forked from OSchip/llvm-project
311 lines
11 KiB
C++
311 lines
11 KiB
C++
//===-- safestack.cpp -----------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the runtime support for the safe stack protection
|
|
// mechanism. The runtime manages allocation/deallocation of the unsafe stack
|
|
// for the main thread, as well as all pthreads that are created/destroyed
|
|
// during program execution.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "safestack_platform.h"
|
|
#include "safestack_util.h"
|
|
|
|
#include <errno.h>
|
|
#include <sys/resource.h>
|
|
|
|
#include "interception/interception.h"
|
|
|
|
using namespace safestack;
|
|
|
|
// TODO: To make accessing the unsafe stack pointer faster, we plan to
|
|
// eventually store it directly in the thread control block data structure on
|
|
// platforms where this structure is pointed to by %fs or %gs. This is exactly
|
|
// the same mechanism as currently being used by the traditional stack
|
|
// protector pass to store the stack guard (see getStackCookieLocation()
|
|
// function above). Doing so requires changing the tcbhead_t struct in glibc
|
|
// on Linux and tcb struct in libc on FreeBSD.
|
|
//
|
|
// For now, store it in a thread-local variable.
|
|
extern "C" {
|
|
__attribute__((visibility(
|
|
"default"))) __thread void *__safestack_unsafe_stack_ptr = nullptr;
|
|
}
|
|
|
|
namespace {
|
|
|
|
// TODO: The runtime library does not currently protect the safe stack beyond
|
|
// relying on the system-enforced ASLR. The protection of the (safe) stack can
|
|
// be provided by three alternative features:
|
|
//
|
|
// 1) Protection via hardware segmentation on x86-32 and some x86-64
|
|
// architectures: the (safe) stack segment (implicitly accessed via the %ss
|
|
// segment register) can be separated from the data segment (implicitly
|
|
// accessed via the %ds segment register). Dereferencing a pointer to the safe
|
|
// segment would result in a segmentation fault.
|
|
//
|
|
// 2) Protection via software fault isolation: memory writes that are not meant
|
|
// to access the safe stack can be prevented from doing so through runtime
|
|
// instrumentation. One way to do it is to allocate the safe stack(s) in the
|
|
// upper half of the userspace and bitmask the corresponding upper bit of the
|
|
// memory addresses of memory writes that are not meant to access the safe
|
|
// stack.
|
|
//
|
|
// 3) Protection via information hiding on 64 bit architectures: the location
|
|
// of the safe stack(s) can be randomized through secure mechanisms, and the
|
|
// leakage of the stack pointer can be prevented. Currently, libc can leak the
|
|
// stack pointer in several ways (e.g. in longjmp, signal handling, user-level
|
|
// context switching related functions, etc.). These can be fixed in libc and
|
|
// in other low-level libraries, by either eliminating the escaping/dumping of
|
|
// the stack pointer (i.e., %rsp) when that's possible, or by using
|
|
// encryption/PTR_MANGLE (XOR-ing the dumped stack pointer with another secret
|
|
// we control and protect better, as is already done for setjmp in glibc.)
|
|
// Furthermore, a static machine code level verifier can be ran after code
|
|
// generation to make sure that the stack pointer is never written to memory,
|
|
// or if it is, its written on the safe stack.
|
|
//
|
|
// Finally, while the Unsafe Stack pointer is currently stored in a thread
|
|
// local variable, with libc support it could be stored in the TCB (thread
|
|
// control block) as well, eliminating another level of indirection and making
|
|
// such accesses faster. Alternatively, dedicating a separate register for
|
|
// storing it would also be possible.
|
|
|
|
/// Minimum stack alignment for the unsafe stack.
|
|
const unsigned kStackAlign = 16;
|
|
|
|
/// Default size of the unsafe stack. This value is only used if the stack
|
|
/// size rlimit is set to infinity.
|
|
const unsigned kDefaultUnsafeStackSize = 0x2800000;
|
|
|
|
// Per-thread unsafe stack information. It's not frequently accessed, so there
|
|
// it can be kept out of the tcb in normal thread-local variables.
|
|
__thread void *unsafe_stack_start = nullptr;
|
|
__thread size_t unsafe_stack_size = 0;
|
|
__thread size_t unsafe_stack_guard = 0;
|
|
|
|
inline void *unsafe_stack_alloc(size_t size, size_t guard) {
|
|
SFS_CHECK(size + guard >= size);
|
|
void *addr = Mmap(nullptr, size + guard, PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANON, -1, 0);
|
|
SFS_CHECK(MAP_FAILED != addr);
|
|
Mprotect(addr, guard, PROT_NONE);
|
|
return (char *)addr + guard;
|
|
}
|
|
|
|
inline void unsafe_stack_setup(void *start, size_t size, size_t guard) {
|
|
SFS_CHECK((char *)start + size >= (char *)start);
|
|
SFS_CHECK((char *)start + guard >= (char *)start);
|
|
void *stack_ptr = (char *)start + size;
|
|
SFS_CHECK((((size_t)stack_ptr) & (kStackAlign - 1)) == 0);
|
|
|
|
__safestack_unsafe_stack_ptr = stack_ptr;
|
|
unsafe_stack_start = start;
|
|
unsafe_stack_size = size;
|
|
unsafe_stack_guard = guard;
|
|
}
|
|
|
|
/// Thread data for the cleanup handler
|
|
pthread_key_t thread_cleanup_key;
|
|
|
|
/// Safe stack per-thread information passed to the thread_start function
|
|
struct tinfo {
|
|
void *(*start_routine)(void *);
|
|
void *start_routine_arg;
|
|
|
|
void *unsafe_stack_start;
|
|
size_t unsafe_stack_size;
|
|
size_t unsafe_stack_guard;
|
|
};
|
|
|
|
/// Wrap the thread function in order to deallocate the unsafe stack when the
|
|
/// thread terminates by returning from its main function.
|
|
void *thread_start(void *arg) {
|
|
struct tinfo *tinfo = (struct tinfo *)arg;
|
|
|
|
void *(*start_routine)(void *) = tinfo->start_routine;
|
|
void *start_routine_arg = tinfo->start_routine_arg;
|
|
|
|
// Setup the unsafe stack; this will destroy tinfo content
|
|
unsafe_stack_setup(tinfo->unsafe_stack_start, tinfo->unsafe_stack_size,
|
|
tinfo->unsafe_stack_guard);
|
|
|
|
// Make sure out thread-specific destructor will be called
|
|
pthread_setspecific(thread_cleanup_key, (void *)1);
|
|
|
|
return start_routine(start_routine_arg);
|
|
}
|
|
|
|
/// Linked list used to store exiting threads stack/thread information.
|
|
struct thread_stack_ll {
|
|
struct thread_stack_ll *next;
|
|
void *stack_base;
|
|
size_t size;
|
|
pid_t pid;
|
|
ThreadId tid;
|
|
};
|
|
|
|
/// Linked list of unsafe stacks for threads that are exiting. We delay
|
|
/// unmapping them until the thread exits.
|
|
thread_stack_ll *thread_stacks = nullptr;
|
|
pthread_mutex_t thread_stacks_mutex = PTHREAD_MUTEX_INITIALIZER;
|
|
|
|
/// Thread-specific data destructor. We want to free the unsafe stack only after
|
|
/// this thread is terminated. libc can call functions in safestack-instrumented
|
|
/// code (like free) after thread-specific data destructors have run.
|
|
void thread_cleanup_handler(void *_iter) {
|
|
SFS_CHECK(unsafe_stack_start != nullptr);
|
|
pthread_setspecific(thread_cleanup_key, NULL);
|
|
|
|
pthread_mutex_lock(&thread_stacks_mutex);
|
|
// Temporary list to hold the previous threads stacks so we don't hold the
|
|
// thread_stacks_mutex for long.
|
|
thread_stack_ll *temp_stacks = thread_stacks;
|
|
thread_stacks = nullptr;
|
|
pthread_mutex_unlock(&thread_stacks_mutex);
|
|
|
|
pid_t pid = getpid();
|
|
ThreadId tid = GetTid();
|
|
|
|
// Free stacks for dead threads
|
|
thread_stack_ll **stackp = &temp_stacks;
|
|
while (*stackp) {
|
|
thread_stack_ll *stack = *stackp;
|
|
if (stack->pid != pid ||
|
|
(-1 == TgKill(stack->pid, stack->tid, 0) && errno == ESRCH)) {
|
|
Munmap(stack->stack_base, stack->size);
|
|
*stackp = stack->next;
|
|
free(stack);
|
|
} else
|
|
stackp = &stack->next;
|
|
}
|
|
|
|
thread_stack_ll *cur_stack =
|
|
(thread_stack_ll *)malloc(sizeof(thread_stack_ll));
|
|
cur_stack->stack_base = (char *)unsafe_stack_start - unsafe_stack_guard;
|
|
cur_stack->size = unsafe_stack_size + unsafe_stack_guard;
|
|
cur_stack->pid = pid;
|
|
cur_stack->tid = tid;
|
|
|
|
pthread_mutex_lock(&thread_stacks_mutex);
|
|
// Merge thread_stacks with the current thread's stack and any remaining
|
|
// temp_stacks
|
|
*stackp = thread_stacks;
|
|
cur_stack->next = temp_stacks;
|
|
thread_stacks = cur_stack;
|
|
pthread_mutex_unlock(&thread_stacks_mutex);
|
|
|
|
unsafe_stack_start = nullptr;
|
|
}
|
|
|
|
void EnsureInterceptorsInitialized();
|
|
|
|
/// Intercept thread creation operation to allocate and setup the unsafe stack
|
|
INTERCEPTOR(int, pthread_create, pthread_t *thread,
|
|
const pthread_attr_t *attr,
|
|
void *(*start_routine)(void*), void *arg) {
|
|
EnsureInterceptorsInitialized();
|
|
size_t size = 0;
|
|
size_t guard = 0;
|
|
|
|
if (attr) {
|
|
pthread_attr_getstacksize(attr, &size);
|
|
pthread_attr_getguardsize(attr, &guard);
|
|
} else {
|
|
// get pthread default stack size
|
|
pthread_attr_t tmpattr;
|
|
pthread_attr_init(&tmpattr);
|
|
pthread_attr_getstacksize(&tmpattr, &size);
|
|
pthread_attr_getguardsize(&tmpattr, &guard);
|
|
pthread_attr_destroy(&tmpattr);
|
|
}
|
|
|
|
SFS_CHECK(size);
|
|
size = RoundUpTo(size, kStackAlign);
|
|
|
|
void *addr = unsafe_stack_alloc(size, guard);
|
|
// Put tinfo at the end of the buffer. guard may be not page aligned.
|
|
// If that is so then some bytes after addr can be mprotected.
|
|
struct tinfo *tinfo =
|
|
(struct tinfo *)(((char *)addr) + size - sizeof(struct tinfo));
|
|
tinfo->start_routine = start_routine;
|
|
tinfo->start_routine_arg = arg;
|
|
tinfo->unsafe_stack_start = addr;
|
|
tinfo->unsafe_stack_size = size;
|
|
tinfo->unsafe_stack_guard = guard;
|
|
|
|
return REAL(pthread_create)(thread, attr, thread_start, tinfo);
|
|
}
|
|
|
|
pthread_mutex_t interceptor_init_mutex = PTHREAD_MUTEX_INITIALIZER;
|
|
bool interceptors_inited = false;
|
|
|
|
void EnsureInterceptorsInitialized() {
|
|
MutexLock lock(interceptor_init_mutex);
|
|
if (interceptors_inited)
|
|
return;
|
|
|
|
// Initialize pthread interceptors for thread allocation
|
|
INTERCEPT_FUNCTION(pthread_create);
|
|
|
|
interceptors_inited = true;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
extern "C" __attribute__((visibility("default")))
|
|
#if !SANITIZER_CAN_USE_PREINIT_ARRAY
|
|
// On ELF platforms, the constructor is invoked using .preinit_array (see below)
|
|
__attribute__((constructor(0)))
|
|
#endif
|
|
void __safestack_init() {
|
|
// Determine the stack size for the main thread.
|
|
size_t size = kDefaultUnsafeStackSize;
|
|
size_t guard = 4096;
|
|
|
|
struct rlimit limit;
|
|
if (getrlimit(RLIMIT_STACK, &limit) == 0 && limit.rlim_cur != RLIM_INFINITY)
|
|
size = limit.rlim_cur;
|
|
|
|
// Allocate unsafe stack for main thread
|
|
void *addr = unsafe_stack_alloc(size, guard);
|
|
unsafe_stack_setup(addr, size, guard);
|
|
|
|
// Setup the cleanup handler
|
|
pthread_key_create(&thread_cleanup_key, thread_cleanup_handler);
|
|
}
|
|
|
|
#if SANITIZER_CAN_USE_PREINIT_ARRAY
|
|
// On ELF platforms, run safestack initialization before any other constructors.
|
|
// On other platforms we use the constructor attribute to arrange to run our
|
|
// initialization early.
|
|
extern "C" {
|
|
__attribute__((section(".preinit_array"),
|
|
used)) void (*__safestack_preinit)(void) = __safestack_init;
|
|
}
|
|
#endif
|
|
|
|
extern "C"
|
|
__attribute__((visibility("default"))) void *__get_unsafe_stack_bottom() {
|
|
return unsafe_stack_start;
|
|
}
|
|
|
|
extern "C"
|
|
__attribute__((visibility("default"))) void *__get_unsafe_stack_top() {
|
|
return (char*)unsafe_stack_start + unsafe_stack_size;
|
|
}
|
|
|
|
extern "C"
|
|
__attribute__((visibility("default"))) void *__get_unsafe_stack_start() {
|
|
return unsafe_stack_start;
|
|
}
|
|
|
|
extern "C"
|
|
__attribute__((visibility("default"))) void *__get_unsafe_stack_ptr() {
|
|
return __safestack_unsafe_stack_ptr;
|
|
}
|