigned src1Size = (unsigned)Src1.AggregateVal.size();
unsigned src2Size = (unsigned)Src2.AggregateVal.size();
unsigned src3Size = (unsigned)Src3.AggregateVal.size();
Dest.AggregateVal.resize(src3Size);
switch (TyContained->getTypeID()) {
default:
llvm_unreachable("Unhandled dest type for insertelement instruction");
break;
case Type::IntegerTyID:
for( unsigned i=0; i<src3Size; i++) {
unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
if(j < src1Size)
Dest.AggregateVal[i].IntVal = Src1.AggregateVal[j].IntVal;
else if(j < src1Size + src2Size)
Dest.AggregateVal[i].IntVal = Src2.AggregateVal[j-src1Size].IntVal;
else
// The selector may not be greater than sum of lengths of first and
// second operands and llasm should not allow situation like
// %tmp = shufflevector <2 x i32> <i32 3, i32 4>, <2 x i32> undef,
// <2 x i32> < i32 0, i32 5 >,
// where i32 5 is invalid, but let it be additional check here:
llvm_unreachable("Invalid mask in shufflevector instruction");
}
break;
case Type::FloatTyID:
for( unsigned i=0; i<src3Size; i++) {
unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
if(j < src1Size)
Dest.AggregateVal[i].FloatVal = Src1.AggregateVal[j].FloatVal;
else if(j < src1Size + src2Size)
Dest.AggregateVal[i].FloatVal = Src2.AggregateVal[j-src1Size].FloatVal;
else
llvm_unreachable("Invalid mask in shufflevector instruction");
}
break;
case Type::DoubleTyID:
for( unsigned i=0; i<src3Size; i++) {
unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
if(j < src1Size)
Dest.AggregateVal[i].DoubleVal = Src1.AggregateVal[j].DoubleVal;
else if(j < src1Size + src2Size)
Dest.AggregateVal[i].DoubleVal =
Src2.AggregateVal[j-src1Size].DoubleVal;
else
llvm_unreachable("Invalid mask in shufflevector instruction");
}
break;
}
SetValue(&I, Dest, SF);
}
void Interpreter::visitExtractValueInst(ExtractValueInst &I) {
ExecutionContext &SF = ECStack.back();
Value *Agg = I.getAggregateOperand();
GenericValue Dest;
GenericValue Src = getOperandValue(Agg, SF);
ExtractValueInst::idx_iterator IdxBegin = I.idx_begin();
unsigned Num = I.getNumIndices();
GenericValue *pSrc = &Src;
for (unsigned i = 0 ; i < Num; ++i) {
pSrc = &pSrc->AggregateVal[*IdxBegin];
++IdxBegin;
}
Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
switch (IndexedType->getTypeID()) {
default:
llvm_unreachable("Unhandled dest type for extractelement instruction");
break;
case Type::IntegerTyID:
Dest.IntVal = pSrc->IntVal;
break;
case Type::FloatTyID:
Dest.FloatVal = pSrc->FloatVal;
break;
case Type::DoubleTyID:
Dest.DoubleVal = pSrc->DoubleVal;
break;
case Type::ArrayTyID:
case Type::StructTyID:
case Type::VectorTyID:
Dest.AggregateVal = pSrc->AggregateVal;
break;
case Type::PointerTyID:
Dest.PointerVal = pSrc->PointerVal;
break;
}
SetValue(&I, Dest, SF);
}
void Interpreter::visitInsertValueInst(InsertValueInst &I) {
ExecutionContext &SF = ECStack.back();
Value *Agg = I.getAggregateOperand();
GenericValue Src1 = getOperandValue(Agg, SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Dest = Src1; // Dest is a slightly changed Src1
ExtractValueInst::idx_iterator IdxBegin = I.idx_begin();
unsigned Num = I.getNumIndices();
GenericValue *pDest = &Dest;
for (unsigned i = 0 ; i < Num; ++i) {
pDest = &pDest->AggregateVal[*IdxBegin];
++IdxBegin;
}
// pDest points to the target value in the Dest now
Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
switch (IndexedType->getTypeID()) {
default:
llvm_unreachable("Unhandled dest type for insertelement instruction");
break;
case Type::IntegerTyID:
pDest->IntVal = Src2.IntVal;
break;
case Type::FloatTyID:
pDest->FloatVal = Src2.FloatVal;
break;
case Type::DoubleTyID:
pDest->DoubleVal = Src2.DoubleVal;
break;
case Type::ArrayTyID:
case Type::StructTyID:
case Type::VectorTyID:
pDest->AggregateVal = Src2.AggregateVal;
break;
case Type::PointerTyID:
pDest->PointerVal = Src2.PointerVal;
break;
}
SetValue(&I, Dest, SF);
}
GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
ExecutionContext &SF) {
switch (CE->getOpcode()) {
case Instruction::Trunc:
return executeTruncInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::ZExt:
return executeZExtInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::SExt:
return executeSExtInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::FPTrunc:
return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::FPExt:
return executeFPExtInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::UIToFP:
return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::SIToFP:
return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::FPToUI:
return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::FPToSI:
return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::PtrToInt:
return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::IntToPtr:
return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::BitCast:
return executeBitCastInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::GetElementPtr:
return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),
gep_type_end(CE), SF);
case Instruction::FCmp:
case Instruction::ICmp:
return executeCmpInst(CE->getPredicate(),
getOperandValue(CE->getOperand(0), SF),
getOperandValue(CE->getOperand(1), SF),
CE->getOperand(0)->getType());
case Instruction::Select:
return executeSelectInst(getOperandValue(CE->getOperand(0), SF),
getOperandValue(CE->getOperand(1), SF),
getOperandValue(CE->getOperand(2), SF),
CE->getOperand(0)->getType());
default :
break;
}
// The cases below here require a GenericValue parameter for the result
// so we initialize one, compute it and then return it.
GenericValue Op0 = getOperandValue(CE->getOperand(0), SF);
GenericValue Op1 = getOperandValue(CE->getOperand(1), SF);
GenericValue Dest;
Type * Ty = CE->getOperand(0)->getType();
switch (CE->getOpcode()) {
case Instruction::Add: Dest.IntVal = Op0.IntVal + Op1.IntVal; break;
case Instruction::Sub: Dest.IntVal = Op0.IntVal - Op1.IntVal; break;
case Instruction::Mul: Dest.IntVal = Op0.IntVal * Op1.IntVal; break;
case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break;
case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break;
case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break;
case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break;
case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break;
case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break;
case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break;
case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break;
case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break;
case Instruction::And: Dest.IntVal = Op0.IntVal & Op1.IntVal; break;
case Instruction::Or: Dest.IntVal = Op0.IntVal | Op1.IntVal; break;
case Instruction::Xor: Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break;
case Instruction::Shl:
Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue());
break;
case Instruction::LShr:
Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue());
break;
case Instruction::AShr:
Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue());
break;
default:
dbgs() << "Unhandled ConstantExpr: " << *CE << "\n";
llvm_unreachable("Unhandled ConstantExpr");
}
return Dest;
}
GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
return getConstantExprValue(CE, SF);
} else if (Constant *CPV = dyn_cast<Constant>(V)) {
return getConstantValue(CPV);
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
return PTOGV(getPointerToGlobal(GV));
} else {
return SF.Values[V];
}
}
//===----------------------------------------------------------------------===//
// Dispatch and Execution Code
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// callFunction - Execute the specified function...
//
void Interpreter::callFunction(Function *F, ArrayRef<GenericValue> ArgVals) {
assert((ECStack.empty() || !ECStack.back().Caller.getInstruction() ||
ECStack.back().Caller.arg_size() == ArgVals.size()) &&
"Incorrect number of arguments passed into function call!");
// Make a new stack frame... and fill it in.
ECStack.emplace_back();
ExecutionContext &StackFrame = ECStack.back();
StackFrame.CurFunction = F;
// Special handling for external functions.
if (F->isDeclaration()) {
GenericValue Result = callExternalFunction (F, ArgVals);
// Simulate a 'ret' instruction of the appropriate type.
popStackAndReturnValueToCaller (F->getReturnType (), Result);
return;
}
// Get pointers to first LLVM BB & Instruction in function.
StackFrame.CurBB = &F->front();
StackFrame.CurInst = StackFrame.CurBB->begin();
// Run through the function arguments and initialize their values...
assert((ArgVals.size() == F->arg_size() ||
(ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
"Invalid number of values passed to function invocation!");
// Handle non-varargs arguments...
unsigned i = 0;
for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
AI != E; ++AI, ++i)
SetValue(&*AI, ArgVals[i], StackFrame);
// Handle varargs arguments...
StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
}
void Interpreter::run() {
while (!ECStack.empty()) {
// Interpret a single instruction & increment the "PC".
ExecutionContext &SF = ECStack.back(); // Current stack frame
Instruction &I = *SF.CurInst++; // Increment before execute
// Track the number of dynamic instructions executed.
++NumDynamicInsts;
DEBUG(dbgs() << "About to interpret: " << I);
visit(I); // Dispatch to one of the visit* methods...
}
}