llvm-project/clang/lib/AST/Expr.cpp

4077 lines
142 KiB
C++

//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Expr class and subclasses.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/APValue.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/EvaluatedExprVisitor.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Lexer.h"
#include "clang/Lex/LiteralSupport.h"
#include "clang/Sema/SemaDiagnostic.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstring>
using namespace clang;
const CXXRecordDecl *Expr::getBestDynamicClassType() const {
const Expr *E = ignoreParenBaseCasts();
QualType DerivedType = E->getType();
if (const PointerType *PTy = DerivedType->getAs<PointerType>())
DerivedType = PTy->getPointeeType();
if (DerivedType->isDependentType())
return NULL;
const RecordType *Ty = DerivedType->castAs<RecordType>();
Decl *D = Ty->getDecl();
return cast<CXXRecordDecl>(D);
}
const Expr *
Expr::skipRValueSubobjectAdjustments(
SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
const Expr *E = this;
while (true) {
E = E->IgnoreParens();
if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
if ((CE->getCastKind() == CK_DerivedToBase ||
CE->getCastKind() == CK_UncheckedDerivedToBase) &&
E->getType()->isRecordType()) {
E = CE->getSubExpr();
CXXRecordDecl *Derived
= cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
Adjustments.push_back(SubobjectAdjustment(CE, Derived));
continue;
}
if (CE->getCastKind() == CK_NoOp) {
E = CE->getSubExpr();
continue;
}
} else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
if (!ME->isArrow() && ME->getBase()->isRValue()) {
assert(ME->getBase()->getType()->isRecordType());
if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
E = ME->getBase();
Adjustments.push_back(SubobjectAdjustment(Field));
continue;
}
}
} else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
if (BO->isPtrMemOp()) {
assert(BO->getRHS()->isRValue());
E = BO->getLHS();
const MemberPointerType *MPT =
BO->getRHS()->getType()->getAs<MemberPointerType>();
Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
}
}
// Nothing changed.
break;
}
return E;
}
const Expr *
Expr::findMaterializedTemporary(const MaterializeTemporaryExpr *&MTE) const {
const Expr *E = this;
// Look through single-element init lists that claim to be lvalues. They're
// just syntactic wrappers in this case.
if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) {
if (ILE->getNumInits() == 1 && ILE->isGLValue())
E = ILE->getInit(0);
}
// Look through expressions for materialized temporaries (for now).
if (const MaterializeTemporaryExpr *M
= dyn_cast<MaterializeTemporaryExpr>(E)) {
MTE = M;
E = M->GetTemporaryExpr();
}
if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
E = DAE->getExpr();
return E;
}
/// isKnownToHaveBooleanValue - Return true if this is an integer expression
/// that is known to return 0 or 1. This happens for _Bool/bool expressions
/// but also int expressions which are produced by things like comparisons in
/// C.
bool Expr::isKnownToHaveBooleanValue() const {
const Expr *E = IgnoreParens();
// If this value has _Bool type, it is obvious 0/1.
if (E->getType()->isBooleanType()) return true;
// If this is a non-scalar-integer type, we don't care enough to try.
if (!E->getType()->isIntegralOrEnumerationType()) return false;
if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
switch (UO->getOpcode()) {
case UO_Plus:
return UO->getSubExpr()->isKnownToHaveBooleanValue();
default:
return false;
}
}
// Only look through implicit casts. If the user writes
// '(int) (a && b)' treat it as an arbitrary int.
if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
return CE->getSubExpr()->isKnownToHaveBooleanValue();
if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
switch (BO->getOpcode()) {
default: return false;
case BO_LT: // Relational operators.
case BO_GT:
case BO_LE:
case BO_GE:
case BO_EQ: // Equality operators.
case BO_NE:
case BO_LAnd: // AND operator.
case BO_LOr: // Logical OR operator.
return true;
case BO_And: // Bitwise AND operator.
case BO_Xor: // Bitwise XOR operator.
case BO_Or: // Bitwise OR operator.
// Handle things like (x==2)|(y==12).
return BO->getLHS()->isKnownToHaveBooleanValue() &&
BO->getRHS()->isKnownToHaveBooleanValue();
case BO_Comma:
case BO_Assign:
return BO->getRHS()->isKnownToHaveBooleanValue();
}
}
if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
CO->getFalseExpr()->isKnownToHaveBooleanValue();
return false;
}
// Amusing macro metaprogramming hack: check whether a class provides
// a more specific implementation of getExprLoc().
//
// See also Stmt.cpp:{getLocStart(),getLocEnd()}.
namespace {
/// This implementation is used when a class provides a custom
/// implementation of getExprLoc.
template <class E, class T>
SourceLocation getExprLocImpl(const Expr *expr,
SourceLocation (T::*v)() const) {
return static_cast<const E*>(expr)->getExprLoc();
}
/// This implementation is used when a class doesn't provide
/// a custom implementation of getExprLoc. Overload resolution
/// should pick it over the implementation above because it's
/// more specialized according to function template partial ordering.
template <class E>
SourceLocation getExprLocImpl(const Expr *expr,
SourceLocation (Expr::*v)() const) {
return static_cast<const E*>(expr)->getLocStart();
}
}
SourceLocation Expr::getExprLoc() const {
switch (getStmtClass()) {
case Stmt::NoStmtClass: llvm_unreachable("statement without class");
#define ABSTRACT_STMT(type)
#define STMT(type, base) \
case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break;
#define EXPR(type, base) \
case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
#include "clang/AST/StmtNodes.inc"
}
llvm_unreachable("unknown statement kind");
}
//===----------------------------------------------------------------------===//
// Primary Expressions.
//===----------------------------------------------------------------------===//
/// \brief Compute the type-, value-, and instantiation-dependence of a
/// declaration reference
/// based on the declaration being referenced.
static void computeDeclRefDependence(ASTContext &Ctx, NamedDecl *D, QualType T,
bool &TypeDependent,
bool &ValueDependent,
bool &InstantiationDependent) {
TypeDependent = false;
ValueDependent = false;
InstantiationDependent = false;
// (TD) C++ [temp.dep.expr]p3:
// An id-expression is type-dependent if it contains:
//
// and
//
// (VD) C++ [temp.dep.constexpr]p2:
// An identifier is value-dependent if it is:
// (TD) - an identifier that was declared with dependent type
// (VD) - a name declared with a dependent type,
if (T->isDependentType()) {
TypeDependent = true;
ValueDependent = true;
InstantiationDependent = true;
return;
} else if (T->isInstantiationDependentType()) {
InstantiationDependent = true;
}
// (TD) - a conversion-function-id that specifies a dependent type
if (D->getDeclName().getNameKind()
== DeclarationName::CXXConversionFunctionName) {
QualType T = D->getDeclName().getCXXNameType();
if (T->isDependentType()) {
TypeDependent = true;
ValueDependent = true;
InstantiationDependent = true;
return;
}
if (T->isInstantiationDependentType())
InstantiationDependent = true;
}
// (VD) - the name of a non-type template parameter,
if (isa<NonTypeTemplateParmDecl>(D)) {
ValueDependent = true;
InstantiationDependent = true;
return;
}
// (VD) - a constant with integral or enumeration type and is
// initialized with an expression that is value-dependent.
// (VD) - a constant with literal type and is initialized with an
// expression that is value-dependent [C++11].
// (VD) - FIXME: Missing from the standard:
// - an entity with reference type and is initialized with an
// expression that is value-dependent [C++11]
if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
if ((Ctx.getLangOpts().CPlusPlus0x ?
Var->getType()->isLiteralType() :
Var->getType()->isIntegralOrEnumerationType()) &&
(Var->getType().isConstQualified() ||
Var->getType()->isReferenceType())) {
if (const Expr *Init = Var->getAnyInitializer())
if (Init->isValueDependent()) {
ValueDependent = true;
InstantiationDependent = true;
}
}
// (VD) - FIXME: Missing from the standard:
// - a member function or a static data member of the current
// instantiation
if (Var->isStaticDataMember() &&
Var->getDeclContext()->isDependentContext()) {
ValueDependent = true;
InstantiationDependent = true;
}
return;
}
// (VD) - FIXME: Missing from the standard:
// - a member function or a static data member of the current
// instantiation
if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
ValueDependent = true;
InstantiationDependent = true;
}
}
void DeclRefExpr::computeDependence(ASTContext &Ctx) {
bool TypeDependent = false;
bool ValueDependent = false;
bool InstantiationDependent = false;
computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
ValueDependent, InstantiationDependent);
// (TD) C++ [temp.dep.expr]p3:
// An id-expression is type-dependent if it contains:
//
// and
//
// (VD) C++ [temp.dep.constexpr]p2:
// An identifier is value-dependent if it is:
if (!TypeDependent && !ValueDependent &&
hasExplicitTemplateArgs() &&
TemplateSpecializationType::anyDependentTemplateArguments(
getTemplateArgs(),
getNumTemplateArgs(),
InstantiationDependent)) {
TypeDependent = true;
ValueDependent = true;
InstantiationDependent = true;
}
ExprBits.TypeDependent = TypeDependent;
ExprBits.ValueDependent = ValueDependent;
ExprBits.InstantiationDependent = InstantiationDependent;
// Is the declaration a parameter pack?
if (getDecl()->isParameterPack())
ExprBits.ContainsUnexpandedParameterPack = true;
}
DeclRefExpr::DeclRefExpr(ASTContext &Ctx,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
ValueDecl *D, bool RefersToEnclosingLocal,
const DeclarationNameInfo &NameInfo,
NamedDecl *FoundD,
const TemplateArgumentListInfo *TemplateArgs,
QualType T, ExprValueKind VK)
: Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
if (QualifierLoc)
getInternalQualifierLoc() = QualifierLoc;
DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
if (FoundD)
getInternalFoundDecl() = FoundD;
DeclRefExprBits.HasTemplateKWAndArgsInfo
= (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
DeclRefExprBits.RefersToEnclosingLocal = RefersToEnclosingLocal;
if (TemplateArgs) {
bool Dependent = false;
bool InstantiationDependent = false;
bool ContainsUnexpandedParameterPack = false;
getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
Dependent,
InstantiationDependent,
ContainsUnexpandedParameterPack);
if (InstantiationDependent)
setInstantiationDependent(true);
} else if (TemplateKWLoc.isValid()) {
getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
}
DeclRefExprBits.HadMultipleCandidates = 0;
computeDependence(Ctx);
}
DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
ValueDecl *D,
bool RefersToEnclosingLocal,
SourceLocation NameLoc,
QualType T,
ExprValueKind VK,
NamedDecl *FoundD,
const TemplateArgumentListInfo *TemplateArgs) {
return Create(Context, QualifierLoc, TemplateKWLoc, D,
RefersToEnclosingLocal,
DeclarationNameInfo(D->getDeclName(), NameLoc),
T, VK, FoundD, TemplateArgs);
}
DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
ValueDecl *D,
bool RefersToEnclosingLocal,
const DeclarationNameInfo &NameInfo,
QualType T,
ExprValueKind VK,
NamedDecl *FoundD,
const TemplateArgumentListInfo *TemplateArgs) {
// Filter out cases where the found Decl is the same as the value refenenced.
if (D == FoundD)
FoundD = 0;
std::size_t Size = sizeof(DeclRefExpr);
if (QualifierLoc != 0)
Size += sizeof(NestedNameSpecifierLoc);
if (FoundD)
Size += sizeof(NamedDecl *);
if (TemplateArgs)
Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
else if (TemplateKWLoc.isValid())
Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
RefersToEnclosingLocal,
NameInfo, FoundD, TemplateArgs, T, VK);
}
DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context,
bool HasQualifier,
bool HasFoundDecl,
bool HasTemplateKWAndArgsInfo,
unsigned NumTemplateArgs) {
std::size_t Size = sizeof(DeclRefExpr);
if (HasQualifier)
Size += sizeof(NestedNameSpecifierLoc);
if (HasFoundDecl)
Size += sizeof(NamedDecl *);
if (HasTemplateKWAndArgsInfo)
Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
return new (Mem) DeclRefExpr(EmptyShell());
}
SourceRange DeclRefExpr::getSourceRange() const {
SourceRange R = getNameInfo().getSourceRange();
if (hasQualifier())
R.setBegin(getQualifierLoc().getBeginLoc());
if (hasExplicitTemplateArgs())
R.setEnd(getRAngleLoc());
return R;
}
SourceLocation DeclRefExpr::getLocStart() const {
if (hasQualifier())
return getQualifierLoc().getBeginLoc();
return getNameInfo().getLocStart();
}
SourceLocation DeclRefExpr::getLocEnd() const {
if (hasExplicitTemplateArgs())
return getRAngleLoc();
return getNameInfo().getLocEnd();
}
// FIXME: Maybe this should use DeclPrinter with a special "print predefined
// expr" policy instead.
std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
ASTContext &Context = CurrentDecl->getASTContext();
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
return FD->getNameAsString();
SmallString<256> Name;
llvm::raw_svector_ostream Out(Name);
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
Out << "virtual ";
if (MD->isStatic())
Out << "static ";
}
PrintingPolicy Policy(Context.getLangOpts());
std::string Proto = FD->getQualifiedNameAsString(Policy);
llvm::raw_string_ostream POut(Proto);
const FunctionDecl *Decl = FD;
if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
Decl = Pattern;
const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
const FunctionProtoType *FT = 0;
if (FD->hasWrittenPrototype())
FT = dyn_cast<FunctionProtoType>(AFT);
POut << "(";
if (FT) {
for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
if (i) POut << ", ";
POut << Decl->getParamDecl(i)->getType().stream(Policy);
}
if (FT->isVariadic()) {
if (FD->getNumParams()) POut << ", ";
POut << "...";
}
}
POut << ")";
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
const FunctionType *FT = MD->getType()->castAs<FunctionType>();
if (FT->isConst())
POut << " const";
if (FT->isVolatile())
POut << " volatile";
RefQualifierKind Ref = MD->getRefQualifier();
if (Ref == RQ_LValue)
POut << " &";
else if (Ref == RQ_RValue)
POut << " &&";
}
typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
SpecsTy Specs;
const DeclContext *Ctx = FD->getDeclContext();
while (Ctx && isa<NamedDecl>(Ctx)) {
const ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
if (Spec && !Spec->isExplicitSpecialization())
Specs.push_back(Spec);
Ctx = Ctx->getParent();
}
std::string TemplateParams;
llvm::raw_string_ostream TOut(TemplateParams);
for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
I != E; ++I) {
const TemplateParameterList *Params
= (*I)->getSpecializedTemplate()->getTemplateParameters();
const TemplateArgumentList &Args = (*I)->getTemplateArgs();
assert(Params->size() == Args.size());
for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
StringRef Param = Params->getParam(i)->getName();
if (Param.empty()) continue;
TOut << Param << " = ";
Args.get(i).print(Policy, TOut);
TOut << ", ";
}
}
FunctionTemplateSpecializationInfo *FSI
= FD->getTemplateSpecializationInfo();
if (FSI && !FSI->isExplicitSpecialization()) {
const TemplateParameterList* Params
= FSI->getTemplate()->getTemplateParameters();
const TemplateArgumentList* Args = FSI->TemplateArguments;
assert(Params->size() == Args->size());
for (unsigned i = 0, e = Params->size(); i != e; ++i) {
StringRef Param = Params->getParam(i)->getName();
if (Param.empty()) continue;
TOut << Param << " = ";
Args->get(i).print(Policy, TOut);
TOut << ", ";
}
}
TOut.flush();
if (!TemplateParams.empty()) {
// remove the trailing comma and space
TemplateParams.resize(TemplateParams.size() - 2);
POut << " [" << TemplateParams << "]";
}
POut.flush();
if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
AFT->getResultType().getAsStringInternal(Proto, Policy);
Out << Proto;
Out.flush();
return Name.str().str();
}
if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
SmallString<256> Name;
llvm::raw_svector_ostream Out(Name);
Out << (MD->isInstanceMethod() ? '-' : '+');
Out << '[';
// For incorrect code, there might not be an ObjCInterfaceDecl. Do
// a null check to avoid a crash.
if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
Out << *ID;
if (const ObjCCategoryImplDecl *CID =
dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
Out << '(' << *CID << ')';
Out << ' ';
Out << MD->getSelector().getAsString();
Out << ']';
Out.flush();
return Name.str().str();
}
if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
// __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
return "top level";
}
return "";
}
void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) {
if (hasAllocation())
C.Deallocate(pVal);
BitWidth = Val.getBitWidth();
unsigned NumWords = Val.getNumWords();
const uint64_t* Words = Val.getRawData();
if (NumWords > 1) {
pVal = new (C) uint64_t[NumWords];
std::copy(Words, Words + NumWords, pVal);
} else if (NumWords == 1)
VAL = Words[0];
else
VAL = 0;
}
IntegerLiteral::IntegerLiteral(ASTContext &C, const llvm::APInt &V,
QualType type, SourceLocation l)
: Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
false, false),
Loc(l) {
assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
assert(V.getBitWidth() == C.getIntWidth(type) &&
"Integer type is not the correct size for constant.");
setValue(C, V);
}
IntegerLiteral *
IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V,
QualType type, SourceLocation l) {
return new (C) IntegerLiteral(C, V, type, l);
}
IntegerLiteral *
IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) {
return new (C) IntegerLiteral(Empty);
}
FloatingLiteral::FloatingLiteral(ASTContext &C, const llvm::APFloat &V,
bool isexact, QualType Type, SourceLocation L)
: Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
false, false), Loc(L) {
FloatingLiteralBits.IsIEEE =
&C.getTargetInfo().getLongDoubleFormat() == &llvm::APFloat::IEEEquad;
FloatingLiteralBits.IsExact = isexact;
setValue(C, V);
}
FloatingLiteral::FloatingLiteral(ASTContext &C, EmptyShell Empty)
: Expr(FloatingLiteralClass, Empty) {
FloatingLiteralBits.IsIEEE =
&C.getTargetInfo().getLongDoubleFormat() == &llvm::APFloat::IEEEquad;
FloatingLiteralBits.IsExact = false;
}
FloatingLiteral *
FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V,
bool isexact, QualType Type, SourceLocation L) {
return new (C) FloatingLiteral(C, V, isexact, Type, L);
}
FloatingLiteral *
FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) {
return new (C) FloatingLiteral(C, Empty);
}
/// getValueAsApproximateDouble - This returns the value as an inaccurate
/// double. Note that this may cause loss of precision, but is useful for
/// debugging dumps, etc.
double FloatingLiteral::getValueAsApproximateDouble() const {
llvm::APFloat V = getValue();
bool ignored;
V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
&ignored);
return V.convertToDouble();
}
int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
int CharByteWidth = 0;
switch(k) {
case Ascii:
case UTF8:
CharByteWidth = target.getCharWidth();
break;
case Wide:
CharByteWidth = target.getWCharWidth();
break;
case UTF16:
CharByteWidth = target.getChar16Width();
break;
case UTF32:
CharByteWidth = target.getChar32Width();
break;
}
assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
CharByteWidth /= 8;
assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
&& "character byte widths supported are 1, 2, and 4 only");
return CharByteWidth;
}
StringLiteral *StringLiteral::Create(ASTContext &C, StringRef Str,
StringKind Kind, bool Pascal, QualType Ty,
const SourceLocation *Loc,
unsigned NumStrs) {
// Allocate enough space for the StringLiteral plus an array of locations for
// any concatenated string tokens.
void *Mem = C.Allocate(sizeof(StringLiteral)+
sizeof(SourceLocation)*(NumStrs-1),
llvm::alignOf<StringLiteral>());
StringLiteral *SL = new (Mem) StringLiteral(Ty);
// OPTIMIZE: could allocate this appended to the StringLiteral.
SL->setString(C,Str,Kind,Pascal);
SL->TokLocs[0] = Loc[0];
SL->NumConcatenated = NumStrs;
if (NumStrs != 1)
memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
return SL;
}
StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
void *Mem = C.Allocate(sizeof(StringLiteral)+
sizeof(SourceLocation)*(NumStrs-1),
llvm::alignOf<StringLiteral>());
StringLiteral *SL = new (Mem) StringLiteral(QualType());
SL->CharByteWidth = 0;
SL->Length = 0;
SL->NumConcatenated = NumStrs;
return SL;
}
void StringLiteral::outputString(raw_ostream &OS) {
switch (getKind()) {
case Ascii: break; // no prefix.
case Wide: OS << 'L'; break;
case UTF8: OS << "u8"; break;
case UTF16: OS << 'u'; break;
case UTF32: OS << 'U'; break;
}
OS << '"';
static const char Hex[] = "0123456789ABCDEF";
unsigned LastSlashX = getLength();
for (unsigned I = 0, N = getLength(); I != N; ++I) {
switch (uint32_t Char = getCodeUnit(I)) {
default:
// FIXME: Convert UTF-8 back to codepoints before rendering.
// Convert UTF-16 surrogate pairs back to codepoints before rendering.
// Leave invalid surrogates alone; we'll use \x for those.
if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
Char <= 0xdbff) {
uint32_t Trail = getCodeUnit(I + 1);
if (Trail >= 0xdc00 && Trail <= 0xdfff) {
Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
++I;
}
}
if (Char > 0xff) {
// If this is a wide string, output characters over 0xff using \x
// escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
// codepoint: use \x escapes for invalid codepoints.
if (getKind() == Wide ||
(Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
// FIXME: Is this the best way to print wchar_t?
OS << "\\x";
int Shift = 28;
while ((Char >> Shift) == 0)
Shift -= 4;
for (/**/; Shift >= 0; Shift -= 4)
OS << Hex[(Char >> Shift) & 15];
LastSlashX = I;
break;
}
if (Char > 0xffff)
OS << "\\U00"
<< Hex[(Char >> 20) & 15]
<< Hex[(Char >> 16) & 15];
else
OS << "\\u";
OS << Hex[(Char >> 12) & 15]
<< Hex[(Char >> 8) & 15]
<< Hex[(Char >> 4) & 15]
<< Hex[(Char >> 0) & 15];
break;
}
// If we used \x... for the previous character, and this character is a
// hexadecimal digit, prevent it being slurped as part of the \x.
if (LastSlashX + 1 == I) {
switch (Char) {
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
OS << "\"\"";
}
}
assert(Char <= 0xff &&
"Characters above 0xff should already have been handled.");
if (isprint(Char))
OS << (char)Char;
else // Output anything hard as an octal escape.
OS << '\\'
<< (char)('0' + ((Char >> 6) & 7))
<< (char)('0' + ((Char >> 3) & 7))
<< (char)('0' + ((Char >> 0) & 7));
break;
// Handle some common non-printable cases to make dumps prettier.
case '\\': OS << "\\\\"; break;
case '"': OS << "\\\""; break;
case '\n': OS << "\\n"; break;
case '\t': OS << "\\t"; break;
case '\a': OS << "\\a"; break;
case '\b': OS << "\\b"; break;
}
}
OS << '"';
}
void StringLiteral::setString(ASTContext &C, StringRef Str,
StringKind Kind, bool IsPascal) {
//FIXME: we assume that the string data comes from a target that uses the same
// code unit size and endianess for the type of string.
this->Kind = Kind;
this->IsPascal = IsPascal;
CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
assert((Str.size()%CharByteWidth == 0)
&& "size of data must be multiple of CharByteWidth");
Length = Str.size()/CharByteWidth;
switch(CharByteWidth) {
case 1: {
char *AStrData = new (C) char[Length];
std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
StrData.asChar = AStrData;
break;
}
case 2: {
uint16_t *AStrData = new (C) uint16_t[Length];
std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
StrData.asUInt16 = AStrData;
break;
}
case 4: {
uint32_t *AStrData = new (C) uint32_t[Length];
std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
StrData.asUInt32 = AStrData;
break;
}
default:
assert(false && "unsupported CharByteWidth");
}
}
/// getLocationOfByte - Return a source location that points to the specified
/// byte of this string literal.
///
/// Strings are amazingly complex. They can be formed from multiple tokens and
/// can have escape sequences in them in addition to the usual trigraph and
/// escaped newline business. This routine handles this complexity.
///
SourceLocation StringLiteral::
getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
const LangOptions &Features, const TargetInfo &Target) const {
assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) &&
"Only narrow string literals are currently supported");
// Loop over all of the tokens in this string until we find the one that
// contains the byte we're looking for.
unsigned TokNo = 0;
while (1) {
assert(TokNo < getNumConcatenated() && "Invalid byte number!");
SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
// Get the spelling of the string so that we can get the data that makes up
// the string literal, not the identifier for the macro it is potentially
// expanded through.
SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
// Re-lex the token to get its length and original spelling.
std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
bool Invalid = false;
StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
if (Invalid)
return StrTokSpellingLoc;
const char *StrData = Buffer.data()+LocInfo.second;
// Create a lexer starting at the beginning of this token.
Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
Buffer.begin(), StrData, Buffer.end());
Token TheTok;
TheLexer.LexFromRawLexer(TheTok);
// Use the StringLiteralParser to compute the length of the string in bytes.
StringLiteralParser SLP(&TheTok, 1, SM, Features, Target);
unsigned TokNumBytes = SLP.GetStringLength();
// If the byte is in this token, return the location of the byte.
if (ByteNo < TokNumBytes ||
(ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
// Now that we know the offset of the token in the spelling, use the
// preprocessor to get the offset in the original source.
return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
}
// Move to the next string token.
++TokNo;
ByteNo -= TokNumBytes;
}
}
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
/// corresponds to, e.g. "sizeof" or "[pre]++".
StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
switch (Op) {
case UO_PostInc: return "++";
case UO_PostDec: return "--";
case UO_PreInc: return "++";
case UO_PreDec: return "--";
case UO_AddrOf: return "&";
case UO_Deref: return "*";
case UO_Plus: return "+";
case UO_Minus: return "-";
case UO_Not: return "~";
case UO_LNot: return "!";
case UO_Real: return "__real";
case UO_Imag: return "__imag";
case UO_Extension: return "__extension__";
}
llvm_unreachable("Unknown unary operator");
}
UnaryOperatorKind
UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
switch (OO) {
default: llvm_unreachable("No unary operator for overloaded function");
case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
case OO_Amp: return UO_AddrOf;
case OO_Star: return UO_Deref;
case OO_Plus: return UO_Plus;
case OO_Minus: return UO_Minus;
case OO_Tilde: return UO_Not;
case OO_Exclaim: return UO_LNot;
}
}
OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
switch (Opc) {
case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
case UO_AddrOf: return OO_Amp;
case UO_Deref: return OO_Star;
case UO_Plus: return OO_Plus;
case UO_Minus: return OO_Minus;
case UO_Not: return OO_Tilde;
case UO_LNot: return OO_Exclaim;
default: return OO_None;
}
}
//===----------------------------------------------------------------------===//
// Postfix Operators.
//===----------------------------------------------------------------------===//
CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
SourceLocation rparenloc)
: Expr(SC, t, VK, OK_Ordinary,
fn->isTypeDependent(),
fn->isValueDependent(),
fn->isInstantiationDependent(),
fn->containsUnexpandedParameterPack()),
NumArgs(args.size()) {
SubExprs = new (C) Stmt*[args.size()+PREARGS_START+NumPreArgs];
SubExprs[FN] = fn;
for (unsigned i = 0; i != args.size(); ++i) {
if (args[i]->isTypeDependent())
ExprBits.TypeDependent = true;
if (args[i]->isValueDependent())
ExprBits.ValueDependent = true;
if (args[i]->isInstantiationDependent())
ExprBits.InstantiationDependent = true;
if (args[i]->containsUnexpandedParameterPack())
ExprBits.ContainsUnexpandedParameterPack = true;
SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
}
CallExprBits.NumPreArgs = NumPreArgs;
RParenLoc = rparenloc;
}
CallExpr::CallExpr(ASTContext& C, Expr *fn, ArrayRef<Expr*> args,
QualType t, ExprValueKind VK, SourceLocation rparenloc)
: Expr(CallExprClass, t, VK, OK_Ordinary,
fn->isTypeDependent(),
fn->isValueDependent(),
fn->isInstantiationDependent(),
fn->containsUnexpandedParameterPack()),
NumArgs(args.size()) {
SubExprs = new (C) Stmt*[args.size()+PREARGS_START];
SubExprs[FN] = fn;
for (unsigned i = 0; i != args.size(); ++i) {
if (args[i]->isTypeDependent())
ExprBits.TypeDependent = true;
if (args[i]->isValueDependent())
ExprBits.ValueDependent = true;
if (args[i]->isInstantiationDependent())
ExprBits.InstantiationDependent = true;
if (args[i]->containsUnexpandedParameterPack())
ExprBits.ContainsUnexpandedParameterPack = true;
SubExprs[i+PREARGS_START] = args[i];
}
CallExprBits.NumPreArgs = 0;
RParenLoc = rparenloc;
}
CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
: Expr(SC, Empty), SubExprs(0), NumArgs(0) {
// FIXME: Why do we allocate this?
SubExprs = new (C) Stmt*[PREARGS_START];
CallExprBits.NumPreArgs = 0;
}
CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs,
EmptyShell Empty)
: Expr(SC, Empty), SubExprs(0), NumArgs(0) {
// FIXME: Why do we allocate this?
SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
CallExprBits.NumPreArgs = NumPreArgs;
}
Decl *CallExpr::getCalleeDecl() {
Expr *CEE = getCallee()->IgnoreParenImpCasts();
while (SubstNonTypeTemplateParmExpr *NTTP
= dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
CEE = NTTP->getReplacement()->IgnoreParenCasts();
}
// If we're calling a dereference, look at the pointer instead.
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
if (BO->isPtrMemOp())
CEE = BO->getRHS()->IgnoreParenCasts();
} else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
if (UO->getOpcode() == UO_Deref)
CEE = UO->getSubExpr()->IgnoreParenCasts();
}
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
return DRE->getDecl();
if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
return ME->getMemberDecl();
return 0;
}
FunctionDecl *CallExpr::getDirectCallee() {
return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
}
/// setNumArgs - This changes the number of arguments present in this call.
/// Any orphaned expressions are deleted by this, and any new operands are set
/// to null.
void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
// No change, just return.
if (NumArgs == getNumArgs()) return;
// If shrinking # arguments, just delete the extras and forgot them.
if (NumArgs < getNumArgs()) {
this->NumArgs = NumArgs;
return;
}
// Otherwise, we are growing the # arguments. New an bigger argument array.
unsigned NumPreArgs = getNumPreArgs();
Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
// Copy over args.
for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
NewSubExprs[i] = SubExprs[i];
// Null out new args.
for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
i != NumArgs+PREARGS_START+NumPreArgs; ++i)
NewSubExprs[i] = 0;
if (SubExprs) C.Deallocate(SubExprs);
SubExprs = NewSubExprs;
this->NumArgs = NumArgs;
}
/// isBuiltinCall - If this is a call to a builtin, return the builtin ID. If
/// not, return 0.
unsigned CallExpr::isBuiltinCall() const {
// All simple function calls (e.g. func()) are implicitly cast to pointer to
// function. As a result, we try and obtain the DeclRefExpr from the
// ImplicitCastExpr.
const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
return 0;
const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
if (!DRE)
return 0;
const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
if (!FDecl)
return 0;
if (!FDecl->getIdentifier())
return 0;
return FDecl->getBuiltinID();
}
QualType CallExpr::getCallReturnType() const {
QualType CalleeType = getCallee()->getType();
if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
CalleeType = FnTypePtr->getPointeeType();
else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
CalleeType = BPT->getPointeeType();
else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember))
// This should never be overloaded and so should never return null.
CalleeType = Expr::findBoundMemberType(getCallee());
const FunctionType *FnType = CalleeType->castAs<FunctionType>();
return FnType->getResultType();
}
SourceRange CallExpr::getSourceRange() const {
if (isa<CXXOperatorCallExpr>(this))
return cast<CXXOperatorCallExpr>(this)->getSourceRange();
SourceLocation begin = getCallee()->getLocStart();
if (begin.isInvalid() && getNumArgs() > 0)
begin = getArg(0)->getLocStart();
SourceLocation end = getRParenLoc();
if (end.isInvalid() && getNumArgs() > 0)
end = getArg(getNumArgs() - 1)->getLocEnd();
return SourceRange(begin, end);
}
SourceLocation CallExpr::getLocStart() const {
if (isa<CXXOperatorCallExpr>(this))
return cast<CXXOperatorCallExpr>(this)->getSourceRange().getBegin();
SourceLocation begin = getCallee()->getLocStart();
if (begin.isInvalid() && getNumArgs() > 0)
begin = getArg(0)->getLocStart();
return begin;
}
SourceLocation CallExpr::getLocEnd() const {
if (isa<CXXOperatorCallExpr>(this))
return cast<CXXOperatorCallExpr>(this)->getSourceRange().getEnd();
SourceLocation end = getRParenLoc();
if (end.isInvalid() && getNumArgs() > 0)
end = getArg(getNumArgs() - 1)->getLocEnd();
return end;
}
OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,
SourceLocation OperatorLoc,
TypeSourceInfo *tsi,
ArrayRef<OffsetOfNode> comps,
ArrayRef<Expr*> exprs,
SourceLocation RParenLoc) {
void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
sizeof(OffsetOfNode) * comps.size() +
sizeof(Expr*) * exprs.size());
return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
RParenLoc);
}
OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
unsigned numComps, unsigned numExprs) {
void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
sizeof(OffsetOfNode) * numComps +
sizeof(Expr*) * numExprs);
return new (Mem) OffsetOfExpr(numComps, numExprs);
}
OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,
SourceLocation OperatorLoc, TypeSourceInfo *tsi,
ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
SourceLocation RParenLoc)
: Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
/*TypeDependent=*/false,
/*ValueDependent=*/tsi->getType()->isDependentType(),
tsi->getType()->isInstantiationDependentType(),
tsi->getType()->containsUnexpandedParameterPack()),
OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
NumComps(comps.size()), NumExprs(exprs.size())
{
for (unsigned i = 0; i != comps.size(); ++i) {
setComponent(i, comps[i]);
}
for (unsigned i = 0; i != exprs.size(); ++i) {
if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
ExprBits.ValueDependent = true;
if (exprs[i]->containsUnexpandedParameterPack())
ExprBits.ContainsUnexpandedParameterPack = true;
setIndexExpr(i, exprs[i]);
}
}
IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
assert(getKind() == Field || getKind() == Identifier);
if (getKind() == Field)
return getField()->getIdentifier();
return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
}
MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TemplateKWLoc,
ValueDecl *memberdecl,
DeclAccessPair founddecl,
DeclarationNameInfo nameinfo,
const TemplateArgumentListInfo *targs,
QualType ty,
ExprValueKind vk,
ExprObjectKind ok) {
std::size_t Size = sizeof(MemberExpr);
bool hasQualOrFound = (QualifierLoc ||
founddecl.getDecl() != memberdecl ||
founddecl.getAccess() != memberdecl->getAccess());
if (hasQualOrFound)
Size += sizeof(MemberNameQualifier);
if (targs)
Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size());
else if (TemplateKWLoc.isValid())
Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
ty, vk, ok);
if (hasQualOrFound) {
// FIXME: Wrong. We should be looking at the member declaration we found.
if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
E->setValueDependent(true);
E->setTypeDependent(true);
E->setInstantiationDependent(true);
}
else if (QualifierLoc &&
QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
E->setInstantiationDependent(true);
E->HasQualifierOrFoundDecl = true;
MemberNameQualifier *NQ = E->getMemberQualifier();
NQ->QualifierLoc = QualifierLoc;
NQ->FoundDecl = founddecl;
}
E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
if (targs) {
bool Dependent = false;
bool InstantiationDependent = false;
bool ContainsUnexpandedParameterPack = false;
E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs,
Dependent,
InstantiationDependent,
ContainsUnexpandedParameterPack);
if (InstantiationDependent)
E->setInstantiationDependent(true);
} else if (TemplateKWLoc.isValid()) {
E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
}
return E;
}
SourceRange MemberExpr::getSourceRange() const {
return SourceRange(getLocStart(), getLocEnd());
}
SourceLocation MemberExpr::getLocStart() const {
if (isImplicitAccess()) {
if (hasQualifier())
return getQualifierLoc().getBeginLoc();
return MemberLoc;
}
// FIXME: We don't want this to happen. Rather, we should be able to
// detect all kinds of implicit accesses more cleanly.
SourceLocation BaseStartLoc = getBase()->getLocStart();
if (BaseStartLoc.isValid())
return BaseStartLoc;
return MemberLoc;
}
SourceLocation MemberExpr::getLocEnd() const {
SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
if (hasExplicitTemplateArgs())
EndLoc = getRAngleLoc();
else if (EndLoc.isInvalid())
EndLoc = getBase()->getLocEnd();
return EndLoc;
}
void CastExpr::CheckCastConsistency() const {
switch (getCastKind()) {
case CK_DerivedToBase:
case CK_UncheckedDerivedToBase:
case CK_DerivedToBaseMemberPointer:
case CK_BaseToDerived:
case CK_BaseToDerivedMemberPointer:
assert(!path_empty() && "Cast kind should have a base path!");
break;
case CK_CPointerToObjCPointerCast:
assert(getType()->isObjCObjectPointerType());
assert(getSubExpr()->getType()->isPointerType());
goto CheckNoBasePath;
case CK_BlockPointerToObjCPointerCast:
assert(getType()->isObjCObjectPointerType());
assert(getSubExpr()->getType()->isBlockPointerType());
goto CheckNoBasePath;
case CK_ReinterpretMemberPointer:
assert(getType()->isMemberPointerType());
assert(getSubExpr()->getType()->isMemberPointerType());
goto CheckNoBasePath;
case CK_BitCast:
// Arbitrary casts to C pointer types count as bitcasts.
// Otherwise, we should only have block and ObjC pointer casts
// here if they stay within the type kind.
if (!getType()->isPointerType()) {
assert(getType()->isObjCObjectPointerType() ==
getSubExpr()->getType()->isObjCObjectPointerType());
assert(getType()->isBlockPointerType() ==
getSubExpr()->getType()->isBlockPointerType());
}
goto CheckNoBasePath;
case CK_AnyPointerToBlockPointerCast:
assert(getType()->isBlockPointerType());
assert(getSubExpr()->getType()->isAnyPointerType() &&
!getSubExpr()->getType()->isBlockPointerType());
goto CheckNoBasePath;
case CK_CopyAndAutoreleaseBlockObject:
assert(getType()->isBlockPointerType());
assert(getSubExpr()->getType()->isBlockPointerType());
goto CheckNoBasePath;
case CK_FunctionToPointerDecay:
assert(getType()->isPointerType());
assert(getSubExpr()->getType()->isFunctionType());
goto CheckNoBasePath;
// These should not have an inheritance path.
case CK_Dynamic:
case CK_ToUnion:
case CK_ArrayToPointerDecay:
case CK_NullToMemberPointer:
case CK_NullToPointer:
case CK_ConstructorConversion:
case CK_IntegralToPointer:
case CK_PointerToIntegral:
case CK_ToVoid:
case CK_VectorSplat:
case CK_IntegralCast:
case CK_IntegralToFloating:
case CK_FloatingToIntegral:
case CK_FloatingCast:
case CK_ObjCObjectLValueCast:
case CK_FloatingRealToComplex:
case CK_FloatingComplexToReal:
case CK_FloatingComplexCast:
case CK_FloatingComplexToIntegralComplex:
case CK_IntegralRealToComplex:
case CK_IntegralComplexToReal:
case CK_IntegralComplexCast:
case CK_IntegralComplexToFloatingComplex:
case CK_ARCProduceObject:
case CK_ARCConsumeObject:
case CK_ARCReclaimReturnedObject:
case CK_ARCExtendBlockObject:
assert(!getType()->isBooleanType() && "unheralded conversion to bool");
goto CheckNoBasePath;
case CK_Dependent:
case CK_LValueToRValue:
case CK_NoOp:
case CK_AtomicToNonAtomic:
case CK_NonAtomicToAtomic:
case CK_PointerToBoolean:
case CK_IntegralToBoolean:
case CK_FloatingToBoolean:
case CK_MemberPointerToBoolean:
case CK_FloatingComplexToBoolean:
case CK_IntegralComplexToBoolean:
case CK_LValueBitCast: // -> bool&
case CK_UserDefinedConversion: // operator bool()
case CK_BuiltinFnToFnPtr:
CheckNoBasePath:
assert(path_empty() && "Cast kind should not have a base path!");
break;
}
}
const char *CastExpr::getCastKindName() const {
switch (getCastKind()) {
case CK_Dependent:
return "Dependent";
case CK_BitCast:
return "BitCast";
case CK_LValueBitCast:
return "LValueBitCast";
case CK_LValueToRValue:
return "LValueToRValue";
case CK_NoOp:
return "NoOp";
case CK_BaseToDerived:
return "BaseToDerived";
case CK_DerivedToBase:
return "DerivedToBase";
case CK_UncheckedDerivedToBase:
return "UncheckedDerivedToBase";
case CK_Dynamic:
return "Dynamic";
case CK_ToUnion:
return "ToUnion";
case CK_ArrayToPointerDecay:
return "ArrayToPointerDecay";
case CK_FunctionToPointerDecay:
return "FunctionToPointerDecay";
case CK_NullToMemberPointer:
return "NullToMemberPointer";
case CK_NullToPointer:
return "NullToPointer";
case CK_BaseToDerivedMemberPointer:
return "BaseToDerivedMemberPointer";
case CK_DerivedToBaseMemberPointer:
return "DerivedToBaseMemberPointer";
case CK_ReinterpretMemberPointer:
return "ReinterpretMemberPointer";
case CK_UserDefinedConversion:
return "UserDefinedConversion";
case CK_ConstructorConversion:
return "ConstructorConversion";
case CK_IntegralToPointer:
return "IntegralToPointer";
case CK_PointerToIntegral:
return "PointerToIntegral";
case CK_PointerToBoolean:
return "PointerToBoolean";
case CK_ToVoid:
return "ToVoid";
case CK_VectorSplat:
return "VectorSplat";
case CK_IntegralCast:
return "IntegralCast";
case CK_IntegralToBoolean:
return "IntegralToBoolean";
case CK_IntegralToFloating:
return "IntegralToFloating";
case CK_FloatingToIntegral:
return "FloatingToIntegral";
case CK_FloatingCast:
return "FloatingCast";
case CK_FloatingToBoolean:
return "FloatingToBoolean";
case CK_MemberPointerToBoolean:
return "MemberPointerToBoolean";
case CK_CPointerToObjCPointerCast:
return "CPointerToObjCPointerCast";
case CK_BlockPointerToObjCPointerCast:
return "BlockPointerToObjCPointerCast";
case CK_AnyPointerToBlockPointerCast:
return "AnyPointerToBlockPointerCast";
case CK_ObjCObjectLValueCast:
return "ObjCObjectLValueCast";
case CK_FloatingRealToComplex:
return "FloatingRealToComplex";
case CK_FloatingComplexToReal:
return "FloatingComplexToReal";
case CK_FloatingComplexToBoolean:
return "FloatingComplexToBoolean";
case CK_FloatingComplexCast:
return "FloatingComplexCast";
case CK_FloatingComplexToIntegralComplex:
return "FloatingComplexToIntegralComplex";
case CK_IntegralRealToComplex:
return "IntegralRealToComplex";
case CK_IntegralComplexToReal:
return "IntegralComplexToReal";
case CK_IntegralComplexToBoolean:
return "IntegralComplexToBoolean";
case CK_IntegralComplexCast:
return "IntegralComplexCast";
case CK_IntegralComplexToFloatingComplex:
return "IntegralComplexToFloatingComplex";
case CK_ARCConsumeObject:
return "ARCConsumeObject";
case CK_ARCProduceObject:
return "ARCProduceObject";
case CK_ARCReclaimReturnedObject:
return "ARCReclaimReturnedObject";
case CK_ARCExtendBlockObject:
return "ARCCExtendBlockObject";
case CK_AtomicToNonAtomic:
return "AtomicToNonAtomic";
case CK_NonAtomicToAtomic:
return "NonAtomicToAtomic";
case CK_CopyAndAutoreleaseBlockObject:
return "CopyAndAutoreleaseBlockObject";
case CK_BuiltinFnToFnPtr:
return "BuiltinFnToFnPtr";
}
llvm_unreachable("Unhandled cast kind!");
}
Expr *CastExpr::getSubExprAsWritten() {
Expr *SubExpr = 0;
CastExpr *E = this;
do {
SubExpr = E->getSubExpr();
// Skip through reference binding to temporary.
if (MaterializeTemporaryExpr *Materialize
= dyn_cast<MaterializeTemporaryExpr>(SubExpr))
SubExpr = Materialize->GetTemporaryExpr();
// Skip any temporary bindings; they're implicit.
if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
SubExpr = Binder->getSubExpr();
// Conversions by constructor and conversion functions have a
// subexpression describing the call; strip it off.
if (E->getCastKind() == CK_ConstructorConversion)
SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
else if (E->getCastKind() == CK_UserDefinedConversion)
SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
// If the subexpression we're left with is an implicit cast, look
// through that, too.
} while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
return SubExpr;
}
CXXBaseSpecifier **CastExpr::path_buffer() {
switch (getStmtClass()) {
#define ABSTRACT_STMT(x)
#define CASTEXPR(Type, Base) \
case Stmt::Type##Class: \
return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
#define STMT(Type, Base)
#include "clang/AST/StmtNodes.inc"
default:
llvm_unreachable("non-cast expressions not possible here");
}
}
void CastExpr::setCastPath(const CXXCastPath &Path) {
assert(Path.size() == path_size());
memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
}
ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T,
CastKind Kind, Expr *Operand,
const CXXCastPath *BasePath,
ExprValueKind VK) {
unsigned PathSize = (BasePath ? BasePath->size() : 0);
void *Buffer =
C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
ImplicitCastExpr *E =
new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
if (PathSize) E->setCastPath(*BasePath);
return E;
}
ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C,
unsigned PathSize) {
void *Buffer =
C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
}
CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T,
ExprValueKind VK, CastKind K, Expr *Op,
const CXXCastPath *BasePath,
TypeSourceInfo *WrittenTy,
SourceLocation L, SourceLocation R) {
unsigned PathSize = (BasePath ? BasePath->size() : 0);
void *Buffer =
C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
CStyleCastExpr *E =
new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
if (PathSize) E->setCastPath(*BasePath);
return E;
}
CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
void *Buffer =
C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
}
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
/// corresponds to, e.g. "<<=".
StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
switch (Op) {
case BO_PtrMemD: return ".*";
case BO_PtrMemI: return "->*";
case BO_Mul: return "*";
case BO_Div: return "/";
case BO_Rem: return "%";
case BO_Add: return "+";
case BO_Sub: return "-";
case BO_Shl: return "<<";
case BO_Shr: return ">>";
case BO_LT: return "<";
case BO_GT: return ">";
case BO_LE: return "<=";
case BO_GE: return ">=";
case BO_EQ: return "==";
case BO_NE: return "!=";
case BO_And: return "&";
case BO_Xor: return "^";
case BO_Or: return "|";
case BO_LAnd: return "&&";
case BO_LOr: return "||";
case BO_Assign: return "=";
case BO_MulAssign: return "*=";
case BO_DivAssign: return "/=";
case BO_RemAssign: return "%=";
case BO_AddAssign: return "+=";
case BO_SubAssign: return "-=";
case BO_ShlAssign: return "<<=";
case BO_ShrAssign: return ">>=";
case BO_AndAssign: return "&=";
case BO_XorAssign: return "^=";
case BO_OrAssign: return "|=";
case BO_Comma: return ",";
}
llvm_unreachable("Invalid OpCode!");
}
BinaryOperatorKind
BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
switch (OO) {
default: llvm_unreachable("Not an overloadable binary operator");
case OO_Plus: return BO_Add;
case OO_Minus: return BO_Sub;
case OO_Star: return BO_Mul;
case OO_Slash: return BO_Div;
case OO_Percent: return BO_Rem;
case OO_Caret: return BO_Xor;
case OO_Amp: return BO_And;
case OO_Pipe: return BO_Or;
case OO_Equal: return BO_Assign;
case OO_Less: return BO_LT;
case OO_Greater: return BO_GT;
case OO_PlusEqual: return BO_AddAssign;
case OO_MinusEqual: return BO_SubAssign;
case OO_StarEqual: return BO_MulAssign;
case OO_SlashEqual: return BO_DivAssign;
case OO_PercentEqual: return BO_RemAssign;
case OO_CaretEqual: return BO_XorAssign;
case OO_AmpEqual: return BO_AndAssign;
case OO_PipeEqual: return BO_OrAssign;
case OO_LessLess: return BO_Shl;
case OO_GreaterGreater: return BO_Shr;
case OO_LessLessEqual: return BO_ShlAssign;
case OO_GreaterGreaterEqual: return BO_ShrAssign;
case OO_EqualEqual: return BO_EQ;
case OO_ExclaimEqual: return BO_NE;
case OO_LessEqual: return BO_LE;
case OO_GreaterEqual: return BO_GE;
case OO_AmpAmp: return BO_LAnd;
case OO_PipePipe: return BO_LOr;
case OO_Comma: return BO_Comma;
case OO_ArrowStar: return BO_PtrMemI;
}
}
OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
static const OverloadedOperatorKind OverOps[] = {
/* .* Cannot be overloaded */OO_None, OO_ArrowStar,
OO_Star, OO_Slash, OO_Percent,
OO_Plus, OO_Minus,
OO_LessLess, OO_GreaterGreater,
OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
OO_EqualEqual, OO_ExclaimEqual,
OO_Amp,
OO_Caret,
OO_Pipe,
OO_AmpAmp,
OO_PipePipe,
OO_Equal, OO_StarEqual,
OO_SlashEqual, OO_PercentEqual,
OO_PlusEqual, OO_MinusEqual,
OO_LessLessEqual, OO_GreaterGreaterEqual,
OO_AmpEqual, OO_CaretEqual,
OO_PipeEqual,
OO_Comma
};
return OverOps[Opc];
}
InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
: Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
false, false),
InitExprs(C, initExprs.size()),
LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(0, true)
{
sawArrayRangeDesignator(false);
setInitializesStdInitializerList(false);
for (unsigned I = 0; I != initExprs.size(); ++I) {
if (initExprs[I]->isTypeDependent())
ExprBits.TypeDependent = true;
if (initExprs[I]->isValueDependent())
ExprBits.ValueDependent = true;
if (initExprs[I]->isInstantiationDependent())
ExprBits.InstantiationDependent = true;
if (initExprs[I]->containsUnexpandedParameterPack())
ExprBits.ContainsUnexpandedParameterPack = true;
}
InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
}
void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
if (NumInits > InitExprs.size())
InitExprs.reserve(C, NumInits);
}
void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
InitExprs.resize(C, NumInits, 0);
}
Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
if (Init >= InitExprs.size()) {
InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
InitExprs.back() = expr;
return 0;
}
Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
InitExprs[Init] = expr;
return Result;
}
void InitListExpr::setArrayFiller(Expr *filler) {
assert(!hasArrayFiller() && "Filler already set!");
ArrayFillerOrUnionFieldInit = filler;
// Fill out any "holes" in the array due to designated initializers.
Expr **inits = getInits();
for (unsigned i = 0, e = getNumInits(); i != e; ++i)
if (inits[i] == 0)
inits[i] = filler;
}
bool InitListExpr::isStringLiteralInit() const {
if (getNumInits() != 1)
return false;
const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
if (!AT || !AT->getElementType()->isIntegerType())
return false;
const Expr *Init = getInit(0)->IgnoreParens();
return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
}
SourceRange InitListExpr::getSourceRange() const {
if (InitListExpr *SyntacticForm = getSyntacticForm())
return SyntacticForm->getSourceRange();
SourceLocation Beg = LBraceLoc, End = RBraceLoc;
if (Beg.isInvalid()) {
// Find the first non-null initializer.
for (InitExprsTy::const_iterator I = InitExprs.begin(),
E = InitExprs.end();
I != E; ++I) {
if (Stmt *S = *I) {
Beg = S->getLocStart();
break;
}
}
}
if (End.isInvalid()) {
// Find the first non-null initializer from the end.
for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
E = InitExprs.rend();
I != E; ++I) {
if (Stmt *S = *I) {
End = S->getSourceRange().getEnd();
break;
}
}
}
return SourceRange(Beg, End);
}
/// getFunctionType - Return the underlying function type for this block.
///
const FunctionProtoType *BlockExpr::getFunctionType() const {
// The block pointer is never sugared, but the function type might be.
return cast<BlockPointerType>(getType())
->getPointeeType()->castAs<FunctionProtoType>();
}
SourceLocation BlockExpr::getCaretLocation() const {
return TheBlock->getCaretLocation();
}
const Stmt *BlockExpr::getBody() const {
return TheBlock->getBody();
}
Stmt *BlockExpr::getBody() {
return TheBlock->getBody();
}
//===----------------------------------------------------------------------===//
// Generic Expression Routines
//===----------------------------------------------------------------------===//
/// isUnusedResultAWarning - Return true if this immediate expression should
/// be warned about if the result is unused. If so, fill in Loc and Ranges
/// with location to warn on and the source range[s] to report with the
/// warning.
bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
SourceRange &R1, SourceRange &R2,
ASTContext &Ctx) const {
// Don't warn if the expr is type dependent. The type could end up
// instantiating to void.
if (isTypeDependent())
return false;
switch (getStmtClass()) {
default:
if (getType()->isVoidType())
return false;
WarnE = this;
Loc = getExprLoc();
R1 = getSourceRange();
return true;
case ParenExprClass:
return cast<ParenExpr>(this)->getSubExpr()->
isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
case GenericSelectionExprClass:
return cast<GenericSelectionExpr>(this)->getResultExpr()->
isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
case UnaryOperatorClass: {
const UnaryOperator *UO = cast<UnaryOperator>(this);
switch (UO->getOpcode()) {
case UO_Plus:
case UO_Minus:
case UO_AddrOf:
case UO_Not:
case UO_LNot:
case UO_Deref:
break;
case UO_PostInc:
case UO_PostDec:
case UO_PreInc:
case UO_PreDec: // ++/--
return false; // Not a warning.
case UO_Real:
case UO_Imag:
// accessing a piece of a volatile complex is a side-effect.
if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
.isVolatileQualified())
return false;
break;
case UO_Extension:
return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
}
WarnE = this;
Loc = UO->getOperatorLoc();
R1 = UO->getSubExpr()->getSourceRange();
return true;
}
case BinaryOperatorClass: {
const BinaryOperator *BO = cast<BinaryOperator>(this);
switch (BO->getOpcode()) {
default:
break;
// Consider the RHS of comma for side effects. LHS was checked by
// Sema::CheckCommaOperands.
case BO_Comma:
// ((foo = <blah>), 0) is an idiom for hiding the result (and
// lvalue-ness) of an assignment written in a macro.
if (IntegerLiteral *IE =
dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
if (IE->getValue() == 0)
return false;
return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
// Consider '||', '&&' to have side effects if the LHS or RHS does.
case BO_LAnd:
case BO_LOr:
if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
!BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
return false;
break;
}
if (BO->isAssignmentOp())
return false;
WarnE = this;
Loc = BO->getOperatorLoc();
R1 = BO->getLHS()->getSourceRange();
R2 = BO->getRHS()->getSourceRange();
return true;
}
case CompoundAssignOperatorClass:
case VAArgExprClass:
case AtomicExprClass:
return false;
case ConditionalOperatorClass: {
// If only one of the LHS or RHS is a warning, the operator might
// be being used for control flow. Only warn if both the LHS and
// RHS are warnings.
const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
return false;
if (!Exp->getLHS())
return true;
return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
}
case MemberExprClass:
WarnE = this;
Loc = cast<MemberExpr>(this)->getMemberLoc();
R1 = SourceRange(Loc, Loc);
R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
return true;
case ArraySubscriptExprClass:
WarnE = this;
Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
return true;
case CXXOperatorCallExprClass: {
// We warn about operator== and operator!= even when user-defined operator
// overloads as there is no reasonable way to define these such that they
// have non-trivial, desirable side-effects. See the -Wunused-comparison
// warning: these operators are commonly typo'ed, and so warning on them
// provides additional value as well. If this list is updated,
// DiagnoseUnusedComparison should be as well.
const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
if (Op->getOperator() == OO_EqualEqual ||
Op->getOperator() == OO_ExclaimEqual) {
WarnE = this;
Loc = Op->getOperatorLoc();
R1 = Op->getSourceRange();
return true;
}
// Fallthrough for generic call handling.
}
case CallExprClass:
case CXXMemberCallExprClass:
case UserDefinedLiteralClass: {
// If this is a direct call, get the callee.
const CallExpr *CE = cast<CallExpr>(this);
if (const Decl *FD = CE->getCalleeDecl()) {
// If the callee has attribute pure, const, or warn_unused_result, warn
// about it. void foo() { strlen("bar"); } should warn.
//
// Note: If new cases are added here, DiagnoseUnusedExprResult should be
// updated to match for QoI.
if (FD->getAttr<WarnUnusedResultAttr>() ||
FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
WarnE = this;
Loc = CE->getCallee()->getLocStart();
R1 = CE->getCallee()->getSourceRange();
if (unsigned NumArgs = CE->getNumArgs())
R2 = SourceRange(CE->getArg(0)->getLocStart(),
CE->getArg(NumArgs-1)->getLocEnd());
return true;
}
}
return false;
}
// If we don't know precisely what we're looking at, let's not warn.
case UnresolvedLookupExprClass:
case CXXUnresolvedConstructExprClass:
return false;
case CXXTemporaryObjectExprClass:
case CXXConstructExprClass:
return false;
case ObjCMessageExprClass: {
const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
if (Ctx.getLangOpts().ObjCAutoRefCount &&
ME->isInstanceMessage() &&
!ME->getType()->isVoidType() &&
ME->getSelector().getIdentifierInfoForSlot(0) &&
ME->getSelector().getIdentifierInfoForSlot(0)
->getName().startswith("init")) {
WarnE = this;
Loc = getExprLoc();
R1 = ME->getSourceRange();
return true;
}
const ObjCMethodDecl *MD = ME->getMethodDecl();
if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
WarnE = this;
Loc = getExprLoc();
return true;
}
return false;
}
case ObjCPropertyRefExprClass:
WarnE = this;
Loc = getExprLoc();
R1 = getSourceRange();
return true;
case PseudoObjectExprClass: {
const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
// Only complain about things that have the form of a getter.
if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
isa<BinaryOperator>(PO->getSyntacticForm()))
return false;
WarnE = this;
Loc = getExprLoc();
R1 = getSourceRange();
return true;
}
case StmtExprClass: {
// Statement exprs don't logically have side effects themselves, but are
// sometimes used in macros in ways that give them a type that is unused.
// For example ({ blah; foo(); }) will end up with a type if foo has a type.
// however, if the result of the stmt expr is dead, we don't want to emit a
// warning.
const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
if (!CS->body_empty()) {
if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
}
if (getType()->isVoidType())
return false;
WarnE = this;
Loc = cast<StmtExpr>(this)->getLParenLoc();
R1 = getSourceRange();
return true;
}
case CXXFunctionalCastExprClass:
case CStyleCastExprClass: {
// Ignore an explicit cast to void unless the operand is a non-trivial
// volatile lvalue.
const CastExpr *CE = cast<CastExpr>(this);
if (CE->getCastKind() == CK_ToVoid) {
if (CE->getSubExpr()->isGLValue() &&
CE->getSubExpr()->getType().isVolatileQualified()) {
const DeclRefExpr *DRE =
dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) {
return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
R1, R2, Ctx);
}
}
return false;
}
// Ignore casts within macro expansions.
if (getExprLoc().isMacroID())
return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
// If this is a cast to a constructor conversion, check the operand.
// Otherwise, the result of the cast is unused.
if (CE->getCastKind() == CK_ConstructorConversion)
return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
WarnE = this;
if (const CXXFunctionalCastExpr *CXXCE =
dyn_cast<CXXFunctionalCastExpr>(this)) {
Loc = CXXCE->getTypeBeginLoc();
R1 = CXXCE->getSubExpr()->getSourceRange();
} else {
const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
Loc = CStyleCE->getLParenLoc();
R1 = CStyleCE->getSubExpr()->getSourceRange();
}
return true;
}
case ImplicitCastExprClass: {
const CastExpr *ICE = cast<ImplicitCastExpr>(this);
// lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
if (ICE->getCastKind() == CK_LValueToRValue &&
ICE->getSubExpr()->getType().isVolatileQualified())
return false;
return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
}
case CXXDefaultArgExprClass:
return (cast<CXXDefaultArgExpr>(this)
->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
case CXXNewExprClass:
// FIXME: In theory, there might be new expressions that don't have side
// effects (e.g. a placement new with an uninitialized POD).
case CXXDeleteExprClass:
return false;
case CXXBindTemporaryExprClass:
return (cast<CXXBindTemporaryExpr>(this)
->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
case ExprWithCleanupsClass:
return (cast<ExprWithCleanups>(this)
->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
}
}
/// isOBJCGCCandidate - Check if an expression is objc gc'able.
/// returns true, if it is; false otherwise.
bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
const Expr *E = IgnoreParens();
switch (E->getStmtClass()) {
default:
return false;
case ObjCIvarRefExprClass:
return true;
case Expr::UnaryOperatorClass:
return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
case ImplicitCastExprClass:
return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
case MaterializeTemporaryExprClass:
return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
->isOBJCGCCandidate(Ctx);
case CStyleCastExprClass:
return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
case DeclRefExprClass: {
const Decl *D = cast<DeclRefExpr>(E)->getDecl();
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
if (VD->hasGlobalStorage())
return true;
QualType T = VD->getType();
// dereferencing to a pointer is always a gc'able candidate,
// unless it is __weak.
return T->isPointerType() &&
(Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
}
return false;
}
case MemberExprClass: {
const MemberExpr *M = cast<MemberExpr>(E);
return M->getBase()->isOBJCGCCandidate(Ctx);
}
case ArraySubscriptExprClass:
return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
}
}
bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
if (isTypeDependent())
return false;
return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
}
QualType Expr::findBoundMemberType(const Expr *expr) {
assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
// Bound member expressions are always one of these possibilities:
// x->m x.m x->*y x.*y
// (possibly parenthesized)
expr = expr->IgnoreParens();
if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
return mem->getMemberDecl()->getType();
}
if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
->getPointeeType();
assert(type->isFunctionType());
return type;
}
assert(isa<UnresolvedMemberExpr>(expr));
return QualType();
}
Expr* Expr::IgnoreParens() {
Expr* E = this;
while (true) {
if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
E = P->getSubExpr();
continue;
}
if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
if (P->getOpcode() == UO_Extension) {
E = P->getSubExpr();
continue;
}
}
if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
if (!P->isResultDependent()) {
E = P->getResultExpr();
continue;
}
}
return E;
}
}
/// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
/// or CastExprs or ImplicitCastExprs, returning their operand.
Expr *Expr::IgnoreParenCasts() {
Expr *E = this;
while (true) {
if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
E = P->getSubExpr();
continue;
}
if (CastExpr *P = dyn_cast<CastExpr>(E)) {
E = P->getSubExpr();
continue;
}
if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
if (P->getOpcode() == UO_Extension) {
E = P->getSubExpr();
continue;
}
}
if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
if (!P->isResultDependent()) {
E = P->getResultExpr();
continue;
}
}
if (MaterializeTemporaryExpr *Materialize
= dyn_cast<MaterializeTemporaryExpr>(E)) {
E = Materialize->GetTemporaryExpr();
continue;
}
if (SubstNonTypeTemplateParmExpr *NTTP
= dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
E = NTTP->getReplacement();
continue;
}
return E;
}
}
/// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
/// casts. This is intended purely as a temporary workaround for code
/// that hasn't yet been rewritten to do the right thing about those
/// casts, and may disappear along with the last internal use.
Expr *Expr::IgnoreParenLValueCasts() {
Expr *E = this;
while (true) {
if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
E = P->getSubExpr();
continue;
} else if (CastExpr *P = dyn_cast<CastExpr>(E)) {
if (P->getCastKind() == CK_LValueToRValue) {
E = P->getSubExpr();
continue;
}
} else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
if (P->getOpcode() == UO_Extension) {
E = P->getSubExpr();
continue;
}
} else if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
if (!P->isResultDependent()) {
E = P->getResultExpr();
continue;
}
} else if (MaterializeTemporaryExpr *Materialize
= dyn_cast<MaterializeTemporaryExpr>(E)) {
E = Materialize->GetTemporaryExpr();
continue;
} else if (SubstNonTypeTemplateParmExpr *NTTP
= dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
E = NTTP->getReplacement();
continue;
}
break;
}
return E;
}
Expr *Expr::ignoreParenBaseCasts() {
Expr *E = this;
while (true) {
if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
E = P->getSubExpr();
continue;
}
if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
if (CE->getCastKind() == CK_DerivedToBase ||
CE->getCastKind() == CK_UncheckedDerivedToBase ||
CE->getCastKind() == CK_NoOp) {
E = CE->getSubExpr();
continue;
}
}
return E;
}
}
Expr *Expr::IgnoreParenImpCasts() {
Expr *E = this;
while (true) {
if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
E = P->getSubExpr();
continue;
}
if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
E = P->getSubExpr();
continue;
}
if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
if (P->getOpcode() == UO_Extension) {
E = P->getSubExpr();
continue;
}
}
if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
if (!P->isResultDependent()) {
E = P->getResultExpr();
continue;
}
}
if (MaterializeTemporaryExpr *Materialize
= dyn_cast<MaterializeTemporaryExpr>(E)) {
E = Materialize->GetTemporaryExpr();
continue;
}
if (SubstNonTypeTemplateParmExpr *NTTP
= dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
E = NTTP->getReplacement();
continue;
}
return E;
}
}
Expr *Expr::IgnoreConversionOperator() {
if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
return MCE->getImplicitObjectArgument();
}
return this;
}
/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
/// value (including ptr->int casts of the same size). Strip off any
/// ParenExpr or CastExprs, returning their operand.
Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
Expr *E = this;
while (true) {
if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
E = P->getSubExpr();
continue;
}
if (CastExpr *P = dyn_cast<CastExpr>(E)) {
// We ignore integer <-> casts that are of the same width, ptr<->ptr and
// ptr<->int casts of the same width. We also ignore all identity casts.
Expr *SE = P->getSubExpr();
if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
E = SE;
continue;
}
if ((E->getType()->isPointerType() ||
E->getType()->isIntegralType(Ctx)) &&
(SE->getType()->isPointerType() ||
SE->getType()->isIntegralType(Ctx)) &&
Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
E = SE;
continue;
}
}
if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
if (P->getOpcode() == UO_Extension) {
E = P->getSubExpr();
continue;
}
}
if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
if (!P->isResultDependent()) {
E = P->getResultExpr();
continue;
}
}
if (SubstNonTypeTemplateParmExpr *NTTP
= dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
E = NTTP->getReplacement();
continue;
}
return E;
}
}
bool Expr::isDefaultArgument() const {
const Expr *E = this;
if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
E = M->GetTemporaryExpr();
while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
E = ICE->getSubExprAsWritten();
return isa<CXXDefaultArgExpr>(E);
}
/// \brief Skip over any no-op casts and any temporary-binding
/// expressions.
static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
E = M->GetTemporaryExpr();
while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
if (ICE->getCastKind() == CK_NoOp)
E = ICE->getSubExpr();
else
break;
}
while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
E = BE->getSubExpr();
while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
if (ICE->getCastKind() == CK_NoOp)
E = ICE->getSubExpr();
else
break;
}
return E->IgnoreParens();
}
/// isTemporaryObject - Determines if this expression produces a
/// temporary of the given class type.
bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
return false;
const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
// Temporaries are by definition pr-values of class type.
if (!E->Classify(C).isPRValue()) {
// In this context, property reference is a message call and is pr-value.
if (!isa<ObjCPropertyRefExpr>(E))
return false;
}
// Black-list a few cases which yield pr-values of class type that don't
// refer to temporaries of that type:
// - implicit derived-to-base conversions
if (isa<ImplicitCastExpr>(E)) {
switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
case CK_DerivedToBase:
case CK_UncheckedDerivedToBase:
return false;
default:
break;
}
}
// - member expressions (all)
if (isa<MemberExpr>(E))
return false;
if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
if (BO->isPtrMemOp())
return false;
// - opaque values (all)
if (isa<OpaqueValueExpr>(E))
return false;
return true;
}
bool Expr::isImplicitCXXThis() const {
const Expr *E = this;
// Strip away parentheses and casts we don't care about.
while (true) {
if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
E = Paren->getSubExpr();
continue;
}
if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
if (ICE->getCastKind() == CK_NoOp ||
ICE->getCastKind() == CK_LValueToRValue ||
ICE->getCastKind() == CK_DerivedToBase ||
ICE->getCastKind() == CK_UncheckedDerivedToBase) {
E = ICE->getSubExpr();
continue;
}
}
if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
if (UnOp->getOpcode() == UO_Extension) {
E = UnOp->getSubExpr();
continue;
}
}
if (const MaterializeTemporaryExpr *M
= dyn_cast<MaterializeTemporaryExpr>(E)) {
E = M->GetTemporaryExpr();
continue;
}
break;
}
if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
return This->isImplicit();
return false;
}
/// hasAnyTypeDependentArguments - Determines if any of the expressions
/// in Exprs is type-dependent.
bool Expr::hasAnyTypeDependentArguments(llvm::ArrayRef<Expr *> Exprs) {
for (unsigned I = 0; I < Exprs.size(); ++I)
if (Exprs[I]->isTypeDependent())
return true;
return false;
}
bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
// This function is attempting whether an expression is an initializer
// which can be evaluated at compile-time. isEvaluatable handles most
// of the cases, but it can't deal with some initializer-specific
// expressions, and it can't deal with aggregates; we deal with those here,
// and fall back to isEvaluatable for the other cases.
// If we ever capture reference-binding directly in the AST, we can
// kill the second parameter.
if (IsForRef) {
EvalResult Result;
return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
}
switch (getStmtClass()) {
default: break;
case IntegerLiteralClass:
case FloatingLiteralClass:
case StringLiteralClass:
case ObjCStringLiteralClass:
case ObjCEncodeExprClass:
return true;
case CXXTemporaryObjectExprClass:
case CXXConstructExprClass: {
const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
// Only if it's
if (CE->getConstructor()->isTrivial()) {
// 1) an application of the trivial default constructor or
if (!CE->getNumArgs()) return true;
// 2) an elidable trivial copy construction of an operand which is
// itself a constant initializer. Note that we consider the
// operand on its own, *not* as a reference binding.
if (CE->isElidable() &&
CE->getArg(0)->isConstantInitializer(Ctx, false))
return true;
}
// 3) a foldable constexpr constructor.
break;
}
case CompoundLiteralExprClass: {
// This handles gcc's extension that allows global initializers like
// "struct x {int x;} x = (struct x) {};".
// FIXME: This accepts other cases it shouldn't!
const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
return Exp->isConstantInitializer(Ctx, false);
}
case InitListExprClass: {
// FIXME: This doesn't deal with fields with reference types correctly.
// FIXME: This incorrectly allows pointers cast to integers to be assigned
// to bitfields.
const InitListExpr *Exp = cast<InitListExpr>(this);
unsigned numInits = Exp->getNumInits();
for (unsigned i = 0; i < numInits; i++) {
if (!Exp->getInit(i)->isConstantInitializer(Ctx, false))
return false;
}
return true;
}
case ImplicitValueInitExprClass:
return true;
case ParenExprClass:
return cast<ParenExpr>(this)->getSubExpr()
->isConstantInitializer(Ctx, IsForRef);
case GenericSelectionExprClass:
if (cast<GenericSelectionExpr>(this)->isResultDependent())
return false;
return cast<GenericSelectionExpr>(this)->getResultExpr()
->isConstantInitializer(Ctx, IsForRef);
case ChooseExprClass:
return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)
->isConstantInitializer(Ctx, IsForRef);
case UnaryOperatorClass: {
const UnaryOperator* Exp = cast<UnaryOperator>(this);
if (Exp->getOpcode() == UO_Extension)
return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
break;
}
case CXXFunctionalCastExprClass:
case CXXStaticCastExprClass:
case ImplicitCastExprClass:
case CStyleCastExprClass: {
const CastExpr *CE = cast<CastExpr>(this);
// If we're promoting an integer to an _Atomic type then this is constant
// if the integer is constant. We also need to check the converse in case
// someone does something like:
//
// int a = (_Atomic(int))42;
//
// I doubt anyone would write code like this directly, but it's quite
// possible as the result of macro expansions.
if (CE->getCastKind() == CK_NonAtomicToAtomic ||
CE->getCastKind() == CK_AtomicToNonAtomic)
return CE->getSubExpr()->isConstantInitializer(Ctx, false);
// Handle bitcasts of vector constants.
if (getType()->isVectorType() && CE->getCastKind() == CK_BitCast)
return CE->getSubExpr()->isConstantInitializer(Ctx, false);
// Handle misc casts we want to ignore.
// FIXME: Is it really safe to ignore all these?
if (CE->getCastKind() == CK_NoOp ||
CE->getCastKind() == CK_LValueToRValue ||
CE->getCastKind() == CK_ToUnion ||
CE->getCastKind() == CK_ConstructorConversion)
return CE->getSubExpr()->isConstantInitializer(Ctx, false);
break;
}
case MaterializeTemporaryExprClass:
return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
->isConstantInitializer(Ctx, false);
}
return isEvaluatable(Ctx);
}
bool Expr::HasSideEffects(const ASTContext &Ctx) const {
if (isInstantiationDependent())
return true;
switch (getStmtClass()) {
case NoStmtClass:
#define ABSTRACT_STMT(Type)
#define STMT(Type, Base) case Type##Class:
#define EXPR(Type, Base)
#include "clang/AST/StmtNodes.inc"
llvm_unreachable("unexpected Expr kind");
case DependentScopeDeclRefExprClass:
case CXXUnresolvedConstructExprClass:
case CXXDependentScopeMemberExprClass:
case UnresolvedLookupExprClass:
case UnresolvedMemberExprClass:
case PackExpansionExprClass:
case SubstNonTypeTemplateParmPackExprClass:
case FunctionParmPackExprClass:
llvm_unreachable("shouldn't see dependent / unresolved nodes here");
case DeclRefExprClass:
case ObjCIvarRefExprClass:
case PredefinedExprClass:
case IntegerLiteralClass:
case FloatingLiteralClass:
case ImaginaryLiteralClass:
case StringLiteralClass:
case CharacterLiteralClass:
case OffsetOfExprClass:
case ImplicitValueInitExprClass:
case UnaryExprOrTypeTraitExprClass:
case AddrLabelExprClass:
case GNUNullExprClass:
case CXXBoolLiteralExprClass:
case CXXNullPtrLiteralExprClass:
case CXXThisExprClass:
case CXXScalarValueInitExprClass:
case TypeTraitExprClass:
case UnaryTypeTraitExprClass:
case BinaryTypeTraitExprClass:
case ArrayTypeTraitExprClass:
case ExpressionTraitExprClass:
case CXXNoexceptExprClass:
case SizeOfPackExprClass:
case ObjCStringLiteralClass:
case ObjCEncodeExprClass:
case ObjCBoolLiteralExprClass:
case CXXUuidofExprClass:
case OpaqueValueExprClass:
// These never have a side-effect.
return false;
case CallExprClass:
case CompoundAssignOperatorClass:
case VAArgExprClass:
case AtomicExprClass:
case StmtExprClass:
case CXXOperatorCallExprClass:
case CXXMemberCallExprClass:
case UserDefinedLiteralClass:
case CXXThrowExprClass:
case CXXNewExprClass:
case CXXDeleteExprClass:
case ExprWithCleanupsClass:
case CXXBindTemporaryExprClass:
case BlockExprClass:
case CUDAKernelCallExprClass:
// These always have a side-effect.
return true;
case ParenExprClass:
case ArraySubscriptExprClass:
case MemberExprClass:
case ConditionalOperatorClass:
case BinaryConditionalOperatorClass:
case CompoundLiteralExprClass:
case ExtVectorElementExprClass:
case DesignatedInitExprClass:
case ParenListExprClass:
case CXXPseudoDestructorExprClass:
case SubstNonTypeTemplateParmExprClass:
case MaterializeTemporaryExprClass:
case ShuffleVectorExprClass:
case AsTypeExprClass:
// These have a side-effect if any subexpression does.
break;
case UnaryOperatorClass:
if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
return true;
break;
case BinaryOperatorClass:
if (cast<BinaryOperator>(this)->isAssignmentOp())
return true;
break;
case InitListExprClass:
// FIXME: The children for an InitListExpr doesn't include the array filler.
if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
if (E->HasSideEffects(Ctx))
return true;
break;
case GenericSelectionExprClass:
return cast<GenericSelectionExpr>(this)->getResultExpr()->
HasSideEffects(Ctx);
case ChooseExprClass:
return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->HasSideEffects(Ctx);
case CXXDefaultArgExprClass:
return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(Ctx);
case CXXDynamicCastExprClass: {
// A dynamic_cast expression has side-effects if it can throw.
const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
if (DCE->getTypeAsWritten()->isReferenceType() &&
DCE->getCastKind() == CK_Dynamic)
return true;
} // Fall through.
case ImplicitCastExprClass:
case CStyleCastExprClass:
case CXXStaticCastExprClass:
case CXXReinterpretCastExprClass:
case CXXConstCastExprClass:
case CXXFunctionalCastExprClass: {
const CastExpr *CE = cast<CastExpr>(this);
if (CE->getCastKind() == CK_LValueToRValue &&
CE->getSubExpr()->getType().isVolatileQualified())
return true;
break;
}
case CXXTypeidExprClass:
// typeid might throw if its subexpression is potentially-evaluated, so has
// side-effects in that case whether or not its subexpression does.
return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
case CXXConstructExprClass:
case CXXTemporaryObjectExprClass: {
const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
if (!CE->getConstructor()->isTrivial())
return true;
// A trivial constructor does not add any side-effects of its own. Just look
// at its arguments.
break;
}
case LambdaExprClass: {
const LambdaExpr *LE = cast<LambdaExpr>(this);
for (LambdaExpr::capture_iterator I = LE->capture_begin(),
E = LE->capture_end(); I != E; ++I)
if (I->getCaptureKind() == LCK_ByCopy)
// FIXME: Only has a side-effect if the variable is volatile or if
// the copy would invoke a non-trivial copy constructor.
return true;
return false;
}
case PseudoObjectExprClass: {
// Only look for side-effects in the semantic form, and look past
// OpaqueValueExpr bindings in that form.
const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
E = PO->semantics_end();
I != E; ++I) {
const Expr *Subexpr = *I;
if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
Subexpr = OVE->getSourceExpr();
if (Subexpr->HasSideEffects(Ctx))
return true;
}
return false;
}
case ObjCBoxedExprClass:
case ObjCArrayLiteralClass:
case ObjCDictionaryLiteralClass:
case ObjCMessageExprClass:
case ObjCSelectorExprClass:
case ObjCProtocolExprClass:
case ObjCPropertyRefExprClass:
case ObjCIsaExprClass:
case ObjCIndirectCopyRestoreExprClass:
case ObjCSubscriptRefExprClass:
case ObjCBridgedCastExprClass:
// FIXME: Classify these cases better.
return true;
}
// Recurse to children.
for (const_child_range SubStmts = children(); SubStmts; ++SubStmts)
if (const Stmt *S = *SubStmts)
if (cast<Expr>(S)->HasSideEffects(Ctx))
return true;
return false;
}
namespace {
/// \brief Look for a call to a non-trivial function within an expression.
class NonTrivialCallFinder : public EvaluatedExprVisitor<NonTrivialCallFinder>
{
typedef EvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
bool NonTrivial;
public:
explicit NonTrivialCallFinder(ASTContext &Context)
: Inherited(Context), NonTrivial(false) { }
bool hasNonTrivialCall() const { return NonTrivial; }
void VisitCallExpr(CallExpr *E) {
if (CXXMethodDecl *Method
= dyn_cast_or_null<CXXMethodDecl>(E->getCalleeDecl())) {
if (Method->isTrivial()) {
// Recurse to children of the call.
Inherited::VisitStmt(E);
return;
}
}
NonTrivial = true;
}
void VisitCXXConstructExpr(CXXConstructExpr *E) {
if (E->getConstructor()->isTrivial()) {
// Recurse to children of the call.
Inherited::VisitStmt(E);
return;
}
NonTrivial = true;
}
void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
if (E->getTemporary()->getDestructor()->isTrivial()) {
Inherited::VisitStmt(E);
return;
}
NonTrivial = true;
}
};
}
bool Expr::hasNonTrivialCall(ASTContext &Ctx) {
NonTrivialCallFinder Finder(Ctx);
Finder.Visit(this);
return Finder.hasNonTrivialCall();
}
/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
/// pointer constant or not, as well as the specific kind of constant detected.
/// Null pointer constants can be integer constant expressions with the
/// value zero, casts of zero to void*, nullptr (C++0X), or __null
/// (a GNU extension).
Expr::NullPointerConstantKind
Expr::isNullPointerConstant(ASTContext &Ctx,
NullPointerConstantValueDependence NPC) const {
if (isValueDependent()) {
switch (NPC) {
case NPC_NeverValueDependent:
llvm_unreachable("Unexpected value dependent expression!");
case NPC_ValueDependentIsNull:
if (isTypeDependent() || getType()->isIntegralType(Ctx))
return NPCK_ZeroExpression;
else
return NPCK_NotNull;
case NPC_ValueDependentIsNotNull:
return NPCK_NotNull;
}
}
// Strip off a cast to void*, if it exists. Except in C++.
if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
if (!Ctx.getLangOpts().CPlusPlus) {
// Check that it is a cast to void*.
if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
QualType Pointee = PT->getPointeeType();
if (!Pointee.hasQualifiers() &&
Pointee->isVoidType() && // to void*
CE->getSubExpr()->getType()->isIntegerType()) // from int.
return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
}
}
} else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
// Ignore the ImplicitCastExpr type entirely.
return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
} else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
// Accept ((void*)0) as a null pointer constant, as many other
// implementations do.
return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
} else if (const GenericSelectionExpr *GE =
dyn_cast<GenericSelectionExpr>(this)) {
return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
} else if (const CXXDefaultArgExpr *DefaultArg
= dyn_cast<CXXDefaultArgExpr>(this)) {
// See through default argument expressions
return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
} else if (isa<GNUNullExpr>(this)) {
// The GNU __null extension is always a null pointer constant.
return NPCK_GNUNull;
} else if (const MaterializeTemporaryExpr *M
= dyn_cast<MaterializeTemporaryExpr>(this)) {
return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
} else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
if (const Expr *Source = OVE->getSourceExpr())
return Source->isNullPointerConstant(Ctx, NPC);
}
// C++0x nullptr_t is always a null pointer constant.
if (getType()->isNullPtrType())
return NPCK_CXX0X_nullptr;
if (const RecordType *UT = getType()->getAsUnionType())
if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
const Expr *InitExpr = CLE->getInitializer();
if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
}
// This expression must be an integer type.
if (!getType()->isIntegerType() ||
(Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
return NPCK_NotNull;
// If we have an integer constant expression, we need to *evaluate* it and
// test for the value 0. Don't use the C++11 constant expression semantics
// for this, for now; once the dust settles on core issue 903, we might only
// allow a literal 0 here in C++11 mode.
if (Ctx.getLangOpts().CPlusPlus0x) {
if (!isCXX98IntegralConstantExpr(Ctx))
return NPCK_NotNull;
} else {
if (!isIntegerConstantExpr(Ctx))
return NPCK_NotNull;
}
if (EvaluateKnownConstInt(Ctx) != 0)
return NPCK_NotNull;
if (isa<IntegerLiteral>(this))
return NPCK_ZeroLiteral;
return NPCK_ZeroExpression;
}
/// \brief If this expression is an l-value for an Objective C
/// property, find the underlying property reference expression.
const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
const Expr *E = this;
while (true) {
assert((E->getValueKind() == VK_LValue &&
E->getObjectKind() == OK_ObjCProperty) &&
"expression is not a property reference");
E = E->IgnoreParenCasts();
if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
if (BO->getOpcode() == BO_Comma) {
E = BO->getRHS();
continue;
}
}
break;
}
return cast<ObjCPropertyRefExpr>(E);
}
bool Expr::isObjCSelfExpr() const {
const Expr *E = IgnoreParenImpCasts();
const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
if (!DRE)
return false;
const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
if (!Param)
return false;
const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
if (!M)
return false;
return M->getSelfDecl() == Param;
}
FieldDecl *Expr::getBitField() {
Expr *E = this->IgnoreParens();
while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
if (ICE->getCastKind() == CK_LValueToRValue ||
(ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
E = ICE->getSubExpr()->IgnoreParens();
else
break;
}
if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
if (Field->isBitField())
return Field;
if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
if (Field->isBitField())
return Field;
if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
if (BinOp->isAssignmentOp() && BinOp->getLHS())
return BinOp->getLHS()->getBitField();
if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
return BinOp->getRHS()->getBitField();
}
return 0;
}
bool Expr::refersToVectorElement() const {
const Expr *E = this->IgnoreParens();
while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
if (ICE->getValueKind() != VK_RValue &&
ICE->getCastKind() == CK_NoOp)
E = ICE->getSubExpr()->IgnoreParens();
else
break;
}
if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
return ASE->getBase()->getType()->isVectorType();
if (isa<ExtVectorElementExpr>(E))
return true;
return false;
}
/// isArrow - Return true if the base expression is a pointer to vector,
/// return false if the base expression is a vector.
bool ExtVectorElementExpr::isArrow() const {
return getBase()->getType()->isPointerType();
}
unsigned ExtVectorElementExpr::getNumElements() const {
if (const VectorType *VT = getType()->getAs<VectorType>())
return VT->getNumElements();
return 1;
}
/// containsDuplicateElements - Return true if any element access is repeated.
bool ExtVectorElementExpr::containsDuplicateElements() const {
// FIXME: Refactor this code to an accessor on the AST node which returns the
// "type" of component access, and share with code below and in Sema.
StringRef Comp = Accessor->getName();
// Halving swizzles do not contain duplicate elements.
if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
return false;
// Advance past s-char prefix on hex swizzles.
if (Comp[0] == 's' || Comp[0] == 'S')
Comp = Comp.substr(1);
for (unsigned i = 0, e = Comp.size(); i != e; ++i)
if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
return true;
return false;
}
/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
void ExtVectorElementExpr::getEncodedElementAccess(
SmallVectorImpl<unsigned> &Elts) const {
StringRef Comp = Accessor->getName();
if (Comp[0] == 's' || Comp[0] == 'S')
Comp = Comp.substr(1);
bool isHi = Comp == "hi";
bool isLo = Comp == "lo";
bool isEven = Comp == "even";
bool isOdd = Comp == "odd";
for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
uint64_t Index;
if (isHi)
Index = e + i;
else if (isLo)
Index = i;
else if (isEven)
Index = 2 * i;
else if (isOdd)
Index = 2 * i + 1;
else
Index = ExtVectorType::getAccessorIdx(Comp[i]);
Elts.push_back(Index);
}
}
ObjCMessageExpr::ObjCMessageExpr(QualType T,
ExprValueKind VK,
SourceLocation LBracLoc,
SourceLocation SuperLoc,
bool IsInstanceSuper,
QualType SuperType,
Selector Sel,
ArrayRef<SourceLocation> SelLocs,
SelectorLocationsKind SelLocsK,
ObjCMethodDecl *Method,
ArrayRef<Expr *> Args,
SourceLocation RBracLoc,
bool isImplicit)
: Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
/*TypeDependent=*/false, /*ValueDependent=*/false,
/*InstantiationDependent=*/false,
/*ContainsUnexpandedParameterPack=*/false),
SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
: Sel.getAsOpaquePtr())),
Kind(IsInstanceSuper? SuperInstance : SuperClass),
HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
SuperLoc(SuperLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
{
initArgsAndSelLocs(Args, SelLocs, SelLocsK);
setReceiverPointer(SuperType.getAsOpaquePtr());
}
ObjCMessageExpr::ObjCMessageExpr(QualType T,
ExprValueKind VK,
SourceLocation LBracLoc,
TypeSourceInfo *Receiver,
Selector Sel,
ArrayRef<SourceLocation> SelLocs,
SelectorLocationsKind SelLocsK,
ObjCMethodDecl *Method,
ArrayRef<Expr *> Args,
SourceLocation RBracLoc,
bool isImplicit)
: Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
T->isDependentType(), T->isInstantiationDependentType(),
T->containsUnexpandedParameterPack()),
SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
: Sel.getAsOpaquePtr())),
Kind(Class),
HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
LBracLoc(LBracLoc), RBracLoc(RBracLoc)
{
initArgsAndSelLocs(Args, SelLocs, SelLocsK);
setReceiverPointer(Receiver);
}
ObjCMessageExpr::ObjCMessageExpr(QualType T,
ExprValueKind VK,
SourceLocation LBracLoc,
Expr *Receiver,
Selector Sel,
ArrayRef<SourceLocation> SelLocs,
SelectorLocationsKind SelLocsK,
ObjCMethodDecl *Method,
ArrayRef<Expr *> Args,
SourceLocation RBracLoc,
bool isImplicit)
: Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
Receiver->isTypeDependent(),
Receiver->isInstantiationDependent(),
Receiver->containsUnexpandedParameterPack()),
SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
: Sel.getAsOpaquePtr())),
Kind(Instance),
HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
LBracLoc(LBracLoc), RBracLoc(RBracLoc)
{
initArgsAndSelLocs(Args, SelLocs, SelLocsK);
setReceiverPointer(Receiver);
}
void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args,
ArrayRef<SourceLocation> SelLocs,
SelectorLocationsKind SelLocsK) {
setNumArgs(Args.size());
Expr **MyArgs = getArgs();
for (unsigned I = 0; I != Args.size(); ++I) {
if (Args[I]->isTypeDependent())
ExprBits.TypeDependent = true;
if (Args[I]->isValueDependent())
ExprBits.ValueDependent = true;
if (Args[I]->isInstantiationDependent())
ExprBits.InstantiationDependent = true;
if (Args[I]->containsUnexpandedParameterPack())
ExprBits.ContainsUnexpandedParameterPack = true;
MyArgs[I] = Args[I];
}
SelLocsKind = SelLocsK;
if (!isImplicit()) {
if (SelLocsK == SelLoc_NonStandard)
std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
}
}
ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
ExprValueKind VK,
SourceLocation LBracLoc,
SourceLocation SuperLoc,
bool IsInstanceSuper,
QualType SuperType,
Selector Sel,
ArrayRef<SourceLocation> SelLocs,
ObjCMethodDecl *Method,
ArrayRef<Expr *> Args,
SourceLocation RBracLoc,
bool isImplicit) {
assert((!SelLocs.empty() || isImplicit) &&
"No selector locs for non-implicit message");
ObjCMessageExpr *Mem;
SelectorLocationsKind SelLocsK = SelectorLocationsKind();
if (isImplicit)
Mem = alloc(Context, Args.size(), 0);
else
Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
SuperType, Sel, SelLocs, SelLocsK,
Method, Args, RBracLoc, isImplicit);
}
ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
ExprValueKind VK,
SourceLocation LBracLoc,
TypeSourceInfo *Receiver,
Selector Sel,
ArrayRef<SourceLocation> SelLocs,
ObjCMethodDecl *Method,
ArrayRef<Expr *> Args,
SourceLocation RBracLoc,
bool isImplicit) {
assert((!SelLocs.empty() || isImplicit) &&
"No selector locs for non-implicit message");
ObjCMessageExpr *Mem;
SelectorLocationsKind SelLocsK = SelectorLocationsKind();
if (isImplicit)
Mem = alloc(Context, Args.size(), 0);
else
Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
SelLocs, SelLocsK, Method, Args, RBracLoc,
isImplicit);
}
ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
ExprValueKind VK,
SourceLocation LBracLoc,
Expr *Receiver,
Selector Sel,
ArrayRef<SourceLocation> SelLocs,
ObjCMethodDecl *Method,
ArrayRef<Expr *> Args,
SourceLocation RBracLoc,
bool isImplicit) {
assert((!SelLocs.empty() || isImplicit) &&
"No selector locs for non-implicit message");
ObjCMessageExpr *Mem;
SelectorLocationsKind SelLocsK = SelectorLocationsKind();
if (isImplicit)
Mem = alloc(Context, Args.size(), 0);
else
Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
SelLocs, SelLocsK, Method, Args, RBracLoc,
isImplicit);
}
ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
unsigned NumArgs,
unsigned NumStoredSelLocs) {
ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs);
return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
}
ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
ArrayRef<Expr *> Args,
SourceLocation RBraceLoc,
ArrayRef<SourceLocation> SelLocs,
Selector Sel,
SelectorLocationsKind &SelLocsK) {
SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc);
unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size()
: 0;
return alloc(C, Args.size(), NumStoredSelLocs);
}
ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
unsigned NumArgs,
unsigned NumStoredSelLocs) {
unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation);
return (ObjCMessageExpr *)C.Allocate(Size,
llvm::AlignOf<ObjCMessageExpr>::Alignment);
}
void ObjCMessageExpr::getSelectorLocs(
SmallVectorImpl<SourceLocation> &SelLocs) const {
for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
SelLocs.push_back(getSelectorLoc(i));
}
SourceRange ObjCMessageExpr::getReceiverRange() const {
switch (getReceiverKind()) {
case Instance:
return getInstanceReceiver()->getSourceRange();
case Class:
return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
case SuperInstance:
case SuperClass:
return getSuperLoc();
}
llvm_unreachable("Invalid ReceiverKind!");
}
Selector ObjCMessageExpr::getSelector() const {
if (HasMethod)
return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
->getSelector();
return Selector(SelectorOrMethod);
}
QualType ObjCMessageExpr::getReceiverType() const {
switch (getReceiverKind()) {
case Instance:
return getInstanceReceiver()->getType();
case Class:
return getClassReceiver();
case SuperInstance:
case SuperClass:
return getSuperType();
}
llvm_unreachable("unexpected receiver kind");
}
ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
QualType T = getReceiverType();
if (const ObjCObjectPointerType *Ptr = T->getAs<ObjCObjectPointerType>())
return Ptr->getInterfaceDecl();
if (const ObjCObjectType *Ty = T->getAs<ObjCObjectType>())
return Ty->getInterface();
return 0;
}
StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
switch (getBridgeKind()) {
case OBC_Bridge:
return "__bridge";
case OBC_BridgeTransfer:
return "__bridge_transfer";
case OBC_BridgeRetained:
return "__bridge_retained";
}
llvm_unreachable("Invalid BridgeKind!");
}
bool ChooseExpr::isConditionTrue(const ASTContext &C) const {
return getCond()->EvaluateKnownConstInt(C) != 0;
}
ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, ArrayRef<Expr*> args,
QualType Type, SourceLocation BLoc,
SourceLocation RP)
: Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
Type->isDependentType(), Type->isDependentType(),
Type->isInstantiationDependentType(),
Type->containsUnexpandedParameterPack()),
BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
{
SubExprs = new (C) Stmt*[args.size()];
for (unsigned i = 0; i != args.size(); i++) {
if (args[i]->isTypeDependent())
ExprBits.TypeDependent = true;
if (args[i]->isValueDependent())
ExprBits.ValueDependent = true;
if (args[i]->isInstantiationDependent())
ExprBits.InstantiationDependent = true;
if (args[i]->containsUnexpandedParameterPack())
ExprBits.ContainsUnexpandedParameterPack = true;
SubExprs[i] = args[i];
}
}
void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
unsigned NumExprs) {
if (SubExprs) C.Deallocate(SubExprs);
SubExprs = new (C) Stmt* [NumExprs];
this->NumExprs = NumExprs;
memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
}
GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
SourceLocation GenericLoc, Expr *ControllingExpr,
ArrayRef<TypeSourceInfo*> AssocTypes,
ArrayRef<Expr*> AssocExprs,
SourceLocation DefaultLoc,
SourceLocation RParenLoc,
bool ContainsUnexpandedParameterPack,
unsigned ResultIndex)
: Expr(GenericSelectionExprClass,
AssocExprs[ResultIndex]->getType(),
AssocExprs[ResultIndex]->getValueKind(),
AssocExprs[ResultIndex]->getObjectKind(),
AssocExprs[ResultIndex]->isTypeDependent(),
AssocExprs[ResultIndex]->isValueDependent(),
AssocExprs[ResultIndex]->isInstantiationDependent(),
ContainsUnexpandedParameterPack),
AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
SubExprs[CONTROLLING] = ControllingExpr;
assert(AssocTypes.size() == AssocExprs.size());
std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
}
GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
SourceLocation GenericLoc, Expr *ControllingExpr,
ArrayRef<TypeSourceInfo*> AssocTypes,
ArrayRef<Expr*> AssocExprs,
SourceLocation DefaultLoc,
SourceLocation RParenLoc,
bool ContainsUnexpandedParameterPack)
: Expr(GenericSelectionExprClass,
Context.DependentTy,
VK_RValue,
OK_Ordinary,
/*isTypeDependent=*/true,
/*isValueDependent=*/true,
/*isInstantiationDependent=*/true,
ContainsUnexpandedParameterPack),
AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
SubExprs[CONTROLLING] = ControllingExpr;
assert(AssocTypes.size() == AssocExprs.size());
std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
}
//===----------------------------------------------------------------------===//
// DesignatedInitExpr
//===----------------------------------------------------------------------===//
IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
assert(Kind == FieldDesignator && "Only valid on a field designator");
if (Field.NameOrField & 0x01)
return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
else
return getField()->getIdentifier();
}
DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
unsigned NumDesignators,
const Designator *Designators,
SourceLocation EqualOrColonLoc,
bool GNUSyntax,
ArrayRef<Expr*> IndexExprs,
Expr *Init)
: Expr(DesignatedInitExprClass, Ty,
Init->getValueKind(), Init->getObjectKind(),
Init->isTypeDependent(), Init->isValueDependent(),
Init->isInstantiationDependent(),
Init->containsUnexpandedParameterPack()),
EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
NumDesignators(NumDesignators), NumSubExprs(IndexExprs.size() + 1) {
this->Designators = new (C) Designator[NumDesignators];
// Record the initializer itself.
child_range Child = children();
*Child++ = Init;
// Copy the designators and their subexpressions, computing
// value-dependence along the way.
unsigned IndexIdx = 0;
for (unsigned I = 0; I != NumDesignators; ++I) {
this->Designators[I] = Designators[I];
if (this->Designators[I].isArrayDesignator()) {
// Compute type- and value-dependence.
Expr *Index = IndexExprs[IndexIdx];
if (Index->isTypeDependent() || Index->isValueDependent())
ExprBits.ValueDependent = true;
if (Index->isInstantiationDependent())
ExprBits.InstantiationDependent = true;
// Propagate unexpanded parameter packs.
if (Index->containsUnexpandedParameterPack())
ExprBits.ContainsUnexpandedParameterPack = true;
// Copy the index expressions into permanent storage.
*Child++ = IndexExprs[IndexIdx++];
} else if (this->Designators[I].isArrayRangeDesignator()) {
// Compute type- and value-dependence.
Expr *Start = IndexExprs[IndexIdx];
Expr *End = IndexExprs[IndexIdx + 1];
if (Start->isTypeDependent() || Start->isValueDependent() ||
End->isTypeDependent() || End->isValueDependent()) {
ExprBits.ValueDependent = true;
ExprBits.InstantiationDependent = true;
} else if (Start->isInstantiationDependent() ||
End->isInstantiationDependent()) {
ExprBits.InstantiationDependent = true;
}
// Propagate unexpanded parameter packs.
if (Start->containsUnexpandedParameterPack() ||
End->containsUnexpandedParameterPack())
ExprBits.ContainsUnexpandedParameterPack = true;
// Copy the start/end expressions into permanent storage.
*Child++ = IndexExprs[IndexIdx++];
*Child++ = IndexExprs[IndexIdx++];
}
}
assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
}
DesignatedInitExpr *
DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
unsigned NumDesignators,
ArrayRef<Expr*> IndexExprs,
SourceLocation ColonOrEqualLoc,
bool UsesColonSyntax, Expr *Init) {
void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
sizeof(Stmt *) * (IndexExprs.size() + 1), 8);
return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
ColonOrEqualLoc, UsesColonSyntax,
IndexExprs, Init);
}
DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
unsigned NumIndexExprs) {
void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
sizeof(Stmt *) * (NumIndexExprs + 1), 8);
return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
}
void DesignatedInitExpr::setDesignators(ASTContext &C,
const Designator *Desigs,
unsigned NumDesigs) {
Designators = new (C) Designator[NumDesigs];
NumDesignators = NumDesigs;
for (unsigned I = 0; I != NumDesigs; ++I)
Designators[I] = Desigs[I];
}
SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
if (size() == 1)
return DIE->getDesignator(0)->getSourceRange();
return SourceRange(DIE->getDesignator(0)->getStartLocation(),
DIE->getDesignator(size()-1)->getEndLocation());
}
SourceRange DesignatedInitExpr::getSourceRange() const {
SourceLocation StartLoc;
Designator &First =
*const_cast<DesignatedInitExpr*>(this)->designators_begin();
if (First.isFieldDesignator()) {
if (GNUSyntax)
StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
else
StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
} else
StartLoc =
SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
}
Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
char* Ptr = static_cast<char*>(static_cast<void *>(this));
Ptr += sizeof(DesignatedInitExpr);
Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
}
Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
assert(D.Kind == Designator::ArrayRangeDesignator &&
"Requires array range designator");
char* Ptr = static_cast<char*>(static_cast<void *>(this));
Ptr += sizeof(DesignatedInitExpr);
Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
}
Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
assert(D.Kind == Designator::ArrayRangeDesignator &&
"Requires array range designator");
char* Ptr = static_cast<char*>(static_cast<void *>(this));
Ptr += sizeof(DesignatedInitExpr);
Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
}
/// \brief Replaces the designator at index @p Idx with the series
/// of designators in [First, Last).
void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
const Designator *First,
const Designator *Last) {
unsigned NumNewDesignators = Last - First;
if (NumNewDesignators == 0) {
std::copy_backward(Designators + Idx + 1,
Designators + NumDesignators,
Designators + Idx);
--NumNewDesignators;
return;
} else if (NumNewDesignators == 1) {
Designators[Idx] = *First;
return;
}
Designator *NewDesignators
= new (C) Designator[NumDesignators - 1 + NumNewDesignators];
std::copy(Designators, Designators + Idx, NewDesignators);
std::copy(First, Last, NewDesignators + Idx);
std::copy(Designators + Idx + 1, Designators + NumDesignators,
NewDesignators + Idx + NumNewDesignators);
Designators = NewDesignators;
NumDesignators = NumDesignators - 1 + NumNewDesignators;
}
ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
ArrayRef<Expr*> exprs,
SourceLocation rparenloc)
: Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
false, false, false, false),
NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) {
Exprs = new (C) Stmt*[exprs.size()];
for (unsigned i = 0; i != exprs.size(); ++i) {
if (exprs[i]->isTypeDependent())
ExprBits.TypeDependent = true;
if (exprs[i]->isValueDependent())
ExprBits.ValueDependent = true;
if (exprs[i]->isInstantiationDependent())
ExprBits.InstantiationDependent = true;
if (exprs[i]->containsUnexpandedParameterPack())
ExprBits.ContainsUnexpandedParameterPack = true;
Exprs[i] = exprs[i];
}
}
const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
e = ewc->getSubExpr();
if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
e = m->GetTemporaryExpr();
e = cast<CXXConstructExpr>(e)->getArg(0);
while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
e = ice->getSubExpr();
return cast<OpaqueValueExpr>(e);
}
PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &Context, EmptyShell sh,
unsigned numSemanticExprs) {
void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
(1 + numSemanticExprs) * sizeof(Expr*),
llvm::alignOf<PseudoObjectExpr>());
return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
}
PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
: Expr(PseudoObjectExprClass, shell) {
PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
}
PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &C, Expr *syntax,
ArrayRef<Expr*> semantics,
unsigned resultIndex) {
assert(syntax && "no syntactic expression!");
assert(semantics.size() && "no semantic expressions!");
QualType type;
ExprValueKind VK;
if (resultIndex == NoResult) {
type = C.VoidTy;
VK = VK_RValue;
} else {
assert(resultIndex < semantics.size());
type = semantics[resultIndex]->getType();
VK = semantics[resultIndex]->getValueKind();
assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
}
void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
(1 + semantics.size()) * sizeof(Expr*),
llvm::alignOf<PseudoObjectExpr>());
return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
resultIndex);
}
PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
Expr *syntax, ArrayRef<Expr*> semantics,
unsigned resultIndex)
: Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
/*filled in at end of ctor*/ false, false, false, false) {
PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
PseudoObjectExprBits.ResultIndex = resultIndex + 1;
for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
Expr *E = (i == 0 ? syntax : semantics[i-1]);
getSubExprsBuffer()[i] = E;
if (E->isTypeDependent())
ExprBits.TypeDependent = true;
if (E->isValueDependent())
ExprBits.ValueDependent = true;
if (E->isInstantiationDependent())
ExprBits.InstantiationDependent = true;
if (E->containsUnexpandedParameterPack())
ExprBits.ContainsUnexpandedParameterPack = true;
if (isa<OpaqueValueExpr>(E))
assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != 0 &&
"opaque-value semantic expressions for pseudo-object "
"operations must have sources");
}
}
//===----------------------------------------------------------------------===//
// ExprIterator.
//===----------------------------------------------------------------------===//
Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
const Expr* ConstExprIterator::operator[](size_t idx) const {
return cast<Expr>(I[idx]);
}
const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
//===----------------------------------------------------------------------===//
// Child Iterators for iterating over subexpressions/substatements
//===----------------------------------------------------------------------===//
// UnaryExprOrTypeTraitExpr
Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
// If this is of a type and the type is a VLA type (and not a typedef), the
// size expression of the VLA needs to be treated as an executable expression.
// Why isn't this weirdness documented better in StmtIterator?
if (isArgumentType()) {
if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
getArgumentType().getTypePtr()))
return child_range(child_iterator(T), child_iterator());
return child_range();
}
return child_range(&Argument.Ex, &Argument.Ex + 1);
}
// ObjCMessageExpr
Stmt::child_range ObjCMessageExpr::children() {
Stmt **begin;
if (getReceiverKind() == Instance)
begin = reinterpret_cast<Stmt **>(this + 1);
else
begin = reinterpret_cast<Stmt **>(getArgs());
return child_range(begin,
reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
}
ObjCArrayLiteral::ObjCArrayLiteral(llvm::ArrayRef<Expr *> Elements,
QualType T, ObjCMethodDecl *Method,
SourceRange SR)
: Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary,
false, false, false, false),
NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method)
{
Expr **SaveElements = getElements();
for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent())
ExprBits.ValueDependent = true;
if (Elements[I]->isInstantiationDependent())
ExprBits.InstantiationDependent = true;
if (Elements[I]->containsUnexpandedParameterPack())
ExprBits.ContainsUnexpandedParameterPack = true;
SaveElements[I] = Elements[I];
}
}
ObjCArrayLiteral *ObjCArrayLiteral::Create(ASTContext &C,
llvm::ArrayRef<Expr *> Elements,
QualType T, ObjCMethodDecl * Method,
SourceRange SR) {
void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
+ Elements.size() * sizeof(Expr *));
return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR);
}
ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(ASTContext &C,
unsigned NumElements) {
void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
+ NumElements * sizeof(Expr *));
return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements);
}
ObjCDictionaryLiteral::ObjCDictionaryLiteral(
ArrayRef<ObjCDictionaryElement> VK,
bool HasPackExpansions,
QualType T, ObjCMethodDecl *method,
SourceRange SR)
: Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false,
false, false),
NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR),
DictWithObjectsMethod(method)
{
KeyValuePair *KeyValues = getKeyValues();
ExpansionData *Expansions = getExpansionData();
for (unsigned I = 0; I < NumElements; I++) {
if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() ||
VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent())
ExprBits.ValueDependent = true;
if (VK[I].Key->isInstantiationDependent() ||
VK[I].Value->isInstantiationDependent())
ExprBits.InstantiationDependent = true;
if (VK[I].EllipsisLoc.isInvalid() &&
(VK[I].Key->containsUnexpandedParameterPack() ||
VK[I].Value->containsUnexpandedParameterPack()))
ExprBits.ContainsUnexpandedParameterPack = true;
KeyValues[I].Key = VK[I].Key;
KeyValues[I].Value = VK[I].Value;
if (Expansions) {
Expansions[I].EllipsisLoc = VK[I].EllipsisLoc;
if (VK[I].NumExpansions)
Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1;
else
Expansions[I].NumExpansionsPlusOne = 0;
}
}
}
ObjCDictionaryLiteral *
ObjCDictionaryLiteral::Create(ASTContext &C,
ArrayRef<ObjCDictionaryElement> VK,
bool HasPackExpansions,
QualType T, ObjCMethodDecl *method,
SourceRange SR) {
unsigned ExpansionsSize = 0;
if (HasPackExpansions)
ExpansionsSize = sizeof(ExpansionData) * VK.size();
void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
sizeof(KeyValuePair) * VK.size() + ExpansionsSize);
return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR);
}
ObjCDictionaryLiteral *
ObjCDictionaryLiteral::CreateEmpty(ASTContext &C, unsigned NumElements,
bool HasPackExpansions) {
unsigned ExpansionsSize = 0;
if (HasPackExpansions)
ExpansionsSize = sizeof(ExpansionData) * NumElements;
void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
sizeof(KeyValuePair) * NumElements + ExpansionsSize);
return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements,
HasPackExpansions);
}
ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(ASTContext &C,
Expr *base,
Expr *key, QualType T,
ObjCMethodDecl *getMethod,
ObjCMethodDecl *setMethod,
SourceLocation RB) {
void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr));
return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue,
OK_ObjCSubscript,
getMethod, setMethod, RB);
}
AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
QualType t, AtomicOp op, SourceLocation RP)
: Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
false, false, false, false),
NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
{
assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
for (unsigned i = 0; i != args.size(); i++) {
if (args[i]->isTypeDependent())
ExprBits.TypeDependent = true;
if (args[i]->isValueDependent())
ExprBits.ValueDependent = true;
if (args[i]->isInstantiationDependent())
ExprBits.InstantiationDependent = true;
if (args[i]->containsUnexpandedParameterPack())
ExprBits.ContainsUnexpandedParameterPack = true;
SubExprs[i] = args[i];
}
}
unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
switch (Op) {
case AO__c11_atomic_init:
case AO__c11_atomic_load:
case AO__atomic_load_n:
return 2;
case AO__c11_atomic_store:
case AO__c11_atomic_exchange:
case AO__atomic_load:
case AO__atomic_store:
case AO__atomic_store_n:
case AO__atomic_exchange_n:
case AO__c11_atomic_fetch_add:
case AO__c11_atomic_fetch_sub:
case AO__c11_atomic_fetch_and:
case AO__c11_atomic_fetch_or:
case AO__c11_atomic_fetch_xor:
case AO__atomic_fetch_add:
case AO__atomic_fetch_sub:
case AO__atomic_fetch_and:
case AO__atomic_fetch_or:
case AO__atomic_fetch_xor:
case AO__atomic_fetch_nand:
case AO__atomic_add_fetch:
case AO__atomic_sub_fetch:
case AO__atomic_and_fetch:
case AO__atomic_or_fetch:
case AO__atomic_xor_fetch:
case AO__atomic_nand_fetch:
return 3;
case AO__atomic_exchange:
return 4;
case AO__c11_atomic_compare_exchange_strong:
case AO__c11_atomic_compare_exchange_weak:
return 5;
case AO__atomic_compare_exchange:
case AO__atomic_compare_exchange_n:
return 6;
}
llvm_unreachable("unknown atomic op");
}