forked from OSchip/llvm-project
4591 lines
177 KiB
C++
4591 lines
177 KiB
C++
//===- MipsISelLowering.cpp - Mips DAG Lowering Implementation ------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the interfaces that Mips uses to lower LLVM code into a
|
|
// selection DAG.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "MipsISelLowering.h"
|
|
#include "InstPrinter/MipsInstPrinter.h"
|
|
#include "MCTargetDesc/MipsBaseInfo.h"
|
|
#include "MCTargetDesc/MipsMCTargetDesc.h"
|
|
#include "MipsCCState.h"
|
|
#include "MipsInstrInfo.h"
|
|
#include "MipsMachineFunction.h"
|
|
#include "MipsRegisterInfo.h"
|
|
#include "MipsSubtarget.h"
|
|
#include "MipsTargetMachine.h"
|
|
#include "MipsTargetObjectFile.h"
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/CodeGen/FunctionLoweringInfo.h"
|
|
#include "llvm/CodeGen/ISDOpcodes.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/RuntimeLibcalls.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SelectionDAGNodes.h"
|
|
#include "llvm/CodeGen/TargetFrameLowering.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CodeGen.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MachineValueType.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cctype>
|
|
#include <cstdint>
|
|
#include <deque>
|
|
#include <iterator>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "mips-lower"
|
|
|
|
STATISTIC(NumTailCalls, "Number of tail calls");
|
|
|
|
static cl::opt<bool>
|
|
LargeGOT("mxgot", cl::Hidden,
|
|
cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
|
|
|
|
static cl::opt<bool>
|
|
NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
|
|
cl::desc("MIPS: Don't trap on integer division by zero."),
|
|
cl::init(false));
|
|
|
|
extern cl::opt<bool> EmitJalrReloc;
|
|
|
|
static const MCPhysReg Mips64DPRegs[8] = {
|
|
Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
|
|
Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
|
|
};
|
|
|
|
// If I is a shifted mask, set the size (Size) and the first bit of the
|
|
// mask (Pos), and return true.
|
|
// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
|
|
static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
|
|
if (!isShiftedMask_64(I))
|
|
return false;
|
|
|
|
Size = countPopulation(I);
|
|
Pos = countTrailingZeros(I);
|
|
return true;
|
|
}
|
|
|
|
// The MIPS MSA ABI passes vector arguments in the integer register set.
|
|
// The number of integer registers used is dependant on the ABI used.
|
|
MVT MipsTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
|
|
CallingConv::ID CC,
|
|
EVT VT) const {
|
|
if (VT.isVector()) {
|
|
if (Subtarget.isABI_O32()) {
|
|
return MVT::i32;
|
|
} else {
|
|
return (VT.getSizeInBits() == 32) ? MVT::i32 : MVT::i64;
|
|
}
|
|
}
|
|
return MipsTargetLowering::getRegisterType(Context, VT);
|
|
}
|
|
|
|
unsigned MipsTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
|
|
CallingConv::ID CC,
|
|
EVT VT) const {
|
|
if (VT.isVector())
|
|
return std::max((VT.getSizeInBits() / (Subtarget.isABI_O32() ? 32 : 64)),
|
|
1U);
|
|
return MipsTargetLowering::getNumRegisters(Context, VT);
|
|
}
|
|
|
|
unsigned MipsTargetLowering::getVectorTypeBreakdownForCallingConv(
|
|
LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
|
|
unsigned &NumIntermediates, MVT &RegisterVT) const {
|
|
// Break down vector types to either 2 i64s or 4 i32s.
|
|
RegisterVT = getRegisterTypeForCallingConv(Context, CC, VT);
|
|
IntermediateVT = RegisterVT;
|
|
NumIntermediates = VT.getSizeInBits() < RegisterVT.getSizeInBits()
|
|
? VT.getVectorNumElements()
|
|
: VT.getSizeInBits() / RegisterVT.getSizeInBits();
|
|
|
|
return NumIntermediates;
|
|
}
|
|
|
|
SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
|
|
MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
|
|
return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
|
|
SelectionDAG &DAG,
|
|
unsigned Flag) const {
|
|
return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty,
|
|
SelectionDAG &DAG,
|
|
unsigned Flag) const {
|
|
return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty,
|
|
SelectionDAG &DAG,
|
|
unsigned Flag) const {
|
|
return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
|
|
SelectionDAG &DAG,
|
|
unsigned Flag) const {
|
|
return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
|
|
SelectionDAG &DAG,
|
|
unsigned Flag) const {
|
|
return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
|
|
N->getOffset(), Flag);
|
|
}
|
|
|
|
const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
|
|
switch ((MipsISD::NodeType)Opcode) {
|
|
case MipsISD::FIRST_NUMBER: break;
|
|
case MipsISD::JmpLink: return "MipsISD::JmpLink";
|
|
case MipsISD::TailCall: return "MipsISD::TailCall";
|
|
case MipsISD::Highest: return "MipsISD::Highest";
|
|
case MipsISD::Higher: return "MipsISD::Higher";
|
|
case MipsISD::Hi: return "MipsISD::Hi";
|
|
case MipsISD::Lo: return "MipsISD::Lo";
|
|
case MipsISD::GotHi: return "MipsISD::GotHi";
|
|
case MipsISD::TlsHi: return "MipsISD::TlsHi";
|
|
case MipsISD::GPRel: return "MipsISD::GPRel";
|
|
case MipsISD::ThreadPointer: return "MipsISD::ThreadPointer";
|
|
case MipsISD::Ret: return "MipsISD::Ret";
|
|
case MipsISD::ERet: return "MipsISD::ERet";
|
|
case MipsISD::EH_RETURN: return "MipsISD::EH_RETURN";
|
|
case MipsISD::FMS: return "MipsISD::FMS";
|
|
case MipsISD::FPBrcond: return "MipsISD::FPBrcond";
|
|
case MipsISD::FPCmp: return "MipsISD::FPCmp";
|
|
case MipsISD::FSELECT: return "MipsISD::FSELECT";
|
|
case MipsISD::MTC1_D64: return "MipsISD::MTC1_D64";
|
|
case MipsISD::CMovFP_T: return "MipsISD::CMovFP_T";
|
|
case MipsISD::CMovFP_F: return "MipsISD::CMovFP_F";
|
|
case MipsISD::TruncIntFP: return "MipsISD::TruncIntFP";
|
|
case MipsISD::MFHI: return "MipsISD::MFHI";
|
|
case MipsISD::MFLO: return "MipsISD::MFLO";
|
|
case MipsISD::MTLOHI: return "MipsISD::MTLOHI";
|
|
case MipsISD::Mult: return "MipsISD::Mult";
|
|
case MipsISD::Multu: return "MipsISD::Multu";
|
|
case MipsISD::MAdd: return "MipsISD::MAdd";
|
|
case MipsISD::MAddu: return "MipsISD::MAddu";
|
|
case MipsISD::MSub: return "MipsISD::MSub";
|
|
case MipsISD::MSubu: return "MipsISD::MSubu";
|
|
case MipsISD::DivRem: return "MipsISD::DivRem";
|
|
case MipsISD::DivRemU: return "MipsISD::DivRemU";
|
|
case MipsISD::DivRem16: return "MipsISD::DivRem16";
|
|
case MipsISD::DivRemU16: return "MipsISD::DivRemU16";
|
|
case MipsISD::BuildPairF64: return "MipsISD::BuildPairF64";
|
|
case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
|
|
case MipsISD::Wrapper: return "MipsISD::Wrapper";
|
|
case MipsISD::DynAlloc: return "MipsISD::DynAlloc";
|
|
case MipsISD::Sync: return "MipsISD::Sync";
|
|
case MipsISD::Ext: return "MipsISD::Ext";
|
|
case MipsISD::Ins: return "MipsISD::Ins";
|
|
case MipsISD::CIns: return "MipsISD::CIns";
|
|
case MipsISD::LWL: return "MipsISD::LWL";
|
|
case MipsISD::LWR: return "MipsISD::LWR";
|
|
case MipsISD::SWL: return "MipsISD::SWL";
|
|
case MipsISD::SWR: return "MipsISD::SWR";
|
|
case MipsISD::LDL: return "MipsISD::LDL";
|
|
case MipsISD::LDR: return "MipsISD::LDR";
|
|
case MipsISD::SDL: return "MipsISD::SDL";
|
|
case MipsISD::SDR: return "MipsISD::SDR";
|
|
case MipsISD::EXTP: return "MipsISD::EXTP";
|
|
case MipsISD::EXTPDP: return "MipsISD::EXTPDP";
|
|
case MipsISD::EXTR_S_H: return "MipsISD::EXTR_S_H";
|
|
case MipsISD::EXTR_W: return "MipsISD::EXTR_W";
|
|
case MipsISD::EXTR_R_W: return "MipsISD::EXTR_R_W";
|
|
case MipsISD::EXTR_RS_W: return "MipsISD::EXTR_RS_W";
|
|
case MipsISD::SHILO: return "MipsISD::SHILO";
|
|
case MipsISD::MTHLIP: return "MipsISD::MTHLIP";
|
|
case MipsISD::MULSAQ_S_W_PH: return "MipsISD::MULSAQ_S_W_PH";
|
|
case MipsISD::MAQ_S_W_PHL: return "MipsISD::MAQ_S_W_PHL";
|
|
case MipsISD::MAQ_S_W_PHR: return "MipsISD::MAQ_S_W_PHR";
|
|
case MipsISD::MAQ_SA_W_PHL: return "MipsISD::MAQ_SA_W_PHL";
|
|
case MipsISD::MAQ_SA_W_PHR: return "MipsISD::MAQ_SA_W_PHR";
|
|
case MipsISD::DPAU_H_QBL: return "MipsISD::DPAU_H_QBL";
|
|
case MipsISD::DPAU_H_QBR: return "MipsISD::DPAU_H_QBR";
|
|
case MipsISD::DPSU_H_QBL: return "MipsISD::DPSU_H_QBL";
|
|
case MipsISD::DPSU_H_QBR: return "MipsISD::DPSU_H_QBR";
|
|
case MipsISD::DPAQ_S_W_PH: return "MipsISD::DPAQ_S_W_PH";
|
|
case MipsISD::DPSQ_S_W_PH: return "MipsISD::DPSQ_S_W_PH";
|
|
case MipsISD::DPAQ_SA_L_W: return "MipsISD::DPAQ_SA_L_W";
|
|
case MipsISD::DPSQ_SA_L_W: return "MipsISD::DPSQ_SA_L_W";
|
|
case MipsISD::DPA_W_PH: return "MipsISD::DPA_W_PH";
|
|
case MipsISD::DPS_W_PH: return "MipsISD::DPS_W_PH";
|
|
case MipsISD::DPAQX_S_W_PH: return "MipsISD::DPAQX_S_W_PH";
|
|
case MipsISD::DPAQX_SA_W_PH: return "MipsISD::DPAQX_SA_W_PH";
|
|
case MipsISD::DPAX_W_PH: return "MipsISD::DPAX_W_PH";
|
|
case MipsISD::DPSX_W_PH: return "MipsISD::DPSX_W_PH";
|
|
case MipsISD::DPSQX_S_W_PH: return "MipsISD::DPSQX_S_W_PH";
|
|
case MipsISD::DPSQX_SA_W_PH: return "MipsISD::DPSQX_SA_W_PH";
|
|
case MipsISD::MULSA_W_PH: return "MipsISD::MULSA_W_PH";
|
|
case MipsISD::MULT: return "MipsISD::MULT";
|
|
case MipsISD::MULTU: return "MipsISD::MULTU";
|
|
case MipsISD::MADD_DSP: return "MipsISD::MADD_DSP";
|
|
case MipsISD::MADDU_DSP: return "MipsISD::MADDU_DSP";
|
|
case MipsISD::MSUB_DSP: return "MipsISD::MSUB_DSP";
|
|
case MipsISD::MSUBU_DSP: return "MipsISD::MSUBU_DSP";
|
|
case MipsISD::SHLL_DSP: return "MipsISD::SHLL_DSP";
|
|
case MipsISD::SHRA_DSP: return "MipsISD::SHRA_DSP";
|
|
case MipsISD::SHRL_DSP: return "MipsISD::SHRL_DSP";
|
|
case MipsISD::SETCC_DSP: return "MipsISD::SETCC_DSP";
|
|
case MipsISD::SELECT_CC_DSP: return "MipsISD::SELECT_CC_DSP";
|
|
case MipsISD::VALL_ZERO: return "MipsISD::VALL_ZERO";
|
|
case MipsISD::VANY_ZERO: return "MipsISD::VANY_ZERO";
|
|
case MipsISD::VALL_NONZERO: return "MipsISD::VALL_NONZERO";
|
|
case MipsISD::VANY_NONZERO: return "MipsISD::VANY_NONZERO";
|
|
case MipsISD::VCEQ: return "MipsISD::VCEQ";
|
|
case MipsISD::VCLE_S: return "MipsISD::VCLE_S";
|
|
case MipsISD::VCLE_U: return "MipsISD::VCLE_U";
|
|
case MipsISD::VCLT_S: return "MipsISD::VCLT_S";
|
|
case MipsISD::VCLT_U: return "MipsISD::VCLT_U";
|
|
case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
|
|
case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
|
|
case MipsISD::VNOR: return "MipsISD::VNOR";
|
|
case MipsISD::VSHF: return "MipsISD::VSHF";
|
|
case MipsISD::SHF: return "MipsISD::SHF";
|
|
case MipsISD::ILVEV: return "MipsISD::ILVEV";
|
|
case MipsISD::ILVOD: return "MipsISD::ILVOD";
|
|
case MipsISD::ILVL: return "MipsISD::ILVL";
|
|
case MipsISD::ILVR: return "MipsISD::ILVR";
|
|
case MipsISD::PCKEV: return "MipsISD::PCKEV";
|
|
case MipsISD::PCKOD: return "MipsISD::PCKOD";
|
|
case MipsISD::INSVE: return "MipsISD::INSVE";
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine &TM,
|
|
const MipsSubtarget &STI)
|
|
: TargetLowering(TM), Subtarget(STI), ABI(TM.getABI()) {
|
|
// Mips does not have i1 type, so use i32 for
|
|
// setcc operations results (slt, sgt, ...).
|
|
setBooleanContents(ZeroOrOneBooleanContent);
|
|
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
|
|
// The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA
|
|
// does. Integer booleans still use 0 and 1.
|
|
if (Subtarget.hasMips32r6())
|
|
setBooleanContents(ZeroOrOneBooleanContent,
|
|
ZeroOrNegativeOneBooleanContent);
|
|
|
|
// Load extented operations for i1 types must be promoted
|
|
for (MVT VT : MVT::integer_valuetypes()) {
|
|
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
|
|
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
|
|
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
|
|
}
|
|
|
|
// MIPS doesn't have extending float->double load/store. Set LoadExtAction
|
|
// for f32, f16
|
|
for (MVT VT : MVT::fp_valuetypes()) {
|
|
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
|
|
}
|
|
|
|
// Set LoadExtAction for f16 vectors to Expand
|
|
for (MVT VT : MVT::fp_vector_valuetypes()) {
|
|
MVT F16VT = MVT::getVectorVT(MVT::f16, VT.getVectorNumElements());
|
|
if (F16VT.isValid())
|
|
setLoadExtAction(ISD::EXTLOAD, VT, F16VT, Expand);
|
|
}
|
|
|
|
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
|
|
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
|
|
|
|
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
|
|
|
|
// Used by legalize types to correctly generate the setcc result.
|
|
// Without this, every float setcc comes with a AND/OR with the result,
|
|
// we don't want this, since the fpcmp result goes to a flag register,
|
|
// which is used implicitly by brcond and select operations.
|
|
AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
|
|
|
|
// Mips Custom Operations
|
|
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
|
|
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
|
|
setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
|
|
setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
|
|
setOperationAction(ISD::JumpTable, MVT::i32, Custom);
|
|
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::f32, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::f64, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::i32, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::f32, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::f64, Custom);
|
|
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
|
|
|
|
if (!(TM.Options.NoNaNsFPMath || Subtarget.inAbs2008Mode())) {
|
|
setOperationAction(ISD::FABS, MVT::f32, Custom);
|
|
setOperationAction(ISD::FABS, MVT::f64, Custom);
|
|
}
|
|
|
|
if (Subtarget.isGP64bit()) {
|
|
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
|
|
setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
|
|
setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
|
|
setOperationAction(ISD::JumpTable, MVT::i64, Custom);
|
|
setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::i64, Custom);
|
|
setOperationAction(ISD::LOAD, MVT::i64, Custom);
|
|
setOperationAction(ISD::STORE, MVT::i64, Custom);
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
|
|
setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
|
|
setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
|
|
setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
|
|
}
|
|
|
|
if (!Subtarget.isGP64bit()) {
|
|
setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
|
|
setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
|
|
setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
|
|
}
|
|
|
|
setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
|
|
if (Subtarget.isGP64bit())
|
|
setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
|
|
|
|
setOperationAction(ISD::SDIV, MVT::i32, Expand);
|
|
setOperationAction(ISD::SREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::UDIV, MVT::i32, Expand);
|
|
setOperationAction(ISD::UREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::SDIV, MVT::i64, Expand);
|
|
setOperationAction(ISD::SREM, MVT::i64, Expand);
|
|
setOperationAction(ISD::UDIV, MVT::i64, Expand);
|
|
setOperationAction(ISD::UREM, MVT::i64, Expand);
|
|
|
|
// Operations not directly supported by Mips.
|
|
setOperationAction(ISD::BR_CC, MVT::f32, Expand);
|
|
setOperationAction(ISD::BR_CC, MVT::f64, Expand);
|
|
setOperationAction(ISD::BR_CC, MVT::i32, Expand);
|
|
setOperationAction(ISD::BR_CC, MVT::i64, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
|
|
if (Subtarget.hasCnMips()) {
|
|
setOperationAction(ISD::CTPOP, MVT::i32, Legal);
|
|
setOperationAction(ISD::CTPOP, MVT::i64, Legal);
|
|
} else {
|
|
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
|
|
setOperationAction(ISD::CTPOP, MVT::i64, Expand);
|
|
}
|
|
setOperationAction(ISD::CTTZ, MVT::i32, Expand);
|
|
setOperationAction(ISD::CTTZ, MVT::i64, Expand);
|
|
setOperationAction(ISD::ROTL, MVT::i32, Expand);
|
|
setOperationAction(ISD::ROTL, MVT::i64, Expand);
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
|
|
|
|
if (!Subtarget.hasMips32r2())
|
|
setOperationAction(ISD::ROTR, MVT::i32, Expand);
|
|
|
|
if (!Subtarget.hasMips64r2())
|
|
setOperationAction(ISD::ROTR, MVT::i64, Expand);
|
|
|
|
setOperationAction(ISD::FSIN, MVT::f32, Expand);
|
|
setOperationAction(ISD::FSIN, MVT::f64, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::f32, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::f64, Expand);
|
|
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
|
|
setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::f32, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::f64, Expand);
|
|
setOperationAction(ISD::FLOG, MVT::f32, Expand);
|
|
setOperationAction(ISD::FLOG2, MVT::f32, Expand);
|
|
setOperationAction(ISD::FLOG10, MVT::f32, Expand);
|
|
setOperationAction(ISD::FEXP, MVT::f32, Expand);
|
|
setOperationAction(ISD::FMA, MVT::f32, Expand);
|
|
setOperationAction(ISD::FMA, MVT::f64, Expand);
|
|
setOperationAction(ISD::FREM, MVT::f32, Expand);
|
|
setOperationAction(ISD::FREM, MVT::f64, Expand);
|
|
|
|
// Lower f16 conversion operations into library calls
|
|
setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
|
|
setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
|
|
setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
|
|
setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
|
|
|
|
setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
|
|
|
|
setOperationAction(ISD::VASTART, MVT::Other, Custom);
|
|
setOperationAction(ISD::VAARG, MVT::Other, Custom);
|
|
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
|
|
setOperationAction(ISD::VAEND, MVT::Other, Expand);
|
|
|
|
// Use the default for now
|
|
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
|
|
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
|
|
|
|
if (!Subtarget.isGP64bit()) {
|
|
setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand);
|
|
setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
|
|
}
|
|
|
|
if (!Subtarget.hasMips32r2()) {
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
|
|
}
|
|
|
|
// MIPS16 lacks MIPS32's clz and clo instructions.
|
|
if (!Subtarget.hasMips32() || Subtarget.inMips16Mode())
|
|
setOperationAction(ISD::CTLZ, MVT::i32, Expand);
|
|
if (!Subtarget.hasMips64())
|
|
setOperationAction(ISD::CTLZ, MVT::i64, Expand);
|
|
|
|
if (!Subtarget.hasMips32r2())
|
|
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
|
|
if (!Subtarget.hasMips64r2())
|
|
setOperationAction(ISD::BSWAP, MVT::i64, Expand);
|
|
|
|
if (Subtarget.isGP64bit()) {
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::i64, MVT::i32, Custom);
|
|
setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, MVT::i32, Custom);
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::i64, MVT::i32, Custom);
|
|
setTruncStoreAction(MVT::i64, MVT::i32, Custom);
|
|
}
|
|
|
|
setOperationAction(ISD::TRAP, MVT::Other, Legal);
|
|
|
|
setTargetDAGCombine(ISD::SDIVREM);
|
|
setTargetDAGCombine(ISD::UDIVREM);
|
|
setTargetDAGCombine(ISD::SELECT);
|
|
setTargetDAGCombine(ISD::AND);
|
|
setTargetDAGCombine(ISD::OR);
|
|
setTargetDAGCombine(ISD::ADD);
|
|
setTargetDAGCombine(ISD::SUB);
|
|
setTargetDAGCombine(ISD::AssertZext);
|
|
setTargetDAGCombine(ISD::SHL);
|
|
|
|
if (ABI.IsO32()) {
|
|
// These libcalls are not available in 32-bit.
|
|
setLibcallName(RTLIB::SHL_I128, nullptr);
|
|
setLibcallName(RTLIB::SRL_I128, nullptr);
|
|
setLibcallName(RTLIB::SRA_I128, nullptr);
|
|
}
|
|
|
|
setMinFunctionAlignment(Subtarget.isGP64bit() ? 3 : 2);
|
|
|
|
// The arguments on the stack are defined in terms of 4-byte slots on O32
|
|
// and 8-byte slots on N32/N64.
|
|
setMinStackArgumentAlignment((ABI.IsN32() || ABI.IsN64()) ? 8 : 4);
|
|
|
|
setStackPointerRegisterToSaveRestore(ABI.IsN64() ? Mips::SP_64 : Mips::SP);
|
|
|
|
MaxStoresPerMemcpy = 16;
|
|
|
|
isMicroMips = Subtarget.inMicroMipsMode();
|
|
}
|
|
|
|
const MipsTargetLowering *MipsTargetLowering::create(const MipsTargetMachine &TM,
|
|
const MipsSubtarget &STI) {
|
|
if (STI.inMips16Mode())
|
|
return createMips16TargetLowering(TM, STI);
|
|
|
|
return createMipsSETargetLowering(TM, STI);
|
|
}
|
|
|
|
// Create a fast isel object.
|
|
FastISel *
|
|
MipsTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
|
|
const TargetLibraryInfo *libInfo) const {
|
|
const MipsTargetMachine &TM =
|
|
static_cast<const MipsTargetMachine &>(funcInfo.MF->getTarget());
|
|
|
|
// We support only the standard encoding [MIPS32,MIPS32R5] ISAs.
|
|
bool UseFastISel = TM.Options.EnableFastISel && Subtarget.hasMips32() &&
|
|
!Subtarget.hasMips32r6() && !Subtarget.inMips16Mode() &&
|
|
!Subtarget.inMicroMipsMode();
|
|
|
|
// Disable if either of the following is true:
|
|
// We do not generate PIC, the ABI is not O32, LargeGOT is being used.
|
|
if (!TM.isPositionIndependent() || !TM.getABI().IsO32() || LargeGOT)
|
|
UseFastISel = false;
|
|
|
|
return UseFastISel ? Mips::createFastISel(funcInfo, libInfo) : nullptr;
|
|
}
|
|
|
|
EVT MipsTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
|
|
EVT VT) const {
|
|
if (!VT.isVector())
|
|
return MVT::i32;
|
|
return VT.changeVectorElementTypeToInteger();
|
|
}
|
|
|
|
static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const MipsSubtarget &Subtarget) {
|
|
if (DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
EVT Ty = N->getValueType(0);
|
|
unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
|
|
unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
|
|
unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
|
|
MipsISD::DivRemU16;
|
|
SDLoc DL(N);
|
|
|
|
SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
|
|
N->getOperand(0), N->getOperand(1));
|
|
SDValue InChain = DAG.getEntryNode();
|
|
SDValue InGlue = DivRem;
|
|
|
|
// insert MFLO
|
|
if (N->hasAnyUseOfValue(0)) {
|
|
SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
|
|
InGlue);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
|
|
InChain = CopyFromLo.getValue(1);
|
|
InGlue = CopyFromLo.getValue(2);
|
|
}
|
|
|
|
// insert MFHI
|
|
if (N->hasAnyUseOfValue(1)) {
|
|
SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
|
|
HI, Ty, InGlue);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
|
|
switch (CC) {
|
|
default: llvm_unreachable("Unknown fp condition code!");
|
|
case ISD::SETEQ:
|
|
case ISD::SETOEQ: return Mips::FCOND_OEQ;
|
|
case ISD::SETUNE: return Mips::FCOND_UNE;
|
|
case ISD::SETLT:
|
|
case ISD::SETOLT: return Mips::FCOND_OLT;
|
|
case ISD::SETGT:
|
|
case ISD::SETOGT: return Mips::FCOND_OGT;
|
|
case ISD::SETLE:
|
|
case ISD::SETOLE: return Mips::FCOND_OLE;
|
|
case ISD::SETGE:
|
|
case ISD::SETOGE: return Mips::FCOND_OGE;
|
|
case ISD::SETULT: return Mips::FCOND_ULT;
|
|
case ISD::SETULE: return Mips::FCOND_ULE;
|
|
case ISD::SETUGT: return Mips::FCOND_UGT;
|
|
case ISD::SETUGE: return Mips::FCOND_UGE;
|
|
case ISD::SETUO: return Mips::FCOND_UN;
|
|
case ISD::SETO: return Mips::FCOND_OR;
|
|
case ISD::SETNE:
|
|
case ISD::SETONE: return Mips::FCOND_ONE;
|
|
case ISD::SETUEQ: return Mips::FCOND_UEQ;
|
|
}
|
|
}
|
|
|
|
/// This function returns true if the floating point conditional branches and
|
|
/// conditional moves which use condition code CC should be inverted.
|
|
static bool invertFPCondCodeUser(Mips::CondCode CC) {
|
|
if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
|
|
return false;
|
|
|
|
assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
|
|
"Illegal Condition Code");
|
|
|
|
return true;
|
|
}
|
|
|
|
// Creates and returns an FPCmp node from a setcc node.
|
|
// Returns Op if setcc is not a floating point comparison.
|
|
static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
|
|
// must be a SETCC node
|
|
if (Op.getOpcode() != ISD::SETCC)
|
|
return Op;
|
|
|
|
SDValue LHS = Op.getOperand(0);
|
|
|
|
if (!LHS.getValueType().isFloatingPoint())
|
|
return Op;
|
|
|
|
SDValue RHS = Op.getOperand(1);
|
|
SDLoc DL(Op);
|
|
|
|
// Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
|
|
// node if necessary.
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
|
|
|
|
return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
|
|
DAG.getConstant(condCodeToFCC(CC), DL, MVT::i32));
|
|
}
|
|
|
|
// Creates and returns a CMovFPT/F node.
|
|
static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
|
|
SDValue False, const SDLoc &DL) {
|
|
ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
|
|
bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
|
|
SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
|
|
|
|
return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
|
|
True.getValueType(), True, FCC0, False, Cond);
|
|
}
|
|
|
|
static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const MipsSubtarget &Subtarget) {
|
|
if (DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
SDValue SetCC = N->getOperand(0);
|
|
|
|
if ((SetCC.getOpcode() != ISD::SETCC) ||
|
|
!SetCC.getOperand(0).getValueType().isInteger())
|
|
return SDValue();
|
|
|
|
SDValue False = N->getOperand(2);
|
|
EVT FalseTy = False.getValueType();
|
|
|
|
if (!FalseTy.isInteger())
|
|
return SDValue();
|
|
|
|
ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(False);
|
|
|
|
// If the RHS (False) is 0, we swap the order of the operands
|
|
// of ISD::SELECT (obviously also inverting the condition) so that we can
|
|
// take advantage of conditional moves using the $0 register.
|
|
// Example:
|
|
// return (a != 0) ? x : 0;
|
|
// load $reg, x
|
|
// movz $reg, $0, a
|
|
if (!FalseC)
|
|
return SDValue();
|
|
|
|
const SDLoc DL(N);
|
|
|
|
if (!FalseC->getZExtValue()) {
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
|
|
SDValue True = N->getOperand(1);
|
|
|
|
SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
|
|
SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
|
|
|
|
return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
|
|
}
|
|
|
|
// If both operands are integer constants there's a possibility that we
|
|
// can do some interesting optimizations.
|
|
SDValue True = N->getOperand(1);
|
|
ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(True);
|
|
|
|
if (!TrueC || !True.getValueType().isInteger())
|
|
return SDValue();
|
|
|
|
// We'll also ignore MVT::i64 operands as this optimizations proves
|
|
// to be ineffective because of the required sign extensions as the result
|
|
// of a SETCC operator is always MVT::i32 for non-vector types.
|
|
if (True.getValueType() == MVT::i64)
|
|
return SDValue();
|
|
|
|
int64_t Diff = TrueC->getSExtValue() - FalseC->getSExtValue();
|
|
|
|
// 1) (a < x) ? y : y-1
|
|
// slti $reg1, a, x
|
|
// addiu $reg2, $reg1, y-1
|
|
if (Diff == 1)
|
|
return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, False);
|
|
|
|
// 2) (a < x) ? y-1 : y
|
|
// slti $reg1, a, x
|
|
// xor $reg1, $reg1, 1
|
|
// addiu $reg2, $reg1, y-1
|
|
if (Diff == -1) {
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
|
|
SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
|
|
SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
|
|
return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, True);
|
|
}
|
|
|
|
// Could not optimize.
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue performCMovFPCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const MipsSubtarget &Subtarget) {
|
|
if (DCI.isBeforeLegalizeOps())
|
|
return SDValue();
|
|
|
|
SDValue ValueIfTrue = N->getOperand(0), ValueIfFalse = N->getOperand(2);
|
|
|
|
ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(ValueIfFalse);
|
|
if (!FalseC || FalseC->getZExtValue())
|
|
return SDValue();
|
|
|
|
// Since RHS (False) is 0, we swap the order of the True/False operands
|
|
// (obviously also inverting the condition) so that we can
|
|
// take advantage of conditional moves using the $0 register.
|
|
// Example:
|
|
// return (a != 0) ? x : 0;
|
|
// load $reg, x
|
|
// movz $reg, $0, a
|
|
unsigned Opc = (N->getOpcode() == MipsISD::CMovFP_T) ? MipsISD::CMovFP_F :
|
|
MipsISD::CMovFP_T;
|
|
|
|
SDValue FCC = N->getOperand(1), Glue = N->getOperand(3);
|
|
return DAG.getNode(Opc, SDLoc(N), ValueIfFalse.getValueType(),
|
|
ValueIfFalse, FCC, ValueIfTrue, Glue);
|
|
}
|
|
|
|
static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const MipsSubtarget &Subtarget) {
|
|
if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
|
|
return SDValue();
|
|
|
|
SDValue FirstOperand = N->getOperand(0);
|
|
unsigned FirstOperandOpc = FirstOperand.getOpcode();
|
|
SDValue Mask = N->getOperand(1);
|
|
EVT ValTy = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
|
|
uint64_t Pos = 0, SMPos, SMSize;
|
|
ConstantSDNode *CN;
|
|
SDValue NewOperand;
|
|
unsigned Opc;
|
|
|
|
// Op's second operand must be a shifted mask.
|
|
if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
|
|
!isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
|
|
return SDValue();
|
|
|
|
if (FirstOperandOpc == ISD::SRA || FirstOperandOpc == ISD::SRL) {
|
|
// Pattern match EXT.
|
|
// $dst = and ((sra or srl) $src , pos), (2**size - 1)
|
|
// => ext $dst, $src, pos, size
|
|
|
|
// The second operand of the shift must be an immediate.
|
|
if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))))
|
|
return SDValue();
|
|
|
|
Pos = CN->getZExtValue();
|
|
|
|
// Return if the shifted mask does not start at bit 0 or the sum of its size
|
|
// and Pos exceeds the word's size.
|
|
if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
|
|
return SDValue();
|
|
|
|
Opc = MipsISD::Ext;
|
|
NewOperand = FirstOperand.getOperand(0);
|
|
} else if (FirstOperandOpc == ISD::SHL && Subtarget.hasCnMips()) {
|
|
// Pattern match CINS.
|
|
// $dst = and (shl $src , pos), mask
|
|
// => cins $dst, $src, pos, size
|
|
// mask is a shifted mask with consecutive 1's, pos = shift amount,
|
|
// size = population count.
|
|
|
|
// The second operand of the shift must be an immediate.
|
|
if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))))
|
|
return SDValue();
|
|
|
|
Pos = CN->getZExtValue();
|
|
|
|
if (SMPos != Pos || Pos >= ValTy.getSizeInBits() || SMSize >= 32 ||
|
|
Pos + SMSize > ValTy.getSizeInBits())
|
|
return SDValue();
|
|
|
|
NewOperand = FirstOperand.getOperand(0);
|
|
// SMSize is 'location' (position) in this case, not size.
|
|
SMSize--;
|
|
Opc = MipsISD::CIns;
|
|
} else {
|
|
// Pattern match EXT.
|
|
// $dst = and $src, (2**size - 1) , if size > 16
|
|
// => ext $dst, $src, pos, size , pos = 0
|
|
|
|
// If the mask is <= 0xffff, andi can be used instead.
|
|
if (CN->getZExtValue() <= 0xffff)
|
|
return SDValue();
|
|
|
|
// Return if the mask doesn't start at position 0.
|
|
if (SMPos)
|
|
return SDValue();
|
|
|
|
Opc = MipsISD::Ext;
|
|
NewOperand = FirstOperand;
|
|
}
|
|
return DAG.getNode(Opc, DL, ValTy, NewOperand,
|
|
DAG.getConstant(Pos, DL, MVT::i32),
|
|
DAG.getConstant(SMSize, DL, MVT::i32));
|
|
}
|
|
|
|
static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const MipsSubtarget &Subtarget) {
|
|
// Pattern match INS.
|
|
// $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
|
|
// where mask1 = (2**size - 1) << pos, mask0 = ~mask1
|
|
// => ins $dst, $src, size, pos, $src1
|
|
if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
|
|
return SDValue();
|
|
|
|
SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
|
|
uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
|
|
ConstantSDNode *CN, *CN1;
|
|
|
|
// See if Op's first operand matches (and $src1 , mask0).
|
|
if (And0.getOpcode() != ISD::AND)
|
|
return SDValue();
|
|
|
|
if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
|
|
!isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
|
|
return SDValue();
|
|
|
|
// See if Op's second operand matches (and (shl $src, pos), mask1).
|
|
if (And1.getOpcode() == ISD::AND &&
|
|
And1.getOperand(0).getOpcode() == ISD::SHL) {
|
|
|
|
if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
|
|
!isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
|
|
return SDValue();
|
|
|
|
// The shift masks must have the same position and size.
|
|
if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
|
|
return SDValue();
|
|
|
|
SDValue Shl = And1.getOperand(0);
|
|
|
|
if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
|
|
return SDValue();
|
|
|
|
unsigned Shamt = CN->getZExtValue();
|
|
|
|
// Return if the shift amount and the first bit position of mask are not the
|
|
// same.
|
|
EVT ValTy = N->getValueType(0);
|
|
if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
|
|
return SDValue();
|
|
|
|
SDLoc DL(N);
|
|
return DAG.getNode(MipsISD::Ins, DL, ValTy, Shl.getOperand(0),
|
|
DAG.getConstant(SMPos0, DL, MVT::i32),
|
|
DAG.getConstant(SMSize0, DL, MVT::i32),
|
|
And0.getOperand(0));
|
|
} else {
|
|
// Pattern match DINS.
|
|
// $dst = or (and $src, mask0), mask1
|
|
// where mask0 = ((1 << SMSize0) -1) << SMPos0
|
|
// => dins $dst, $src, pos, size
|
|
if (~CN->getSExtValue() == ((((int64_t)1 << SMSize0) - 1) << SMPos0) &&
|
|
((SMSize0 + SMPos0 <= 64 && Subtarget.hasMips64r2()) ||
|
|
(SMSize0 + SMPos0 <= 32))) {
|
|
// Check if AND instruction has constant as argument
|
|
bool isConstCase = And1.getOpcode() != ISD::AND;
|
|
if (And1.getOpcode() == ISD::AND) {
|
|
if (!(CN1 = dyn_cast<ConstantSDNode>(And1->getOperand(1))))
|
|
return SDValue();
|
|
} else {
|
|
if (!(CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1))))
|
|
return SDValue();
|
|
}
|
|
// Don't generate INS if constant OR operand doesn't fit into bits
|
|
// cleared by constant AND operand.
|
|
if (CN->getSExtValue() & CN1->getSExtValue())
|
|
return SDValue();
|
|
|
|
SDLoc DL(N);
|
|
EVT ValTy = N->getOperand(0)->getValueType(0);
|
|
SDValue Const1;
|
|
SDValue SrlX;
|
|
if (!isConstCase) {
|
|
Const1 = DAG.getConstant(SMPos0, DL, MVT::i32);
|
|
SrlX = DAG.getNode(ISD::SRL, DL, And1->getValueType(0), And1, Const1);
|
|
}
|
|
return DAG.getNode(
|
|
MipsISD::Ins, DL, N->getValueType(0),
|
|
isConstCase
|
|
? DAG.getConstant(CN1->getSExtValue() >> SMPos0, DL, ValTy)
|
|
: SrlX,
|
|
DAG.getConstant(SMPos0, DL, MVT::i32),
|
|
DAG.getConstant(ValTy.getSizeInBits() / 8 < 8 ? SMSize0 & 31
|
|
: SMSize0,
|
|
DL, MVT::i32),
|
|
And0->getOperand(0));
|
|
|
|
}
|
|
return SDValue();
|
|
}
|
|
}
|
|
|
|
static SDValue performMADD_MSUBCombine(SDNode *ROOTNode, SelectionDAG &CurDAG,
|
|
const MipsSubtarget &Subtarget) {
|
|
// ROOTNode must have a multiplication as an operand for the match to be
|
|
// successful.
|
|
if (ROOTNode->getOperand(0).getOpcode() != ISD::MUL &&
|
|
ROOTNode->getOperand(1).getOpcode() != ISD::MUL)
|
|
return SDValue();
|
|
|
|
// We don't handle vector types here.
|
|
if (ROOTNode->getValueType(0).isVector())
|
|
return SDValue();
|
|
|
|
// For MIPS64, madd / msub instructions are inefficent to use with 64 bit
|
|
// arithmetic. E.g.
|
|
// (add (mul a b) c) =>
|
|
// let res = (madd (mthi (drotr c 32))x(mtlo c) a b) in
|
|
// MIPS64: (or (dsll (mfhi res) 32) (dsrl (dsll (mflo res) 32) 32)
|
|
// or
|
|
// MIPS64R2: (dins (mflo res) (mfhi res) 32 32)
|
|
//
|
|
// The overhead of setting up the Hi/Lo registers and reassembling the
|
|
// result makes this a dubious optimzation for MIPS64. The core of the
|
|
// problem is that Hi/Lo contain the upper and lower 32 bits of the
|
|
// operand and result.
|
|
//
|
|
// It requires a chain of 4 add/mul for MIPS64R2 to get better code
|
|
// density than doing it naively, 5 for MIPS64. Additionally, using
|
|
// madd/msub on MIPS64 requires the operands actually be 32 bit sign
|
|
// extended operands, not true 64 bit values.
|
|
//
|
|
// FIXME: For the moment, disable this completely for MIPS64.
|
|
if (Subtarget.hasMips64())
|
|
return SDValue();
|
|
|
|
SDValue Mult = ROOTNode->getOperand(0).getOpcode() == ISD::MUL
|
|
? ROOTNode->getOperand(0)
|
|
: ROOTNode->getOperand(1);
|
|
|
|
SDValue AddOperand = ROOTNode->getOperand(0).getOpcode() == ISD::MUL
|
|
? ROOTNode->getOperand(1)
|
|
: ROOTNode->getOperand(0);
|
|
|
|
// Transform this to a MADD only if the user of this node is the add.
|
|
// If there are other users of the mul, this function returns here.
|
|
if (!Mult.hasOneUse())
|
|
return SDValue();
|
|
|
|
// maddu and madd are unusual instructions in that on MIPS64 bits 63..31
|
|
// must be in canonical form, i.e. sign extended. For MIPS32, the operands
|
|
// of the multiply must have 32 or more sign bits, otherwise we cannot
|
|
// perform this optimization. We have to check this here as we're performing
|
|
// this optimization pre-legalization.
|
|
SDValue MultLHS = Mult->getOperand(0);
|
|
SDValue MultRHS = Mult->getOperand(1);
|
|
|
|
bool IsSigned = MultLHS->getOpcode() == ISD::SIGN_EXTEND &&
|
|
MultRHS->getOpcode() == ISD::SIGN_EXTEND;
|
|
bool IsUnsigned = MultLHS->getOpcode() == ISD::ZERO_EXTEND &&
|
|
MultRHS->getOpcode() == ISD::ZERO_EXTEND;
|
|
|
|
if (!IsSigned && !IsUnsigned)
|
|
return SDValue();
|
|
|
|
// Initialize accumulator.
|
|
SDLoc DL(ROOTNode);
|
|
SDValue TopHalf;
|
|
SDValue BottomHalf;
|
|
BottomHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand,
|
|
CurDAG.getIntPtrConstant(0, DL));
|
|
|
|
TopHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand,
|
|
CurDAG.getIntPtrConstant(1, DL));
|
|
SDValue ACCIn = CurDAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
|
|
BottomHalf,
|
|
TopHalf);
|
|
|
|
// Create MipsMAdd(u) / MipsMSub(u) node.
|
|
bool IsAdd = ROOTNode->getOpcode() == ISD::ADD;
|
|
unsigned Opcode = IsAdd ? (IsUnsigned ? MipsISD::MAddu : MipsISD::MAdd)
|
|
: (IsUnsigned ? MipsISD::MSubu : MipsISD::MSub);
|
|
SDValue MAddOps[3] = {
|
|
CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(0)),
|
|
CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(1)), ACCIn};
|
|
EVT VTs[2] = {MVT::i32, MVT::i32};
|
|
SDValue MAdd = CurDAG.getNode(Opcode, DL, VTs, MAddOps);
|
|
|
|
SDValue ResLo = CurDAG.getNode(MipsISD::MFLO, DL, MVT::i32, MAdd);
|
|
SDValue ResHi = CurDAG.getNode(MipsISD::MFHI, DL, MVT::i32, MAdd);
|
|
SDValue Combined =
|
|
CurDAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, ResLo, ResHi);
|
|
return Combined;
|
|
}
|
|
|
|
static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const MipsSubtarget &Subtarget) {
|
|
// (sub v0 (mul v1, v2)) => (msub v1, v2, v0)
|
|
if (DCI.isBeforeLegalizeOps()) {
|
|
if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
|
|
!Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64)
|
|
return performMADD_MSUBCombine(N, DAG, Subtarget);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const MipsSubtarget &Subtarget) {
|
|
// (add v0 (mul v1, v2)) => (madd v1, v2, v0)
|
|
if (DCI.isBeforeLegalizeOps()) {
|
|
if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
|
|
!Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64)
|
|
return performMADD_MSUBCombine(N, DAG, Subtarget);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
|
|
SDValue Add = N->getOperand(1);
|
|
|
|
if (Add.getOpcode() != ISD::ADD)
|
|
return SDValue();
|
|
|
|
SDValue Lo = Add.getOperand(1);
|
|
|
|
if ((Lo.getOpcode() != MipsISD::Lo) ||
|
|
(Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
|
|
return SDValue();
|
|
|
|
EVT ValTy = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
|
|
SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
|
|
Add.getOperand(0));
|
|
return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
|
|
}
|
|
|
|
static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const MipsSubtarget &Subtarget) {
|
|
// Pattern match CINS.
|
|
// $dst = shl (and $src , imm), pos
|
|
// => cins $dst, $src, pos, size
|
|
|
|
if (DCI.isBeforeLegalizeOps() || !Subtarget.hasCnMips())
|
|
return SDValue();
|
|
|
|
SDValue FirstOperand = N->getOperand(0);
|
|
unsigned FirstOperandOpc = FirstOperand.getOpcode();
|
|
SDValue SecondOperand = N->getOperand(1);
|
|
EVT ValTy = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
|
|
uint64_t Pos = 0, SMPos, SMSize;
|
|
ConstantSDNode *CN;
|
|
SDValue NewOperand;
|
|
|
|
// The second operand of the shift must be an immediate.
|
|
if (!(CN = dyn_cast<ConstantSDNode>(SecondOperand)))
|
|
return SDValue();
|
|
|
|
Pos = CN->getZExtValue();
|
|
|
|
if (Pos >= ValTy.getSizeInBits())
|
|
return SDValue();
|
|
|
|
if (FirstOperandOpc != ISD::AND)
|
|
return SDValue();
|
|
|
|
// AND's second operand must be a shifted mask.
|
|
if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))) ||
|
|
!isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
|
|
return SDValue();
|
|
|
|
// Return if the shifted mask does not start at bit 0 or the sum of its size
|
|
// and Pos exceeds the word's size.
|
|
if (SMPos != 0 || SMSize > 32 || Pos + SMSize > ValTy.getSizeInBits())
|
|
return SDValue();
|
|
|
|
NewOperand = FirstOperand.getOperand(0);
|
|
// SMSize is 'location' (position) in this case, not size.
|
|
SMSize--;
|
|
|
|
return DAG.getNode(MipsISD::CIns, DL, ValTy, NewOperand,
|
|
DAG.getConstant(Pos, DL, MVT::i32),
|
|
DAG.getConstant(SMSize, DL, MVT::i32));
|
|
}
|
|
|
|
SDValue MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
|
|
const {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
unsigned Opc = N->getOpcode();
|
|
|
|
switch (Opc) {
|
|
default: break;
|
|
case ISD::SDIVREM:
|
|
case ISD::UDIVREM:
|
|
return performDivRemCombine(N, DAG, DCI, Subtarget);
|
|
case ISD::SELECT:
|
|
return performSELECTCombine(N, DAG, DCI, Subtarget);
|
|
case MipsISD::CMovFP_F:
|
|
case MipsISD::CMovFP_T:
|
|
return performCMovFPCombine(N, DAG, DCI, Subtarget);
|
|
case ISD::AND:
|
|
return performANDCombine(N, DAG, DCI, Subtarget);
|
|
case ISD::OR:
|
|
return performORCombine(N, DAG, DCI, Subtarget);
|
|
case ISD::ADD:
|
|
return performADDCombine(N, DAG, DCI, Subtarget);
|
|
case ISD::SHL:
|
|
return performSHLCombine(N, DAG, DCI, Subtarget);
|
|
case ISD::SUB:
|
|
return performSUBCombine(N, DAG, DCI, Subtarget);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
bool MipsTargetLowering::isCheapToSpeculateCttz() const {
|
|
return Subtarget.hasMips32();
|
|
}
|
|
|
|
bool MipsTargetLowering::isCheapToSpeculateCtlz() const {
|
|
return Subtarget.hasMips32();
|
|
}
|
|
|
|
bool MipsTargetLowering::shouldFoldShiftPairToMask(const SDNode *N,
|
|
CombineLevel Level) const {
|
|
if (N->getOperand(0).getValueType().isVector())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
void
|
|
MipsTargetLowering::LowerOperationWrapper(SDNode *N,
|
|
SmallVectorImpl<SDValue> &Results,
|
|
SelectionDAG &DAG) const {
|
|
SDValue Res = LowerOperation(SDValue(N, 0), DAG);
|
|
|
|
for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
|
|
Results.push_back(Res.getValue(I));
|
|
}
|
|
|
|
void
|
|
MipsTargetLowering::ReplaceNodeResults(SDNode *N,
|
|
SmallVectorImpl<SDValue> &Results,
|
|
SelectionDAG &DAG) const {
|
|
return LowerOperationWrapper(N, Results, DAG);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
LowerOperation(SDValue Op, SelectionDAG &DAG) const
|
|
{
|
|
switch (Op.getOpcode())
|
|
{
|
|
case ISD::BRCOND: return lowerBRCOND(Op, DAG);
|
|
case ISD::ConstantPool: return lowerConstantPool(Op, DAG);
|
|
case ISD::GlobalAddress: return lowerGlobalAddress(Op, DAG);
|
|
case ISD::BlockAddress: return lowerBlockAddress(Op, DAG);
|
|
case ISD::GlobalTLSAddress: return lowerGlobalTLSAddress(Op, DAG);
|
|
case ISD::JumpTable: return lowerJumpTable(Op, DAG);
|
|
case ISD::SELECT: return lowerSELECT(Op, DAG);
|
|
case ISD::SETCC: return lowerSETCC(Op, DAG);
|
|
case ISD::VASTART: return lowerVASTART(Op, DAG);
|
|
case ISD::VAARG: return lowerVAARG(Op, DAG);
|
|
case ISD::FCOPYSIGN: return lowerFCOPYSIGN(Op, DAG);
|
|
case ISD::FABS: return lowerFABS(Op, DAG);
|
|
case ISD::FRAMEADDR: return lowerFRAMEADDR(Op, DAG);
|
|
case ISD::RETURNADDR: return lowerRETURNADDR(Op, DAG);
|
|
case ISD::EH_RETURN: return lowerEH_RETURN(Op, DAG);
|
|
case ISD::ATOMIC_FENCE: return lowerATOMIC_FENCE(Op, DAG);
|
|
case ISD::SHL_PARTS: return lowerShiftLeftParts(Op, DAG);
|
|
case ISD::SRA_PARTS: return lowerShiftRightParts(Op, DAG, true);
|
|
case ISD::SRL_PARTS: return lowerShiftRightParts(Op, DAG, false);
|
|
case ISD::LOAD: return lowerLOAD(Op, DAG);
|
|
case ISD::STORE: return lowerSTORE(Op, DAG);
|
|
case ISD::EH_DWARF_CFA: return lowerEH_DWARF_CFA(Op, DAG);
|
|
case ISD::FP_TO_SINT: return lowerFP_TO_SINT(Op, DAG);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Lower helper functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// addLiveIn - This helper function adds the specified physical register to the
|
|
// MachineFunction as a live in value. It also creates a corresponding
|
|
// virtual register for it.
|
|
static unsigned
|
|
addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
|
|
{
|
|
unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
|
|
MF.getRegInfo().addLiveIn(PReg, VReg);
|
|
return VReg;
|
|
}
|
|
|
|
static MachineBasicBlock *insertDivByZeroTrap(MachineInstr &MI,
|
|
MachineBasicBlock &MBB,
|
|
const TargetInstrInfo &TII,
|
|
bool Is64Bit, bool IsMicroMips) {
|
|
if (NoZeroDivCheck)
|
|
return &MBB;
|
|
|
|
// Insert instruction "teq $divisor_reg, $zero, 7".
|
|
MachineBasicBlock::iterator I(MI);
|
|
MachineInstrBuilder MIB;
|
|
MachineOperand &Divisor = MI.getOperand(2);
|
|
MIB = BuildMI(MBB, std::next(I), MI.getDebugLoc(),
|
|
TII.get(IsMicroMips ? Mips::TEQ_MM : Mips::TEQ))
|
|
.addReg(Divisor.getReg(), getKillRegState(Divisor.isKill()))
|
|
.addReg(Mips::ZERO)
|
|
.addImm(7);
|
|
|
|
// Use the 32-bit sub-register if this is a 64-bit division.
|
|
if (Is64Bit)
|
|
MIB->getOperand(0).setSubReg(Mips::sub_32);
|
|
|
|
// Clear Divisor's kill flag.
|
|
Divisor.setIsKill(false);
|
|
|
|
// We would normally delete the original instruction here but in this case
|
|
// we only needed to inject an additional instruction rather than replace it.
|
|
|
|
return &MBB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unexpected instr type to insert");
|
|
case Mips::ATOMIC_LOAD_ADD_I8:
|
|
return emitAtomicBinaryPartword(MI, BB, 1);
|
|
case Mips::ATOMIC_LOAD_ADD_I16:
|
|
return emitAtomicBinaryPartword(MI, BB, 2);
|
|
case Mips::ATOMIC_LOAD_ADD_I32:
|
|
return emitAtomicBinary(MI, BB);
|
|
case Mips::ATOMIC_LOAD_ADD_I64:
|
|
return emitAtomicBinary(MI, BB);
|
|
|
|
case Mips::ATOMIC_LOAD_AND_I8:
|
|
return emitAtomicBinaryPartword(MI, BB, 1);
|
|
case Mips::ATOMIC_LOAD_AND_I16:
|
|
return emitAtomicBinaryPartword(MI, BB, 2);
|
|
case Mips::ATOMIC_LOAD_AND_I32:
|
|
return emitAtomicBinary(MI, BB);
|
|
case Mips::ATOMIC_LOAD_AND_I64:
|
|
return emitAtomicBinary(MI, BB);
|
|
|
|
case Mips::ATOMIC_LOAD_OR_I8:
|
|
return emitAtomicBinaryPartword(MI, BB, 1);
|
|
case Mips::ATOMIC_LOAD_OR_I16:
|
|
return emitAtomicBinaryPartword(MI, BB, 2);
|
|
case Mips::ATOMIC_LOAD_OR_I32:
|
|
return emitAtomicBinary(MI, BB);
|
|
case Mips::ATOMIC_LOAD_OR_I64:
|
|
return emitAtomicBinary(MI, BB);
|
|
|
|
case Mips::ATOMIC_LOAD_XOR_I8:
|
|
return emitAtomicBinaryPartword(MI, BB, 1);
|
|
case Mips::ATOMIC_LOAD_XOR_I16:
|
|
return emitAtomicBinaryPartword(MI, BB, 2);
|
|
case Mips::ATOMIC_LOAD_XOR_I32:
|
|
return emitAtomicBinary(MI, BB);
|
|
case Mips::ATOMIC_LOAD_XOR_I64:
|
|
return emitAtomicBinary(MI, BB);
|
|
|
|
case Mips::ATOMIC_LOAD_NAND_I8:
|
|
return emitAtomicBinaryPartword(MI, BB, 1);
|
|
case Mips::ATOMIC_LOAD_NAND_I16:
|
|
return emitAtomicBinaryPartword(MI, BB, 2);
|
|
case Mips::ATOMIC_LOAD_NAND_I32:
|
|
return emitAtomicBinary(MI, BB);
|
|
case Mips::ATOMIC_LOAD_NAND_I64:
|
|
return emitAtomicBinary(MI, BB);
|
|
|
|
case Mips::ATOMIC_LOAD_SUB_I8:
|
|
return emitAtomicBinaryPartword(MI, BB, 1);
|
|
case Mips::ATOMIC_LOAD_SUB_I16:
|
|
return emitAtomicBinaryPartword(MI, BB, 2);
|
|
case Mips::ATOMIC_LOAD_SUB_I32:
|
|
return emitAtomicBinary(MI, BB);
|
|
case Mips::ATOMIC_LOAD_SUB_I64:
|
|
return emitAtomicBinary(MI, BB);
|
|
|
|
case Mips::ATOMIC_SWAP_I8:
|
|
return emitAtomicBinaryPartword(MI, BB, 1);
|
|
case Mips::ATOMIC_SWAP_I16:
|
|
return emitAtomicBinaryPartword(MI, BB, 2);
|
|
case Mips::ATOMIC_SWAP_I32:
|
|
return emitAtomicBinary(MI, BB);
|
|
case Mips::ATOMIC_SWAP_I64:
|
|
return emitAtomicBinary(MI, BB);
|
|
|
|
case Mips::ATOMIC_CMP_SWAP_I8:
|
|
return emitAtomicCmpSwapPartword(MI, BB, 1);
|
|
case Mips::ATOMIC_CMP_SWAP_I16:
|
|
return emitAtomicCmpSwapPartword(MI, BB, 2);
|
|
case Mips::ATOMIC_CMP_SWAP_I32:
|
|
return emitAtomicCmpSwap(MI, BB);
|
|
case Mips::ATOMIC_CMP_SWAP_I64:
|
|
return emitAtomicCmpSwap(MI, BB);
|
|
case Mips::PseudoSDIV:
|
|
case Mips::PseudoUDIV:
|
|
case Mips::DIV:
|
|
case Mips::DIVU:
|
|
case Mips::MOD:
|
|
case Mips::MODU:
|
|
return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false,
|
|
false);
|
|
case Mips::SDIV_MM_Pseudo:
|
|
case Mips::UDIV_MM_Pseudo:
|
|
case Mips::SDIV_MM:
|
|
case Mips::UDIV_MM:
|
|
case Mips::DIV_MMR6:
|
|
case Mips::DIVU_MMR6:
|
|
case Mips::MOD_MMR6:
|
|
case Mips::MODU_MMR6:
|
|
return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false, true);
|
|
case Mips::PseudoDSDIV:
|
|
case Mips::PseudoDUDIV:
|
|
case Mips::DDIV:
|
|
case Mips::DDIVU:
|
|
case Mips::DMOD:
|
|
case Mips::DMODU:
|
|
return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), true, false);
|
|
|
|
case Mips::PseudoSELECT_I:
|
|
case Mips::PseudoSELECT_I64:
|
|
case Mips::PseudoSELECT_S:
|
|
case Mips::PseudoSELECT_D32:
|
|
case Mips::PseudoSELECT_D64:
|
|
return emitPseudoSELECT(MI, BB, false, Mips::BNE);
|
|
case Mips::PseudoSELECTFP_F_I:
|
|
case Mips::PseudoSELECTFP_F_I64:
|
|
case Mips::PseudoSELECTFP_F_S:
|
|
case Mips::PseudoSELECTFP_F_D32:
|
|
case Mips::PseudoSELECTFP_F_D64:
|
|
return emitPseudoSELECT(MI, BB, true, Mips::BC1F);
|
|
case Mips::PseudoSELECTFP_T_I:
|
|
case Mips::PseudoSELECTFP_T_I64:
|
|
case Mips::PseudoSELECTFP_T_S:
|
|
case Mips::PseudoSELECTFP_T_D32:
|
|
case Mips::PseudoSELECTFP_T_D64:
|
|
return emitPseudoSELECT(MI, BB, true, Mips::BC1T);
|
|
case Mips::PseudoD_SELECT_I:
|
|
case Mips::PseudoD_SELECT_I64:
|
|
return emitPseudoD_SELECT(MI, BB);
|
|
}
|
|
}
|
|
|
|
// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
|
|
// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
|
|
MachineBasicBlock *
|
|
MipsTargetLowering::emitAtomicBinary(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const {
|
|
|
|
MachineFunction *MF = BB->getParent();
|
|
MachineRegisterInfo &RegInfo = MF->getRegInfo();
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
|
|
unsigned AtomicOp;
|
|
switch (MI.getOpcode()) {
|
|
case Mips::ATOMIC_LOAD_ADD_I32:
|
|
AtomicOp = Mips::ATOMIC_LOAD_ADD_I32_POSTRA;
|
|
break;
|
|
case Mips::ATOMIC_LOAD_SUB_I32:
|
|
AtomicOp = Mips::ATOMIC_LOAD_SUB_I32_POSTRA;
|
|
break;
|
|
case Mips::ATOMIC_LOAD_AND_I32:
|
|
AtomicOp = Mips::ATOMIC_LOAD_AND_I32_POSTRA;
|
|
break;
|
|
case Mips::ATOMIC_LOAD_OR_I32:
|
|
AtomicOp = Mips::ATOMIC_LOAD_OR_I32_POSTRA;
|
|
break;
|
|
case Mips::ATOMIC_LOAD_XOR_I32:
|
|
AtomicOp = Mips::ATOMIC_LOAD_XOR_I32_POSTRA;
|
|
break;
|
|
case Mips::ATOMIC_LOAD_NAND_I32:
|
|
AtomicOp = Mips::ATOMIC_LOAD_NAND_I32_POSTRA;
|
|
break;
|
|
case Mips::ATOMIC_SWAP_I32:
|
|
AtomicOp = Mips::ATOMIC_SWAP_I32_POSTRA;
|
|
break;
|
|
case Mips::ATOMIC_LOAD_ADD_I64:
|
|
AtomicOp = Mips::ATOMIC_LOAD_ADD_I64_POSTRA;
|
|
break;
|
|
case Mips::ATOMIC_LOAD_SUB_I64:
|
|
AtomicOp = Mips::ATOMIC_LOAD_SUB_I64_POSTRA;
|
|
break;
|
|
case Mips::ATOMIC_LOAD_AND_I64:
|
|
AtomicOp = Mips::ATOMIC_LOAD_AND_I64_POSTRA;
|
|
break;
|
|
case Mips::ATOMIC_LOAD_OR_I64:
|
|
AtomicOp = Mips::ATOMIC_LOAD_OR_I64_POSTRA;
|
|
break;
|
|
case Mips::ATOMIC_LOAD_XOR_I64:
|
|
AtomicOp = Mips::ATOMIC_LOAD_XOR_I64_POSTRA;
|
|
break;
|
|
case Mips::ATOMIC_LOAD_NAND_I64:
|
|
AtomicOp = Mips::ATOMIC_LOAD_NAND_I64_POSTRA;
|
|
break;
|
|
case Mips::ATOMIC_SWAP_I64:
|
|
AtomicOp = Mips::ATOMIC_SWAP_I64_POSTRA;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unknown pseudo atomic for replacement!");
|
|
}
|
|
|
|
unsigned OldVal = MI.getOperand(0).getReg();
|
|
unsigned Ptr = MI.getOperand(1).getReg();
|
|
unsigned Incr = MI.getOperand(2).getReg();
|
|
unsigned Scratch = RegInfo.createVirtualRegister(RegInfo.getRegClass(OldVal));
|
|
|
|
MachineBasicBlock::iterator II(MI);
|
|
|
|
// The scratch registers here with the EarlyClobber | Define | Implicit
|
|
// flags is used to persuade the register allocator and the machine
|
|
// verifier to accept the usage of this register. This has to be a real
|
|
// register which has an UNDEF value but is dead after the instruction which
|
|
// is unique among the registers chosen for the instruction.
|
|
|
|
// The EarlyClobber flag has the semantic properties that the operand it is
|
|
// attached to is clobbered before the rest of the inputs are read. Hence it
|
|
// must be unique among the operands to the instruction.
|
|
// The Define flag is needed to coerce the machine verifier that an Undef
|
|
// value isn't a problem.
|
|
// The Dead flag is needed as the value in scratch isn't used by any other
|
|
// instruction. Kill isn't used as Dead is more precise.
|
|
// The implicit flag is here due to the interaction between the other flags
|
|
// and the machine verifier.
|
|
|
|
// For correctness purpose, a new pseudo is introduced here. We need this
|
|
// new pseudo, so that FastRegisterAllocator does not see an ll/sc sequence
|
|
// that is spread over >1 basic blocks. A register allocator which
|
|
// introduces (or any codegen infact) a store, can violate the expectations
|
|
// of the hardware.
|
|
//
|
|
// An atomic read-modify-write sequence starts with a linked load
|
|
// instruction and ends with a store conditional instruction. The atomic
|
|
// read-modify-write sequence fails if any of the following conditions
|
|
// occur between the execution of ll and sc:
|
|
// * A coherent store is completed by another process or coherent I/O
|
|
// module into the block of synchronizable physical memory containing
|
|
// the word. The size and alignment of the block is
|
|
// implementation-dependent.
|
|
// * A coherent store is executed between an LL and SC sequence on the
|
|
// same processor to the block of synchornizable physical memory
|
|
// containing the word.
|
|
//
|
|
|
|
unsigned PtrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Ptr));
|
|
unsigned IncrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Incr));
|
|
|
|
BuildMI(*BB, II, DL, TII->get(Mips::COPY), IncrCopy).addReg(Incr);
|
|
BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr);
|
|
|
|
BuildMI(*BB, II, DL, TII->get(AtomicOp))
|
|
.addReg(OldVal, RegState::Define | RegState::EarlyClobber)
|
|
.addReg(PtrCopy)
|
|
.addReg(IncrCopy)
|
|
.addReg(Scratch, RegState::Define | RegState::EarlyClobber |
|
|
RegState::Implicit | RegState::Dead);
|
|
|
|
MI.eraseFromParent();
|
|
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *MipsTargetLowering::emitSignExtendToI32InReg(
|
|
MachineInstr &MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg,
|
|
unsigned SrcReg) const {
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
const DebugLoc &DL = MI.getDebugLoc();
|
|
|
|
if (Subtarget.hasMips32r2() && Size == 1) {
|
|
BuildMI(BB, DL, TII->get(Mips::SEB), DstReg).addReg(SrcReg);
|
|
return BB;
|
|
}
|
|
|
|
if (Subtarget.hasMips32r2() && Size == 2) {
|
|
BuildMI(BB, DL, TII->get(Mips::SEH), DstReg).addReg(SrcReg);
|
|
return BB;
|
|
}
|
|
|
|
MachineFunction *MF = BB->getParent();
|
|
MachineRegisterInfo &RegInfo = MF->getRegInfo();
|
|
const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
|
|
unsigned ScrReg = RegInfo.createVirtualRegister(RC);
|
|
|
|
assert(Size < 32);
|
|
int64_t ShiftImm = 32 - (Size * 8);
|
|
|
|
BuildMI(BB, DL, TII->get(Mips::SLL), ScrReg).addReg(SrcReg).addImm(ShiftImm);
|
|
BuildMI(BB, DL, TII->get(Mips::SRA), DstReg).addReg(ScrReg).addImm(ShiftImm);
|
|
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword(
|
|
MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const {
|
|
assert((Size == 1 || Size == 2) &&
|
|
"Unsupported size for EmitAtomicBinaryPartial.");
|
|
|
|
MachineFunction *MF = BB->getParent();
|
|
MachineRegisterInfo &RegInfo = MF->getRegInfo();
|
|
const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
|
|
const bool ArePtrs64bit = ABI.ArePtrs64bit();
|
|
const TargetRegisterClass *RCp =
|
|
getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32);
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
|
|
unsigned Dest = MI.getOperand(0).getReg();
|
|
unsigned Ptr = MI.getOperand(1).getReg();
|
|
unsigned Incr = MI.getOperand(2).getReg();
|
|
|
|
unsigned AlignedAddr = RegInfo.createVirtualRegister(RCp);
|
|
unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
|
|
unsigned Mask = RegInfo.createVirtualRegister(RC);
|
|
unsigned Mask2 = RegInfo.createVirtualRegister(RC);
|
|
unsigned Incr2 = RegInfo.createVirtualRegister(RC);
|
|
unsigned MaskLSB2 = RegInfo.createVirtualRegister(RCp);
|
|
unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
|
|
unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
|
|
unsigned Scratch = RegInfo.createVirtualRegister(RC);
|
|
unsigned Scratch2 = RegInfo.createVirtualRegister(RC);
|
|
unsigned Scratch3 = RegInfo.createVirtualRegister(RC);
|
|
|
|
unsigned AtomicOp = 0;
|
|
switch (MI.getOpcode()) {
|
|
case Mips::ATOMIC_LOAD_NAND_I8:
|
|
AtomicOp = Mips::ATOMIC_LOAD_NAND_I8_POSTRA;
|
|
break;
|
|
case Mips::ATOMIC_LOAD_NAND_I16:
|
|
AtomicOp = Mips::ATOMIC_LOAD_NAND_I16_POSTRA;
|
|
break;
|
|
case Mips::ATOMIC_SWAP_I8:
|
|
AtomicOp = Mips::ATOMIC_SWAP_I8_POSTRA;
|
|
break;
|
|
case Mips::ATOMIC_SWAP_I16:
|
|
AtomicOp = Mips::ATOMIC_SWAP_I16_POSTRA;
|
|
break;
|
|
case Mips::ATOMIC_LOAD_ADD_I8:
|
|
AtomicOp = Mips::ATOMIC_LOAD_ADD_I8_POSTRA;
|
|
break;
|
|
case Mips::ATOMIC_LOAD_ADD_I16:
|
|
AtomicOp = Mips::ATOMIC_LOAD_ADD_I16_POSTRA;
|
|
break;
|
|
case Mips::ATOMIC_LOAD_SUB_I8:
|
|
AtomicOp = Mips::ATOMIC_LOAD_SUB_I8_POSTRA;
|
|
break;
|
|
case Mips::ATOMIC_LOAD_SUB_I16:
|
|
AtomicOp = Mips::ATOMIC_LOAD_SUB_I16_POSTRA;
|
|
break;
|
|
case Mips::ATOMIC_LOAD_AND_I8:
|
|
AtomicOp = Mips::ATOMIC_LOAD_AND_I8_POSTRA;
|
|
break;
|
|
case Mips::ATOMIC_LOAD_AND_I16:
|
|
AtomicOp = Mips::ATOMIC_LOAD_AND_I16_POSTRA;
|
|
break;
|
|
case Mips::ATOMIC_LOAD_OR_I8:
|
|
AtomicOp = Mips::ATOMIC_LOAD_OR_I8_POSTRA;
|
|
break;
|
|
case Mips::ATOMIC_LOAD_OR_I16:
|
|
AtomicOp = Mips::ATOMIC_LOAD_OR_I16_POSTRA;
|
|
break;
|
|
case Mips::ATOMIC_LOAD_XOR_I8:
|
|
AtomicOp = Mips::ATOMIC_LOAD_XOR_I8_POSTRA;
|
|
break;
|
|
case Mips::ATOMIC_LOAD_XOR_I16:
|
|
AtomicOp = Mips::ATOMIC_LOAD_XOR_I16_POSTRA;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unknown subword atomic pseudo for expansion!");
|
|
}
|
|
|
|
// insert new blocks after the current block
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineFunction::iterator It = ++BB->getIterator();
|
|
MF->insert(It, exitMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to exitMBB.
|
|
exitMBB->splice(exitMBB->begin(), BB,
|
|
std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
|
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
BB->addSuccessor(exitMBB, BranchProbability::getOne());
|
|
|
|
// thisMBB:
|
|
// addiu masklsb2,$0,-4 # 0xfffffffc
|
|
// and alignedaddr,ptr,masklsb2
|
|
// andi ptrlsb2,ptr,3
|
|
// sll shiftamt,ptrlsb2,3
|
|
// ori maskupper,$0,255 # 0xff
|
|
// sll mask,maskupper,shiftamt
|
|
// nor mask2,$0,mask
|
|
// sll incr2,incr,shiftamt
|
|
|
|
int64_t MaskImm = (Size == 1) ? 255 : 65535;
|
|
BuildMI(BB, DL, TII->get(ABI.GetPtrAddiuOp()), MaskLSB2)
|
|
.addReg(ABI.GetNullPtr()).addImm(-4);
|
|
BuildMI(BB, DL, TII->get(ABI.GetPtrAndOp()), AlignedAddr)
|
|
.addReg(Ptr).addReg(MaskLSB2);
|
|
BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2)
|
|
.addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3);
|
|
if (Subtarget.isLittle()) {
|
|
BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
|
|
} else {
|
|
unsigned Off = RegInfo.createVirtualRegister(RC);
|
|
BuildMI(BB, DL, TII->get(Mips::XORi), Off)
|
|
.addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
|
|
BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
|
|
}
|
|
BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
|
|
.addReg(Mips::ZERO).addImm(MaskImm);
|
|
BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
|
|
.addReg(MaskUpper).addReg(ShiftAmt);
|
|
BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
|
|
BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
|
|
|
|
|
|
// The purposes of the flags on the scratch registers is explained in
|
|
// emitAtomicBinary. In summary, we need a scratch register which is going to
|
|
// be undef, that is unique among registers chosen for the instruction.
|
|
|
|
BuildMI(BB, DL, TII->get(AtomicOp))
|
|
.addReg(Dest, RegState::Define | RegState::EarlyClobber)
|
|
.addReg(AlignedAddr)
|
|
.addReg(Incr2)
|
|
.addReg(Mask)
|
|
.addReg(Mask2)
|
|
.addReg(ShiftAmt)
|
|
.addReg(Scratch, RegState::EarlyClobber | RegState::Define |
|
|
RegState::Dead | RegState::Implicit)
|
|
.addReg(Scratch2, RegState::EarlyClobber | RegState::Define |
|
|
RegState::Dead | RegState::Implicit)
|
|
.addReg(Scratch3, RegState::EarlyClobber | RegState::Define |
|
|
RegState::Dead | RegState::Implicit);
|
|
|
|
MI.eraseFromParent(); // The instruction is gone now.
|
|
|
|
return exitMBB;
|
|
}
|
|
|
|
// Lower atomic compare and swap to a pseudo instruction, taking care to
|
|
// define a scratch register for the pseudo instruction's expansion. The
|
|
// instruction is expanded after the register allocator as to prevent
|
|
// the insertion of stores between the linked load and the store conditional.
|
|
|
|
MachineBasicBlock *
|
|
MipsTargetLowering::emitAtomicCmpSwap(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const {
|
|
|
|
assert((MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ||
|
|
MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I64) &&
|
|
"Unsupported atomic psseudo for EmitAtomicCmpSwap.");
|
|
|
|
const unsigned Size = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ? 4 : 8;
|
|
|
|
MachineFunction *MF = BB->getParent();
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
|
|
unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
|
|
? Mips::ATOMIC_CMP_SWAP_I32_POSTRA
|
|
: Mips::ATOMIC_CMP_SWAP_I64_POSTRA;
|
|
unsigned Dest = MI.getOperand(0).getReg();
|
|
unsigned Ptr = MI.getOperand(1).getReg();
|
|
unsigned OldVal = MI.getOperand(2).getReg();
|
|
unsigned NewVal = MI.getOperand(3).getReg();
|
|
|
|
unsigned Scratch = MRI.createVirtualRegister(RC);
|
|
MachineBasicBlock::iterator II(MI);
|
|
|
|
// We need to create copies of the various registers and kill them at the
|
|
// atomic pseudo. If the copies are not made, when the atomic is expanded
|
|
// after fast register allocation, the spills will end up outside of the
|
|
// blocks that their values are defined in, causing livein errors.
|
|
|
|
unsigned DestCopy = MRI.createVirtualRegister(MRI.getRegClass(Dest));
|
|
unsigned PtrCopy = MRI.createVirtualRegister(MRI.getRegClass(Ptr));
|
|
unsigned OldValCopy = MRI.createVirtualRegister(MRI.getRegClass(OldVal));
|
|
unsigned NewValCopy = MRI.createVirtualRegister(MRI.getRegClass(NewVal));
|
|
|
|
BuildMI(*BB, II, DL, TII->get(Mips::COPY), DestCopy).addReg(Dest);
|
|
BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr);
|
|
BuildMI(*BB, II, DL, TII->get(Mips::COPY), OldValCopy).addReg(OldVal);
|
|
BuildMI(*BB, II, DL, TII->get(Mips::COPY), NewValCopy).addReg(NewVal);
|
|
|
|
// The purposes of the flags on the scratch registers is explained in
|
|
// emitAtomicBinary. In summary, we need a scratch register which is going to
|
|
// be undef, that is unique among registers chosen for the instruction.
|
|
|
|
BuildMI(*BB, II, DL, TII->get(AtomicOp))
|
|
.addReg(Dest, RegState::Define | RegState::EarlyClobber)
|
|
.addReg(PtrCopy, RegState::Kill)
|
|
.addReg(OldValCopy, RegState::Kill)
|
|
.addReg(NewValCopy, RegState::Kill)
|
|
.addReg(Scratch, RegState::EarlyClobber | RegState::Define |
|
|
RegState::Dead | RegState::Implicit);
|
|
|
|
MI.eraseFromParent(); // The instruction is gone now.
|
|
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *MipsTargetLowering::emitAtomicCmpSwapPartword(
|
|
MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const {
|
|
assert((Size == 1 || Size == 2) &&
|
|
"Unsupported size for EmitAtomicCmpSwapPartial.");
|
|
|
|
MachineFunction *MF = BB->getParent();
|
|
MachineRegisterInfo &RegInfo = MF->getRegInfo();
|
|
const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
|
|
const bool ArePtrs64bit = ABI.ArePtrs64bit();
|
|
const TargetRegisterClass *RCp =
|
|
getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32);
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
|
|
unsigned Dest = MI.getOperand(0).getReg();
|
|
unsigned Ptr = MI.getOperand(1).getReg();
|
|
unsigned CmpVal = MI.getOperand(2).getReg();
|
|
unsigned NewVal = MI.getOperand(3).getReg();
|
|
|
|
unsigned AlignedAddr = RegInfo.createVirtualRegister(RCp);
|
|
unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
|
|
unsigned Mask = RegInfo.createVirtualRegister(RC);
|
|
unsigned Mask2 = RegInfo.createVirtualRegister(RC);
|
|
unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
|
|
unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
|
|
unsigned MaskLSB2 = RegInfo.createVirtualRegister(RCp);
|
|
unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
|
|
unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
|
|
unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
|
|
unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
|
|
unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I8
|
|
? Mips::ATOMIC_CMP_SWAP_I8_POSTRA
|
|
: Mips::ATOMIC_CMP_SWAP_I16_POSTRA;
|
|
|
|
// The scratch registers here with the EarlyClobber | Define | Dead | Implicit
|
|
// flags are used to coerce the register allocator and the machine verifier to
|
|
// accept the usage of these registers.
|
|
// The EarlyClobber flag has the semantic properties that the operand it is
|
|
// attached to is clobbered before the rest of the inputs are read. Hence it
|
|
// must be unique among the operands to the instruction.
|
|
// The Define flag is needed to coerce the machine verifier that an Undef
|
|
// value isn't a problem.
|
|
// The Dead flag is needed as the value in scratch isn't used by any other
|
|
// instruction. Kill isn't used as Dead is more precise.
|
|
unsigned Scratch = RegInfo.createVirtualRegister(RC);
|
|
unsigned Scratch2 = RegInfo.createVirtualRegister(RC);
|
|
|
|
// insert new blocks after the current block
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineFunction::iterator It = ++BB->getIterator();
|
|
MF->insert(It, exitMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to exitMBB.
|
|
exitMBB->splice(exitMBB->begin(), BB,
|
|
std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
|
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
BB->addSuccessor(exitMBB, BranchProbability::getOne());
|
|
|
|
// thisMBB:
|
|
// addiu masklsb2,$0,-4 # 0xfffffffc
|
|
// and alignedaddr,ptr,masklsb2
|
|
// andi ptrlsb2,ptr,3
|
|
// xori ptrlsb2,ptrlsb2,3 # Only for BE
|
|
// sll shiftamt,ptrlsb2,3
|
|
// ori maskupper,$0,255 # 0xff
|
|
// sll mask,maskupper,shiftamt
|
|
// nor mask2,$0,mask
|
|
// andi maskedcmpval,cmpval,255
|
|
// sll shiftedcmpval,maskedcmpval,shiftamt
|
|
// andi maskednewval,newval,255
|
|
// sll shiftednewval,maskednewval,shiftamt
|
|
int64_t MaskImm = (Size == 1) ? 255 : 65535;
|
|
BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::DADDiu : Mips::ADDiu), MaskLSB2)
|
|
.addReg(ABI.GetNullPtr()).addImm(-4);
|
|
BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::AND64 : Mips::AND), AlignedAddr)
|
|
.addReg(Ptr).addReg(MaskLSB2);
|
|
BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2)
|
|
.addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3);
|
|
if (Subtarget.isLittle()) {
|
|
BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
|
|
} else {
|
|
unsigned Off = RegInfo.createVirtualRegister(RC);
|
|
BuildMI(BB, DL, TII->get(Mips::XORi), Off)
|
|
.addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
|
|
BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
|
|
}
|
|
BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
|
|
.addReg(Mips::ZERO).addImm(MaskImm);
|
|
BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
|
|
.addReg(MaskUpper).addReg(ShiftAmt);
|
|
BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
|
|
BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
|
|
.addReg(CmpVal).addImm(MaskImm);
|
|
BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
|
|
.addReg(MaskedCmpVal).addReg(ShiftAmt);
|
|
BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
|
|
.addReg(NewVal).addImm(MaskImm);
|
|
BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
|
|
.addReg(MaskedNewVal).addReg(ShiftAmt);
|
|
|
|
// The purposes of the flags on the scratch registers are explained in
|
|
// emitAtomicBinary. In summary, we need a scratch register which is going to
|
|
// be undef, that is unique among the register chosen for the instruction.
|
|
|
|
BuildMI(BB, DL, TII->get(AtomicOp))
|
|
.addReg(Dest, RegState::Define | RegState::EarlyClobber)
|
|
.addReg(AlignedAddr)
|
|
.addReg(Mask)
|
|
.addReg(ShiftedCmpVal)
|
|
.addReg(Mask2)
|
|
.addReg(ShiftedNewVal)
|
|
.addReg(ShiftAmt)
|
|
.addReg(Scratch, RegState::EarlyClobber | RegState::Define |
|
|
RegState::Dead | RegState::Implicit)
|
|
.addReg(Scratch2, RegState::EarlyClobber | RegState::Define |
|
|
RegState::Dead | RegState::Implicit);
|
|
|
|
MI.eraseFromParent(); // The instruction is gone now.
|
|
|
|
return exitMBB;
|
|
}
|
|
|
|
SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
|
|
// The first operand is the chain, the second is the condition, the third is
|
|
// the block to branch to if the condition is true.
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Dest = Op.getOperand(2);
|
|
SDLoc DL(Op);
|
|
|
|
assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
|
|
SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
|
|
|
|
// Return if flag is not set by a floating point comparison.
|
|
if (CondRes.getOpcode() != MipsISD::FPCmp)
|
|
return Op;
|
|
|
|
SDValue CCNode = CondRes.getOperand(2);
|
|
Mips::CondCode CC =
|
|
(Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
|
|
unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
|
|
SDValue BrCode = DAG.getConstant(Opc, DL, MVT::i32);
|
|
SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
|
|
return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
|
|
FCC0, Dest, CondRes);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
lowerSELECT(SDValue Op, SelectionDAG &DAG) const
|
|
{
|
|
assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
|
|
SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
|
|
|
|
// Return if flag is not set by a floating point comparison.
|
|
if (Cond.getOpcode() != MipsISD::FPCmp)
|
|
return Op;
|
|
|
|
return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
|
|
SDLoc(Op));
|
|
}
|
|
|
|
SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
|
|
assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
|
|
SDValue Cond = createFPCmp(DAG, Op);
|
|
|
|
assert(Cond.getOpcode() == MipsISD::FPCmp &&
|
|
"Floating point operand expected.");
|
|
|
|
SDLoc DL(Op);
|
|
SDValue True = DAG.getConstant(1, DL, MVT::i32);
|
|
SDValue False = DAG.getConstant(0, DL, MVT::i32);
|
|
|
|
return createCMovFP(DAG, Cond, True, False, DL);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
EVT Ty = Op.getValueType();
|
|
GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
|
|
const GlobalValue *GV = N->getGlobal();
|
|
|
|
if (!isPositionIndependent()) {
|
|
const MipsTargetObjectFile *TLOF =
|
|
static_cast<const MipsTargetObjectFile *>(
|
|
getTargetMachine().getObjFileLowering());
|
|
const GlobalObject *GO = GV->getBaseObject();
|
|
if (GO && TLOF->IsGlobalInSmallSection(GO, getTargetMachine()))
|
|
// %gp_rel relocation
|
|
return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64());
|
|
|
|
// %hi/%lo relocation
|
|
return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
|
|
// %highest/%higher/%hi/%lo relocation
|
|
: getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
|
|
}
|
|
|
|
// Every other architecture would use shouldAssumeDSOLocal in here, but
|
|
// mips is special.
|
|
// * In PIC code mips requires got loads even for local statics!
|
|
// * To save on got entries, for local statics the got entry contains the
|
|
// page and an additional add instruction takes care of the low bits.
|
|
// * It is legal to access a hidden symbol with a non hidden undefined,
|
|
// so one cannot guarantee that all access to a hidden symbol will know
|
|
// it is hidden.
|
|
// * Mips linkers don't support creating a page and a full got entry for
|
|
// the same symbol.
|
|
// * Given all that, we have to use a full got entry for hidden symbols :-(
|
|
if (GV->hasLocalLinkage())
|
|
return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
|
|
|
|
if (LargeGOT)
|
|
return getAddrGlobalLargeGOT(
|
|
N, SDLoc(N), Ty, DAG, MipsII::MO_GOT_HI16, MipsII::MO_GOT_LO16,
|
|
DAG.getEntryNode(),
|
|
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
|
|
|
|
return getAddrGlobal(
|
|
N, SDLoc(N), Ty, DAG,
|
|
(ABI.IsN32() || ABI.IsN64()) ? MipsII::MO_GOT_DISP : MipsII::MO_GOT,
|
|
DAG.getEntryNode(), MachinePointerInfo::getGOT(DAG.getMachineFunction()));
|
|
}
|
|
|
|
SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
|
|
EVT Ty = Op.getValueType();
|
|
|
|
if (!isPositionIndependent())
|
|
return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
|
|
: getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
|
|
|
|
return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
|
|
{
|
|
// If the relocation model is PIC, use the General Dynamic TLS Model or
|
|
// Local Dynamic TLS model, otherwise use the Initial Exec or
|
|
// Local Exec TLS Model.
|
|
|
|
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
|
|
if (DAG.getTarget().useEmulatedTLS())
|
|
return LowerToTLSEmulatedModel(GA, DAG);
|
|
|
|
SDLoc DL(GA);
|
|
const GlobalValue *GV = GA->getGlobal();
|
|
EVT PtrVT = getPointerTy(DAG.getDataLayout());
|
|
|
|
TLSModel::Model model = getTargetMachine().getTLSModel(GV);
|
|
|
|
if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
|
|
// General Dynamic and Local Dynamic TLS Model.
|
|
unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
|
|
: MipsII::MO_TLSGD;
|
|
|
|
SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
|
|
SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
|
|
getGlobalReg(DAG, PtrVT), TGA);
|
|
unsigned PtrSize = PtrVT.getSizeInBits();
|
|
IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
|
|
|
|
SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
|
|
|
|
ArgListTy Args;
|
|
ArgListEntry Entry;
|
|
Entry.Node = Argument;
|
|
Entry.Ty = PtrTy;
|
|
Args.push_back(Entry);
|
|
|
|
TargetLowering::CallLoweringInfo CLI(DAG);
|
|
CLI.setDebugLoc(DL)
|
|
.setChain(DAG.getEntryNode())
|
|
.setLibCallee(CallingConv::C, PtrTy, TlsGetAddr, std::move(Args));
|
|
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
|
|
|
|
SDValue Ret = CallResult.first;
|
|
|
|
if (model != TLSModel::LocalDynamic)
|
|
return Ret;
|
|
|
|
SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
|
|
MipsII::MO_DTPREL_HI);
|
|
SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi);
|
|
SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
|
|
MipsII::MO_DTPREL_LO);
|
|
SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
|
|
SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
|
|
return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
|
|
}
|
|
|
|
SDValue Offset;
|
|
if (model == TLSModel::InitialExec) {
|
|
// Initial Exec TLS Model
|
|
SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
|
|
MipsII::MO_GOTTPREL);
|
|
TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
|
|
TGA);
|
|
Offset =
|
|
DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), TGA, MachinePointerInfo());
|
|
} else {
|
|
// Local Exec TLS Model
|
|
assert(model == TLSModel::LocalExec);
|
|
SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
|
|
MipsII::MO_TPREL_HI);
|
|
SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
|
|
MipsII::MO_TPREL_LO);
|
|
SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi);
|
|
SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
|
|
Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
|
|
}
|
|
|
|
SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
|
|
return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
|
|
{
|
|
JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
|
|
EVT Ty = Op.getValueType();
|
|
|
|
if (!isPositionIndependent())
|
|
return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
|
|
: getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
|
|
|
|
return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
|
|
{
|
|
ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
|
|
EVT Ty = Op.getValueType();
|
|
|
|
if (!isPositionIndependent()) {
|
|
const MipsTargetObjectFile *TLOF =
|
|
static_cast<const MipsTargetObjectFile *>(
|
|
getTargetMachine().getObjFileLowering());
|
|
|
|
if (TLOF->IsConstantInSmallSection(DAG.getDataLayout(), N->getConstVal(),
|
|
getTargetMachine()))
|
|
// %gp_rel relocation
|
|
return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64());
|
|
|
|
return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
|
|
: getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
|
|
}
|
|
|
|
return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
|
|
}
|
|
|
|
SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
|
|
|
|
SDLoc DL(Op);
|
|
SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
|
|
getPointerTy(MF.getDataLayout()));
|
|
|
|
// vastart just stores the address of the VarArgsFrameIndex slot into the
|
|
// memory location argument.
|
|
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
|
return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
|
|
MachinePointerInfo(SV));
|
|
}
|
|
|
|
SDValue MipsTargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const {
|
|
SDNode *Node = Op.getNode();
|
|
EVT VT = Node->getValueType(0);
|
|
SDValue Chain = Node->getOperand(0);
|
|
SDValue VAListPtr = Node->getOperand(1);
|
|
unsigned Align = Node->getConstantOperandVal(3);
|
|
const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
|
|
SDLoc DL(Node);
|
|
unsigned ArgSlotSizeInBytes = (ABI.IsN32() || ABI.IsN64()) ? 8 : 4;
|
|
|
|
SDValue VAListLoad = DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL, Chain,
|
|
VAListPtr, MachinePointerInfo(SV));
|
|
SDValue VAList = VAListLoad;
|
|
|
|
// Re-align the pointer if necessary.
|
|
// It should only ever be necessary for 64-bit types on O32 since the minimum
|
|
// argument alignment is the same as the maximum type alignment for N32/N64.
|
|
//
|
|
// FIXME: We currently align too often. The code generator doesn't notice
|
|
// when the pointer is still aligned from the last va_arg (or pair of
|
|
// va_args for the i64 on O32 case).
|
|
if (Align > getMinStackArgumentAlignment()) {
|
|
assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
|
|
|
|
VAList = DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
|
|
DAG.getConstant(Align - 1, DL, VAList.getValueType()));
|
|
|
|
VAList = DAG.getNode(ISD::AND, DL, VAList.getValueType(), VAList,
|
|
DAG.getConstant(-(int64_t)Align, DL,
|
|
VAList.getValueType()));
|
|
}
|
|
|
|
// Increment the pointer, VAList, to the next vaarg.
|
|
auto &TD = DAG.getDataLayout();
|
|
unsigned ArgSizeInBytes =
|
|
TD.getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext()));
|
|
SDValue Tmp3 =
|
|
DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
|
|
DAG.getConstant(alignTo(ArgSizeInBytes, ArgSlotSizeInBytes),
|
|
DL, VAList.getValueType()));
|
|
// Store the incremented VAList to the legalized pointer
|
|
Chain = DAG.getStore(VAListLoad.getValue(1), DL, Tmp3, VAListPtr,
|
|
MachinePointerInfo(SV));
|
|
|
|
// In big-endian mode we must adjust the pointer when the load size is smaller
|
|
// than the argument slot size. We must also reduce the known alignment to
|
|
// match. For example in the N64 ABI, we must add 4 bytes to the offset to get
|
|
// the correct half of the slot, and reduce the alignment from 8 (slot
|
|
// alignment) down to 4 (type alignment).
|
|
if (!Subtarget.isLittle() && ArgSizeInBytes < ArgSlotSizeInBytes) {
|
|
unsigned Adjustment = ArgSlotSizeInBytes - ArgSizeInBytes;
|
|
VAList = DAG.getNode(ISD::ADD, DL, VAListPtr.getValueType(), VAList,
|
|
DAG.getIntPtrConstant(Adjustment, DL));
|
|
}
|
|
// Load the actual argument out of the pointer VAList
|
|
return DAG.getLoad(VT, DL, Chain, VAList, MachinePointerInfo());
|
|
}
|
|
|
|
static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG,
|
|
bool HasExtractInsert) {
|
|
EVT TyX = Op.getOperand(0).getValueType();
|
|
EVT TyY = Op.getOperand(1).getValueType();
|
|
SDLoc DL(Op);
|
|
SDValue Const1 = DAG.getConstant(1, DL, MVT::i32);
|
|
SDValue Const31 = DAG.getConstant(31, DL, MVT::i32);
|
|
SDValue Res;
|
|
|
|
// If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
|
|
// to i32.
|
|
SDValue X = (TyX == MVT::f32) ?
|
|
DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
|
|
DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
|
|
Const1);
|
|
SDValue Y = (TyY == MVT::f32) ?
|
|
DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
|
|
DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
|
|
Const1);
|
|
|
|
if (HasExtractInsert) {
|
|
// ext E, Y, 31, 1 ; extract bit31 of Y
|
|
// ins X, E, 31, 1 ; insert extracted bit at bit31 of X
|
|
SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
|
|
Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
|
|
} else {
|
|
// sll SllX, X, 1
|
|
// srl SrlX, SllX, 1
|
|
// srl SrlY, Y, 31
|
|
// sll SllY, SrlX, 31
|
|
// or Or, SrlX, SllY
|
|
SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
|
|
SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
|
|
SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
|
|
SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
|
|
Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
|
|
}
|
|
|
|
if (TyX == MVT::f32)
|
|
return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
|
|
|
|
SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
|
|
Op.getOperand(0),
|
|
DAG.getConstant(0, DL, MVT::i32));
|
|
return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
|
|
}
|
|
|
|
static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG,
|
|
bool HasExtractInsert) {
|
|
unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
|
|
unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
|
|
EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
|
|
SDLoc DL(Op);
|
|
SDValue Const1 = DAG.getConstant(1, DL, MVT::i32);
|
|
|
|
// Bitcast to integer nodes.
|
|
SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
|
|
SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
|
|
|
|
if (HasExtractInsert) {
|
|
// ext E, Y, width(Y) - 1, 1 ; extract bit width(Y)-1 of Y
|
|
// ins X, E, width(X) - 1, 1 ; insert extracted bit at bit width(X)-1 of X
|
|
SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
|
|
DAG.getConstant(WidthY - 1, DL, MVT::i32), Const1);
|
|
|
|
if (WidthX > WidthY)
|
|
E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
|
|
else if (WidthY > WidthX)
|
|
E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
|
|
|
|
SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
|
|
DAG.getConstant(WidthX - 1, DL, MVT::i32), Const1,
|
|
X);
|
|
return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
|
|
}
|
|
|
|
// (d)sll SllX, X, 1
|
|
// (d)srl SrlX, SllX, 1
|
|
// (d)srl SrlY, Y, width(Y)-1
|
|
// (d)sll SllY, SrlX, width(Y)-1
|
|
// or Or, SrlX, SllY
|
|
SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
|
|
SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
|
|
SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
|
|
DAG.getConstant(WidthY - 1, DL, MVT::i32));
|
|
|
|
if (WidthX > WidthY)
|
|
SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
|
|
else if (WidthY > WidthX)
|
|
SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
|
|
|
|
SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
|
|
DAG.getConstant(WidthX - 1, DL, MVT::i32));
|
|
SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
|
|
return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
|
|
}
|
|
|
|
SDValue
|
|
MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
|
|
if (Subtarget.isGP64bit())
|
|
return lowerFCOPYSIGN64(Op, DAG, Subtarget.hasExtractInsert());
|
|
|
|
return lowerFCOPYSIGN32(Op, DAG, Subtarget.hasExtractInsert());
|
|
}
|
|
|
|
static SDValue lowerFABS32(SDValue Op, SelectionDAG &DAG,
|
|
bool HasExtractInsert) {
|
|
SDLoc DL(Op);
|
|
SDValue Res, Const1 = DAG.getConstant(1, DL, MVT::i32);
|
|
|
|
// If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
|
|
// to i32.
|
|
SDValue X = (Op.getValueType() == MVT::f32)
|
|
? DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0))
|
|
: DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
|
|
Op.getOperand(0), Const1);
|
|
|
|
// Clear MSB.
|
|
if (HasExtractInsert)
|
|
Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
|
|
DAG.getRegister(Mips::ZERO, MVT::i32),
|
|
DAG.getConstant(31, DL, MVT::i32), Const1, X);
|
|
else {
|
|
// TODO: Provide DAG patterns which transform (and x, cst)
|
|
// back to a (shl (srl x (clz cst)) (clz cst)) sequence.
|
|
SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
|
|
Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
|
|
}
|
|
|
|
if (Op.getValueType() == MVT::f32)
|
|
return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
|
|
|
|
// FIXME: For mips32r2, the sequence of (BuildPairF64 (ins (ExtractElementF64
|
|
// Op 1), $zero, 31 1) (ExtractElementF64 Op 0)) and the Op has one use, we
|
|
// should be able to drop the usage of mfc1/mtc1 and rewrite the register in
|
|
// place.
|
|
SDValue LowX =
|
|
DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
|
|
DAG.getConstant(0, DL, MVT::i32));
|
|
return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
|
|
}
|
|
|
|
static SDValue lowerFABS64(SDValue Op, SelectionDAG &DAG,
|
|
bool HasExtractInsert) {
|
|
SDLoc DL(Op);
|
|
SDValue Res, Const1 = DAG.getConstant(1, DL, MVT::i32);
|
|
|
|
// Bitcast to integer node.
|
|
SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
|
|
|
|
// Clear MSB.
|
|
if (HasExtractInsert)
|
|
Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
|
|
DAG.getRegister(Mips::ZERO_64, MVT::i64),
|
|
DAG.getConstant(63, DL, MVT::i32), Const1, X);
|
|
else {
|
|
SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
|
|
Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
|
|
}
|
|
|
|
return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const {
|
|
if ((ABI.IsN32() || ABI.IsN64()) && (Op.getValueType() == MVT::f64))
|
|
return lowerFABS64(Op, DAG, Subtarget.hasExtractInsert());
|
|
|
|
return lowerFABS32(Op, DAG, Subtarget.hasExtractInsert());
|
|
}
|
|
|
|
SDValue MipsTargetLowering::
|
|
lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
|
|
// check the depth
|
|
if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) {
|
|
DAG.getContext()->emitError(
|
|
"return address can be determined only for current frame");
|
|
return SDValue();
|
|
}
|
|
|
|
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
|
|
MFI.setFrameAddressIsTaken(true);
|
|
EVT VT = Op.getValueType();
|
|
SDLoc DL(Op);
|
|
SDValue FrameAddr = DAG.getCopyFromReg(
|
|
DAG.getEntryNode(), DL, ABI.IsN64() ? Mips::FP_64 : Mips::FP, VT);
|
|
return FrameAddr;
|
|
}
|
|
|
|
SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
|
|
return SDValue();
|
|
|
|
// check the depth
|
|
if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0) {
|
|
DAG.getContext()->emitError(
|
|
"return address can be determined only for current frame");
|
|
return SDValue();
|
|
}
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
MVT VT = Op.getSimpleValueType();
|
|
unsigned RA = ABI.IsN64() ? Mips::RA_64 : Mips::RA;
|
|
MFI.setReturnAddressIsTaken(true);
|
|
|
|
// Return RA, which contains the return address. Mark it an implicit live-in.
|
|
unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
|
|
return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
|
|
}
|
|
|
|
// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
|
|
// generated from __builtin_eh_return (offset, handler)
|
|
// The effect of this is to adjust the stack pointer by "offset"
|
|
// and then branch to "handler".
|
|
SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
|
|
const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
|
|
|
|
MipsFI->setCallsEhReturn();
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Offset = Op.getOperand(1);
|
|
SDValue Handler = Op.getOperand(2);
|
|
SDLoc DL(Op);
|
|
EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
|
|
|
|
// Store stack offset in V1, store jump target in V0. Glue CopyToReg and
|
|
// EH_RETURN nodes, so that instructions are emitted back-to-back.
|
|
unsigned OffsetReg = ABI.IsN64() ? Mips::V1_64 : Mips::V1;
|
|
unsigned AddrReg = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
|
|
Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
|
|
Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
|
|
return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
|
|
DAG.getRegister(OffsetReg, Ty),
|
|
DAG.getRegister(AddrReg, getPointerTy(MF.getDataLayout())),
|
|
Chain.getValue(1));
|
|
}
|
|
|
|
SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
// FIXME: Need pseudo-fence for 'singlethread' fences
|
|
// FIXME: Set SType for weaker fences where supported/appropriate.
|
|
unsigned SType = 0;
|
|
SDLoc DL(Op);
|
|
return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
|
|
DAG.getConstant(SType, DL, MVT::i32));
|
|
}
|
|
|
|
SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;
|
|
|
|
SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
|
|
SDValue Shamt = Op.getOperand(2);
|
|
// if shamt < (VT.bits):
|
|
// lo = (shl lo, shamt)
|
|
// hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
|
|
// else:
|
|
// lo = 0
|
|
// hi = (shl lo, shamt[4:0])
|
|
SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
|
|
DAG.getConstant(-1, DL, MVT::i32));
|
|
SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo,
|
|
DAG.getConstant(1, DL, VT));
|
|
SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, Not);
|
|
SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
|
|
SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
|
|
SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
|
|
SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
|
|
DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32));
|
|
Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond,
|
|
DAG.getConstant(0, DL, VT), ShiftLeftLo);
|
|
Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftLeftLo, Or);
|
|
|
|
SDValue Ops[2] = {Lo, Hi};
|
|
return DAG.getMergeValues(Ops, DL);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
|
|
bool IsSRA) const {
|
|
SDLoc DL(Op);
|
|
SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
|
|
SDValue Shamt = Op.getOperand(2);
|
|
MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;
|
|
|
|
// if shamt < (VT.bits):
|
|
// lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
|
|
// if isSRA:
|
|
// hi = (sra hi, shamt)
|
|
// else:
|
|
// hi = (srl hi, shamt)
|
|
// else:
|
|
// if isSRA:
|
|
// lo = (sra hi, shamt[4:0])
|
|
// hi = (sra hi, 31)
|
|
// else:
|
|
// lo = (srl hi, shamt[4:0])
|
|
// hi = 0
|
|
SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
|
|
DAG.getConstant(-1, DL, MVT::i32));
|
|
SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, VT, Hi,
|
|
DAG.getConstant(1, DL, VT));
|
|
SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, ShiftLeft1Hi, Not);
|
|
SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
|
|
SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
|
|
SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL,
|
|
DL, VT, Hi, Shamt);
|
|
SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
|
|
DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32));
|
|
SDValue Ext = DAG.getNode(ISD::SRA, DL, VT, Hi,
|
|
DAG.getConstant(VT.getSizeInBits() - 1, DL, VT));
|
|
|
|
if (!(Subtarget.hasMips4() || Subtarget.hasMips32())) {
|
|
SDVTList VTList = DAG.getVTList(VT, VT);
|
|
return DAG.getNode(Subtarget.isGP64bit() ? Mips::PseudoD_SELECT_I64
|
|
: Mips::PseudoD_SELECT_I,
|
|
DL, VTList, Cond, ShiftRightHi,
|
|
IsSRA ? Ext : DAG.getConstant(0, DL, VT), Or,
|
|
ShiftRightHi);
|
|
}
|
|
|
|
Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftRightHi, Or);
|
|
Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond,
|
|
IsSRA ? Ext : DAG.getConstant(0, DL, VT), ShiftRightHi);
|
|
|
|
SDValue Ops[2] = {Lo, Hi};
|
|
return DAG.getMergeValues(Ops, DL);
|
|
}
|
|
|
|
static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
|
|
SDValue Chain, SDValue Src, unsigned Offset) {
|
|
SDValue Ptr = LD->getBasePtr();
|
|
EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
|
|
EVT BasePtrVT = Ptr.getValueType();
|
|
SDLoc DL(LD);
|
|
SDVTList VTList = DAG.getVTList(VT, MVT::Other);
|
|
|
|
if (Offset)
|
|
Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
|
|
DAG.getConstant(Offset, DL, BasePtrVT));
|
|
|
|
SDValue Ops[] = { Chain, Ptr, Src };
|
|
return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
|
|
LD->getMemOperand());
|
|
}
|
|
|
|
// Expand an unaligned 32 or 64-bit integer load node.
|
|
SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
|
|
LoadSDNode *LD = cast<LoadSDNode>(Op);
|
|
EVT MemVT = LD->getMemoryVT();
|
|
|
|
if (Subtarget.systemSupportsUnalignedAccess())
|
|
return Op;
|
|
|
|
// Return if load is aligned or if MemVT is neither i32 nor i64.
|
|
if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
|
|
((MemVT != MVT::i32) && (MemVT != MVT::i64)))
|
|
return SDValue();
|
|
|
|
bool IsLittle = Subtarget.isLittle();
|
|
EVT VT = Op.getValueType();
|
|
ISD::LoadExtType ExtType = LD->getExtensionType();
|
|
SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
|
|
|
|
assert((VT == MVT::i32) || (VT == MVT::i64));
|
|
|
|
// Expand
|
|
// (set dst, (i64 (load baseptr)))
|
|
// to
|
|
// (set tmp, (ldl (add baseptr, 7), undef))
|
|
// (set dst, (ldr baseptr, tmp))
|
|
if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
|
|
SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
|
|
IsLittle ? 7 : 0);
|
|
return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
|
|
IsLittle ? 0 : 7);
|
|
}
|
|
|
|
SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
|
|
IsLittle ? 3 : 0);
|
|
SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
|
|
IsLittle ? 0 : 3);
|
|
|
|
// Expand
|
|
// (set dst, (i32 (load baseptr))) or
|
|
// (set dst, (i64 (sextload baseptr))) or
|
|
// (set dst, (i64 (extload baseptr)))
|
|
// to
|
|
// (set tmp, (lwl (add baseptr, 3), undef))
|
|
// (set dst, (lwr baseptr, tmp))
|
|
if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
|
|
(ExtType == ISD::EXTLOAD))
|
|
return LWR;
|
|
|
|
assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
|
|
|
|
// Expand
|
|
// (set dst, (i64 (zextload baseptr)))
|
|
// to
|
|
// (set tmp0, (lwl (add baseptr, 3), undef))
|
|
// (set tmp1, (lwr baseptr, tmp0))
|
|
// (set tmp2, (shl tmp1, 32))
|
|
// (set dst, (srl tmp2, 32))
|
|
SDLoc DL(LD);
|
|
SDValue Const32 = DAG.getConstant(32, DL, MVT::i32);
|
|
SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
|
|
SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
|
|
SDValue Ops[] = { SRL, LWR.getValue(1) };
|
|
return DAG.getMergeValues(Ops, DL);
|
|
}
|
|
|
|
static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
|
|
SDValue Chain, unsigned Offset) {
|
|
SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
|
|
EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
|
|
SDLoc DL(SD);
|
|
SDVTList VTList = DAG.getVTList(MVT::Other);
|
|
|
|
if (Offset)
|
|
Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
|
|
DAG.getConstant(Offset, DL, BasePtrVT));
|
|
|
|
SDValue Ops[] = { Chain, Value, Ptr };
|
|
return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
|
|
SD->getMemOperand());
|
|
}
|
|
|
|
// Expand an unaligned 32 or 64-bit integer store node.
|
|
static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
|
|
bool IsLittle) {
|
|
SDValue Value = SD->getValue(), Chain = SD->getChain();
|
|
EVT VT = Value.getValueType();
|
|
|
|
// Expand
|
|
// (store val, baseptr) or
|
|
// (truncstore val, baseptr)
|
|
// to
|
|
// (swl val, (add baseptr, 3))
|
|
// (swr val, baseptr)
|
|
if ((VT == MVT::i32) || SD->isTruncatingStore()) {
|
|
SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
|
|
IsLittle ? 3 : 0);
|
|
return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
|
|
}
|
|
|
|
assert(VT == MVT::i64);
|
|
|
|
// Expand
|
|
// (store val, baseptr)
|
|
// to
|
|
// (sdl val, (add baseptr, 7))
|
|
// (sdr val, baseptr)
|
|
SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
|
|
return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
|
|
}
|
|
|
|
// Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
|
|
static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG,
|
|
bool SingleFloat) {
|
|
SDValue Val = SD->getValue();
|
|
|
|
if (Val.getOpcode() != ISD::FP_TO_SINT ||
|
|
(Val.getValueSizeInBits() > 32 && SingleFloat))
|
|
return SDValue();
|
|
|
|
EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
|
|
SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
|
|
Val.getOperand(0));
|
|
return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
|
|
SD->getPointerInfo(), SD->getAlignment(),
|
|
SD->getMemOperand()->getFlags());
|
|
}
|
|
|
|
SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
|
|
StoreSDNode *SD = cast<StoreSDNode>(Op);
|
|
EVT MemVT = SD->getMemoryVT();
|
|
|
|
// Lower unaligned integer stores.
|
|
if (!Subtarget.systemSupportsUnalignedAccess() &&
|
|
(SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
|
|
((MemVT == MVT::i32) || (MemVT == MVT::i64)))
|
|
return lowerUnalignedIntStore(SD, DAG, Subtarget.isLittle());
|
|
|
|
return lowerFP_TO_SINT_STORE(SD, DAG, Subtarget.isSingleFloat());
|
|
}
|
|
|
|
SDValue MipsTargetLowering::lowerEH_DWARF_CFA(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
|
|
// Return a fixed StackObject with offset 0 which points to the old stack
|
|
// pointer.
|
|
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
|
|
EVT ValTy = Op->getValueType(0);
|
|
int FI = MFI.CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
|
|
return DAG.getFrameIndex(FI, ValTy);
|
|
}
|
|
|
|
SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
if (Op.getValueSizeInBits() > 32 && Subtarget.isSingleFloat())
|
|
return SDValue();
|
|
|
|
EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
|
|
SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
|
|
Op.getOperand(0));
|
|
return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Calling Convention Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TODO: Implement a generic logic using tblgen that can support this.
|
|
// Mips O32 ABI rules:
|
|
// ---
|
|
// i32 - Passed in A0, A1, A2, A3 and stack
|
|
// f32 - Only passed in f32 registers if no int reg has been used yet to hold
|
|
// an argument. Otherwise, passed in A1, A2, A3 and stack.
|
|
// f64 - Only passed in two aliased f32 registers if no int reg has been used
|
|
// yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
|
|
// not used, it must be shadowed. If only A3 is available, shadow it and
|
|
// go to stack.
|
|
// vXiX - Received as scalarized i32s, passed in A0 - A3 and the stack.
|
|
// vXf32 - Passed in either a pair of registers {A0, A1}, {A2, A3} or {A0 - A3}
|
|
// with the remainder spilled to the stack.
|
|
// vXf64 - Passed in either {A0, A1, A2, A3} or {A2, A3} and in both cases
|
|
// spilling the remainder to the stack.
|
|
//
|
|
// For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
|
|
CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
|
|
CCState &State, ArrayRef<MCPhysReg> F64Regs) {
|
|
const MipsSubtarget &Subtarget = static_cast<const MipsSubtarget &>(
|
|
State.getMachineFunction().getSubtarget());
|
|
|
|
static const MCPhysReg IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 };
|
|
|
|
const MipsCCState * MipsState = static_cast<MipsCCState *>(&State);
|
|
|
|
static const MCPhysReg F32Regs[] = { Mips::F12, Mips::F14 };
|
|
|
|
static const MCPhysReg FloatVectorIntRegs[] = { Mips::A0, Mips::A2 };
|
|
|
|
// Do not process byval args here.
|
|
if (ArgFlags.isByVal())
|
|
return true;
|
|
|
|
// Promote i8 and i16
|
|
if (ArgFlags.isInReg() && !Subtarget.isLittle()) {
|
|
if (LocVT == MVT::i8 || LocVT == MVT::i16 || LocVT == MVT::i32) {
|
|
LocVT = MVT::i32;
|
|
if (ArgFlags.isSExt())
|
|
LocInfo = CCValAssign::SExtUpper;
|
|
else if (ArgFlags.isZExt())
|
|
LocInfo = CCValAssign::ZExtUpper;
|
|
else
|
|
LocInfo = CCValAssign::AExtUpper;
|
|
}
|
|
}
|
|
|
|
// Promote i8 and i16
|
|
if (LocVT == MVT::i8 || LocVT == MVT::i16) {
|
|
LocVT = MVT::i32;
|
|
if (ArgFlags.isSExt())
|
|
LocInfo = CCValAssign::SExt;
|
|
else if (ArgFlags.isZExt())
|
|
LocInfo = CCValAssign::ZExt;
|
|
else
|
|
LocInfo = CCValAssign::AExt;
|
|
}
|
|
|
|
unsigned Reg;
|
|
|
|
// f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
|
|
// is true: function is vararg, argument is 3rd or higher, there is previous
|
|
// argument which is not f32 or f64.
|
|
bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1 ||
|
|
State.getFirstUnallocated(F32Regs) != ValNo;
|
|
unsigned OrigAlign = ArgFlags.getOrigAlign();
|
|
bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
|
|
bool isVectorFloat = MipsState->WasOriginalArgVectorFloat(ValNo);
|
|
|
|
// The MIPS vector ABI for floats passes them in a pair of registers
|
|
if (ValVT == MVT::i32 && isVectorFloat) {
|
|
// This is the start of an vector that was scalarized into an unknown number
|
|
// of components. It doesn't matter how many there are. Allocate one of the
|
|
// notional 8 byte aligned registers which map onto the argument stack, and
|
|
// shadow the register lost to alignment requirements.
|
|
if (ArgFlags.isSplit()) {
|
|
Reg = State.AllocateReg(FloatVectorIntRegs);
|
|
if (Reg == Mips::A2)
|
|
State.AllocateReg(Mips::A1);
|
|
else if (Reg == 0)
|
|
State.AllocateReg(Mips::A3);
|
|
} else {
|
|
// If we're an intermediate component of the split, we can just attempt to
|
|
// allocate a register directly.
|
|
Reg = State.AllocateReg(IntRegs);
|
|
}
|
|
} else if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
|
|
Reg = State.AllocateReg(IntRegs);
|
|
// If this is the first part of an i64 arg,
|
|
// the allocated register must be either A0 or A2.
|
|
if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
|
|
Reg = State.AllocateReg(IntRegs);
|
|
LocVT = MVT::i32;
|
|
} else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
|
|
// Allocate int register and shadow next int register. If first
|
|
// available register is Mips::A1 or Mips::A3, shadow it too.
|
|
Reg = State.AllocateReg(IntRegs);
|
|
if (Reg == Mips::A1 || Reg == Mips::A3)
|
|
Reg = State.AllocateReg(IntRegs);
|
|
State.AllocateReg(IntRegs);
|
|
LocVT = MVT::i32;
|
|
} else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
|
|
// we are guaranteed to find an available float register
|
|
if (ValVT == MVT::f32) {
|
|
Reg = State.AllocateReg(F32Regs);
|
|
// Shadow int register
|
|
State.AllocateReg(IntRegs);
|
|
} else {
|
|
Reg = State.AllocateReg(F64Regs);
|
|
// Shadow int registers
|
|
unsigned Reg2 = State.AllocateReg(IntRegs);
|
|
if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
|
|
State.AllocateReg(IntRegs);
|
|
State.AllocateReg(IntRegs);
|
|
}
|
|
} else
|
|
llvm_unreachable("Cannot handle this ValVT.");
|
|
|
|
if (!Reg) {
|
|
unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), OrigAlign);
|
|
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
|
|
} else
|
|
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
|
|
MVT LocVT, CCValAssign::LocInfo LocInfo,
|
|
ISD::ArgFlagsTy ArgFlags, CCState &State) {
|
|
static const MCPhysReg F64Regs[] = { Mips::D6, Mips::D7 };
|
|
|
|
return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
|
|
}
|
|
|
|
static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
|
|
MVT LocVT, CCValAssign::LocInfo LocInfo,
|
|
ISD::ArgFlagsTy ArgFlags, CCState &State) {
|
|
static const MCPhysReg F64Regs[] = { Mips::D12_64, Mips::D14_64 };
|
|
|
|
return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
|
|
}
|
|
|
|
static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
|
|
CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
|
|
CCState &State) LLVM_ATTRIBUTE_UNUSED;
|
|
|
|
#include "MipsGenCallingConv.inc"
|
|
|
|
CCAssignFn *MipsTargetLowering::CCAssignFnForCall() const{
|
|
return CC_Mips;
|
|
}
|
|
|
|
CCAssignFn *MipsTargetLowering::CCAssignFnForReturn() const{
|
|
return RetCC_Mips;
|
|
}
|
|
//===----------------------------------------------------------------------===//
|
|
// Call Calling Convention Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Return next O32 integer argument register.
|
|
static unsigned getNextIntArgReg(unsigned Reg) {
|
|
assert((Reg == Mips::A0) || (Reg == Mips::A2));
|
|
return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
|
|
}
|
|
|
|
SDValue MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
|
|
SDValue Chain, SDValue Arg,
|
|
const SDLoc &DL, bool IsTailCall,
|
|
SelectionDAG &DAG) const {
|
|
if (!IsTailCall) {
|
|
SDValue PtrOff =
|
|
DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr,
|
|
DAG.getIntPtrConstant(Offset, DL));
|
|
return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo());
|
|
}
|
|
|
|
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
|
|
int FI = MFI.CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
|
|
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
|
|
return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
|
|
/* Alignment = */ 0, MachineMemOperand::MOVolatile);
|
|
}
|
|
|
|
void MipsTargetLowering::
|
|
getOpndList(SmallVectorImpl<SDValue> &Ops,
|
|
std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
|
|
bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
|
|
bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
|
|
SDValue Chain) const {
|
|
// Insert node "GP copy globalreg" before call to function.
|
|
//
|
|
// R_MIPS_CALL* operators (emitted when non-internal functions are called
|
|
// in PIC mode) allow symbols to be resolved via lazy binding.
|
|
// The lazy binding stub requires GP to point to the GOT.
|
|
// Note that we don't need GP to point to the GOT for indirect calls
|
|
// (when R_MIPS_CALL* is not used for the call) because Mips linker generates
|
|
// lazy binding stub for a function only when R_MIPS_CALL* are the only relocs
|
|
// used for the function (that is, Mips linker doesn't generate lazy binding
|
|
// stub for a function whose address is taken in the program).
|
|
if (IsPICCall && !InternalLinkage && IsCallReloc) {
|
|
unsigned GPReg = ABI.IsN64() ? Mips::GP_64 : Mips::GP;
|
|
EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
|
|
RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
|
|
}
|
|
|
|
// Build a sequence of copy-to-reg nodes chained together with token
|
|
// chain and flag operands which copy the outgoing args into registers.
|
|
// The InFlag in necessary since all emitted instructions must be
|
|
// stuck together.
|
|
SDValue InFlag;
|
|
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
|
|
Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
|
|
RegsToPass[i].second, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
// Add argument registers to the end of the list so that they are
|
|
// known live into the call.
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
|
|
Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
|
|
RegsToPass[i].second.getValueType()));
|
|
|
|
// Add a register mask operand representing the call-preserved registers.
|
|
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
|
|
const uint32_t *Mask =
|
|
TRI->getCallPreservedMask(CLI.DAG.getMachineFunction(), CLI.CallConv);
|
|
assert(Mask && "Missing call preserved mask for calling convention");
|
|
if (Subtarget.inMips16HardFloat()) {
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
|
|
StringRef Sym = G->getGlobal()->getName();
|
|
Function *F = G->getGlobal()->getParent()->getFunction(Sym);
|
|
if (F && F->hasFnAttribute("__Mips16RetHelper")) {
|
|
Mask = MipsRegisterInfo::getMips16RetHelperMask();
|
|
}
|
|
}
|
|
}
|
|
Ops.push_back(CLI.DAG.getRegisterMask(Mask));
|
|
|
|
if (InFlag.getNode())
|
|
Ops.push_back(InFlag);
|
|
}
|
|
|
|
void MipsTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
|
|
SDNode *Node) const {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
return;
|
|
case Mips::JALR:
|
|
case Mips::JALRPseudo:
|
|
case Mips::JALR64:
|
|
case Mips::JALR64Pseudo:
|
|
case Mips::JALR16_MM:
|
|
case Mips::JALRC16_MMR6:
|
|
case Mips::TAILCALLREG:
|
|
case Mips::TAILCALLREG64:
|
|
case Mips::TAILCALLR6REG:
|
|
case Mips::TAILCALL64R6REG:
|
|
case Mips::TAILCALLREG_MM:
|
|
case Mips::TAILCALLREG_MMR6: {
|
|
if (!EmitJalrReloc ||
|
|
Subtarget.inMips16Mode() ||
|
|
!isPositionIndependent() ||
|
|
Node->getNumOperands() < 1 ||
|
|
Node->getOperand(0).getNumOperands() < 2) {
|
|
return;
|
|
}
|
|
// We are after the callee address, set by LowerCall().
|
|
// If added to MI, asm printer will emit .reloc R_MIPS_JALR for the
|
|
// symbol.
|
|
const SDValue TargetAddr = Node->getOperand(0).getOperand(1);
|
|
StringRef Sym;
|
|
if (const GlobalAddressSDNode *G =
|
|
dyn_cast_or_null<const GlobalAddressSDNode>(TargetAddr)) {
|
|
Sym = G->getGlobal()->getName();
|
|
}
|
|
else if (const ExternalSymbolSDNode *ES =
|
|
dyn_cast_or_null<const ExternalSymbolSDNode>(TargetAddr)) {
|
|
Sym = ES->getSymbol();
|
|
}
|
|
|
|
if (Sym.empty())
|
|
return;
|
|
|
|
MachineFunction *MF = MI.getParent()->getParent();
|
|
MCSymbol *S = MF->getContext().getOrCreateSymbol(Sym);
|
|
MI.addOperand(MachineOperand::CreateMCSymbol(S, MipsII::MO_JALR));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// LowerCall - functions arguments are copied from virtual regs to
|
|
/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
|
|
SDValue
|
|
MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
SelectionDAG &DAG = CLI.DAG;
|
|
SDLoc DL = CLI.DL;
|
|
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
|
|
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
|
|
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
|
|
SDValue Chain = CLI.Chain;
|
|
SDValue Callee = CLI.Callee;
|
|
bool &IsTailCall = CLI.IsTailCall;
|
|
CallingConv::ID CallConv = CLI.CallConv;
|
|
bool IsVarArg = CLI.IsVarArg;
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
|
|
MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
|
|
bool IsPIC = isPositionIndependent();
|
|
|
|
// Analyze operands of the call, assigning locations to each operand.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
MipsCCState CCInfo(
|
|
CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext(),
|
|
MipsCCState::getSpecialCallingConvForCallee(Callee.getNode(), Subtarget));
|
|
|
|
const ExternalSymbolSDNode *ES =
|
|
dyn_cast_or_null<const ExternalSymbolSDNode>(Callee.getNode());
|
|
|
|
// There is one case where CALLSEQ_START..CALLSEQ_END can be nested, which
|
|
// is during the lowering of a call with a byval argument which produces
|
|
// a call to memcpy. For the O32 case, this causes the caller to allocate
|
|
// stack space for the reserved argument area for the callee, then recursively
|
|
// again for the memcpy call. In the NEWABI case, this doesn't occur as those
|
|
// ABIs mandate that the callee allocates the reserved argument area. We do
|
|
// still produce nested CALLSEQ_START..CALLSEQ_END with zero space though.
|
|
//
|
|
// If the callee has a byval argument and memcpy is used, we are mandated
|
|
// to already have produced a reserved argument area for the callee for O32.
|
|
// Therefore, the reserved argument area can be reused for both calls.
|
|
//
|
|
// Other cases of calling memcpy cannot have a chain with a CALLSEQ_START
|
|
// present, as we have yet to hook that node onto the chain.
|
|
//
|
|
// Hence, the CALLSEQ_START and CALLSEQ_END nodes can be eliminated in this
|
|
// case. GCC does a similar trick, in that wherever possible, it calculates
|
|
// the maximum out going argument area (including the reserved area), and
|
|
// preallocates the stack space on entrance to the caller.
|
|
//
|
|
// FIXME: We should do the same for efficiency and space.
|
|
|
|
// Note: The check on the calling convention below must match
|
|
// MipsABIInfo::GetCalleeAllocdArgSizeInBytes().
|
|
bool MemcpyInByVal = ES &&
|
|
StringRef(ES->getSymbol()) == StringRef("memcpy") &&
|
|
CallConv != CallingConv::Fast &&
|
|
Chain.getOpcode() == ISD::CALLSEQ_START;
|
|
|
|
// Allocate the reserved argument area. It seems strange to do this from the
|
|
// caller side but removing it breaks the frame size calculation.
|
|
unsigned ReservedArgArea =
|
|
MemcpyInByVal ? 0 : ABI.GetCalleeAllocdArgSizeInBytes(CallConv);
|
|
CCInfo.AllocateStack(ReservedArgArea, 1);
|
|
|
|
CCInfo.AnalyzeCallOperands(Outs, CC_Mips, CLI.getArgs(),
|
|
ES ? ES->getSymbol() : nullptr);
|
|
|
|
// Get a count of how many bytes are to be pushed on the stack.
|
|
unsigned NextStackOffset = CCInfo.getNextStackOffset();
|
|
|
|
// Check if it's really possible to do a tail call. Restrict it to functions
|
|
// that are part of this compilation unit.
|
|
bool InternalLinkage = false;
|
|
if (IsTailCall) {
|
|
IsTailCall = isEligibleForTailCallOptimization(
|
|
CCInfo, NextStackOffset, *MF.getInfo<MipsFunctionInfo>());
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
|
|
InternalLinkage = G->getGlobal()->hasInternalLinkage();
|
|
IsTailCall &= (InternalLinkage || G->getGlobal()->hasLocalLinkage() ||
|
|
G->getGlobal()->hasPrivateLinkage() ||
|
|
G->getGlobal()->hasHiddenVisibility() ||
|
|
G->getGlobal()->hasProtectedVisibility());
|
|
}
|
|
}
|
|
if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall())
|
|
report_fatal_error("failed to perform tail call elimination on a call "
|
|
"site marked musttail");
|
|
|
|
if (IsTailCall)
|
|
++NumTailCalls;
|
|
|
|
// Chain is the output chain of the last Load/Store or CopyToReg node.
|
|
// ByValChain is the output chain of the last Memcpy node created for copying
|
|
// byval arguments to the stack.
|
|
unsigned StackAlignment = TFL->getStackAlignment();
|
|
NextStackOffset = alignTo(NextStackOffset, StackAlignment);
|
|
SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, DL, true);
|
|
|
|
if (!(IsTailCall || MemcpyInByVal))
|
|
Chain = DAG.getCALLSEQ_START(Chain, NextStackOffset, 0, DL);
|
|
|
|
SDValue StackPtr =
|
|
DAG.getCopyFromReg(Chain, DL, ABI.IsN64() ? Mips::SP_64 : Mips::SP,
|
|
getPointerTy(DAG.getDataLayout()));
|
|
|
|
std::deque<std::pair<unsigned, SDValue>> RegsToPass;
|
|
SmallVector<SDValue, 8> MemOpChains;
|
|
|
|
CCInfo.rewindByValRegsInfo();
|
|
|
|
// Walk the register/memloc assignments, inserting copies/loads.
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
SDValue Arg = OutVals[i];
|
|
CCValAssign &VA = ArgLocs[i];
|
|
MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
|
|
ISD::ArgFlagsTy Flags = Outs[i].Flags;
|
|
bool UseUpperBits = false;
|
|
|
|
// ByVal Arg.
|
|
if (Flags.isByVal()) {
|
|
unsigned FirstByValReg, LastByValReg;
|
|
unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
|
|
CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);
|
|
|
|
assert(Flags.getByValSize() &&
|
|
"ByVal args of size 0 should have been ignored by front-end.");
|
|
assert(ByValIdx < CCInfo.getInRegsParamsCount());
|
|
assert(!IsTailCall &&
|
|
"Do not tail-call optimize if there is a byval argument.");
|
|
passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
|
|
FirstByValReg, LastByValReg, Flags, Subtarget.isLittle(),
|
|
VA);
|
|
CCInfo.nextInRegsParam();
|
|
continue;
|
|
}
|
|
|
|
// Promote the value if needed.
|
|
switch (VA.getLocInfo()) {
|
|
default:
|
|
llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full:
|
|
if (VA.isRegLoc()) {
|
|
if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
|
|
(ValVT == MVT::f64 && LocVT == MVT::i64) ||
|
|
(ValVT == MVT::i64 && LocVT == MVT::f64))
|
|
Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
|
|
else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
|
|
SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
|
|
Arg, DAG.getConstant(0, DL, MVT::i32));
|
|
SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
|
|
Arg, DAG.getConstant(1, DL, MVT::i32));
|
|
if (!Subtarget.isLittle())
|
|
std::swap(Lo, Hi);
|
|
unsigned LocRegLo = VA.getLocReg();
|
|
unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
|
|
RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
|
|
RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
|
|
continue;
|
|
}
|
|
}
|
|
break;
|
|
case CCValAssign::BCvt:
|
|
Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
|
|
break;
|
|
case CCValAssign::SExtUpper:
|
|
UseUpperBits = true;
|
|
LLVM_FALLTHROUGH;
|
|
case CCValAssign::SExt:
|
|
Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
|
|
break;
|
|
case CCValAssign::ZExtUpper:
|
|
UseUpperBits = true;
|
|
LLVM_FALLTHROUGH;
|
|
case CCValAssign::ZExt:
|
|
Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
|
|
break;
|
|
case CCValAssign::AExtUpper:
|
|
UseUpperBits = true;
|
|
LLVM_FALLTHROUGH;
|
|
case CCValAssign::AExt:
|
|
Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
|
|
break;
|
|
}
|
|
|
|
if (UseUpperBits) {
|
|
unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
|
|
unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
|
|
Arg = DAG.getNode(
|
|
ISD::SHL, DL, VA.getLocVT(), Arg,
|
|
DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
|
|
}
|
|
|
|
// Arguments that can be passed on register must be kept at
|
|
// RegsToPass vector
|
|
if (VA.isRegLoc()) {
|
|
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
|
|
continue;
|
|
}
|
|
|
|
// Register can't get to this point...
|
|
assert(VA.isMemLoc());
|
|
|
|
// emit ISD::STORE whichs stores the
|
|
// parameter value to a stack Location
|
|
MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
|
|
Chain, Arg, DL, IsTailCall, DAG));
|
|
}
|
|
|
|
// Transform all store nodes into one single node because all store
|
|
// nodes are independent of each other.
|
|
if (!MemOpChains.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
|
|
|
|
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
|
|
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
|
|
// node so that legalize doesn't hack it.
|
|
|
|
EVT Ty = Callee.getValueType();
|
|
bool GlobalOrExternal = false, IsCallReloc = false;
|
|
|
|
// The long-calls feature is ignored in case of PIC.
|
|
// While we do not support -mshared / -mno-shared properly,
|
|
// ignore long-calls in case of -mabicalls too.
|
|
if (!Subtarget.isABICalls() && !IsPIC) {
|
|
// If the function should be called using "long call",
|
|
// get its address into a register to prevent using
|
|
// of the `jal` instruction for the direct call.
|
|
if (auto *N = dyn_cast<ExternalSymbolSDNode>(Callee)) {
|
|
if (Subtarget.useLongCalls())
|
|
Callee = Subtarget.hasSym32()
|
|
? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
|
|
: getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
|
|
} else if (auto *N = dyn_cast<GlobalAddressSDNode>(Callee)) {
|
|
bool UseLongCalls = Subtarget.useLongCalls();
|
|
// If the function has long-call/far/near attribute
|
|
// it overrides command line switch pased to the backend.
|
|
if (auto *F = dyn_cast<Function>(N->getGlobal())) {
|
|
if (F->hasFnAttribute("long-call"))
|
|
UseLongCalls = true;
|
|
else if (F->hasFnAttribute("short-call"))
|
|
UseLongCalls = false;
|
|
}
|
|
if (UseLongCalls)
|
|
Callee = Subtarget.hasSym32()
|
|
? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
|
|
: getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
|
|
}
|
|
}
|
|
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
|
|
if (IsPIC) {
|
|
const GlobalValue *Val = G->getGlobal();
|
|
InternalLinkage = Val->hasInternalLinkage();
|
|
|
|
if (InternalLinkage)
|
|
Callee = getAddrLocal(G, DL, Ty, DAG, ABI.IsN32() || ABI.IsN64());
|
|
else if (LargeGOT) {
|
|
Callee = getAddrGlobalLargeGOT(G, DL, Ty, DAG, MipsII::MO_CALL_HI16,
|
|
MipsII::MO_CALL_LO16, Chain,
|
|
FuncInfo->callPtrInfo(Val));
|
|
IsCallReloc = true;
|
|
} else {
|
|
Callee = getAddrGlobal(G, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
|
|
FuncInfo->callPtrInfo(Val));
|
|
IsCallReloc = true;
|
|
}
|
|
} else
|
|
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL,
|
|
getPointerTy(DAG.getDataLayout()), 0,
|
|
MipsII::MO_NO_FLAG);
|
|
GlobalOrExternal = true;
|
|
}
|
|
else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
|
|
const char *Sym = S->getSymbol();
|
|
|
|
if (!IsPIC) // static
|
|
Callee = DAG.getTargetExternalSymbol(
|
|
Sym, getPointerTy(DAG.getDataLayout()), MipsII::MO_NO_FLAG);
|
|
else if (LargeGOT) {
|
|
Callee = getAddrGlobalLargeGOT(S, DL, Ty, DAG, MipsII::MO_CALL_HI16,
|
|
MipsII::MO_CALL_LO16, Chain,
|
|
FuncInfo->callPtrInfo(Sym));
|
|
IsCallReloc = true;
|
|
} else { // PIC
|
|
Callee = getAddrGlobal(S, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
|
|
FuncInfo->callPtrInfo(Sym));
|
|
IsCallReloc = true;
|
|
}
|
|
|
|
GlobalOrExternal = true;
|
|
}
|
|
|
|
SmallVector<SDValue, 8> Ops(1, Chain);
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
|
|
getOpndList(Ops, RegsToPass, IsPIC, GlobalOrExternal, InternalLinkage,
|
|
IsCallReloc, CLI, Callee, Chain);
|
|
|
|
if (IsTailCall) {
|
|
MF.getFrameInfo().setHasTailCall();
|
|
return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops);
|
|
}
|
|
|
|
Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, Ops);
|
|
SDValue InFlag = Chain.getValue(1);
|
|
|
|
// Create the CALLSEQ_END node in the case of where it is not a call to
|
|
// memcpy.
|
|
if (!(MemcpyInByVal)) {
|
|
Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
|
|
DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
// Handle result values, copying them out of physregs into vregs that we
|
|
// return.
|
|
return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
|
|
InVals, CLI);
|
|
}
|
|
|
|
/// LowerCallResult - Lower the result values of a call into the
|
|
/// appropriate copies out of appropriate physical registers.
|
|
SDValue MipsTargetLowering::LowerCallResult(
|
|
SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
|
|
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
|
|
TargetLowering::CallLoweringInfo &CLI) const {
|
|
// Assign locations to each value returned by this call.
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
|
|
*DAG.getContext());
|
|
|
|
const ExternalSymbolSDNode *ES =
|
|
dyn_cast_or_null<const ExternalSymbolSDNode>(CLI.Callee.getNode());
|
|
CCInfo.AnalyzeCallResult(Ins, RetCC_Mips, CLI.RetTy,
|
|
ES ? ES->getSymbol() : nullptr);
|
|
|
|
// Copy all of the result registers out of their specified physreg.
|
|
for (unsigned i = 0; i != RVLocs.size(); ++i) {
|
|
CCValAssign &VA = RVLocs[i];
|
|
assert(VA.isRegLoc() && "Can only return in registers!");
|
|
|
|
SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
|
|
RVLocs[i].getLocVT(), InFlag);
|
|
Chain = Val.getValue(1);
|
|
InFlag = Val.getValue(2);
|
|
|
|
if (VA.isUpperBitsInLoc()) {
|
|
unsigned ValSizeInBits = Ins[i].ArgVT.getSizeInBits();
|
|
unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
|
|
unsigned Shift =
|
|
VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
|
|
Val = DAG.getNode(
|
|
Shift, DL, VA.getLocVT(), Val,
|
|
DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
|
|
}
|
|
|
|
switch (VA.getLocInfo()) {
|
|
default:
|
|
llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full:
|
|
break;
|
|
case CCValAssign::BCvt:
|
|
Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
|
|
break;
|
|
case CCValAssign::AExt:
|
|
case CCValAssign::AExtUpper:
|
|
Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
|
|
break;
|
|
case CCValAssign::ZExt:
|
|
case CCValAssign::ZExtUpper:
|
|
Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
|
|
DAG.getValueType(VA.getValVT()));
|
|
Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
|
|
break;
|
|
case CCValAssign::SExt:
|
|
case CCValAssign::SExtUpper:
|
|
Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
|
|
DAG.getValueType(VA.getValVT()));
|
|
Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
|
|
break;
|
|
}
|
|
|
|
InVals.push_back(Val);
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
static SDValue UnpackFromArgumentSlot(SDValue Val, const CCValAssign &VA,
|
|
EVT ArgVT, const SDLoc &DL,
|
|
SelectionDAG &DAG) {
|
|
MVT LocVT = VA.getLocVT();
|
|
EVT ValVT = VA.getValVT();
|
|
|
|
// Shift into the upper bits if necessary.
|
|
switch (VA.getLocInfo()) {
|
|
default:
|
|
break;
|
|
case CCValAssign::AExtUpper:
|
|
case CCValAssign::SExtUpper:
|
|
case CCValAssign::ZExtUpper: {
|
|
unsigned ValSizeInBits = ArgVT.getSizeInBits();
|
|
unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
|
|
unsigned Opcode =
|
|
VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
|
|
Val = DAG.getNode(
|
|
Opcode, DL, VA.getLocVT(), Val,
|
|
DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If this is an value smaller than the argument slot size (32-bit for O32,
|
|
// 64-bit for N32/N64), it has been promoted in some way to the argument slot
|
|
// size. Extract the value and insert any appropriate assertions regarding
|
|
// sign/zero extension.
|
|
switch (VA.getLocInfo()) {
|
|
default:
|
|
llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full:
|
|
break;
|
|
case CCValAssign::AExtUpper:
|
|
case CCValAssign::AExt:
|
|
Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
|
|
break;
|
|
case CCValAssign::SExtUpper:
|
|
case CCValAssign::SExt:
|
|
Val = DAG.getNode(ISD::AssertSext, DL, LocVT, Val, DAG.getValueType(ValVT));
|
|
Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
|
|
break;
|
|
case CCValAssign::ZExtUpper:
|
|
case CCValAssign::ZExt:
|
|
Val = DAG.getNode(ISD::AssertZext, DL, LocVT, Val, DAG.getValueType(ValVT));
|
|
Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
|
|
break;
|
|
case CCValAssign::BCvt:
|
|
Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
|
|
break;
|
|
}
|
|
|
|
return Val;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Formal Arguments Calling Convention Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
/// LowerFormalArguments - transform physical registers into virtual registers
|
|
/// and generate load operations for arguments places on the stack.
|
|
SDValue MipsTargetLowering::LowerFormalArguments(
|
|
SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
|
|
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
|
|
|
|
MipsFI->setVarArgsFrameIndex(0);
|
|
|
|
// Used with vargs to acumulate store chains.
|
|
std::vector<SDValue> OutChains;
|
|
|
|
// Assign locations to all of the incoming arguments.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
|
|
*DAG.getContext());
|
|
CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), 1);
|
|
const Function &Func = DAG.getMachineFunction().getFunction();
|
|
Function::const_arg_iterator FuncArg = Func.arg_begin();
|
|
|
|
if (Func.hasFnAttribute("interrupt") && !Func.arg_empty())
|
|
report_fatal_error(
|
|
"Functions with the interrupt attribute cannot have arguments!");
|
|
|
|
CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FixedArg);
|
|
MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
|
|
CCInfo.getInRegsParamsCount() > 0);
|
|
|
|
unsigned CurArgIdx = 0;
|
|
CCInfo.rewindByValRegsInfo();
|
|
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
if (Ins[i].isOrigArg()) {
|
|
std::advance(FuncArg, Ins[i].getOrigArgIndex() - CurArgIdx);
|
|
CurArgIdx = Ins[i].getOrigArgIndex();
|
|
}
|
|
EVT ValVT = VA.getValVT();
|
|
ISD::ArgFlagsTy Flags = Ins[i].Flags;
|
|
bool IsRegLoc = VA.isRegLoc();
|
|
|
|
if (Flags.isByVal()) {
|
|
assert(Ins[i].isOrigArg() && "Byval arguments cannot be implicit");
|
|
unsigned FirstByValReg, LastByValReg;
|
|
unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
|
|
CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);
|
|
|
|
assert(Flags.getByValSize() &&
|
|
"ByVal args of size 0 should have been ignored by front-end.");
|
|
assert(ByValIdx < CCInfo.getInRegsParamsCount());
|
|
copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
|
|
FirstByValReg, LastByValReg, VA, CCInfo);
|
|
CCInfo.nextInRegsParam();
|
|
continue;
|
|
}
|
|
|
|
// Arguments stored on registers
|
|
if (IsRegLoc) {
|
|
MVT RegVT = VA.getLocVT();
|
|
unsigned ArgReg = VA.getLocReg();
|
|
const TargetRegisterClass *RC = getRegClassFor(RegVT);
|
|
|
|
// Transform the arguments stored on
|
|
// physical registers into virtual ones
|
|
unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
|
|
SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
|
|
|
|
ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG);
|
|
|
|
// Handle floating point arguments passed in integer registers and
|
|
// long double arguments passed in floating point registers.
|
|
if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
|
|
(RegVT == MVT::i64 && ValVT == MVT::f64) ||
|
|
(RegVT == MVT::f64 && ValVT == MVT::i64))
|
|
ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
|
|
else if (ABI.IsO32() && RegVT == MVT::i32 &&
|
|
ValVT == MVT::f64) {
|
|
unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
|
|
getNextIntArgReg(ArgReg), RC);
|
|
SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
|
|
if (!Subtarget.isLittle())
|
|
std::swap(ArgValue, ArgValue2);
|
|
ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
|
|
ArgValue, ArgValue2);
|
|
}
|
|
|
|
InVals.push_back(ArgValue);
|
|
} else { // VA.isRegLoc()
|
|
MVT LocVT = VA.getLocVT();
|
|
|
|
if (ABI.IsO32()) {
|
|
// We ought to be able to use LocVT directly but O32 sets it to i32
|
|
// when allocating floating point values to integer registers.
|
|
// This shouldn't influence how we load the value into registers unless
|
|
// we are targeting softfloat.
|
|
if (VA.getValVT().isFloatingPoint() && !Subtarget.useSoftFloat())
|
|
LocVT = VA.getValVT();
|
|
}
|
|
|
|
// sanity check
|
|
assert(VA.isMemLoc());
|
|
|
|
// The stack pointer offset is relative to the caller stack frame.
|
|
int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
|
|
VA.getLocMemOffset(), true);
|
|
|
|
// Create load nodes to retrieve arguments from the stack
|
|
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
|
|
SDValue ArgValue = DAG.getLoad(
|
|
LocVT, DL, Chain, FIN,
|
|
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
|
|
OutChains.push_back(ArgValue.getValue(1));
|
|
|
|
ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG);
|
|
|
|
InVals.push_back(ArgValue);
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
// The mips ABIs for returning structs by value requires that we copy
|
|
// the sret argument into $v0 for the return. Save the argument into
|
|
// a virtual register so that we can access it from the return points.
|
|
if (Ins[i].Flags.isSRet()) {
|
|
unsigned Reg = MipsFI->getSRetReturnReg();
|
|
if (!Reg) {
|
|
Reg = MF.getRegInfo().createVirtualRegister(
|
|
getRegClassFor(ABI.IsN64() ? MVT::i64 : MVT::i32));
|
|
MipsFI->setSRetReturnReg(Reg);
|
|
}
|
|
SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]);
|
|
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (IsVarArg)
|
|
writeVarArgRegs(OutChains, Chain, DL, DAG, CCInfo);
|
|
|
|
// All stores are grouped in one node to allow the matching between
|
|
// the size of Ins and InVals. This only happens when on varg functions
|
|
if (!OutChains.empty()) {
|
|
OutChains.push_back(Chain);
|
|
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Return Value Calling Convention Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool
|
|
MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
|
|
MachineFunction &MF, bool IsVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
LLVMContext &Context) const {
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
|
|
return CCInfo.CheckReturn(Outs, RetCC_Mips);
|
|
}
|
|
|
|
bool
|
|
MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
|
|
if ((ABI.IsN32() || ABI.IsN64()) && Type == MVT::i32)
|
|
return true;
|
|
|
|
return IsSigned;
|
|
}
|
|
|
|
SDValue
|
|
MipsTargetLowering::LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
|
|
const SDLoc &DL,
|
|
SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
|
|
|
|
MipsFI->setISR();
|
|
|
|
return DAG.getNode(MipsISD::ERet, DL, MVT::Other, RetOps);
|
|
}
|
|
|
|
SDValue
|
|
MipsTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
|
|
bool IsVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SDLoc &DL, SelectionDAG &DAG) const {
|
|
// CCValAssign - represent the assignment of
|
|
// the return value to a location
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
|
|
// CCState - Info about the registers and stack slot.
|
|
MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
|
|
|
|
// Analyze return values.
|
|
CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
|
|
|
|
SDValue Flag;
|
|
SmallVector<SDValue, 4> RetOps(1, Chain);
|
|
|
|
// Copy the result values into the output registers.
|
|
for (unsigned i = 0; i != RVLocs.size(); ++i) {
|
|
SDValue Val = OutVals[i];
|
|
CCValAssign &VA = RVLocs[i];
|
|
assert(VA.isRegLoc() && "Can only return in registers!");
|
|
bool UseUpperBits = false;
|
|
|
|
switch (VA.getLocInfo()) {
|
|
default:
|
|
llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full:
|
|
break;
|
|
case CCValAssign::BCvt:
|
|
Val = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Val);
|
|
break;
|
|
case CCValAssign::AExtUpper:
|
|
UseUpperBits = true;
|
|
LLVM_FALLTHROUGH;
|
|
case CCValAssign::AExt:
|
|
Val = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Val);
|
|
break;
|
|
case CCValAssign::ZExtUpper:
|
|
UseUpperBits = true;
|
|
LLVM_FALLTHROUGH;
|
|
case CCValAssign::ZExt:
|
|
Val = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Val);
|
|
break;
|
|
case CCValAssign::SExtUpper:
|
|
UseUpperBits = true;
|
|
LLVM_FALLTHROUGH;
|
|
case CCValAssign::SExt:
|
|
Val = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Val);
|
|
break;
|
|
}
|
|
|
|
if (UseUpperBits) {
|
|
unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
|
|
unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
|
|
Val = DAG.getNode(
|
|
ISD::SHL, DL, VA.getLocVT(), Val,
|
|
DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
|
|
}
|
|
|
|
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
|
|
|
|
// Guarantee that all emitted copies are stuck together with flags.
|
|
Flag = Chain.getValue(1);
|
|
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
|
|
}
|
|
|
|
// The mips ABIs for returning structs by value requires that we copy
|
|
// the sret argument into $v0 for the return. We saved the argument into
|
|
// a virtual register in the entry block, so now we copy the value out
|
|
// and into $v0.
|
|
if (MF.getFunction().hasStructRetAttr()) {
|
|
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
|
|
unsigned Reg = MipsFI->getSRetReturnReg();
|
|
|
|
if (!Reg)
|
|
llvm_unreachable("sret virtual register not created in the entry block");
|
|
SDValue Val =
|
|
DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout()));
|
|
unsigned V0 = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
|
|
|
|
Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
|
|
Flag = Chain.getValue(1);
|
|
RetOps.push_back(DAG.getRegister(V0, getPointerTy(DAG.getDataLayout())));
|
|
}
|
|
|
|
RetOps[0] = Chain; // Update chain.
|
|
|
|
// Add the flag if we have it.
|
|
if (Flag.getNode())
|
|
RetOps.push_back(Flag);
|
|
|
|
// ISRs must use "eret".
|
|
if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt"))
|
|
return LowerInterruptReturn(RetOps, DL, DAG);
|
|
|
|
// Standard return on Mips is a "jr $ra"
|
|
return DAG.getNode(MipsISD::Ret, DL, MVT::Other, RetOps);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Mips Inline Assembly Support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// getConstraintType - Given a constraint letter, return the type of
|
|
/// constraint it is for this target.
|
|
MipsTargetLowering::ConstraintType
|
|
MipsTargetLowering::getConstraintType(StringRef Constraint) const {
|
|
// Mips specific constraints
|
|
// GCC config/mips/constraints.md
|
|
//
|
|
// 'd' : An address register. Equivalent to r
|
|
// unless generating MIPS16 code.
|
|
// 'y' : Equivalent to r; retained for
|
|
// backwards compatibility.
|
|
// 'c' : A register suitable for use in an indirect
|
|
// jump. This will always be $25 for -mabicalls.
|
|
// 'l' : The lo register. 1 word storage.
|
|
// 'x' : The hilo register pair. Double word storage.
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
default : break;
|
|
case 'd':
|
|
case 'y':
|
|
case 'f':
|
|
case 'c':
|
|
case 'l':
|
|
case 'x':
|
|
return C_RegisterClass;
|
|
case 'R':
|
|
return C_Memory;
|
|
}
|
|
}
|
|
|
|
if (Constraint == "ZC")
|
|
return C_Memory;
|
|
|
|
return TargetLowering::getConstraintType(Constraint);
|
|
}
|
|
|
|
/// Examine constraint type and operand type and determine a weight value.
|
|
/// This object must already have been set up with the operand type
|
|
/// and the current alternative constraint selected.
|
|
TargetLowering::ConstraintWeight
|
|
MipsTargetLowering::getSingleConstraintMatchWeight(
|
|
AsmOperandInfo &info, const char *constraint) const {
|
|
ConstraintWeight weight = CW_Invalid;
|
|
Value *CallOperandVal = info.CallOperandVal;
|
|
// If we don't have a value, we can't do a match,
|
|
// but allow it at the lowest weight.
|
|
if (!CallOperandVal)
|
|
return CW_Default;
|
|
Type *type = CallOperandVal->getType();
|
|
// Look at the constraint type.
|
|
switch (*constraint) {
|
|
default:
|
|
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
|
|
break;
|
|
case 'd':
|
|
case 'y':
|
|
if (type->isIntegerTy())
|
|
weight = CW_Register;
|
|
break;
|
|
case 'f': // FPU or MSA register
|
|
if (Subtarget.hasMSA() && type->isVectorTy() &&
|
|
cast<VectorType>(type)->getBitWidth() == 128)
|
|
weight = CW_Register;
|
|
else if (type->isFloatTy())
|
|
weight = CW_Register;
|
|
break;
|
|
case 'c': // $25 for indirect jumps
|
|
case 'l': // lo register
|
|
case 'x': // hilo register pair
|
|
if (type->isIntegerTy())
|
|
weight = CW_SpecificReg;
|
|
break;
|
|
case 'I': // signed 16 bit immediate
|
|
case 'J': // integer zero
|
|
case 'K': // unsigned 16 bit immediate
|
|
case 'L': // signed 32 bit immediate where lower 16 bits are 0
|
|
case 'N': // immediate in the range of -65535 to -1 (inclusive)
|
|
case 'O': // signed 15 bit immediate (+- 16383)
|
|
case 'P': // immediate in the range of 65535 to 1 (inclusive)
|
|
if (isa<ConstantInt>(CallOperandVal))
|
|
weight = CW_Constant;
|
|
break;
|
|
case 'R':
|
|
weight = CW_Memory;
|
|
break;
|
|
}
|
|
return weight;
|
|
}
|
|
|
|
/// This is a helper function to parse a physical register string and split it
|
|
/// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
|
|
/// that is returned indicates whether parsing was successful. The second flag
|
|
/// is true if the numeric part exists.
|
|
static std::pair<bool, bool> parsePhysicalReg(StringRef C, StringRef &Prefix,
|
|
unsigned long long &Reg) {
|
|
if (C.front() != '{' || C.back() != '}')
|
|
return std::make_pair(false, false);
|
|
|
|
// Search for the first numeric character.
|
|
StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
|
|
I = std::find_if(B, E, isdigit);
|
|
|
|
Prefix = StringRef(B, I - B);
|
|
|
|
// The second flag is set to false if no numeric characters were found.
|
|
if (I == E)
|
|
return std::make_pair(true, false);
|
|
|
|
// Parse the numeric characters.
|
|
return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
|
|
true);
|
|
}
|
|
|
|
EVT MipsTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
|
|
ISD::NodeType) const {
|
|
bool Cond = !Subtarget.isABI_O32() && VT.getSizeInBits() == 32;
|
|
EVT MinVT = getRegisterType(Context, Cond ? MVT::i64 : MVT::i32);
|
|
return VT.bitsLT(MinVT) ? MinVT : VT;
|
|
}
|
|
|
|
std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
|
|
parseRegForInlineAsmConstraint(StringRef C, MVT VT) const {
|
|
const TargetRegisterInfo *TRI =
|
|
Subtarget.getRegisterInfo();
|
|
const TargetRegisterClass *RC;
|
|
StringRef Prefix;
|
|
unsigned long long Reg;
|
|
|
|
std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);
|
|
|
|
if (!R.first)
|
|
return std::make_pair(0U, nullptr);
|
|
|
|
if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
|
|
// No numeric characters follow "hi" or "lo".
|
|
if (R.second)
|
|
return std::make_pair(0U, nullptr);
|
|
|
|
RC = TRI->getRegClass(Prefix == "hi" ?
|
|
Mips::HI32RegClassID : Mips::LO32RegClassID);
|
|
return std::make_pair(*(RC->begin()), RC);
|
|
} else if (Prefix.startswith("$msa")) {
|
|
// Parse $msa(ir|csr|access|save|modify|request|map|unmap)
|
|
|
|
// No numeric characters follow the name.
|
|
if (R.second)
|
|
return std::make_pair(0U, nullptr);
|
|
|
|
Reg = StringSwitch<unsigned long long>(Prefix)
|
|
.Case("$msair", Mips::MSAIR)
|
|
.Case("$msacsr", Mips::MSACSR)
|
|
.Case("$msaaccess", Mips::MSAAccess)
|
|
.Case("$msasave", Mips::MSASave)
|
|
.Case("$msamodify", Mips::MSAModify)
|
|
.Case("$msarequest", Mips::MSARequest)
|
|
.Case("$msamap", Mips::MSAMap)
|
|
.Case("$msaunmap", Mips::MSAUnmap)
|
|
.Default(0);
|
|
|
|
if (!Reg)
|
|
return std::make_pair(0U, nullptr);
|
|
|
|
RC = TRI->getRegClass(Mips::MSACtrlRegClassID);
|
|
return std::make_pair(Reg, RC);
|
|
}
|
|
|
|
if (!R.second)
|
|
return std::make_pair(0U, nullptr);
|
|
|
|
if (Prefix == "$f") { // Parse $f0-$f31.
|
|
// If the size of FP registers is 64-bit or Reg is an even number, select
|
|
// the 64-bit register class. Otherwise, select the 32-bit register class.
|
|
if (VT == MVT::Other)
|
|
VT = (Subtarget.isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;
|
|
|
|
RC = getRegClassFor(VT);
|
|
|
|
if (RC == &Mips::AFGR64RegClass) {
|
|
assert(Reg % 2 == 0);
|
|
Reg >>= 1;
|
|
}
|
|
} else if (Prefix == "$fcc") // Parse $fcc0-$fcc7.
|
|
RC = TRI->getRegClass(Mips::FCCRegClassID);
|
|
else if (Prefix == "$w") { // Parse $w0-$w31.
|
|
RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT);
|
|
} else { // Parse $0-$31.
|
|
assert(Prefix == "$");
|
|
RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
|
|
}
|
|
|
|
assert(Reg < RC->getNumRegs());
|
|
return std::make_pair(*(RC->begin() + Reg), RC);
|
|
}
|
|
|
|
/// Given a register class constraint, like 'r', if this corresponds directly
|
|
/// to an LLVM register class, return a register of 0 and the register class
|
|
/// pointer.
|
|
std::pair<unsigned, const TargetRegisterClass *>
|
|
MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
|
|
StringRef Constraint,
|
|
MVT VT) const {
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
|
|
case 'y': // Same as 'r'. Exists for compatibility.
|
|
case 'r':
|
|
if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
|
|
if (Subtarget.inMips16Mode())
|
|
return std::make_pair(0U, &Mips::CPU16RegsRegClass);
|
|
return std::make_pair(0U, &Mips::GPR32RegClass);
|
|
}
|
|
if (VT == MVT::i64 && !Subtarget.isGP64bit())
|
|
return std::make_pair(0U, &Mips::GPR32RegClass);
|
|
if (VT == MVT::i64 && Subtarget.isGP64bit())
|
|
return std::make_pair(0U, &Mips::GPR64RegClass);
|
|
// This will generate an error message
|
|
return std::make_pair(0U, nullptr);
|
|
case 'f': // FPU or MSA register
|
|
if (VT == MVT::v16i8)
|
|
return std::make_pair(0U, &Mips::MSA128BRegClass);
|
|
else if (VT == MVT::v8i16 || VT == MVT::v8f16)
|
|
return std::make_pair(0U, &Mips::MSA128HRegClass);
|
|
else if (VT == MVT::v4i32 || VT == MVT::v4f32)
|
|
return std::make_pair(0U, &Mips::MSA128WRegClass);
|
|
else if (VT == MVT::v2i64 || VT == MVT::v2f64)
|
|
return std::make_pair(0U, &Mips::MSA128DRegClass);
|
|
else if (VT == MVT::f32)
|
|
return std::make_pair(0U, &Mips::FGR32RegClass);
|
|
else if ((VT == MVT::f64) && (!Subtarget.isSingleFloat())) {
|
|
if (Subtarget.isFP64bit())
|
|
return std::make_pair(0U, &Mips::FGR64RegClass);
|
|
return std::make_pair(0U, &Mips::AFGR64RegClass);
|
|
}
|
|
break;
|
|
case 'c': // register suitable for indirect jump
|
|
if (VT == MVT::i32)
|
|
return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
|
|
if (VT == MVT::i64)
|
|
return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
|
|
// This will generate an error message
|
|
return std::make_pair(0U, nullptr);
|
|
case 'l': // use the `lo` register to store values
|
|
// that are no bigger than a word
|
|
if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8)
|
|
return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
|
|
return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
|
|
case 'x': // use the concatenated `hi` and `lo` registers
|
|
// to store doubleword values
|
|
// Fixme: Not triggering the use of both hi and low
|
|
// This will generate an error message
|
|
return std::make_pair(0U, nullptr);
|
|
}
|
|
}
|
|
|
|
std::pair<unsigned, const TargetRegisterClass *> R;
|
|
R = parseRegForInlineAsmConstraint(Constraint, VT);
|
|
|
|
if (R.second)
|
|
return R;
|
|
|
|
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
|
|
}
|
|
|
|
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
|
|
/// vector. If it is invalid, don't add anything to Ops.
|
|
void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
|
|
std::string &Constraint,
|
|
std::vector<SDValue>&Ops,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
SDValue Result;
|
|
|
|
// Only support length 1 constraints for now.
|
|
if (Constraint.length() > 1) return;
|
|
|
|
char ConstraintLetter = Constraint[0];
|
|
switch (ConstraintLetter) {
|
|
default: break; // This will fall through to the generic implementation
|
|
case 'I': // Signed 16 bit constant
|
|
// If this fails, the parent routine will give an error
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
EVT Type = Op.getValueType();
|
|
int64_t Val = C->getSExtValue();
|
|
if (isInt<16>(Val)) {
|
|
Result = DAG.getTargetConstant(Val, DL, Type);
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
case 'J': // integer zero
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
EVT Type = Op.getValueType();
|
|
int64_t Val = C->getZExtValue();
|
|
if (Val == 0) {
|
|
Result = DAG.getTargetConstant(0, DL, Type);
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
case 'K': // unsigned 16 bit immediate
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
EVT Type = Op.getValueType();
|
|
uint64_t Val = (uint64_t)C->getZExtValue();
|
|
if (isUInt<16>(Val)) {
|
|
Result = DAG.getTargetConstant(Val, DL, Type);
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
case 'L': // signed 32 bit immediate where lower 16 bits are 0
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
EVT Type = Op.getValueType();
|
|
int64_t Val = C->getSExtValue();
|
|
if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
|
|
Result = DAG.getTargetConstant(Val, DL, Type);
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
case 'N': // immediate in the range of -65535 to -1 (inclusive)
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
EVT Type = Op.getValueType();
|
|
int64_t Val = C->getSExtValue();
|
|
if ((Val >= -65535) && (Val <= -1)) {
|
|
Result = DAG.getTargetConstant(Val, DL, Type);
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
case 'O': // signed 15 bit immediate
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
EVT Type = Op.getValueType();
|
|
int64_t Val = C->getSExtValue();
|
|
if ((isInt<15>(Val))) {
|
|
Result = DAG.getTargetConstant(Val, DL, Type);
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
case 'P': // immediate in the range of 1 to 65535 (inclusive)
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
EVT Type = Op.getValueType();
|
|
int64_t Val = C->getSExtValue();
|
|
if ((Val <= 65535) && (Val >= 1)) {
|
|
Result = DAG.getTargetConstant(Val, DL, Type);
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (Result.getNode()) {
|
|
Ops.push_back(Result);
|
|
return;
|
|
}
|
|
|
|
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
|
|
}
|
|
|
|
bool MipsTargetLowering::isLegalAddressingMode(const DataLayout &DL,
|
|
const AddrMode &AM, Type *Ty,
|
|
unsigned AS, Instruction *I) const {
|
|
// No global is ever allowed as a base.
|
|
if (AM.BaseGV)
|
|
return false;
|
|
|
|
switch (AM.Scale) {
|
|
case 0: // "r+i" or just "i", depending on HasBaseReg.
|
|
break;
|
|
case 1:
|
|
if (!AM.HasBaseReg) // allow "r+i".
|
|
break;
|
|
return false; // disallow "r+r" or "r+r+i".
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
|
|
// The Mips target isn't yet aware of offsets.
|
|
return false;
|
|
}
|
|
|
|
EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
|
|
unsigned SrcAlign,
|
|
bool IsMemset, bool ZeroMemset,
|
|
bool MemcpyStrSrc,
|
|
MachineFunction &MF) const {
|
|
if (Subtarget.hasMips64())
|
|
return MVT::i64;
|
|
|
|
return MVT::i32;
|
|
}
|
|
|
|
bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
|
|
if (VT != MVT::f32 && VT != MVT::f64)
|
|
return false;
|
|
if (Imm.isNegZero())
|
|
return false;
|
|
return Imm.isZero();
|
|
}
|
|
|
|
unsigned MipsTargetLowering::getJumpTableEncoding() const {
|
|
|
|
// FIXME: For space reasons this should be: EK_GPRel32BlockAddress.
|
|
if (ABI.IsN64() && isPositionIndependent())
|
|
return MachineJumpTableInfo::EK_GPRel64BlockAddress;
|
|
|
|
return TargetLowering::getJumpTableEncoding();
|
|
}
|
|
|
|
bool MipsTargetLowering::useSoftFloat() const {
|
|
return Subtarget.useSoftFloat();
|
|
}
|
|
|
|
void MipsTargetLowering::copyByValRegs(
|
|
SDValue Chain, const SDLoc &DL, std::vector<SDValue> &OutChains,
|
|
SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
|
|
SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
|
|
unsigned FirstReg, unsigned LastReg, const CCValAssign &VA,
|
|
MipsCCState &State) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
unsigned GPRSizeInBytes = Subtarget.getGPRSizeInBytes();
|
|
unsigned NumRegs = LastReg - FirstReg;
|
|
unsigned RegAreaSize = NumRegs * GPRSizeInBytes;
|
|
unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
|
|
int FrameObjOffset;
|
|
ArrayRef<MCPhysReg> ByValArgRegs = ABI.GetByValArgRegs();
|
|
|
|
if (RegAreaSize)
|
|
FrameObjOffset =
|
|
(int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
|
|
(int)((ByValArgRegs.size() - FirstReg) * GPRSizeInBytes);
|
|
else
|
|
FrameObjOffset = VA.getLocMemOffset();
|
|
|
|
// Create frame object.
|
|
EVT PtrTy = getPointerTy(DAG.getDataLayout());
|
|
// Make the fixed object stored to mutable so that the load instructions
|
|
// referencing it have their memory dependencies added.
|
|
// Set the frame object as isAliased which clears the underlying objects
|
|
// vector in ScheduleDAGInstrs::buildSchedGraph() resulting in addition of all
|
|
// stores as dependencies for loads referencing this fixed object.
|
|
int FI = MFI.CreateFixedObject(FrameObjSize, FrameObjOffset, false, true);
|
|
SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
|
|
InVals.push_back(FIN);
|
|
|
|
if (!NumRegs)
|
|
return;
|
|
|
|
// Copy arg registers.
|
|
MVT RegTy = MVT::getIntegerVT(GPRSizeInBytes * 8);
|
|
const TargetRegisterClass *RC = getRegClassFor(RegTy);
|
|
|
|
for (unsigned I = 0; I < NumRegs; ++I) {
|
|
unsigned ArgReg = ByValArgRegs[FirstReg + I];
|
|
unsigned VReg = addLiveIn(MF, ArgReg, RC);
|
|
unsigned Offset = I * GPRSizeInBytes;
|
|
SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
|
|
DAG.getConstant(Offset, DL, PtrTy));
|
|
SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
|
|
StorePtr, MachinePointerInfo(FuncArg, Offset));
|
|
OutChains.push_back(Store);
|
|
}
|
|
}
|
|
|
|
// Copy byVal arg to registers and stack.
|
|
void MipsTargetLowering::passByValArg(
|
|
SDValue Chain, const SDLoc &DL,
|
|
std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
|
|
SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
|
|
MachineFrameInfo &MFI, SelectionDAG &DAG, SDValue Arg, unsigned FirstReg,
|
|
unsigned LastReg, const ISD::ArgFlagsTy &Flags, bool isLittle,
|
|
const CCValAssign &VA) const {
|
|
unsigned ByValSizeInBytes = Flags.getByValSize();
|
|
unsigned OffsetInBytes = 0; // From beginning of struct
|
|
unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
|
|
unsigned Alignment = std::min(Flags.getByValAlign(), RegSizeInBytes);
|
|
EVT PtrTy = getPointerTy(DAG.getDataLayout()),
|
|
RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
|
|
unsigned NumRegs = LastReg - FirstReg;
|
|
|
|
if (NumRegs) {
|
|
ArrayRef<MCPhysReg> ArgRegs = ABI.GetByValArgRegs();
|
|
bool LeftoverBytes = (NumRegs * RegSizeInBytes > ByValSizeInBytes);
|
|
unsigned I = 0;
|
|
|
|
// Copy words to registers.
|
|
for (; I < NumRegs - LeftoverBytes; ++I, OffsetInBytes += RegSizeInBytes) {
|
|
SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
|
|
DAG.getConstant(OffsetInBytes, DL, PtrTy));
|
|
SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
|
|
MachinePointerInfo(), Alignment);
|
|
MemOpChains.push_back(LoadVal.getValue(1));
|
|
unsigned ArgReg = ArgRegs[FirstReg + I];
|
|
RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
|
|
}
|
|
|
|
// Return if the struct has been fully copied.
|
|
if (ByValSizeInBytes == OffsetInBytes)
|
|
return;
|
|
|
|
// Copy the remainder of the byval argument with sub-word loads and shifts.
|
|
if (LeftoverBytes) {
|
|
SDValue Val;
|
|
|
|
for (unsigned LoadSizeInBytes = RegSizeInBytes / 2, TotalBytesLoaded = 0;
|
|
OffsetInBytes < ByValSizeInBytes; LoadSizeInBytes /= 2) {
|
|
unsigned RemainingSizeInBytes = ByValSizeInBytes - OffsetInBytes;
|
|
|
|
if (RemainingSizeInBytes < LoadSizeInBytes)
|
|
continue;
|
|
|
|
// Load subword.
|
|
SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
|
|
DAG.getConstant(OffsetInBytes, DL,
|
|
PtrTy));
|
|
SDValue LoadVal = DAG.getExtLoad(
|
|
ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(),
|
|
MVT::getIntegerVT(LoadSizeInBytes * 8), Alignment);
|
|
MemOpChains.push_back(LoadVal.getValue(1));
|
|
|
|
// Shift the loaded value.
|
|
unsigned Shamt;
|
|
|
|
if (isLittle)
|
|
Shamt = TotalBytesLoaded * 8;
|
|
else
|
|
Shamt = (RegSizeInBytes - (TotalBytesLoaded + LoadSizeInBytes)) * 8;
|
|
|
|
SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
|
|
DAG.getConstant(Shamt, DL, MVT::i32));
|
|
|
|
if (Val.getNode())
|
|
Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
|
|
else
|
|
Val = Shift;
|
|
|
|
OffsetInBytes += LoadSizeInBytes;
|
|
TotalBytesLoaded += LoadSizeInBytes;
|
|
Alignment = std::min(Alignment, LoadSizeInBytes);
|
|
}
|
|
|
|
unsigned ArgReg = ArgRegs[FirstReg + I];
|
|
RegsToPass.push_back(std::make_pair(ArgReg, Val));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Copy remainder of byval arg to it with memcpy.
|
|
unsigned MemCpySize = ByValSizeInBytes - OffsetInBytes;
|
|
SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
|
|
DAG.getConstant(OffsetInBytes, DL, PtrTy));
|
|
SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
|
|
DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
|
|
Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
|
|
DAG.getConstant(MemCpySize, DL, PtrTy),
|
|
Alignment, /*isVolatile=*/false, /*AlwaysInline=*/false,
|
|
/*isTailCall=*/false,
|
|
MachinePointerInfo(), MachinePointerInfo());
|
|
MemOpChains.push_back(Chain);
|
|
}
|
|
|
|
void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
|
|
SDValue Chain, const SDLoc &DL,
|
|
SelectionDAG &DAG,
|
|
CCState &State) const {
|
|
ArrayRef<MCPhysReg> ArgRegs = ABI.GetVarArgRegs();
|
|
unsigned Idx = State.getFirstUnallocated(ArgRegs);
|
|
unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
|
|
MVT RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
|
|
const TargetRegisterClass *RC = getRegClassFor(RegTy);
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
|
|
|
|
// Offset of the first variable argument from stack pointer.
|
|
int VaArgOffset;
|
|
|
|
if (ArgRegs.size() == Idx)
|
|
VaArgOffset = alignTo(State.getNextStackOffset(), RegSizeInBytes);
|
|
else {
|
|
VaArgOffset =
|
|
(int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
|
|
(int)(RegSizeInBytes * (ArgRegs.size() - Idx));
|
|
}
|
|
|
|
// Record the frame index of the first variable argument
|
|
// which is a value necessary to VASTART.
|
|
int FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
|
|
MipsFI->setVarArgsFrameIndex(FI);
|
|
|
|
// Copy the integer registers that have not been used for argument passing
|
|
// to the argument register save area. For O32, the save area is allocated
|
|
// in the caller's stack frame, while for N32/64, it is allocated in the
|
|
// callee's stack frame.
|
|
for (unsigned I = Idx; I < ArgRegs.size();
|
|
++I, VaArgOffset += RegSizeInBytes) {
|
|
unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
|
|
SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
|
|
FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
|
|
SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
|
|
SDValue Store =
|
|
DAG.getStore(Chain, DL, ArgValue, PtrOff, MachinePointerInfo());
|
|
cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(
|
|
(Value *)nullptr);
|
|
OutChains.push_back(Store);
|
|
}
|
|
}
|
|
|
|
void MipsTargetLowering::HandleByVal(CCState *State, unsigned &Size,
|
|
unsigned Align) const {
|
|
const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
|
|
|
|
assert(Size && "Byval argument's size shouldn't be 0.");
|
|
|
|
Align = std::min(Align, TFL->getStackAlignment());
|
|
|
|
unsigned FirstReg = 0;
|
|
unsigned NumRegs = 0;
|
|
|
|
if (State->getCallingConv() != CallingConv::Fast) {
|
|
unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
|
|
ArrayRef<MCPhysReg> IntArgRegs = ABI.GetByValArgRegs();
|
|
// FIXME: The O32 case actually describes no shadow registers.
|
|
const MCPhysReg *ShadowRegs =
|
|
ABI.IsO32() ? IntArgRegs.data() : Mips64DPRegs;
|
|
|
|
// We used to check the size as well but we can't do that anymore since
|
|
// CCState::HandleByVal() rounds up the size after calling this function.
|
|
assert(!(Align % RegSizeInBytes) &&
|
|
"Byval argument's alignment should be a multiple of"
|
|
"RegSizeInBytes.");
|
|
|
|
FirstReg = State->getFirstUnallocated(IntArgRegs);
|
|
|
|
// If Align > RegSizeInBytes, the first arg register must be even.
|
|
// FIXME: This condition happens to do the right thing but it's not the
|
|
// right way to test it. We want to check that the stack frame offset
|
|
// of the register is aligned.
|
|
if ((Align > RegSizeInBytes) && (FirstReg % 2)) {
|
|
State->AllocateReg(IntArgRegs[FirstReg], ShadowRegs[FirstReg]);
|
|
++FirstReg;
|
|
}
|
|
|
|
// Mark the registers allocated.
|
|
Size = alignTo(Size, RegSizeInBytes);
|
|
for (unsigned I = FirstReg; Size > 0 && (I < IntArgRegs.size());
|
|
Size -= RegSizeInBytes, ++I, ++NumRegs)
|
|
State->AllocateReg(IntArgRegs[I], ShadowRegs[I]);
|
|
}
|
|
|
|
State->addInRegsParamInfo(FirstReg, FirstReg + NumRegs);
|
|
}
|
|
|
|
MachineBasicBlock *MipsTargetLowering::emitPseudoSELECT(MachineInstr &MI,
|
|
MachineBasicBlock *BB,
|
|
bool isFPCmp,
|
|
unsigned Opc) const {
|
|
assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) &&
|
|
"Subtarget already supports SELECT nodes with the use of"
|
|
"conditional-move instructions.");
|
|
|
|
const TargetInstrInfo *TII =
|
|
Subtarget.getInstrInfo();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
|
|
// To "insert" a SELECT instruction, we actually have to insert the
|
|
// diamond control-flow pattern. The incoming instruction knows the
|
|
// destination vreg to set, the condition code register to branch on, the
|
|
// true/false values to select between, and a branch opcode to use.
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction::iterator It = ++BB->getIterator();
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// TrueVal = ...
|
|
// setcc r1, r2, r3
|
|
// bNE r1, r0, copy1MBB
|
|
// fallthrough --> copy0MBB
|
|
MachineBasicBlock *thisMBB = BB;
|
|
MachineFunction *F = BB->getParent();
|
|
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
F->insert(It, copy0MBB);
|
|
F->insert(It, sinkMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to sinkMBB.
|
|
sinkMBB->splice(sinkMBB->begin(), BB,
|
|
std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
|
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
// Next, add the true and fallthrough blocks as its successors.
|
|
BB->addSuccessor(copy0MBB);
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
if (isFPCmp) {
|
|
// bc1[tf] cc, sinkMBB
|
|
BuildMI(BB, DL, TII->get(Opc))
|
|
.addReg(MI.getOperand(1).getReg())
|
|
.addMBB(sinkMBB);
|
|
} else {
|
|
// bne rs, $0, sinkMBB
|
|
BuildMI(BB, DL, TII->get(Opc))
|
|
.addReg(MI.getOperand(1).getReg())
|
|
.addReg(Mips::ZERO)
|
|
.addMBB(sinkMBB);
|
|
}
|
|
|
|
// copy0MBB:
|
|
// %FalseValue = ...
|
|
// # fallthrough to sinkMBB
|
|
BB = copy0MBB;
|
|
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// sinkMBB:
|
|
// %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
|
|
// ...
|
|
BB = sinkMBB;
|
|
|
|
BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
|
|
.addReg(MI.getOperand(2).getReg())
|
|
.addMBB(thisMBB)
|
|
.addReg(MI.getOperand(3).getReg())
|
|
.addMBB(copy0MBB);
|
|
|
|
MI.eraseFromParent(); // The pseudo instruction is gone now.
|
|
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *MipsTargetLowering::emitPseudoD_SELECT(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const {
|
|
assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) &&
|
|
"Subtarget already supports SELECT nodes with the use of"
|
|
"conditional-move instructions.");
|
|
|
|
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
|
|
// D_SELECT substitutes two SELECT nodes that goes one after another and
|
|
// have the same condition operand. On machines which don't have
|
|
// conditional-move instruction, it reduces unnecessary branch instructions
|
|
// which are result of using two diamond patterns that are result of two
|
|
// SELECT pseudo instructions.
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction::iterator It = ++BB->getIterator();
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// TrueVal = ...
|
|
// setcc r1, r2, r3
|
|
// bNE r1, r0, copy1MBB
|
|
// fallthrough --> copy0MBB
|
|
MachineBasicBlock *thisMBB = BB;
|
|
MachineFunction *F = BB->getParent();
|
|
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
F->insert(It, copy0MBB);
|
|
F->insert(It, sinkMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to sinkMBB.
|
|
sinkMBB->splice(sinkMBB->begin(), BB,
|
|
std::next(MachineBasicBlock::iterator(MI)), BB->end());
|
|
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
// Next, add the true and fallthrough blocks as its successors.
|
|
BB->addSuccessor(copy0MBB);
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// bne rs, $0, sinkMBB
|
|
BuildMI(BB, DL, TII->get(Mips::BNE))
|
|
.addReg(MI.getOperand(2).getReg())
|
|
.addReg(Mips::ZERO)
|
|
.addMBB(sinkMBB);
|
|
|
|
// copy0MBB:
|
|
// %FalseValue = ...
|
|
// # fallthrough to sinkMBB
|
|
BB = copy0MBB;
|
|
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// sinkMBB:
|
|
// %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
|
|
// ...
|
|
BB = sinkMBB;
|
|
|
|
// Use two PHI nodes to select two reults
|
|
BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
|
|
.addReg(MI.getOperand(3).getReg())
|
|
.addMBB(thisMBB)
|
|
.addReg(MI.getOperand(5).getReg())
|
|
.addMBB(copy0MBB);
|
|
BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(1).getReg())
|
|
.addReg(MI.getOperand(4).getReg())
|
|
.addMBB(thisMBB)
|
|
.addReg(MI.getOperand(6).getReg())
|
|
.addMBB(copy0MBB);
|
|
|
|
MI.eraseFromParent(); // The pseudo instruction is gone now.
|
|
|
|
return BB;
|
|
}
|
|
|
|
// FIXME? Maybe this could be a TableGen attribute on some registers and
|
|
// this table could be generated automatically from RegInfo.
|
|
unsigned MipsTargetLowering::getRegisterByName(const char* RegName, EVT VT,
|
|
SelectionDAG &DAG) const {
|
|
// Named registers is expected to be fairly rare. For now, just support $28
|
|
// since the linux kernel uses it.
|
|
if (Subtarget.isGP64bit()) {
|
|
unsigned Reg = StringSwitch<unsigned>(RegName)
|
|
.Case("$28", Mips::GP_64)
|
|
.Default(0);
|
|
if (Reg)
|
|
return Reg;
|
|
} else {
|
|
unsigned Reg = StringSwitch<unsigned>(RegName)
|
|
.Case("$28", Mips::GP)
|
|
.Default(0);
|
|
if (Reg)
|
|
return Reg;
|
|
}
|
|
report_fatal_error("Invalid register name global variable");
|
|
}
|