forked from OSchip/llvm-project
1097 lines
36 KiB
C++
1097 lines
36 KiB
C++
//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Chris Lattner and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Expr class and subclasses.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "clang/Lex/IdentifierTable.h"
|
|
// is this bad layering? I (snaroff) don't think so. Want Chris to weigh in.
|
|
#include "clang/Parse/DeclSpec.h"
|
|
using namespace clang;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Primary Expressions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
StringLiteral::StringLiteral(const char *strData, unsigned byteLength,
|
|
bool Wide, QualType t, SourceLocation firstLoc,
|
|
SourceLocation lastLoc) :
|
|
Expr(StringLiteralClass, t) {
|
|
// OPTIMIZE: could allocate this appended to the StringLiteral.
|
|
char *AStrData = new char[byteLength];
|
|
memcpy(AStrData, strData, byteLength);
|
|
StrData = AStrData;
|
|
ByteLength = byteLength;
|
|
IsWide = Wide;
|
|
firstTokLoc = firstLoc;
|
|
lastTokLoc = lastLoc;
|
|
}
|
|
|
|
StringLiteral::~StringLiteral() {
|
|
delete[] StrData;
|
|
}
|
|
|
|
bool UnaryOperator::isPostfix(Opcode Op) {
|
|
switch (Op) {
|
|
case PostInc:
|
|
case PostDec:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
|
|
/// corresponds to, e.g. "sizeof" or "[pre]++".
|
|
const char *UnaryOperator::getOpcodeStr(Opcode Op) {
|
|
switch (Op) {
|
|
default: assert(0 && "Unknown unary operator");
|
|
case PostInc: return "++";
|
|
case PostDec: return "--";
|
|
case PreInc: return "++";
|
|
case PreDec: return "--";
|
|
case AddrOf: return "&";
|
|
case Deref: return "*";
|
|
case Plus: return "+";
|
|
case Minus: return "-";
|
|
case Not: return "~";
|
|
case LNot: return "!";
|
|
case Real: return "__real";
|
|
case Imag: return "__imag";
|
|
case SizeOf: return "sizeof";
|
|
case AlignOf: return "alignof";
|
|
case Extension: return "__extension__";
|
|
case OffsetOf: return "__builtin_offsetof";
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Postfix Operators.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
CallExpr::CallExpr(Expr *fn, Expr **args, unsigned numargs, QualType t,
|
|
SourceLocation rparenloc)
|
|
: Expr(CallExprClass, t), NumArgs(numargs) {
|
|
SubExprs = new Expr*[numargs+1];
|
|
SubExprs[FN] = fn;
|
|
for (unsigned i = 0; i != numargs; ++i)
|
|
SubExprs[i+ARGS_START] = args[i];
|
|
RParenLoc = rparenloc;
|
|
}
|
|
|
|
bool CallExpr::isBuiltinClassifyType(llvm::APSInt &Result) const {
|
|
// The following enum mimics gcc's internal "typeclass.h" file.
|
|
enum gcc_type_class {
|
|
no_type_class = -1,
|
|
void_type_class, integer_type_class, char_type_class,
|
|
enumeral_type_class, boolean_type_class,
|
|
pointer_type_class, reference_type_class, offset_type_class,
|
|
real_type_class, complex_type_class,
|
|
function_type_class, method_type_class,
|
|
record_type_class, union_type_class,
|
|
array_type_class, string_type_class,
|
|
lang_type_class
|
|
};
|
|
Result.setIsSigned(true);
|
|
|
|
// All simple function calls (e.g. func()) are implicitly cast to pointer to
|
|
// function. As a result, we try and obtain the DeclRefExpr from the
|
|
// ImplicitCastExpr.
|
|
const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
|
|
if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
|
|
return false;
|
|
const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
|
|
if (!DRE)
|
|
return false;
|
|
|
|
// We have a DeclRefExpr.
|
|
if (strcmp(DRE->getDecl()->getName(), "__builtin_classify_type") == 0) {
|
|
// If no argument was supplied, default to "no_type_class". This isn't
|
|
// ideal, however it's what gcc does.
|
|
Result = static_cast<uint64_t>(no_type_class);
|
|
if (NumArgs >= 1) {
|
|
QualType argType = getArg(0)->getType();
|
|
|
|
if (argType->isVoidType())
|
|
Result = void_type_class;
|
|
else if (argType->isEnumeralType())
|
|
Result = enumeral_type_class;
|
|
else if (argType->isBooleanType())
|
|
Result = boolean_type_class;
|
|
else if (argType->isCharType())
|
|
Result = string_type_class; // gcc doesn't appear to use char_type_class
|
|
else if (argType->isIntegerType())
|
|
Result = integer_type_class;
|
|
else if (argType->isPointerType())
|
|
Result = pointer_type_class;
|
|
else if (argType->isReferenceType())
|
|
Result = reference_type_class;
|
|
else if (argType->isRealType())
|
|
Result = real_type_class;
|
|
else if (argType->isComplexType())
|
|
Result = complex_type_class;
|
|
else if (argType->isFunctionType())
|
|
Result = function_type_class;
|
|
else if (argType->isStructureType())
|
|
Result = record_type_class;
|
|
else if (argType->isUnionType())
|
|
Result = union_type_class;
|
|
else if (argType->isArrayType())
|
|
Result = array_type_class;
|
|
else if (argType->isUnionType())
|
|
Result = union_type_class;
|
|
else // FIXME: offset_type_class, method_type_class, & lang_type_class?
|
|
assert(1 && "CallExpr::isBuiltinClassifyType(): unimplemented type");
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
|
|
/// corresponds to, e.g. "<<=".
|
|
const char *BinaryOperator::getOpcodeStr(Opcode Op) {
|
|
switch (Op) {
|
|
default: assert(0 && "Unknown binary operator");
|
|
case Mul: return "*";
|
|
case Div: return "/";
|
|
case Rem: return "%";
|
|
case Add: return "+";
|
|
case Sub: return "-";
|
|
case Shl: return "<<";
|
|
case Shr: return ">>";
|
|
case LT: return "<";
|
|
case GT: return ">";
|
|
case LE: return "<=";
|
|
case GE: return ">=";
|
|
case EQ: return "==";
|
|
case NE: return "!=";
|
|
case And: return "&";
|
|
case Xor: return "^";
|
|
case Or: return "|";
|
|
case LAnd: return "&&";
|
|
case LOr: return "||";
|
|
case Assign: return "=";
|
|
case MulAssign: return "*=";
|
|
case DivAssign: return "/=";
|
|
case RemAssign: return "%=";
|
|
case AddAssign: return "+=";
|
|
case SubAssign: return "-=";
|
|
case ShlAssign: return "<<=";
|
|
case ShrAssign: return ">>=";
|
|
case AndAssign: return "&=";
|
|
case XorAssign: return "^=";
|
|
case OrAssign: return "|=";
|
|
case Comma: return ",";
|
|
}
|
|
}
|
|
|
|
InitListExpr::InitListExpr(SourceLocation lbraceloc,
|
|
Expr **initexprs, unsigned numinits,
|
|
SourceLocation rbraceloc)
|
|
: Expr(InitListExprClass, QualType())
|
|
, NumInits(numinits)
|
|
, LBraceLoc(lbraceloc)
|
|
, RBraceLoc(rbraceloc)
|
|
{
|
|
InitExprs = new Expr*[numinits];
|
|
for (unsigned i = 0; i != numinits; i++)
|
|
InitExprs[i] = initexprs[i];
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Generic Expression Routines
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// hasLocalSideEffect - Return true if this immediate expression has side
|
|
/// effects, not counting any sub-expressions.
|
|
bool Expr::hasLocalSideEffect() const {
|
|
switch (getStmtClass()) {
|
|
default:
|
|
return false;
|
|
case ParenExprClass:
|
|
return cast<ParenExpr>(this)->getSubExpr()->hasLocalSideEffect();
|
|
case UnaryOperatorClass: {
|
|
const UnaryOperator *UO = cast<UnaryOperator>(this);
|
|
|
|
switch (UO->getOpcode()) {
|
|
default: return false;
|
|
case UnaryOperator::PostInc:
|
|
case UnaryOperator::PostDec:
|
|
case UnaryOperator::PreInc:
|
|
case UnaryOperator::PreDec:
|
|
return true; // ++/--
|
|
|
|
case UnaryOperator::Deref:
|
|
// Dereferencing a volatile pointer is a side-effect.
|
|
return getType().isVolatileQualified();
|
|
case UnaryOperator::Real:
|
|
case UnaryOperator::Imag:
|
|
// accessing a piece of a volatile complex is a side-effect.
|
|
return UO->getSubExpr()->getType().isVolatileQualified();
|
|
|
|
case UnaryOperator::Extension:
|
|
return UO->getSubExpr()->hasLocalSideEffect();
|
|
}
|
|
}
|
|
case BinaryOperatorClass:
|
|
return cast<BinaryOperator>(this)->isAssignmentOp();
|
|
case CompoundAssignOperatorClass:
|
|
return true;
|
|
|
|
case MemberExprClass:
|
|
case ArraySubscriptExprClass:
|
|
// If the base pointer or element is to a volatile pointer/field, accessing
|
|
// if is a side effect.
|
|
return getType().isVolatileQualified();
|
|
|
|
case CallExprClass:
|
|
// TODO: check attributes for pure/const. "void foo() { strlen("bar"); }"
|
|
// should warn.
|
|
return true;
|
|
|
|
case CastExprClass:
|
|
// If this is a cast to void, check the operand. Otherwise, the result of
|
|
// the cast is unused.
|
|
if (getType()->isVoidType())
|
|
return cast<CastExpr>(this)->getSubExpr()->hasLocalSideEffect();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
|
|
/// incomplete type other than void. Nonarray expressions that can be lvalues:
|
|
/// - name, where name must be a variable
|
|
/// - e[i]
|
|
/// - (e), where e must be an lvalue
|
|
/// - e.name, where e must be an lvalue
|
|
/// - e->name
|
|
/// - *e, the type of e cannot be a function type
|
|
/// - string-constant
|
|
/// - reference type [C++ [expr]]
|
|
///
|
|
Expr::isLvalueResult Expr::isLvalue() const {
|
|
// first, check the type (C99 6.3.2.1)
|
|
if (TR->isFunctionType()) // from isObjectType()
|
|
return LV_NotObjectType;
|
|
|
|
if (TR->isVoidType())
|
|
return LV_IncompleteVoidType;
|
|
|
|
if (TR->isReferenceType()) // C++ [expr]
|
|
return LV_Valid;
|
|
|
|
// the type looks fine, now check the expression
|
|
switch (getStmtClass()) {
|
|
case StringLiteralClass: // C99 6.5.1p4
|
|
case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
|
|
// For vectors, make sure base is an lvalue (i.e. not a function call).
|
|
if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
|
|
return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue();
|
|
return LV_Valid;
|
|
case DeclRefExprClass: // C99 6.5.1p2
|
|
if (isa<VarDecl>(cast<DeclRefExpr>(this)->getDecl()))
|
|
return LV_Valid;
|
|
break;
|
|
case MemberExprClass: { // C99 6.5.2.3p4
|
|
const MemberExpr *m = cast<MemberExpr>(this);
|
|
return m->isArrow() ? LV_Valid : m->getBase()->isLvalue();
|
|
}
|
|
case UnaryOperatorClass: // C99 6.5.3p4
|
|
if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
|
|
return LV_Valid;
|
|
break;
|
|
case ParenExprClass: // C99 6.5.1p5
|
|
return cast<ParenExpr>(this)->getSubExpr()->isLvalue();
|
|
case OCUVectorElementExprClass:
|
|
if (cast<OCUVectorElementExpr>(this)->containsDuplicateElements())
|
|
return LV_DuplicateVectorComponents;
|
|
return LV_Valid;
|
|
default:
|
|
break;
|
|
}
|
|
return LV_InvalidExpression;
|
|
}
|
|
|
|
/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
|
|
/// does not have an incomplete type, does not have a const-qualified type, and
|
|
/// if it is a structure or union, does not have any member (including,
|
|
/// recursively, any member or element of all contained aggregates or unions)
|
|
/// with a const-qualified type.
|
|
Expr::isModifiableLvalueResult Expr::isModifiableLvalue() const {
|
|
isLvalueResult lvalResult = isLvalue();
|
|
|
|
switch (lvalResult) {
|
|
case LV_Valid: break;
|
|
case LV_NotObjectType: return MLV_NotObjectType;
|
|
case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
|
|
case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
|
|
case LV_InvalidExpression: return MLV_InvalidExpression;
|
|
}
|
|
if (TR.isConstQualified())
|
|
return MLV_ConstQualified;
|
|
if (TR->isArrayType())
|
|
return MLV_ArrayType;
|
|
if (TR->isIncompleteType())
|
|
return MLV_IncompleteType;
|
|
|
|
if (const RecordType *r = dyn_cast<RecordType>(TR.getCanonicalType())) {
|
|
if (r->hasConstFields())
|
|
return MLV_ConstQualified;
|
|
}
|
|
return MLV_Valid;
|
|
}
|
|
|
|
bool Expr::isConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const {
|
|
|
|
switch (getStmtClass()) {
|
|
default:
|
|
if (Loc) *Loc = getLocStart();
|
|
return false;
|
|
case ParenExprClass:
|
|
return cast<ParenExpr>(this)->getSubExpr()->isConstantExpr(Ctx, Loc);
|
|
case StringLiteralClass:
|
|
case FloatingLiteralClass:
|
|
case IntegerLiteralClass:
|
|
case CharacterLiteralClass:
|
|
case ImaginaryLiteralClass:
|
|
case TypesCompatibleExprClass:
|
|
break;
|
|
case CallExprClass: {
|
|
const CallExpr *CE = cast<CallExpr>(this);
|
|
llvm::APSInt Result(32);
|
|
Result.zextOrTrunc(
|
|
static_cast<uint32_t>(Ctx.getTypeSize(getType(), CE->getLocStart())));
|
|
if (CE->isBuiltinClassifyType(Result))
|
|
break;
|
|
if (Loc) *Loc = getLocStart();
|
|
return false;
|
|
}
|
|
case DeclRefExprClass:
|
|
if (isa<EnumConstantDecl>(cast<DeclRefExpr>(this)->getDecl()))
|
|
break;
|
|
if (Loc) *Loc = getLocStart();
|
|
return false;
|
|
case UnaryOperatorClass: {
|
|
const UnaryOperator *Exp = cast<UnaryOperator>(this);
|
|
|
|
// Get the operand value. If this is sizeof/alignof, do not evalute the
|
|
// operand. This affects C99 6.6p3.
|
|
if (!Exp->isSizeOfAlignOfOp() &&
|
|
!Exp->getSubExpr()->isConstantExpr(Ctx, Loc))
|
|
return false;
|
|
|
|
switch (Exp->getOpcode()) {
|
|
// Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
|
|
// See C99 6.6p3.
|
|
default:
|
|
if (Loc) *Loc = Exp->getOperatorLoc();
|
|
return false;
|
|
case UnaryOperator::Extension:
|
|
return true; // FIXME: this is wrong.
|
|
case UnaryOperator::SizeOf:
|
|
case UnaryOperator::AlignOf:
|
|
// sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
|
|
if (!Exp->getSubExpr()->getType()->isConstantSizeType(Ctx, Loc))
|
|
return false;
|
|
break;
|
|
case UnaryOperator::LNot:
|
|
case UnaryOperator::Plus:
|
|
case UnaryOperator::Minus:
|
|
case UnaryOperator::Not:
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case SizeOfAlignOfTypeExprClass: {
|
|
const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(this);
|
|
// alignof always evaluates to a constant.
|
|
if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType(Ctx,Loc))
|
|
return false;
|
|
break;
|
|
}
|
|
case BinaryOperatorClass: {
|
|
const BinaryOperator *Exp = cast<BinaryOperator>(this);
|
|
|
|
// The LHS of a constant expr is always evaluated and needed.
|
|
if (!Exp->getLHS()->isConstantExpr(Ctx, Loc))
|
|
return false;
|
|
|
|
if (!Exp->getRHS()->isConstantExpr(Ctx, Loc))
|
|
return false;
|
|
|
|
break;
|
|
}
|
|
case ImplicitCastExprClass:
|
|
case CastExprClass: {
|
|
const Expr *SubExpr;
|
|
SourceLocation CastLoc;
|
|
if (const CastExpr *C = dyn_cast<CastExpr>(this)) {
|
|
SubExpr = C->getSubExpr();
|
|
CastLoc = C->getLParenLoc();
|
|
} else {
|
|
SubExpr = cast<ImplicitCastExpr>(this)->getSubExpr();
|
|
CastLoc = getLocStart();
|
|
}
|
|
if (!SubExpr->isConstantExpr(Ctx, Loc)) {
|
|
if (Loc) *Loc = SubExpr->getLocStart();
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
case ConditionalOperatorClass: {
|
|
const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
|
|
|
|
if (!Exp->getCond()->isConstantExpr(Ctx, Loc))
|
|
return false;
|
|
|
|
if (!Exp->getLHS()->isConstantExpr(Ctx, Loc))
|
|
return false;
|
|
|
|
if (!Exp->getRHS()->isConstantExpr(Ctx, Loc))
|
|
return false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isIntegerConstantExpr - this recursive routine will test if an expression is
|
|
/// an integer constant expression. Note: With the introduction of VLA's in
|
|
/// C99 the result of the sizeof operator is no longer always a constant
|
|
/// expression. The generalization of the wording to include any subexpression
|
|
/// that is not evaluated (C99 6.6p3) means that nonconstant subexpressions
|
|
/// can appear as operands to other operators (e.g. &&, ||, ?:). For instance,
|
|
/// "0 || f()" can be treated as a constant expression. In C90 this expression,
|
|
/// occurring in a context requiring a constant, would have been a constraint
|
|
/// violation. FIXME: This routine currently implements C90 semantics.
|
|
/// To properly implement C99 semantics this routine will need to evaluate
|
|
/// expressions involving operators previously mentioned.
|
|
|
|
/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
|
|
/// comma, etc
|
|
///
|
|
/// FIXME: This should ext-warn on overflow during evaluation! ISO C does not
|
|
/// permit this.
|
|
///
|
|
/// FIXME: Handle offsetof. Two things to do: Handle GCC's __builtin_offsetof
|
|
/// to support gcc 4.0+ and handle the idiom GCC recognizes with a null pointer
|
|
/// cast+dereference.
|
|
bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
|
|
SourceLocation *Loc, bool isEvaluated) const {
|
|
switch (getStmtClass()) {
|
|
default:
|
|
if (Loc) *Loc = getLocStart();
|
|
return false;
|
|
case ParenExprClass:
|
|
return cast<ParenExpr>(this)->getSubExpr()->
|
|
isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated);
|
|
case IntegerLiteralClass:
|
|
Result = cast<IntegerLiteral>(this)->getValue();
|
|
break;
|
|
case CharacterLiteralClass: {
|
|
const CharacterLiteral *CL = cast<CharacterLiteral>(this);
|
|
Result.zextOrTrunc(
|
|
static_cast<uint32_t>(Ctx.getTypeSize(getType(), CL->getLoc())));
|
|
Result = CL->getValue();
|
|
Result.setIsUnsigned(!getType()->isSignedIntegerType());
|
|
break;
|
|
}
|
|
case TypesCompatibleExprClass: {
|
|
const TypesCompatibleExpr *TCE = cast<TypesCompatibleExpr>(this);
|
|
Result.zextOrTrunc(
|
|
static_cast<uint32_t>(Ctx.getTypeSize(getType(), TCE->getLocStart())));
|
|
Result = TCE->typesAreCompatible();
|
|
break;
|
|
}
|
|
case CallExprClass: {
|
|
const CallExpr *CE = cast<CallExpr>(this);
|
|
Result.zextOrTrunc(
|
|
static_cast<uint32_t>(Ctx.getTypeSize(getType(), CE->getLocStart())));
|
|
if (CE->isBuiltinClassifyType(Result))
|
|
break;
|
|
if (Loc) *Loc = getLocStart();
|
|
return false;
|
|
}
|
|
case DeclRefExprClass:
|
|
if (const EnumConstantDecl *D =
|
|
dyn_cast<EnumConstantDecl>(cast<DeclRefExpr>(this)->getDecl())) {
|
|
Result = D->getInitVal();
|
|
break;
|
|
}
|
|
if (Loc) *Loc = getLocStart();
|
|
return false;
|
|
case UnaryOperatorClass: {
|
|
const UnaryOperator *Exp = cast<UnaryOperator>(this);
|
|
|
|
// Get the operand value. If this is sizeof/alignof, do not evalute the
|
|
// operand. This affects C99 6.6p3.
|
|
if (!Exp->isSizeOfAlignOfOp() &&
|
|
!Exp->getSubExpr()->isIntegerConstantExpr(Result, Ctx, Loc,isEvaluated))
|
|
return false;
|
|
|
|
switch (Exp->getOpcode()) {
|
|
// Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
|
|
// See C99 6.6p3.
|
|
default:
|
|
if (Loc) *Loc = Exp->getOperatorLoc();
|
|
return false;
|
|
case UnaryOperator::Extension:
|
|
return true; // FIXME: this is wrong.
|
|
case UnaryOperator::SizeOf:
|
|
case UnaryOperator::AlignOf:
|
|
// sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
|
|
if (!Exp->getSubExpr()->getType()->isConstantSizeType(Ctx, Loc))
|
|
return false;
|
|
|
|
// Return the result in the right width.
|
|
Result.zextOrTrunc(
|
|
static_cast<uint32_t>(Ctx.getTypeSize(getType(), Exp->getOperatorLoc())));
|
|
|
|
// Get information about the size or align.
|
|
if (Exp->getOpcode() == UnaryOperator::SizeOf)
|
|
Result = Ctx.getTypeSize(Exp->getSubExpr()->getType(),
|
|
Exp->getOperatorLoc());
|
|
else
|
|
Result = Ctx.getTypeAlign(Exp->getSubExpr()->getType(),
|
|
Exp->getOperatorLoc());
|
|
break;
|
|
case UnaryOperator::LNot: {
|
|
bool Val = Result != 0;
|
|
Result.zextOrTrunc(
|
|
static_cast<uint32_t>(Ctx.getTypeSize(getType(), Exp->getOperatorLoc())));
|
|
Result = Val;
|
|
break;
|
|
}
|
|
case UnaryOperator::Plus:
|
|
break;
|
|
case UnaryOperator::Minus:
|
|
Result = -Result;
|
|
break;
|
|
case UnaryOperator::Not:
|
|
Result = ~Result;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case SizeOfAlignOfTypeExprClass: {
|
|
const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(this);
|
|
// alignof always evaluates to a constant.
|
|
if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType(Ctx,Loc))
|
|
return false;
|
|
|
|
// Return the result in the right width.
|
|
Result.zextOrTrunc(
|
|
static_cast<uint32_t>(Ctx.getTypeSize(getType(), Exp->getOperatorLoc())));
|
|
|
|
// Get information about the size or align.
|
|
if (Exp->isSizeOf())
|
|
Result = Ctx.getTypeSize(Exp->getArgumentType(), Exp->getOperatorLoc());
|
|
else
|
|
Result = Ctx.getTypeAlign(Exp->getArgumentType(), Exp->getOperatorLoc());
|
|
break;
|
|
}
|
|
case BinaryOperatorClass: {
|
|
const BinaryOperator *Exp = cast<BinaryOperator>(this);
|
|
|
|
// The LHS of a constant expr is always evaluated and needed.
|
|
if (!Exp->getLHS()->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
|
|
return false;
|
|
|
|
llvm::APSInt RHS(Result);
|
|
|
|
// The short-circuiting &&/|| operators don't necessarily evaluate their
|
|
// RHS. Make sure to pass isEvaluated down correctly.
|
|
if (Exp->isLogicalOp()) {
|
|
bool RHSEval;
|
|
if (Exp->getOpcode() == BinaryOperator::LAnd)
|
|
RHSEval = Result != 0;
|
|
else {
|
|
assert(Exp->getOpcode() == BinaryOperator::LOr &&"Unexpected logical");
|
|
RHSEval = Result == 0;
|
|
}
|
|
|
|
if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc,
|
|
isEvaluated & RHSEval))
|
|
return false;
|
|
} else {
|
|
if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc, isEvaluated))
|
|
return false;
|
|
}
|
|
|
|
switch (Exp->getOpcode()) {
|
|
default:
|
|
if (Loc) *Loc = getLocStart();
|
|
return false;
|
|
case BinaryOperator::Mul:
|
|
Result *= RHS;
|
|
break;
|
|
case BinaryOperator::Div:
|
|
if (RHS == 0) {
|
|
if (!isEvaluated) break;
|
|
if (Loc) *Loc = getLocStart();
|
|
return false;
|
|
}
|
|
Result /= RHS;
|
|
break;
|
|
case BinaryOperator::Rem:
|
|
if (RHS == 0) {
|
|
if (!isEvaluated) break;
|
|
if (Loc) *Loc = getLocStart();
|
|
return false;
|
|
}
|
|
Result %= RHS;
|
|
break;
|
|
case BinaryOperator::Add: Result += RHS; break;
|
|
case BinaryOperator::Sub: Result -= RHS; break;
|
|
case BinaryOperator::Shl:
|
|
Result <<=
|
|
static_cast<uint32_t>(RHS.getLimitedValue(Result.getBitWidth()-1));
|
|
break;
|
|
case BinaryOperator::Shr:
|
|
Result >>=
|
|
static_cast<uint32_t>(RHS.getLimitedValue(Result.getBitWidth()-1));
|
|
break;
|
|
case BinaryOperator::LT: Result = Result < RHS; break;
|
|
case BinaryOperator::GT: Result = Result > RHS; break;
|
|
case BinaryOperator::LE: Result = Result <= RHS; break;
|
|
case BinaryOperator::GE: Result = Result >= RHS; break;
|
|
case BinaryOperator::EQ: Result = Result == RHS; break;
|
|
case BinaryOperator::NE: Result = Result != RHS; break;
|
|
case BinaryOperator::And: Result &= RHS; break;
|
|
case BinaryOperator::Xor: Result ^= RHS; break;
|
|
case BinaryOperator::Or: Result |= RHS; break;
|
|
case BinaryOperator::LAnd:
|
|
Result = Result != 0 && RHS != 0;
|
|
break;
|
|
case BinaryOperator::LOr:
|
|
Result = Result != 0 || RHS != 0;
|
|
break;
|
|
|
|
case BinaryOperator::Comma:
|
|
// C99 6.6p3: "shall not contain assignment, ..., or comma operators,
|
|
// *except* when they are contained within a subexpression that is not
|
|
// evaluated". Note that Assignment can never happen due to constraints
|
|
// on the LHS subexpr, so we don't need to check it here.
|
|
if (isEvaluated) {
|
|
if (Loc) *Loc = getLocStart();
|
|
return false;
|
|
}
|
|
|
|
// The result of the constant expr is the RHS.
|
|
Result = RHS;
|
|
return true;
|
|
}
|
|
|
|
assert(!Exp->isAssignmentOp() && "LHS can't be a constant expr!");
|
|
break;
|
|
}
|
|
case ImplicitCastExprClass:
|
|
case CastExprClass: {
|
|
const Expr *SubExpr;
|
|
SourceLocation CastLoc;
|
|
if (const CastExpr *C = dyn_cast<CastExpr>(this)) {
|
|
SubExpr = C->getSubExpr();
|
|
CastLoc = C->getLParenLoc();
|
|
} else {
|
|
SubExpr = cast<ImplicitCastExpr>(this)->getSubExpr();
|
|
CastLoc = getLocStart();
|
|
}
|
|
|
|
// C99 6.6p6: shall only convert arithmetic types to integer types.
|
|
if (!SubExpr->getType()->isArithmeticType() ||
|
|
!getType()->isIntegerType()) {
|
|
if (Loc) *Loc = SubExpr->getLocStart();
|
|
return false;
|
|
}
|
|
|
|
uint32_t DestWidth =
|
|
static_cast<uint32_t>(Ctx.getTypeSize(getType(), CastLoc));
|
|
|
|
// Handle simple integer->integer casts.
|
|
if (SubExpr->getType()->isIntegerType()) {
|
|
if (!SubExpr->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
|
|
return false;
|
|
|
|
// Figure out if this is a truncate, extend or noop cast.
|
|
// If the input is signed, do a sign extend, noop, or truncate.
|
|
if (SubExpr->getType()->isSignedIntegerType())
|
|
Result.sextOrTrunc(DestWidth);
|
|
else // If the input is unsigned, do a zero extend, noop, or truncate.
|
|
Result.zextOrTrunc(DestWidth);
|
|
break;
|
|
}
|
|
|
|
// Allow floating constants that are the immediate operands of casts or that
|
|
// are parenthesized.
|
|
const Expr *Operand = SubExpr;
|
|
while (const ParenExpr *PE = dyn_cast<ParenExpr>(Operand))
|
|
Operand = PE->getSubExpr();
|
|
|
|
// If this isn't a floating literal, we can't handle it.
|
|
const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(Operand);
|
|
if (!FL) {
|
|
if (Loc) *Loc = Operand->getLocStart();
|
|
return false;
|
|
}
|
|
|
|
// Determine whether we are converting to unsigned or signed.
|
|
bool DestSigned = getType()->isSignedIntegerType();
|
|
|
|
uint64_t Space[4];
|
|
|
|
llvm::APFloat::opStatus Status =
|
|
FL->getValue().convertToInteger(Space, DestWidth, DestSigned,
|
|
llvm::APFloat::rmTowardZero);
|
|
if (Status != llvm::APFloat::opOK && Status != llvm::APFloat::opInexact) {
|
|
if (Loc) *Loc = Operand->getLocStart();
|
|
return false; // FIXME: need to accept this as an extension.
|
|
}
|
|
|
|
Result = llvm::APInt(DestWidth, 4, Space);
|
|
break;
|
|
}
|
|
case ConditionalOperatorClass: {
|
|
const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
|
|
|
|
if (!Exp->getCond()->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
|
|
return false;
|
|
|
|
const Expr *TrueExp = Exp->getLHS();
|
|
const Expr *FalseExp = Exp->getRHS();
|
|
if (Result == 0) std::swap(TrueExp, FalseExp);
|
|
|
|
// Evaluate the false one first, discard the result.
|
|
if (!FalseExp->isIntegerConstantExpr(Result, Ctx, Loc, false))
|
|
return false;
|
|
// Evalute the true one, capture the result.
|
|
if (!TrueExp->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
|
|
return false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Cases that are valid constant exprs fall through to here.
|
|
Result.setIsUnsigned(getType()->isUnsignedIntegerType());
|
|
return true;
|
|
}
|
|
|
|
|
|
/// isNullPointerConstant - C99 6.3.2.3p3 - Return true if this is either an
|
|
/// integer constant expression with the value zero, or if this is one that is
|
|
/// cast to void*.
|
|
bool Expr::isNullPointerConstant(ASTContext &Ctx) const {
|
|
// Strip off a cast to void*, if it exists.
|
|
if (const CastExpr *CE = dyn_cast<CastExpr>(this)) {
|
|
// Check that it is a cast to void*.
|
|
if (const PointerType *PT = dyn_cast<PointerType>(CE->getType())) {
|
|
QualType Pointee = PT->getPointeeType();
|
|
if (Pointee.getQualifiers() == 0 && Pointee->isVoidType() && // to void*
|
|
CE->getSubExpr()->getType()->isIntegerType()) // from int.
|
|
return CE->getSubExpr()->isNullPointerConstant(Ctx);
|
|
}
|
|
} else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
|
|
// Ignore the ImplicitCastExpr type entirely.
|
|
return ICE->getSubExpr()->isNullPointerConstant(Ctx);
|
|
} else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
|
|
// Accept ((void*)0) as a null pointer constant, as many other
|
|
// implementations do.
|
|
return PE->getSubExpr()->isNullPointerConstant(Ctx);
|
|
}
|
|
|
|
// This expression must be an integer type.
|
|
if (!getType()->isIntegerType())
|
|
return false;
|
|
|
|
// If we have an integer constant expression, we need to *evaluate* it and
|
|
// test for the value 0.
|
|
llvm::APSInt Val(32);
|
|
return isIntegerConstantExpr(Val, Ctx, 0, true) && Val == 0;
|
|
}
|
|
|
|
unsigned OCUVectorElementExpr::getNumElements() const {
|
|
return strlen(Accessor.getName());
|
|
}
|
|
|
|
|
|
/// getComponentType - Determine whether the components of this access are
|
|
/// "point" "color" or "texture" elements.
|
|
OCUVectorElementExpr::ElementType
|
|
OCUVectorElementExpr::getElementType() const {
|
|
// derive the component type, no need to waste space.
|
|
const char *compStr = Accessor.getName();
|
|
|
|
if (OCUVectorType::getPointAccessorIdx(*compStr) != -1) return Point;
|
|
if (OCUVectorType::getColorAccessorIdx(*compStr) != -1) return Color;
|
|
|
|
assert(OCUVectorType::getTextureAccessorIdx(*compStr) != -1 &&
|
|
"getComponentType(): Illegal accessor");
|
|
return Texture;
|
|
}
|
|
|
|
/// containsDuplicateElements - Return true if any element access is
|
|
/// repeated.
|
|
bool OCUVectorElementExpr::containsDuplicateElements() const {
|
|
const char *compStr = Accessor.getName();
|
|
unsigned length = strlen(compStr);
|
|
|
|
for (unsigned i = 0; i < length-1; i++) {
|
|
const char *s = compStr+i;
|
|
for (const char c = *s++; *s; s++)
|
|
if (c == *s)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// getEncodedElementAccess - We encode fields with two bits per component.
|
|
unsigned OCUVectorElementExpr::getEncodedElementAccess() const {
|
|
const char *compStr = Accessor.getName();
|
|
unsigned length = getNumElements();
|
|
|
|
unsigned Result = 0;
|
|
|
|
while (length--) {
|
|
Result <<= 2;
|
|
int Idx = OCUVectorType::getAccessorIdx(compStr[length]);
|
|
assert(Idx != -1 && "Invalid accessor letter");
|
|
Result |= Idx;
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
// constructor for unary messages.
|
|
ObjCMessageExpr::ObjCMessageExpr(
|
|
IdentifierInfo *clsName, IdentifierInfo &methName, QualType retType,
|
|
SourceLocation LBrac, SourceLocation RBrac)
|
|
: Expr(ObjCMessageExprClass, retType), Selector(methName) {
|
|
ClassName = clsName;
|
|
LBracloc = LBrac;
|
|
RBracloc = RBrac;
|
|
}
|
|
|
|
ObjCMessageExpr::ObjCMessageExpr(
|
|
Expr *fn, IdentifierInfo &methName, QualType retType,
|
|
SourceLocation LBrac, SourceLocation RBrac)
|
|
: Expr(ObjCMessageExprClass, retType), Selector(methName), ClassName(0) {
|
|
SubExprs = new Expr*[1];
|
|
SubExprs[RECEIVER] = fn;
|
|
LBracloc = LBrac;
|
|
RBracloc = RBrac;
|
|
}
|
|
|
|
// constructor for keyword messages.
|
|
ObjCMessageExpr::ObjCMessageExpr(
|
|
Expr *fn, IdentifierInfo &selInfo, ObjcKeywordMessage *keys, unsigned numargs,
|
|
QualType retType, SourceLocation LBrac, SourceLocation RBrac)
|
|
: Expr(ObjCMessageExprClass, retType), Selector(selInfo), ClassName(0) {
|
|
SubExprs = new Expr*[numargs+1];
|
|
SubExprs[RECEIVER] = fn;
|
|
for (unsigned i = 0; i != numargs; ++i)
|
|
SubExprs[i+ARGS_START] = static_cast<Expr *>(keys[i].KeywordExpr);
|
|
LBracloc = LBrac;
|
|
RBracloc = RBrac;
|
|
}
|
|
|
|
ObjCMessageExpr::ObjCMessageExpr(
|
|
IdentifierInfo *clsName, IdentifierInfo &selInfo, ObjcKeywordMessage *keys,
|
|
unsigned numargs, QualType retType, SourceLocation LBrac, SourceLocation RBrac)
|
|
: Expr(ObjCMessageExprClass, retType), Selector(selInfo), ClassName(clsName) {
|
|
SubExprs = new Expr*[numargs+1];
|
|
SubExprs[RECEIVER] = 0;
|
|
for (unsigned i = 0; i != numargs; ++i)
|
|
SubExprs[i+ARGS_START] = static_cast<Expr *>(keys[i].KeywordExpr);
|
|
LBracloc = LBrac;
|
|
RBracloc = RBrac;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Child Iterators for iterating over subexpressions/substatements
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// DeclRefExpr
|
|
Stmt::child_iterator DeclRefExpr::child_begin() { return NULL; }
|
|
Stmt::child_iterator DeclRefExpr::child_end() { return NULL; }
|
|
|
|
// PreDefinedExpr
|
|
Stmt::child_iterator PreDefinedExpr::child_begin() { return NULL; }
|
|
Stmt::child_iterator PreDefinedExpr::child_end() { return NULL; }
|
|
|
|
// IntegerLiteral
|
|
Stmt::child_iterator IntegerLiteral::child_begin() { return NULL; }
|
|
Stmt::child_iterator IntegerLiteral::child_end() { return NULL; }
|
|
|
|
// CharacterLiteral
|
|
Stmt::child_iterator CharacterLiteral::child_begin() { return NULL; }
|
|
Stmt::child_iterator CharacterLiteral::child_end() { return NULL; }
|
|
|
|
// FloatingLiteral
|
|
Stmt::child_iterator FloatingLiteral::child_begin() { return NULL; }
|
|
Stmt::child_iterator FloatingLiteral::child_end() { return NULL; }
|
|
|
|
// ImaginaryLiteral
|
|
Stmt::child_iterator ImaginaryLiteral::child_begin() {
|
|
return reinterpret_cast<Stmt**>(&Val);
|
|
}
|
|
Stmt::child_iterator ImaginaryLiteral::child_end() {
|
|
return reinterpret_cast<Stmt**>(&Val)+1;
|
|
}
|
|
|
|
// StringLiteral
|
|
Stmt::child_iterator StringLiteral::child_begin() { return NULL; }
|
|
Stmt::child_iterator StringLiteral::child_end() { return NULL; }
|
|
|
|
// ParenExpr
|
|
Stmt::child_iterator ParenExpr::child_begin() {
|
|
return reinterpret_cast<Stmt**>(&Val);
|
|
}
|
|
Stmt::child_iterator ParenExpr::child_end() {
|
|
return reinterpret_cast<Stmt**>(&Val)+1;
|
|
}
|
|
|
|
// UnaryOperator
|
|
Stmt::child_iterator UnaryOperator::child_begin() {
|
|
return reinterpret_cast<Stmt**>(&Val);
|
|
}
|
|
Stmt::child_iterator UnaryOperator::child_end() {
|
|
return reinterpret_cast<Stmt**>(&Val)+1;
|
|
}
|
|
|
|
// SizeOfAlignOfTypeExpr
|
|
Stmt::child_iterator SizeOfAlignOfTypeExpr::child_begin() { return NULL; }
|
|
Stmt::child_iterator SizeOfAlignOfTypeExpr::child_end() { return NULL; }
|
|
|
|
// ArraySubscriptExpr
|
|
Stmt::child_iterator ArraySubscriptExpr::child_begin() {
|
|
return reinterpret_cast<Stmt**>(&SubExprs);
|
|
}
|
|
Stmt::child_iterator ArraySubscriptExpr::child_end() {
|
|
return reinterpret_cast<Stmt**>(&SubExprs)+END_EXPR;
|
|
}
|
|
|
|
// CallExpr
|
|
Stmt::child_iterator CallExpr::child_begin() {
|
|
return reinterpret_cast<Stmt**>(&SubExprs[0]);
|
|
}
|
|
Stmt::child_iterator CallExpr::child_end() {
|
|
return reinterpret_cast<Stmt**>(&SubExprs[NumArgs+ARGS_START]);
|
|
}
|
|
|
|
// MemberExpr
|
|
Stmt::child_iterator MemberExpr::child_begin() {
|
|
return reinterpret_cast<Stmt**>(&Base);
|
|
}
|
|
Stmt::child_iterator MemberExpr::child_end() {
|
|
return reinterpret_cast<Stmt**>(&Base)+1;
|
|
}
|
|
|
|
// OCUVectorElementExpr
|
|
Stmt::child_iterator OCUVectorElementExpr::child_begin() {
|
|
return reinterpret_cast<Stmt**>(&Base);
|
|
}
|
|
Stmt::child_iterator OCUVectorElementExpr::child_end() {
|
|
return reinterpret_cast<Stmt**>(&Base)+1;
|
|
}
|
|
|
|
// CompoundLiteralExpr
|
|
Stmt::child_iterator CompoundLiteralExpr::child_begin() {
|
|
return reinterpret_cast<Stmt**>(&Init);
|
|
}
|
|
Stmt::child_iterator CompoundLiteralExpr::child_end() {
|
|
return reinterpret_cast<Stmt**>(&Init)+1;
|
|
}
|
|
|
|
// ImplicitCastExpr
|
|
Stmt::child_iterator ImplicitCastExpr::child_begin() {
|
|
return reinterpret_cast<Stmt**>(&Op);
|
|
}
|
|
Stmt::child_iterator ImplicitCastExpr::child_end() {
|
|
return reinterpret_cast<Stmt**>(&Op)+1;
|
|
}
|
|
|
|
// CastExpr
|
|
Stmt::child_iterator CastExpr::child_begin() {
|
|
return reinterpret_cast<Stmt**>(&Op);
|
|
}
|
|
Stmt::child_iterator CastExpr::child_end() {
|
|
return reinterpret_cast<Stmt**>(&Op)+1;
|
|
}
|
|
|
|
// BinaryOperator
|
|
Stmt::child_iterator BinaryOperator::child_begin() {
|
|
return reinterpret_cast<Stmt**>(&SubExprs);
|
|
}
|
|
Stmt::child_iterator BinaryOperator::child_end() {
|
|
return reinterpret_cast<Stmt**>(&SubExprs)+END_EXPR;
|
|
}
|
|
|
|
// ConditionalOperator
|
|
Stmt::child_iterator ConditionalOperator::child_begin() {
|
|
return reinterpret_cast<Stmt**>(&SubExprs);
|
|
}
|
|
Stmt::child_iterator ConditionalOperator::child_end() {
|
|
return reinterpret_cast<Stmt**>(&SubExprs)+END_EXPR;
|
|
}
|
|
|
|
// AddrLabelExpr
|
|
Stmt::child_iterator AddrLabelExpr::child_begin() { return NULL; }
|
|
Stmt::child_iterator AddrLabelExpr::child_end() { return NULL; }
|
|
|
|
// StmtExpr
|
|
Stmt::child_iterator StmtExpr::child_begin() {
|
|
return reinterpret_cast<Stmt**>(&SubStmt);
|
|
}
|
|
Stmt::child_iterator StmtExpr::child_end() {
|
|
return reinterpret_cast<Stmt**>(&SubStmt)+1;
|
|
}
|
|
|
|
// TypesCompatibleExpr
|
|
Stmt::child_iterator TypesCompatibleExpr::child_begin() { return NULL; }
|
|
Stmt::child_iterator TypesCompatibleExpr::child_end() { return NULL; }
|
|
|
|
// ChooseExpr
|
|
Stmt::child_iterator ChooseExpr::child_begin() {
|
|
return reinterpret_cast<Stmt**>(&SubExprs);
|
|
}
|
|
|
|
Stmt::child_iterator ChooseExpr::child_end() {
|
|
return reinterpret_cast<Stmt**>(&SubExprs)+END_EXPR;
|
|
}
|
|
|
|
// InitListExpr
|
|
Stmt::child_iterator InitListExpr::child_begin() {
|
|
return reinterpret_cast<Stmt**>(&InitExprs[0]);
|
|
}
|
|
Stmt::child_iterator InitListExpr::child_end() {
|
|
return reinterpret_cast<Stmt**>(&InitExprs[NumInits]);
|
|
}
|
|
|
|
// ObjCStringLiteral
|
|
Stmt::child_iterator ObjCStringLiteral::child_begin() { return NULL; }
|
|
Stmt::child_iterator ObjCStringLiteral::child_end() { return NULL; }
|
|
|
|
// ObjCEncodeExpr
|
|
Stmt::child_iterator ObjCEncodeExpr::child_begin() { return NULL; }
|
|
Stmt::child_iterator ObjCEncodeExpr::child_end() { return NULL; }
|
|
|
|
// ObjCMessageExpr
|
|
Stmt::child_iterator ObjCMessageExpr::child_begin() {
|
|
return reinterpret_cast<Stmt**>(&SubExprs[0]);
|
|
}
|
|
Stmt::child_iterator ObjCMessageExpr::child_end() {
|
|
return reinterpret_cast<Stmt**>(&SubExprs[NumArgs+ARGS_START]);
|
|
}
|
|
|